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Preface

Formal logic has many applications both within philosophy and outside (es-
pecially in mathematics, computer science, and linguistics). This second course
will introduce you to the concepts, results, and methods of formal logic neces-
sary to understand and appreciate these applications as well as the limitations
of formal logic. It will be mathematical in that you will be required to master
abstract formal concepts and to prove theorems about logic (not just in logic the
way you did in Phil 210); but it does not presuppose any advanced knowledge
of mathematics.

We will begin by studying some basic formal concepts: sets, relations, and
functions and sizes of infinite sets. We will then consider the language, seman-
tics, and proof theory of first-order logic (FOL), and ways in which we can use
first-order logic to formalize facts and reasoning abouts some domains of in-
terest to philosophers and logicians.

In the second part of the course, we will begin to investigate the meta-
theory of first-order logic. We will concentrate on a few central results: the
completeness theorem, which relates the proof theory and semantics of first-
order logic, and the compactness theorem and Léwenheim-Skolem theorems,
which concern the existence and size of first-order interpretations.

In the third part of the course, we will discuss a particular way of mak-
ing precise what it means for a function to be computable, namely, when it
is recursive. This will enable us to prove important results in the metatheory
of logic and of formal systems formulated in first-order logic: Godel’s incom-
pleteness theorem, the Church-Turing undecidability theorem, and Tarski’s
theorem about the undefinability of truth.

Week 1 (Jan 5, 7). Introduction. Sets and Relations.
Week 2 (Jan 12, 14). Functions. Enumerability.
Week 3 (Jan 19, 21). Syntax and Semantics of FOL.

(

(

(
Week 4 (Jan 26, 28). Structures and Theories.
Week 5 (Feb 2, 5). Sequent Calculus and Proofs in FOL.
(

Week 6 (Feb 9, 12). The Completeness Theorem.

\%
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Week 7 (Feb 16, 18). Compactness and Lowenheim-Skolem Theorems
Week 8 (Mar 23, 25). Recursive Functions

Week 9 (Mar 9, 11). Arithmetization of Syntax

Week 10 (Mar 16, 18). Theories and Computability

Week 11 (Mar 23, 25). Godel’s Incompleteness Theorems

Week 12 (Mar 30, Apr 1). The Undefinability of Truth.

Week 13, 14 (Apr 8, 13). Applications.

Vi
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Sets, Relations, Functions



Chapter 1

Sets

1.1 Basics

Sets are the most fundamental building blocks of mathematical objects. In fact,
almost every mathematical object can be seen as a set of some kind. In logic,
as in other parts of mathematics, sets and set theoretical talk is ubiquitous.
So it will be important to discuss what sets are, and introduce the notations
necessary to talk about sets and operations on sets in a standard way:.

Definition 1.1 (Set). A set is a collection of objects, considered independently
of the way it is specified, of the order of the objects in the set, or of their
multiplicity. The objects making up the set are called elements or members of
the set. If a is an element of a set X, we write a € X (otherwise, a ¢ X). The set
which has no elements is called the empty set and denoted by the symbol @.

Example 1.2. Whenever you have a bunch of objects, you can collect them
together in a set. The set of Richard’s siblings, for instance, is a set that con-
tains one person, and we could write it as S = {Ruth}. In general, when
we have some objects 4y, ..., a,, then the set consisting of exactly those ob-
jects is written {ay,...,a,}. Frequently we'll specify a set by some property
that its elements share—as we just did, for instance, by specifying S as the
set of Richard’s siblings. We'll use the following shorthand notation for that:
{x:...x...}, where the ... x ... stands for the property that x has to have in
order to be counted among the elements of the set. In our example, we could
have specified S also as

S = {x : x is a sibling of Richard}.

When we say that sets are independent of the way they are specified, we
mean that the elements of a set are all that matters. For instance, it so happens
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1.2. Some Important Sets

that

{Nicole, Jacob},
{x : is a niece or nephew of Richard}, and
{x :is a child of Ruth}

are three ways of specifying one and the same set.
Saying that sets are considered independently of the order of their ele-
ments and their multiplicity is a fancy way of saying that

{Nicole, Jacob} and
{Jacob, Nicole}

are two ways of specifying the same set; and that

{Nicole, Jacob} and
{Jacob, Nicole, Nicole }

are also two ways of specifying the same set. In other words, all that matters
is which elements a set has. The elements of a set are not ordered and each el-
ement occurs only once. When we specify or describe a set, elements may occur
multiple times and in different orders, but any descriptions that only differ in
the order of elements or in how many times elements are listed describes the
same set.

Definition 1.3 (Extensionality). If X and Y are sets, then X and Y are identical,
X =Y, iff every element of X is also an element of Y, and vice versa.

Extensionality gives us a way for showing that sets are identical: to show
that X = Y, show that whenever x € X then also x € Y, and whenever y € Y
then alsoy € X.

1.2 Some Important Sets

Example 1.4. Mostly we’ll be dealing with sets that have mathematical objects
as members. You will remember the various sets of numbers: N is the set of
natural numbers {0,1,2,3,... }; Z the set of integers,

{...,=3,-2,-1,0,1,2,3,...};

Q the set of rational numbers (Q = {z/n :z € Z,n € N,n # 0}); and R the
set of real numbers. These are all infinite sets, that is, they each have infinitely
many elements. As it turns out, N, Z, Q have the same number of elements,
while R has a whole bunch more—IN, Z, Q are “enumerable and infinite”
whereas R is “non-enumerable”.

We'll sometimes also use the set of positive integers Z* = {1,2,3,... } and
the set containing just the first two natural numbers B = {0,1}.



1. SETS

Example 1.5 (Strings). Another interesting example is the set A* of finite strings
over an alphabet A: any finite sequence of elements of A is a string over A.
We include the empty string A among the strings over A, for every alphabet A.
For instance,

B* = {A,0,1,00,01,10,11,
000, 001,010,011,100,101, 110,111, 0000, . . . }.

If x = x1...x, € A¥is a string consisting of n “letters” from A, then we say
length of the string is n and write len(x) = n.

Example 1.6 (Infinite sequences). For any set A we may also consider the
set A of infinite sequences of elements of A. An infinite sequence a1aa34ay . ..
consists of a one-way infinite list of objects, each one of which is an element
of A.

1.3 Subsets

Sets are made up of their elements, and every element of a set is a part of that
set. But there is also a sense that some of the elements of a set taken together
are a “part of” that set. For instance, the number 2 is part of the set of integers,
but the set of even numbers is also a part of the set of integers. It's important
to keep those two senses of being part of a set separate.

Definition 1.7 (Subset). If every element of a set X is also an element of Y,
then we say that X is a subset of Y, and write X C Y.

Example 1.8. First of all, every set is a subset of itself, and @ is a subset of
every set. The set of even numbers is a subset of the set of natural numbers.
Also, {a,b} C {a,b,c}.

But {4, b, ¢} is not a subset of {4, b, c}.

Note that a set may contain other sets, not just as subsets but as elements!
In particular, a set may happen to both be an element and a subset of another,
e.g., {0} € {0,{0}} and also {0} C {0,{0}}.

Extensionality gives a criterion of identity for sets: X = Y iff every element
of X is also an element of Y and vice versa. The definition of “subset” defines
X C Y precisely as the first half of this criterion: every element of X is also
an element of Y. Of course the definition also applies if we switch X and Y:
Y C X iff every element of Y is also an element of X. And that, in turn, is
exactly the “vice versa” part of extensionality. In other words, extensionality
amountsto: X =Y iff XCYand Y C X.

Definition 1.9 (Power Set). The set consisting of all subsets of a set X is called
the power set of X, written p(X).

p(X) = {Y:Y CX)



1.4. Unions and Intersections

Example 1.10. What are all the possible subsets of {a,b,c}? They are: @,
{a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c}. The set of all these subsets is
p({a,b,c}):

p({a,b,c}) = {0, {a}, {b}, {c} {a b}, {b,c}, {a,c}, {abct}

1.4 Unions and Intersections

Definition 1.11 (Union). The union of two sets X and Y, written X UY, is the
set of all things which are elements of X, Y, or both.

XUY={x:xeXVxeY}

Example 1.12. Since the multiplicity of elements doesn’t matter, the union of
two sets which have an element in common contains that element only once,
eg.,{abc}U{a,0,1} ={a,b,c01}.

The union of a set and one of its subsets is just the bigger set: {a, b, c} U
{a} ={a,b,c}.

The union of a set with the empty set is identical to the set: {a,b,c} UD =
{a,b,c}.

Definition 1.13 (Intersection). The intersection of two sets X and Y, written
X NY, is the set of all things which are elements of both X and Y.

XNY={x:xeXAxeY}

Two sets are called disjoint if their intersection is empty. This means they have
no elements in common.

Example 1.14. If two sets have no elements in common, their intersection is
empty: {a,b,c} N{0,1} = .

If two sets do have elements in common, their intersection is the set of all
those: {a,b,c} N{a,b,d} = {a,b}.

The intersection of a set with one of its subsets is just the smaller set:
{a,b,c} N {a,b} = {a,b}.

The intersection of any set with the empty set is empty: {a,b,c} NQ = @.

We can also form the union or intersection of more than two sets. An
elegant way of dealing with this in general is the following: suppose you
collect all the sets you want to form the union (or intersection) of into a single
set. Then we can define the union of all our original sets as the set of all objects
which belong to at least one element of the set, and the intersection as the set
of all objects which belong to every element of the set.



1. SETS

Definition 1.15. If Z is a set of sets, then | Z is the set of elements of elements
of Z:

U Z = {x : x belongs to an element of Z}, i.e.,
JZ ={x:thereisaY € Zsothatx € Y}

Definition 1.16. If Z is a set of sets, then (] Z is the set of objects which all
elements of Z have in common:

(1Z = {x : x belongs to every element of Z}, i.e.,
(Z={x:forallY € Z,x € Y}

Example 1.17. Suppose Z = {{a,b},{a,d,e},{a,d}}. Then UZ = {a,b,d, e}
and NZ = {a}.

We could also do the same for a sequence of sets Xj, X», ...

U X; = {x : x belongs to one of the X;}
;

() Xi = {x : x belongs to every X;}.

1

Definition 1.18 (Difference). The difference X \ Y is the set of all elements of X
which are not also elements of Y, i.e.,

X\Y={x:xeXandx ¢ Y}.

1.5 Proofs about Sets

Sets and the notations we’ve introduced so far provide us with convenient
shorthands for specifying sets and expressing relationships between them.
Often it will also be necessary to prove claims about such relationships. If
you're not familiar with mathematical proofs, this may be new to you. So
we’ll walk through a simple example. We'll prove that for any sets X and Y,
it's always the case that X N (X UY) = X. How do you prove an identity be-
tween sets like this? Recall that sets are determined solely by their elements,
i.e., sets are identical iff they have the same elements. So in this case we have
to prove that (a) every element of X N (X UY) is also an element of X and,
conversely, that (b) every element of X is also an element of X N (XU Y). In
other words, we show thatboth (a) XN (XUY) C Xand (b) X C XN (XUY).

A proof of a general claim like “every element z of X N (X UY) is also an
element of X” is proved by first assuming that an arbitrary z € XN (X UY)
is given, and proving from this assumtion that z € X. You may know this
pattern as “general conditional proof.” In this proof we’ll also have to make
use of the definitions involved in the assumption and conclusion, e.g., in this
case of “N” and “U.” So case (a) would be argued as follows:

6



1.6. Pairs, Tuples, Cartesian Products

(a) We first want to show that X N (X UY) C X, i.e., by definition
of C, thatifz € XN (XUY) then z € X, for any z. So assume that
z € XN (XUY). Since z is an element of the intersection of two
sets iff it is an element of both sets, we can conclude that z € X
and also z € X UY. In particular, z € X, which is what we wanted
to show.

This completes the first half of the proof. Note that in the last step we used
the fact that if a conjunction (z € X and z € X U Y) follows from an assump-
tion, each conjunct follows from that same assumption. You may know this
rule as “conjunction elimination,” or AElim. Now let’s prove (b):

(b) We now prove that X C X N (X UY), i.e., by definition of C,
thatif z € X thenalsoz € XN (X UY), for any z. Assume z € X.
To show that z € XN (X UY), we have to show (by definition of
“N”) that (i) z € X and also (ii) z € X U Y. Here (i) is just our
assumption, so there is nothing further to prove. For (ii), recall
that z is an element of a union of sets iff it is an element of at least
one of those sets. Since z € X, and X U Y is the union of X and Y,
this is the case here. So z € X UY. We’ve shown both (i) z € X and
(i) z € X UY, hence, by definition of “N,” z € XN (X UY).

This was somewhat long-winded, but it illustrates how we reason about
sets and their relationships. We usually aren’t this explicit; in particular, we
might not repeat all the definitions. A proof of our result in a more advanced
text would be much more compressed. It might look something like this.

Proposition 1.19 (Absorption). For all sets X, Y,
XNXuy)=X

Proof. (a) Supposez € XN (XUY). Thenz € X,s0 XN (XUY) C X.
(b) Now suppose z € X. Then also z € X UY, and therefore also z €
XN (XUY). Thus, X C XN (XUY). O

1.6 Pairs, Tuples, Cartesian Products

Sets have no order to their elements. We just think of them as an unordered
collection. So if we want to represent order, we use ordered pairs (x,y), or more
generally, ordered n-tuples (x1,...,x,).

Definition 1.20 (Cartesian product). Given sets X and Y, their Cartesian prod-
uct X x Yis{(x,y) :x € Xandy € Y}.

Example 1.21. If X = {0,1}, and Y = {1, 4, b}, then their product is
X xY ={(0,1),(0,a),(0,b),(1,1),(1,a),(1,b) }.



1. SETS

Example 1.22. If X is a set, the product of X with itself, X x X, is also writ-
ten X2. It is the set of all pairs (x,y) with x,y € X. The set of all triples (x,v, z)
is X3, and so on.

Example 1.23. If X is a set, a word over X is any sequence of elements of X. A
sequence can be thought of as an n-tuple of elements of X. For instance, if X =
{a,b, c}, then the sequence “bac” can be thought of as the triple (b, a, c). Words,
i.e., sequences of symbols, are of crucial importance in computer science, of
course. By convention, we count elements of X as sequences of length 1, and
@ as the sequence of length 0. The set of all words over X then is

X*={QluXuXx?uxiu...

1.7 Russell’s Paradox

We said that one can define sets by specifying a property that its elements
share, e.g., defining the set of Richard’s siblings as

S = {x : x is a sibling of Richard}.

In the very general context of mathematics one must be careful, however: not
every property lends itself to comprehension. Some properties do not define
sets. If they did, we would run into outright contradictions. One example of
such a case is Russell’s Paradox.

Sets may be elements of other sets—for instance, the power set of a set X
is made up of sets. And so it makes sense, of course, to ask or investigate
whether a set is an element of another set. Can a set be a member of itself?
Nothing about the idea of a set seems to rule this out. For instance, surely all
sets form a collection of objects, so we should be able to collect them into a
single set—the set of all sets. And it, being a set, would be an element of the
set of all sets.

Russell’s Paradox arises when we consider the property of not having itself
as an element. The set of all sets does not have this property, but all sets
we have encountered so far have it. IN is not an element of IN, since it is a
set, not a natural number. (X) is generally not an element of p(X); e.g.,
p(R) ¢ p(R) since it is a set of sets of real numbers, not a set of real numbers.
What if we suppose that there is a set of all sets that do not have themselves
as an element? Does

R={x:x¢x}

exist?

If R exists, it makes sense to ask if R € R or not—it must be either € R
or ¢ R. Suppose the former is true, i.e,, R € R. R was defined as the set of
all sets that are not elements of themselves, and so if R € R, then R does not
have this defining property of R. But only sets that have this property are in R,

8



1.7. Russell’s Paradox

hence, R cannot be an element of R, i.e.,, R ¢ R. But R can’t both be and not be
an element of R, so we have a contradiction.

Since the assumption that R € R leads to a contradiction, we have R ¢ R.
But this also leads to a contradiction! For if R ¢ R, it does have the defining
property of R, and so would be an element of R just like all the other non-self-
containing sets. And again, it can’t both not be and be an element of R.



Chapter 2

Relations

2.1 Relations as Sets

You will no doubt remember some interesting relations between objects of
some of the sets we’ve mentioned. For instance, numbers come with an order
relation < and from the theory of whole numbers the relation of divisibility
without remainder (usually written n | m) may be familar. There is also the
relation is identical with that every object bears to itself and to no other thing.
But there are many more interesting relations that we’ll encounter, and even
more possible relations. Before we review them, we’ll just point out that we
can look at relations as a special sort of set. For this, first recall what a pair is: if
a and b are two objects, we can combine them into the ordered pair (a, b). Note
that for ordered pairs the order does matter, e.g, (a,b) # (b,a), in contrast to
unordered pairs, i.e., 2-element sets, where {a,b} = {b,a}.

If X and Y are sets, then the Cartesian product X x Y of X and Y is the set of
all pairs (a,b) witha € X and b € Y. In particular, X*> = X x X is the set of all
pairs from X.

Now consider a relation on a set, e.g., the <-relation on the set N of natural
numbers, and consider the set of all pairs of numbers (1, m) where n < m, i.e.,

R={(n,m):n,meNandn < m}.

Then there is a close connection between the number # being less than a num-
ber m and the corresponding pair (1, m) being a member of R, namely, n < m
if and only if (n,m) € R. In a sense we can consider the set R to be the <-
relation on the set N. In the same way we can construct a subset of IN? for
any relation between numbers. Conversely, given any set of pairs of numbers
S C IN?, there is a corresponding relation between numbers, namely, the re-
lationship # bears to m if and only if (n,m) € S. This justifies the following
definition:

10



2.2. Special Properties of Relations

Definition 2.1 (Binary relation). A binary relation on a set X is a subset of X2.
IfRC X?isa binary relation on X and x,y € X, we write Rxy (or xRy) for
(x,y) € R.

Example 2.2. The set N? of pairs of natural numbers can be listed in a 2-
dimensional matrix like this:

(0,00 0,1 (02) (0,3)
L,o) (1L1) (1,2) (13)
(2,00 (2,1) (2,2) (2,3)
(3,0) (3,1) (3,2) (3,3)

The subset consisting of the pairs lying on the diagonal, i.e.,

{(0,0),(1,1),(2,2),...},

is the identity relation on IN. (Since the identity relation is popular, let’s define
Idx = {(x,x) : x € X} for any set X.) The subset of all pairs lying above the
diagonal, i.e.,

L=1{{(0,1),(0,2),...,(1,2),(1,3),...,(2,3),(2,4),...},

is the less than relation, i.e., Lnm iff n < m. The subset of pairs below the
diagonal, i.e.,

G = {(1,0),(2,0,(2,1),(3,0),(3,1), (3,2),...},

is the greater than relation, i.e., Gnm iff n > m. The union of Lwith I, K = LU,
is the less than or equal to relation: Knm iff n < m. Similarly, H = G U I is the
greater than or equal to relation. L, G, K, and H are special kinds of relations
called orders. L and G have the property that no number bears L or G to itself
(i.e., for all n, neither Lnn nor Gnn). Relations with this property are called
irreflexive, and, if they also happen to be orders, they are called strict orders.

Although orders and identity are important and natural relations, it should
be emphasized that according to our definition any subset of X? is a relation
on X, regardless of how unnatural or contrived it seems. In particular, @ is a
relation on any set (the empty relation, which no pair of elements bears), and
X? itself is a relation on X as well (one which every pair bears), called the
universal relation. But also something like E = {(n,m) : n > 50rm x n > 34}
counts as a relation.

2.2 Special Properties of Relations

Some kinds of relations turn out to be so common that they have been given
special names. For instance, < and C both relate their respective domains

11



2. RELATIONS

(say, IN in the case of < and p(X) in the case of C) in similar ways. To get
at exactly how these relations are similar, and how they differ, we categorize
them according to some special properties that relations can have. It turns out
that (combinations of) some of these special properties are especially impor-
tant: orders and equivalence relations.

Definition 2.3 (Reflexivity). A relation R C X2 is reflexive iff, for every x € X,
Rxx.

Definition 2.4 (Transitivity). A relation R C X? is transitive iff, whenever Rxy
and Ryz, then also Rxz.

Definition 2.5 (Symmetry). A relation R C X2 is symmetric iff, whenever Rxy,
then also Ryx.

Definition 2.6 (Anti-symmetry). A relation R C X? is anti-symmetric iff, when-
ever both Rxy and Ryx, then x = y (or, in other words: if x # y then either
—Rxy or =Ryx).

In a symmetric relation, Rxy and Ryx always hold together, or neither
holds. In an anti-symmetric relation, the only way for Rxy and Ryx to hold to-
gether is if x = y. Note that this does not require that Rxy and Ryx holds when
x = y, only that it isn’t ruled out. So an anti-symmetric relation can be reflex-
ive, but it is not the case that every anti-symmetric relation is reflexive. Also
note that being anti-symmetric and merely not being symmetric are different
conditions. In fact, a relation can be both symmetric and anti-symmetric at the
same time (e.g., the identity relation is).

Definition 2.7 (Connectivity). A relation R C X2 is connected if for all x, yEeX,
if x # y, then either Rxy or Ryx.

Definition 2.8 (Partial order). A relation R C X? that is reflexive, transitive,
and anti-symmetric is called a partial order.

Definition 2.9 (Linear order). A partial order that is also connected is called a
linear order.

Definition 2.10 (Equivalence relation). A relation R C X? that is reflexive,
symmetric, and transitive is called an equivalence relation.

2.3 Orders

Very often we are interested in comparisons between objects, where one object
may be less or equal or greater than another in a certain respect. Size is the
most obvious example of such a comparative relation, or order. But not all
such relations are alike in all their properties. For instance, some comparative
relations require any two objects to be comparable, others don’t. (If they do,

12



2.3. Orders

we call them linear or total.) Some include identity (like <) and some exclude
it (like <). Let’s get some order into all this.

Definition 2.11 (Preorder). A relation which is both reflexive and transitive is
called a preorder.

Definition 2.12 (Partial order). A preorder which is also anti-symmetric is
called a partial order.

Definition 2.13 (Linear order). A partial order which is also connected is
called a fotal order or linear order.

Example 2.14. Every linear order is also a partial order, and every partial or-
der is also a preorder, but the converses don’t hold. For instance, the identity
relation and the full relation on X are preorders, but they are not partial or-
ders, because they are not anti-symmetric (if X has more than one element).
For a somewhat less silly example, consider the no longer than relation < on B*:
x < yiff len(x) < len(y). This is a preorder, even a connected preorder, but
not a partial order.

The relation of divisibility without remainder gives us an example of a partial
order which isn’t a linear order: for integers n, m, we say n (evenly) divides
m, in symbols: n | m, if there is some k so that m = kn. On I, this is a partial
order, but not a linear order: for instance, 2 3 and also 3 t 2. Considered as a
relation on Z, divisibility is only a preorder since anti-symmetry fails: 1 | —1
and —1 | 1but1 # —1. Another important partial order is the relation C on a
set of sets.

Notice that the examples L and G from Example 2.2, although we said
there that they were called “strict orders” are not linear orders even though
they are connected (they are not reflexive). But there is a close connection, as
we will see momentarily.

Definition 2.15 (Irreflexivity). A relation R on X is called irreflexive if, for all
x € X, 7Rxx.

Definition 2.16 (Asymmetry). A relation R on X is called asymmetric if for no
pair x,y € X we have Rxy and Ryx.

Definition 2.17 (Strict order). A strict order is a relation which is irreflexive,
asymmetric, and transitive.

Definition 2.18 (Strict linear order). A strict order which is also connected is
called a strict linear order.

A strict order on X can be turned into a partial order by adding the di-
agonal Idy, i.e., adding all the pairs (x,x). (This is called the reflexive closure
of R.) Conversely, starting from a partial order, one can get a strict order by
removing Idy.

13
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Proposition 2.19. 1. If R is a strict (linear) order on X, then RT™ = RUIdy is
a partial order (linear order).

2. If Ris a partial order (linear order) on X, then R~ = R\ Idy is a strict (linear)
order.

Proof. 1. Suppose R is a strict order, i.e., R C X? and R is irreflexive, asym-
metric, and transitive. Let Rt = RUIdx. We have to show that Rt is
reflexive, antisymmetric, and transitive.

R™ is clearly reflexive, since for all x € X, (x,x) € Idx C R™.

To show R™ is antisymmetric, suppose RTxy and R*yx, ie., (x,y) and
(y,x) € RT,and x # y. Since (x,y) € RUIdx, but (x,y) ¢ Idx, we must
have (x,y) € R, i.e., Rxy. Similarly we get that Ryx. But this contradicts
the assumption that R is asymmetric.

Now suppose that R xy and RTyz. If both (x,y) € Rand (y,z) € R, it
follows that (x,z) € R since R is transitive. Otherwise, either (x,y) €
Idy, i.e., x =y, or (y,z) € Idx, i.e., y = z. In the first case, we have that
RTyz by assumption, x = y, hence R xz. Similarly in the second case.
In either case, R xz, thus, RT is also transitive.

If R is connected, then for all x # y, either Rxy or Ryx, i.e., either
(x,y) € Ror (y,x) € R. Since R C R™, this remains true of RT, so
R is connected as well.

2. Exercise.
O

Example 2.20. < is the linear order corresponding to the strict linear order <.
C is the partial order corresponding to the strict order C.

24 Graphs

A graph is a diagram in which points—called “nodes” or “vertices” (plural of
“vertex”)—are connected by edges. Graphs are a ubiquitous tool in descrete
mathematics and in computer science. They are incredibly useful for repre-
senting, and visualizing, relationships and structures, from concrete things
like networks of various kinds to abstract structures such as the possible out-
comes of decisions. There are many different kinds of graphs in the literature
which differ, e.g., according to whether the edges are directed or not, have la-
bels or not, whether there can be edges from a node to the same node, multiple
edges between the same nodes, etc. Directed graphs have a special connection
to relations.

Definition 2.21 (Directed graph). A directed graph G = (V,E) is a set of ver-
tices V and a set of edges E C V2.
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According to our definition, a graph just is a set together with a relation
on that set. Of course, when talking about graphs, it’s only natural to expect
that they are graphically represented: we can draw a graph by connecting two
vertices v1 and v by an arrow iff (v, v;) € E. The only difference between a
relation by itself and a graph is that a graph specifies the set of vertices, i.e., a
graph may have isolated vertices. The important point, however, is that every
relation R on a set X can be seen as a directed graph (X, R), and conversely, a
directed graph (V, E) can be seen as a relation E C V2 with the set V explicitly
specified.

Example 2.22. The graph (V,E) with V = {1,2,3,4} and E = {(1,1),(1,2),
(1,3),(2,3)} looks like this:

®

This is a different graph than (V’, E) with V' = {1,2,3}, which looks like this:

2.5 Operations on Relations

It is often useful to modify or combine relations. We’ve already used the union
of relations above (which is just the union of two relations considered as sets
of pairs). Here are some other ways:

Definition 2.23. Let R, S C X2 be relations and Y a set.
1. The inverse R~ of Ris R™1 = {{y,x) : (x,y) € R}.
2. The relative product R | S of R and S is
(R|S) ={(x,z) : for some y, Rxy and Syz}

15
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3. The restriction R | Y of Rto Y is RN Y?
4. The application R[Y] of R to Y is

R[Y] = {y : for some x € Y, Rxy}

Example 2.24. Let S C 72 be the successor relation on Z, i.e., the set of pairs
(x,y) where x +1 =y, for x,y € Z. Sxy holds iff y is the successor of x.
1. The inverse S~! of S is the predecessor relation, i.e., S~ lxy iff x — 1 = y.
2. The relative product S | S is the relation x bears to y if x +2 = y.
3. The restriction of S to IN is the successor relation on IN.
4. The application of S to a set, e.g., S[{1,2,3}] is {2,3,4}.

Definition 2.25 (Transitive closure). The transitive closure RT of arelation R C
X?is R = U2, R where R = Rand R'"*! = R | R.
The reflexive transitive closure of R is R* = R™ U Ix.

Example 2.26. Take the successor relation S C Z?2. S%xy iff x + 2 = y, S3xy iff
x +3 =y, etc. So R*xy iff for some i > 1, x + i = y. In other words, ST xy iff
x <y (and R*xy iff x < y).

16



Chapter 3

Functions

3.1 Basics

A function is a mapping of which pairs each object of a given set with a sin-
gle partner in another set. For instance, the operation of adding 1 defines a
function: each number # is paired with a unique number n + 1. More gener-
ally, functions may take pairs, triples, etc., of inputs and returns some kind of
output. Many functions are familiar to us from basic arithmetic. For instance,
addition and multiplication are functions. They take in two numbers and re-
turn a third. In this mathematical, abstract sense, a function is a black box:
what matters is only what output is paired with what input, not the method
for calculating the output.

Definition 3.1 (Function). A function f: X — Y is a mapping of each element
of X to an element of Y. We call X the domain of f and Y the codomain of f.
The elements of X are called inputs or arquments of f, and the element of Y
that is paired with an argument x by f is called the value of f for argument x,
written f(x).

The range ran(f) of f is the subset of the codomain consisting of the values
of f for some argument; ran(f) = {f(x) : x € X}.

Example 3.2. Multiplication takes pairs of natural numbers as inputs and
maps them to natural numbers as outputs, so goes from IN x IN (the domain)
to IN (the codomain). As it turns out, the range is also IN, since every n € IN
isn x 1.

Multiplication is a function because it pairs each input—each pair of natu-
ral numbers—with a single output: x : N> — IN. By contrast, the square root
operation applied to the domain IN is not functional, since each positive inte-
ger 1 has two square roots: /7 and —/n. We can make it functional by only
returning the positive square root: v/ : IN — RR. The relation that pairs each
student in a class with their final grade is a function—no student can get two

17
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different final grades in the same class. The relation that pairs each student in
a class with their parents is not a function—generally each student will have
at least two parents.

We can define functions by specifying in some precise way what the value
of the function is for every possible argment. Different ways of doing this are
by giving a formula, describing a method for computing the value, or listing
the values for each argument. However functions are defined, we must make
sure that for each argment we specify one, and only one, value.

Example 3.3. Let f: N — N be defined such that f(x) = x+ 1. Thisis a
definition that specifies f as a function which takes in natural numbers and
outputs natural numbers. It tells us that, given a natural number x, f will
output its successor x + 1. In this case, the codomain IN is not the range of f,
since the natural number 0 is not the successor of any natural number. The
range of f is the set of all positive integers, Z*.

Example 3.4. Let g: N — IN be defined such that g(x) = x +2 — 1. This tells
us that g is a function which takes in natural numbers and outputs natural
numbers. Given a natural number 1, ¢ will output the predecessor of the
successor of the successor of x, i.e., x + 1. Despite their different definitions, g
and f are the same function.

Functions f and g defined above are the same because for any natural
number x, x +2 -1 = x4+ 1. f and g pair each natural number with the
same output. The definitions for f and g specify the same mapping by means
of different equations, and so count as the same function.

Example 3.5. We can also define functions by cases. For instance, we could
define hi: N — IN by

x .
h(x) = 7 if x is even
1 if x is odd.

Since every natural number is either even or odd, the output of this function
will always be a natural number. Just remember that if you define a function

by cases, every possible input must fall into exactly one case. In some cases,
this will require a a proof that the cases are exhaustive and exclusive.

3.2 Kinds of Functions

Definition 3.6 (Surjective function). A function f: X — Y is surjective iff Y
is also the range of f, i.e., for every y € Y there is at least one x € X such

that f(x) = y.

If you want to show that a function is surjective, then you need to show
that every object in the codomain is the output of the function given some
input or other.
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Definition 3.7 (Injective function). A function f: X — Y is injective iff for each
y € Y there is at most one x € X such that f(x) = y.

Any function pairs each possible input with a unique output. An injective
function has a unique input for each possible output. If you want to show that
a function f is injective, you need to show that for any elements x and x’ of
the domain, if f(x) = f(x’), then x = x'.

A function which is neither injective, nor surjective, is the constant func-
tion f: N — IN where f(x) = 1.

A function which is both injective and surjective is the identity function
f:IN — N where f(x) = x.

The successor function f: IN — IN where f(x) = x + 1 is injective, but not
surjective.

The function

"TH if x is odd.

b if x is even
-

is surjective, but not injective.

Definition 3.8 (Bijection). A function f: X — Y is bijective iff it is both surjec-
tive and injective. We call such a function a bijection from X to Y (or between
XandY).

3.3 Inverses of Functions

One obvious question about functions is whether a given mapping can be
“reversed.” For instance, the successor function f(x) = x + 1 can be reversed
in the sense that the function ¢(y) = y — 1 “undos” what f does. But we must
be careful: While the definition of ¢ defines a function Z — Z, it does not
define a function N — IN (g(0) ¢ IN). So even in simple cases, it is not quite
obvious if functions can be reversed, and that it may depend on the domain
and codomain. Let’s give a precise definition.

Definition 3.9. A function g: Y — X is an inverse of a function f: X — Y if
f(g(y)) =yand g(f(x)) =xforallx € Xandy € Y.

When do functions have inverses? A good candidate for an inverse of
f: X —=Yisg: Y — X “defined by”

¢(y) = “the” x such that f(x) = .

The scare quotes around “defined by” suggest that this is not a definition. At
least, it is not in general. For in order for this definition to specify a function,
there has to be one and only one x such that f(x) = y—the output of g has to
be uniquely specified. Moreover, it has to be specified for every y € Y. If there
are x1 and x; € X with x; # x; but f(x1) = f(x2), then g(y) would not be
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uniquely specified for y = f(x1) = f(x2). And if there is no x at all such that
f(x) =y, then g(y) is not specified at all. In other words, for g to be defined,
f has to be injective and surjective.

Proposition 3.10. If f: X — Y is bijective, f has a unique inverse f~1: Y — X.

Proof. Exercise. O

3.4 Composition of Functions

We have already seen that the inverse f~! of a bijective function f is itself
a function. It is also possible to compose functions f and g to define a new
function by first applying f and then g. Of course, this is only possible if the
domains and codomains match, i.e., the codomain of f must be a subset of the
domain of g.

Definition 3.11 (Composition). Let f: X — Y and g: Y — Z. The composition
of f with g is the function (g o f): X — Z, where (g o f)(x) = g(f(x)).

The function (g o f): X — Z pairs each member of X with a member of Z.
We specify which member of Z a member of X is paired with as follows—
given an input x € X, first apply the function f to x, which will output some
y € Y. Then apply the function g to y, which will output some z € Z.

Example 3.12. Consider the functions f(x) = x + 1, and g(x) = 2x. What
function do you get when you compose these two? (go f)(x) = g(f(x)). So
that means for every natural number you give this function, you first add one,
and then you multiply the result by two. So their composition is (go f)(x) =
2(x+1).

3.5 Isomorphism

An isomorphism is a bijection that preserves the structure of the sets it re-
lates, where structure is a matter of the relationships that obtain between
the elements of the sets. Consider the following two sets X = {1,2,3} and
Y = {4,5,6}. These sets are both structured by the relations successor, less
than, and greater than. An isomorphism between the two sets is a bijection
that preserves those structures. So a bijective function f: X — Y is an isomor-
phism if, i < jiff f(i) < f(j),i > jiff f(i) > f(j), and j is the successor of i iff
£(j) is the successor of f(i).

Definition 3.13 (Isomorphism). Let U be the pair (X,R) and V be the pair
(Y, S) such that X and Y are sets and R and S are relations on X and Y re-
spectively. A bijection f from X to Y is an isomorphism from U to V iff it pre-
serves the relational structure, that is, for any x; and x; in X, (x1,xp) € R iff

(f(x1), f(x2)) € S.
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Example 3.14. Consider the following twosets X = {1,2,3} and Y = {4,5,6},
and the relations less than and greater than. The function f: X — Y where
f(x) =7 — x is an isomorphism between (X, <) and (Y, >).

3.6 Partial Functions

It is sometimes useful to relax the definition of function so that it is not re-
quired that the output of the function is defined for all possible inputs. Such
mappings are called partial functions.

Definition 3.15. A partial function f: X + Y is a mapping which assigns to
every element of X at most one element of Y. If f assigns an element of Y to
x € X, we say f(x) is defined, and otherwise undefined. If f(x) is defined, we
write f(x) |, otherwise f(x) 1. The domain of a partial function f is the subset
of X where it is defined, i.e., dom(f) = {x : f(x) |}

Example 3.16. Every function f: X — Y is also a partial function. Partial
functions that are defined everywhere on X—i.e., what we so far have simply
called a function—are also called total functions.

Example 3.17. The partial function f: R - R given by f(x) = 1/x is unde-
fined for x = 0, and defined everywhere else.

3.7 Functions and Relations

A function which maps elements of X to elements of Y obviously defines a
relation between X and Y, namely the relation which holds between x and
y iff f(x) = y. In fact, we might even—if we are interested in reducing the
building blocks of mathematics for instance—identify the function f with this
relation, i.e., with a set of pairs. This then raises the question: which relations
define functions in this way?

Definition 3.18 (Graph of a function). Let f: X + Y be a partial function. The
graph of f is the relation Ry C X x Y defined by

Re={{xy): f(x) =y}

Proposition 3.19. Suppose R C X X Y has the property that whenever Rxy and
Rxy' theny = y'. Then R is the graph of the partial function f: X + Y defined by:
if there is a y such that Rxy, then f(x) =y, otherwise f(x) 1. If R is also serial, i.e.,
foreach x € X thereisay € Y such that Rxy, then f is total.

Proof. Suppose there is a y such that Rxy. If there were another iy’ # y such
that ny’ , the condition on R would be violated. Hence, if there is a y such
that Rxy, that y is unique, and so f is well-defined. Obviously, Ry = Rand f
is total if R is serial. O
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Chapter 4

The Size of Sets

4.1 Introduction

When Georg Cantor developed set theory in the 1870s, his interest was in part
to make palatable the idea of an infinite collection—an actual infinity, as the
medievals would say. Key to this rehabilitation of the notion of the infinite
was a way to assign sizes—"cardinalities”—to sets. The cardinality of a finite
set is just a natural number, e.g., @ has cardinality 0, and a set containing five
things has cardinality 5. But what about infinite sets? Do they all have the
same cardinality, co? It turns out, they do not.

The first important idea here is that of an enumeration. We can list every
finite set by listing all its elements. For some infinite sets, we can also list
all their elements if we allow the list itself to be infinite. Such sets are called
enumerable. Cantor’s surprising result was that some infinite sets are not
enumerable.

4.2 Enumerable Sets

One way of specifying a finite set is by listing its elements. But conversely,
since there are only finitely many elements in a set, every finite set can be
enumerated. By this we mean: its elements can be put into a list (a list with
a beginning, where each element of the list other than the first has a unique
predecessor). Some infinite sets can also be enumerated, such as the set of
positive integers.

Definition 4.1 (Enumeration). Informally, an enumeration of a set X is a list
(possibly infinite) of elements of X such that every element of X appears on
the list at some finite position. If X has an enumeration, then X is said to be
enumerable. If X is enumerable and infinite, we say X is denumerable.

A couple of points about enumerations:
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1. We count as enumerations only lists which have a beginning and in
which every element other than the first has a single element immedi-
ately preceding it. In other words, there are only finitely many elements
between the first element of the list and any other element. In particular,
this means that every element of an enumeration has a finite position:
the first element has position 1, the second position 2, etc.

2. We can have different enumerations of the same set X which differ by
the order in which the elements appear: 4, 1, 25, 16, 9 enumerates the
(set of the) first five square numbers just as well as 1, 4, 9, 16, 25 does.

3. Redundant enumerations are still enumerations: 1,1, 2,2, 3,3, ... enu-
merates the same setas 1,2,3,... does.

4. Order and redundancy do matter when we specify an enumeration: we
can enumerate the positive integers beginning with 1,2, 3, 1, ..., but the
pattern is easier to see when enumerated in the standard way as 1, 2, 3,
4,...

5. Enumerations must have a beginning: ..., 3, 2, 1 is not an enumeration
of the natural numbers because it has no first element. To see how this
follows from the informal definition, ask yourself, “at what position in
the list does the number 76 appear?”

6. The following is not an enumeration of the positive integers: 1, 3, 5, ...,
2,4,6, ... The problem is that the even numbers occur at places co 41,
o0 + 2, 00 + 3, rather than at finite positions.

7. Lists may be gappy: 2, —, 4, —, 6, —, ... enumerates the even positive
integers.

8. The empty set is enumerable: it is enumerated by the empty list!

Proposition 4.2. If X has an enumeration, it has an enumeration without gaps or
repetitions.

Proof. Suppose X has an enumeration x1, xp, ... in which each x; is an element
of X or a gap. We can remove repetitions from an enumeration by replacing
repeated elements by gaps. For instance, we can turn the enumeration into
a new one in which xz’« is x; if x; is an element of X that is not among x1, ...,
x;_1 or is — if it is. We can remove gaps by closing up the elements in the list.
To make precise what “closing up” amounts to is a bit difficult to describe.
Roughly, it means that we can generate a new enumeration x’l’ , x’z’ , ..., Where
each x// is the first element in the enumeration x/, x5, ... after x/" | (if there is
one). O
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The last argument shows that in order to get a good handle on enumera-
tions and enumerable sets and to prove things about them, we need a more
precise definition. The following provides it.

Definition 4.3 (Enumeration). An enumeration of a set X is any surjective func-
tion f: ZT — X.

Let’s convince ourselves that the formal definition and the informal defini-
tion using a possibly gappy, possibly infinite list are equivalent. A surjective
function (partial or total) from Z* to a set X enumerates X. Such a function
determines an enumeration as defined informally above: the list f(1), f(2),
f(3), .... Since f is surjective, every element of X is guaranteed to be the
value of f(n) for some n € Z*. Hence, every element of X appears at some
finite position in the list. Since the function may not be injective, the list may
be redundant, but that is acceptable (as noted above).

On the other hand, given a list that enumerates all elements of X, we can
define a surjective function f: Z* — X by letting f(n) be the nth element of
the list that is not a gap, or the last element of the list if there is no nth element.
There is one case in which this does not produce a surjective function: if X
is empty, and hence the list is empty. So, every non-empty list determines
a surjective function f: Z* — X.

Definition 4.4. A set X is enumerable iff it is empty or has an enumeration.

Example 4.5. A function enumerating the positive integers (Z1) is simply the
identity function given by f(n) = n. A function enumerating the natural
numbers IN is the function g(n) =n — 1.

Example 4.6. The functions f: Z* — Z* and g: Z" — Z™* given by
f(n) =2nand
gn)=2n+1

enumerate the even positive integers and the odd positive integers, respec-
tively. However, neither function is an enumeration of Z™, since neither is
surjective.

Example 4.7. The function f(n) = (—1)" ((’12;1)} (where [x]| denotes the ceil-
ing function, which rounds x up to the nearest integer) enumerates the set of
integers Z. Notice how f generates the values of Z by “hopping” back and
forth between positive and negative integers:

f) f2) f8) f&) f6) f(6) f(7)
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4.2. Enumerable Sets

You can also think of f as defined by cases as follows:

0 ifn=1
f(n)=<n/2 if n is even
—(n—1)/2 ifnisoddand > 1

That is fine for “easy” sets. What about the set of, say, pairs of natural

numbers?
ZtxZ"={{n,m) :n,meZ"}

We can organize the pairs of positive integers in an array, such as the follow-
ing:

1 2 3 4
1] (@1 | (1,2) | (L,3) | (L4)
221 | 22) ] (23)] (24
30 (3,1) ] (3,2) | (3,3) ] (3,4)
1] (4 1) ] (42) ] (43)] (44

o N

Clearly, every ordered pair in Z" x Z* will appear exactly once in the
array. In particular, (n, m) will appear in the nth column and mth row. But
how do we organize the elements of such an array into a one-way list? The
pattern in the array below demonstrates one way to do this:

112147
3|15 |8
6|9

This pattern is called Cantor’s zig-zag method. Other patterns are perfectly per-
missible, as long as they “zig-zag” through every cell of the array. By Can-
tor’s zig-zag method, the enumeration for Z* x Z* according to this scheme
would be:

(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2), (4,1), ...

What ought we do about enumerating, say, the set of ordered triples of
positive integers?

Zt X ZTxZ" ={{n,mk):n,mkeZ"}

We can think of ZT x ZT x Z™ as the Cartesian product of Z* x Z* and Z+,
that is,

(ZHP = (2" xZY)xZF = {((n,m),k) : (n,m) € Z" x Zt, k€ Z*}

25



4. THE SIZE OF SETS

and thus we can enumerate (Z*)3 with an array by labelling one axis with
the enumeration of Z7, and the other axis with the enumeration of (Z*):

Thus, by using a method like Cantor’s zig-zag method, we may similarly ob-
tain an enumeration of (Z*)3.

4.3 Non-enumerable Sets

Some sets, such as the set Z1 of positive integers, are infinite. So far we've
seen examples of infinite sets which were all enumerable. However, there are
also infinite sets which do not have this property. Such sets are called non-
enumerable.

First of all, it is perhaps already surprising that there are non-enumerable
sets. For any enumerable set X there is a surjective function f: Z* — X. Ifa
set is non-enumerable there is no such function. That is, no function mapping
the infinitely many elements of Z* to X can exhaust all of X. So there are
“more” elements of X than the infinitely many positive integers.

How would one prove that a set is non-enumerable? You have to show
that no such surjective function can exist. Equivalently, you have to show that
the elements of X cannot be enumerated in a one way infinite list. The best
way to do this is to show that every list of elements of X must leave at least
one element out; or that no function f: Z* — X can be surjective. We can
do this using Cantor’s diagonal method. Given a list of elements of X, say, x1,
X, ..., we construct another element of X which, by its construction, cannot
possibly be on that list.

Our first example is the set B“ of all infinite, non-gappy sequences of 0’s
and 1’s.

Theorem 4.8. B is non-enumerable.

Proof. We proceed by indirect proof. Suppose that B“ were enumerable, i.e.,
suppose that there is a list 51, s, 53, 54, ... of all elements of B“. Each of these
s; is itself an infinite sequence of 0’s and 1’s. Let’s call the j-th element of the
i-th sequence in this list s;(j). Then the i-th sequence s; is

si(1),5i(2),5i(3), - -
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4.3. Non-enumerable Sets

We may arrange this list, and the elements of each sequence s; in it, in an
array:

1 2 3 4
1 S1(1) S1 (2) 51(3) 51(4)
2] 5(1) | s2(2) | 52(3) | 2(4)
3| s3(1) | 53(2) | s3(3) | s3(4)
4| s4(1) | 54(2) | 54(3) | s4(4)

The labels down the side give the number of the sequence in the list s1, s, ... ;
the numbers across the top label the elements of the individual sequences. For
instance, s1(1) is a name for whatever number, a 0 or a 1, is the first element
in the sequence s1, and so on.

Now we construct an infinite sequence, 5, of 0’s and 1’s which cannot pos-
sibly be on this list. The definition of 5§ will depend on the list sq, sp, ...
Any infinite list of infinite sequences of 0’s and 1’s gives rise to an infinite
sequence s which is guaranteed to not appear on the list.

To define 5, we specify what all its elements are, i.e., we specify 5(n) for all
n € Z". We do this by reading down the diagonal of the array above (hence
the name “diagonal method”) and then changing every 1 to a 0 and every 1 to
a 0. More abstractly, we define 5(1) to be 0 or 1 according to whether the n-th
element of the diagonal, s,(n), is 1 or 0.

)1 ifsy(n) =0
(m) = {0 ifsy(n) =1.

If you like formulas better than definitions by cases, you could also define
5(n) =1—sy(n).

Clearly s is a non-gappy infinite sequence of 0’s and 1’s, since it is just the
mirror sequence to the sequence of 0’s and 1’s that appear on the diagonal of
our array. 5o 5 is an element of B“. But it cannot be on the list 51, s, ... Why
not?

It can’t be the first sequence in the list, s1, because it differs from s; in the
first element. Whatever s;(1) is, we defined 5(1) to be the opposite. It can’t be
the second sequence in the list, because 5 differs from s; in the second element:
if 55(2) is 0,5(2) is 1, and vice versa. And so on.

More precisely: if 5 were on the list, there would be some k so that s = sj.
Two sequences are identical iff they agree at every place, i.e., for any n,5(n) =
sx(n). So in particular, taking n = k as a special case, 5(k) = s(k) would
have to hold. si(k) is either 0 or 1. If it is O then 5(k) must be 1—that’s how
we defined 5. But if sg(k) = 1 then, again because of the way we defined 5,
5(k) = 0. In either case 5(k) # s (k).

We started by assuming that there is a list of elements of BY, sy, 57, ...
From this list we constructed a sequence s which we proved cannot be on the
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list. But it definitely is a sequence of 0’s and 1’s if all the s; are sequences of
0’s and 1’s, i.e.,, 5 € B“. This shows in particular that there can be no list of
all elements of B%, since for any such list we could also construct a sequence s
guaranteed to not be on the list, so the assumption that there is a list of all
sequences in B leads to a contradiction. O

This proof method is called “diagonalization” because it uses the diagonal
of the array to define 5. Diagonalization need not involve the presence of an
array: we can show that sets are not enumerable by using a similar idea even
when no array and no actual diagonal is involved.

Theorem 4.9. ©(Z™) is not enumerable.

Proof. We proceed in the same way, by showing that for every list of subsets
of Z™ there is a subset of Z T which cannot be on the list. Suppose the follow-
ing is a given list of subsets of Z*:

Zl/ZZIZ31--~
We now define a set Z such that forany n € Z*,n € Ziff n ¢ Zy:
Z={neZ " :né¢Z,}

Z is clearly a set of positive integers, since by assumption each Z, is, and thus
Z € p(Z™). But Z cannot be on the list. To show this, we’'ll establish that for
eachk € Z*,Z # 7.

Soletk € Z™ be arbitrary. We've defined Z so that foranyn € Z*,n € Z
iff n ¢ Z,. In particular, taking n = k, k € Z iff k ¢ Z;. But this shows that
Z # 7y, since k is an element of one but not the other, and so Z and Z; have
different elements. Since k was arbitrary, Z is not on the list Zy, Z5, ... O

The preceding proof did not mention a diagonal, but you can think of it
as involving a diagonal if you picture it this way: Imagine the sets Z;, Z, ...,
written in an array, where each element j € Z; is listed in the j-th column.
Say the first four sets on that list are {1,2,3,...}, {2,4,6,...}, {1,2,5}, and
{3,4,5, ... }. Then the array would begin with

Zi={1, 2, 3, 4 5 6 ..}
Zo={ 2 4, 6 ...}
Zs={1, 2, 5 }

!

Zy={ 3, 4, 5, 6

Then Z is the set obtained by going down the diagonal, leaving out any num-
bers that appear along the diagonal and include those j where the array has a
gap in the j-th row/column. In the above case, we would leave out 1 and 2,
include 3, leave out 4, etc.
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44 Reduction

We showed p(Z") to be non-enumerable by a diagonalization argument. We
already had a proof that B“, the set of all infinite sequences of 0s and 1s,
is non-enumerable. Here’s another way we can prove that p(Z™) is non-
enumerable: Show that if p(Z™) is enumerable then B is also enumerable. Since
we know BY is not enumerable, p(Z 1) can’t be either. This is called reducing
one problem to another—in this case, we reduce the problem of enumerating
B to the problem of enumerating p(Z™). A solution to the latter—an enu-
meration of p(Z")—would yield a solution to the former—an enumeration
of BY.

How do we reduce the problem of enumerating a set Y to that of enu-
merating a set X? We provide a way of turning an enumeration of X into an
enumeration of Y. The easiest way to do that is to define a surjective function
f: X — Y. If x1, x, ... enumerates X, then f(x1), f(x2), ... would enumer-
ate Y. In our case, we are looking for a surjective function f: p(Z") — B“.

Proof of Theorem 4.9 by reduction. Suppose that p(Z") were enumerable, and
thus that there is an enumeration of it, Z1, Z5, Z3, ...

Define the function f: p(Z*) — BY by letting f(Z) be the sequence sj
such that sg(n) = 1iff n € Z, and s (n) = 0 otherwise. This clearly defines
a function, since whenever Z C Z", any n € Z™* either is an element of Z or
isn’t. For instance, the set 2Z+ = {2,4,6,...} of positive even numbers gets
mapped to the sequence 010101..., the empty set gets mapped to 0000...
and the set Z itself to 1111....

It also is surjective: Every sequence of Os and 1s corresponds to some set of
positive integers, namely the one which has as its members those integers cor-
responding to the places where the sequence has 1s. More precisely, suppose
s € BY. Define Z C Z* by:

Z={neZ" :s(n)=1}

Then f(Z) = s, as can be verified by consulting the definition of f.
Now consider the list

f(Zl)rf(Z2),f(Z3), ce

Since f is surjective, every member of B must appear as a value of f for some
argument, and so must appear on the list. This list must therefore enumerate
all of BY.

So if p(Z™) were enumerable, BY would be enumerable. But B% is non-
enumerable (Theorem 4.8). Hence p(Z™) is non-enumerable. O

It is easy to be confused about the direction the reduction goes in. For
instance, a surjective function g: BY — X does not establish that X is non-
enumerable. (Consider g: B¢ — B defined by g(s) = s(1), the function that
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maps a sequence of 0's and 1’s to its first element. It is surjective, because
some sequences start with 0 and some start with 1. But B is finite.) Note also
that the function f must be surjective, or otherwise the argument does not go
through: f(x1), f(x2), ... would then not be guaranteed to include all the
elements of Y. For instance, h: ZT — B% defined by

h(n) =000...0
|

n0’s

is a function, but Z* is enumerable.

4.5 Equinumerous Sets

We have an intuitive notion of “size” of sets, which works fine for finite sets.
But what about infinite sets? If we want to come up with a formal way of com-
paring the sizes of two sets of any size, it is a good idea to start with defining
when sets are the same size. Let’s say sets of the same size are equinumerous.
We want the formal notion of equinumerosity to correspond with our intuitive
notion of “same size,” hence the formal notion ought to satisfy the following
properties:

Reflexivity: Every set is equinumerous with itself.

Symmetry: For any sets X and Y, if X is equinumerous with Y, then Y is
equinumerous with X.

Transitivity: For any sets X, Y, and Z, if X is equinumerous with Y and Y is
equinumerous with Z, then X is equinumerous with Z.

In other words, we want equinumerosity to be an equivalence relation.

Definition 4.10. A set X is equinumerous with a set Y, X ~ Y, if and only if
there is a bijective f: X — Y.

Proposition 4.11. Equinumerosity defines an equivalence relation.

Proof. Let X,Y, and Z be sets.

Reflexivity: Using the identity map 1x: X — X, where 1x(x) = x for all
x € X, we see that X is equinumerous with itself (clearly, 1x is bijective).

Symmetry: Suppose that X is equinumerous with Y. Then there is a bijective
f: X — Y. Since f is bijective, its inverse f ! exists and also bijective.
Hence, f 1.y 5 Xisa bijective function from Y to X, so Y is also
equinumerous with X.
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Transitivity: Suppose that X is equinumerous with Y via the bijective func-
tion f: X — Y and that Y is equinumerous with Z via the bijective func-
tion g: Y — Z. Then the composition of go f: X — Z is bijective, and
X is thus equinumerous with Z.

Therefore, equinumerosity is an equivalence relation. O

Theorem 4.12. Suppose X and Y are equinumerous. Then X is enumerable if and
only if Y is.

Proof. Let X and Y be equinumerous. Suppose that X is enumerable. Then
either X = @ or there is a surjective function f: Z* — X. Since X and Y
are equinumerous, there is a bijective g: X = Y. If X = @, then Y = @ also
(otherwise there would be an element y € Y butno x € X with g(x) = y). If,
on the other hand, f: Z" — X is surjective, then go f: Z* — Y is surjective.
To see this, let y € Y. Since g is surjective, there is an x € X such that g(x) = y.
Since f is surjective, there is an n € Z™ such that f(n) = x. Hence,

(gof)(n)=g(f(n) =g(x) =y

and thus g o f is surjective. We have that g o f is an enumeration of Y, and so
Y is enumerable. O

4.6 Comparing Sizes of Sets

Just like we were able to make precise when two sets have the same size in
a way that also accounts for the size of infinite sets, we can also compare the
sizes of sets in a precise way. Our definition of “is smaller than (or equinu-
merous)” will require, instead of a bijection between the sets, a total injective
function from the first set to the second. If such a function exists, the size of the
first set is less than or equal to the size of the second. Intuitively, an injective
function from one set to another guarantees that the range of the function has
at least as many elements as the domain, since no two elements of the domain
map to the same element of the range.

Definition 4.13. X is no larger than Y, X < Y, if and only if there is an injective
function f: X = Y.

Theorem 4.14 (Schroder-Bernstein). Let X and Y be sets. If X < YandY < X,
then X = Y.

In other words, if there is a total injective function from X to Y, and if there
is a total injective function from Y back to X, then there is a total bijection
from X to Y. Sometimes, it can be difficult to think of a bijection between two
equinumerous sets, so the Schroder-Bernstein theorem allows us to break the
comparison down into cases so we only have to think of an injection from
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the first to the second, and vice-versa. The Schroder-Bernstein theorem, apart
from being convenient, justifies the act of discussing the “sizes” of sets, for
it tells us that set cardinalities have the familiar anti-symmetric property that
numbers have.

Definition 4.15. X is smaller than Y, X < Y, if and only if there is an injective
function f: X — Y but no bijective g: X — Y.

Theorem 4.16 (Cantor). Forall X, X < p(X).

Proof. The function f: X — p(X) that maps any x € X to its singleton {x} is
injective, since if x # y then also f(x) = {x} # {y} = f(y).

There cannot be a surjective function g: X — p(X), let alone a bijective
one. For suppose that g: X — p(X). Since g is total, every x € X is mapped
to a subset g(x) C X. We show that g cannot be surjective. To do this, we
define a subset Y C X which by definition cannot be in the range of g. Let

Y={xeX:x¢gx)}

Since ¢(x) is defined for all x € X, Y is clearly a well-defined subset of X. But,
it cannot be in the range of g. Let x € X be arbitrary, we show that Y # g(x).
If x € g(x), then it does not satisfy x ¢ g(x), and so by the definition of Y, we
have x ¢ Y. If x € Y, it must satisfy the defining property of Y, i.e., x ¢ g(x).
Since x was arbitrary this shows that for each x € X, x € g(x) iff x ¢ Y, and
so ¢(x) # Y. So Y cannot be in the range of g, contradicting the assumption
that g is surjective. O

It’s instructive to compare the proof of Theorem 4.16 to that of Theorem 4.9.
There we showed that for any list Z1, Zj, ..., of subsets of Z" one can con-
struct a set Z of numbers guaranteed not to be on the list. It was guaranteed
not to be on the list because, for every n € Z*, n € Z, iff n ¢ Z. This way,
there is always some number that is an element of one of Z, and Z but not the
other. We follow the same idea here, except the indices n are now elements
of X instead of ZT. The set Y is defined so that it is different from g(x) for
each x € X, because x € ¢(x) iff x ¢ Y. Again, there is always an element
of X which is an element of one of g(x) and Y but not the other. And just as Z
therefore cannot be on the list Z1, Z, ..., Y cannot be in the range of g.
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First-Order Logic
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Chapter 5

Syntax and Semantics

5.1 Introduction

In order to develop the theory and metatheory of first-order logic, we must
first define the syntax and semantics of its expressions. The expressions of
first-order logic are terms and formulas. Terms are formed from variables,
constant symbols, and function symbols. Formulas, in turn, are formed from
predicate symbols together with terms (these form the smallest, “atomic” for-
mulas), and then from atomic formulas we can form more complex ones us-
ing logical connectives and quantifiers. There are many different ways to set
down the formation rules; we give just one possible one. Other systems will
chose different symbols, will select different sets of connectives as primitive,
will use parentheses differently (or even not at all, as in the case of so-called
Polish notation). What all approaches have in common, though, is that the
formation rules define the set of terms and formulas inductively. If done prop-
erly, every expression can result essentially in only one way according to the
formation rules. The inductive definition resulting in expressions that are
uniquely readable means we can give meanings to these expressions using the
same method—inductive definition.

Giving the meaning of expressions is the domain of semantics. The central
concept in semantics is that of satisfaction in a structure. A structure gives
meaning to the building blocks of the language: a domain is a non-empty
set of objects. The quantifiers are interpreted as ranging over this domain,
constant symbols are assigned elements in the domain, function symbols are
assigned functions from the domain to itself, and predicate symbols are as-
signed relations on the domain. The domain together with assignments to the
basic vocabulary constitutes a structure. Variables may appear in formulas,
and in order to give a semantics, we also have to assign elements of the do-
main to them—this is a variable assignment. The satisfaction relation, finally,
brings these together. A formula may be satisfied in a structure 9i relative to a
variable assignment s, written as 9, s |= ¢. This relation is also defined by in-
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duction on the structure of ¢, using the truth tables for the logical connectives
to define, say, satisfaction of ¢ A ¢ in terms of satisfaction (or not) of ¢ and
. It then turns out that the variable assignment is irrelevant if the formula ¢
is a sentence, i.e., has no free variables, and so we can talk of sentences being
simply satisfied (or not) in structures.

On the basis of the satisfaction relation 9 |= ¢ for sentences we can then
define the basic semantic notions of validity, entailment, and satisfiability. A
sentence is valid, F ¢, if every structure satisfies it. It is entailed by a set of
sentences, I' E ¢, if every structure that satisfies all the sentences in I' also
satisfies ¢. And a set of sentences is satisfiable if some structure satisfies all
sentences in it at the same time. Because formulas are inductively defined,
and satisfaction is in turn defined by induction on the structure of formulas,
we can use induction to prove properties of our semantics and to relate the
semantic notions defined.

5.2 First-Order Languages

Expressions of first-order logic are built up from a basic vocabulary containing
variables, constant symbols, predicate symbols and sometimes function symbols.
From them, together with logical connectives, quantifiers, and punctuation
symbols such as parentheses and commas, terms and formulas are formed.

Informally, predicate symbols are names for properties and relations, con-
stant symbols are names for individual objects, and function symbols are names
for mappings. These, except for the identity predicate =, are the non-logical
symbols and together make up a language. Any first-order language £ is de-
termined by its non-logical symbols. In the most general case, £ contains
infinitely many symbols of each kind.

In the general case, we make use of the following symbols in first-order
logic:

1. Logical symbols

a) Logical connectives: — (negation), A (conjunction), V (disjunction),
— (conditional), ¥ (universal quantifier), 3 (existential quantifier).

b) The propositional constant for falsity L.

¢) The two-place identity predicate =.

d) A denumerable set of variables: vy, vq, v, ...
2. Non-logical symbols, making up the standard language of first-order logic

a) A denumerable set of n-place predicate symbols for each n > 0: Af,
Al AL, ...

b) A denumerable set of constant symbols: ¢y, c1, ¢, ....
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¢) A denumerable set of n-place function symbols for each n > 0: 1,
65, ...
1772,

3. Punctuation marks: (, ), and the comma.

Most of our definitions and results will be formulated for the full standard
language of first-order logic. However, depending on the application, we may
also restrict the language to only a few predicate symbols, constant symbols,
and function symbols.

Example 5.1. The language £ 4 of arithmetic contains a single two-place pred-
icate symbol <, a single constant symbol o, one one-place function symbol /,
and two two-place function symbols + and x.

Example 5.2. The language of set theory £ contains only the single two-place
predicate symbol €.

Example 5.3. The language of orders L< contains only the two-place predi-
cate symbol <.

Again, these are conventions: officially, these are just aliases, e.g., <, €,
and < are aliases for A%, o for ¢, ! for fol, + for 2, x for 1’12.

In addition to the primitive connectives and quantifiers introduced above,
we also use the following defined symbols: <> (biconditional), truth T

A defined symbol is not officially part of the language, but is introduced
as an informal abbreviation: it allows us to abbreviate formulas which would,
if we only used primitive symbols, get quite long. This is obviously an ad-
vantage. The bigger advantage, however, is that proofs become shorter. If a
symbol is primitive, it has to be treated separately in proofs. The more primi-
tive symbols, therefore, the longer our proofs.

You may be familiar with different terminology and symbols than the ones
we use above. Logic texts (and teachers) commonly use either ~, =, and ! for
“negation”, A, -, and & for “conjunction”. Commonly used symbols for the
“conditional” or “implication” are —, =, and D. Symbols for “biconditional,”
“bi-implication,” or “(material) equivalence” are <+, <, and =. The L sym-
bol is variously called “falsity,” “falsum,”, “absurdity,”, or “bottom.” The T
symbol is variously called “truth,” “verum,”, or “top.”

It is conventional to use lower case letters (e.g., a, b, c) from the begin-
ning of the Latin alphabet for constant symbols (sometimes called names),
and lower case letters from the end (e.g., x, y, z) for variables. Quantifiers
combine with variables, e.g., x; notational variations include Vx, (Vx), (x),
ITx, A\, for the universal quantifier and 3x, (3x), (Ex), Zx, \/, for the existen-
tial quantifier.

We might treat all the propositional operators and both quantifiers as prim-
itive symbols of the language. We might instead choose a smaller stock of
primitive symbols and treat the other logical operators as defined. “Truth
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functionally complete” sets of Boolean operators include {—, V}, {—, A}, and
{—, —}—these can be combined with either quantifier for an expressively
complete first-order language.

You may be familiar with two other logical operators: the Sheffer stroke |
(named after Henry Sheffer), and Peirce’s arrow |, also known as Quine’s
dagger. When given their usual readings of “nand” and “nor” (respectively),
these operators are truth functionally complete by themselves.

5.3 Terms and Formulas

Once a first-order language L is given, we can define expressions built up
from the basic vocabulary of £. These include in particular terms and formulas.

Definition 5.4 (Terms). The set of terms Trm?(L) of £ is defined inductively
by:

1. Every variable is a term.
2. Every constant symbol of £ is a term.

3. If f is an n-place function symbol and ¢4, . .., t, are terms, then f(ty,...,t,)
is a term.

4. Nothing else is a term.
A term containing no variables is a closed term.

The constant symbols appear in our specification of the language and the
terms as a separate category of symbols, but they could instead have been in-
cluded as zero-place function symbols. We could then do without the second
clause in the definition of terms. We just have to understand f(ty,...,t,) as
just f by itself if n = 0.

Definition 5.5 (Formula). The set of formulas Frm?(L) of the language L is
defined inductively as follows:

1. 1 is an atomic formula.

2. If R is an n-place predicate symbol of £ and ¢y, ..., t, are terms of L,
then R(#,...,t,) is an atomic formula.

3. If t; and t; are terms of £, then =(t1, t) is an atomic formula.
4. If ¢ is a formula, then —¢ is formula.
5. If ¢ and ¢ are formulas, then (¢ A ¢) is a formula.

6. If ¢ and ¢ are formulas, then (¢ V ¢) is a formula.
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7. 1f ¢ and ¢ are formulas, then (¢ — ¢) is a formula.

8. If ¢ is a formula and x is a variable, then Vx ¢ is a formula.

9. If ¢ is a formula and x is a variable, then 3x ¢ is a formula.
10. Nothing else is a formula.

The definitions of the set of terms and that of formulas are inductive defini-
tions. Essentially, we construct the set of formulas in infinitely many stages. In
the initial stage, we pronounce all atomic formulas to be formulas; this corre-
sponds to the first few cases of the definition, i.e., the cases for L, R(ty,...,t,)
and =(t1,t2). “Atomic formula” thus means any formula of this form.

The other cases of the definition give rules for constructing new formulas
out of formulas already constructed. At the second stage, we can use them to
construct formulas out of atomic formulas. At the third stage, we construct
new formulas from the atomic formulas and those obtained in the second
stage, and so on. A formula is anything that is eventually constructed at such
a stage, and nothing else.

By convention, we write = between its arguments and leave out the paren-
theses: #; = t, is an abbreviation for =(t1, ;). Moreover, ~=(t1, t;) is abbre-
viated as t; # t. When writing a formula (¢ * x) constructed from ¢, x
using a two-place connective *, we will often leave out the outermost pair of
parentheses and write simply ¢ * x.

Some logic texts require that the variable x must occur in ¢ in order for
dx ¢ and Vx ¢ to count as formulas. Nothing bad happens if you don’t require
this, and it makes things easier.

Definition 5.6. Formulas constructed using the defined operators are to be
understood as follows:

1. T abbreviates —.1.
2. ¢ <> p abbreviates (¢ — ¢) A (P — @).

If we work in a language for a specific application, we will often write two-
place predicate symbols and function symbols between the respective terms,
e.g., ti < tp and (#; + t2) in the language of arithmetic and t; € t; in the
language of set theory. The successor function in the language of arithmetic
is even written conventionally affer its argument: . Officially, however, these
are just conventional abbreviations for A3(t1, t2), fZ(t1, t2), A3(t1, t2) and £ (t),
respectively.

Definition 5.7 (Syntactic identity). The symbol = expresses syntactic identity
between strings of symbols, i.e., ¢ = ¢ iff ¢ and ¢ are strings of symbols of
the same length and which contain the same symbol in each place.
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The = symbol may be flanked by strings obtained by concatenation, e.g.,
¢ = (¢ V x) means: the string of symbols ¢ is the same string as the one
obtained by concatenating an opening parenthesis, the string 1, the V symbol,
the string ), and a closing parenthesis, in this order. If this is the case, then we
know that the first symbol of ¢ is an opening parenthesis, ¢ contains 1 as a
substring (starting at the second symbol), that substring is followed by V, etc.

5.4 Unique Readability

The way we defined formulas guarantees that every formula has a unique read-
ing, i.e., there is essentially only one way of constructing it according to our
formation rules for formulas and only one way of “interpreting” it. If this were
not so, we would have ambiguous formulas, i.e., formulas that have more
than one reading or intepretation—and that is clearly something we want to
avoid. But more importantly, without this property, most of the definitions
and proofs we are going to give will not go through.

Perhaps the best way to make this clear is to see what would happen if we
had given bad rules for forming formulas that would not guarantee unique
readability. For instance, we could have forgotten the parentheses in the for-
mation rules for connectives, e.g., we might have allowed this:

If ¢ and ¢ are formulas, then sois ¢ — .

Starting from an atomic formula 6, this would allow us to form § — 6. From
this, together with 6, we would get 8 — 6 — 0. But there are two ways to do
this:

1. We take 6 to be ¢ and 6 — 6 to be .
2. We take g tobe § — 6 and ¢ is 6.

Correspondingly, there are two ways to “read” the formula 6 — 6 — 0. It is
of the form i — x where ¢ is 8 and x is § — 6, but if is also of the form ¢ — x
with ¢ being § — 6 and x being 6.

If this happens, our definitions will not always work. For instance, when
we define the main operator of a formula, we say: in a formula of the form
¢ — X, the main operator is the indicated occurrence of —. But if we can
match the formula 8 — 6 — 6 with ¢ — y in the two different ways men-
tioned above, then in one case we get the first occurrence of — as the main
operator, and in the second case the second occurrence. But we intend the
main operator to be a function of the formula, i.e., every formula must have
exactly one main operator occurrence.

Lemma 5.8. The number of left and right parentheses in a formula ¢ are equal.
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Proof. We prove this by induction on the way ¢ is constructed. This requires
two things: (a) We have to prove first that all atomic formulas have the prop-
erty in question (the induction basis). (b) Then we have to prove that when
we construct new formulas out of given formulas, the new formulas have the
property provided the old ones do.

Let [(¢) be the number of left parentheses, and r(¢) the number of right
parentheses in ¢, and I(f) and r(t) similarly the number of left and right
parentheses in a term t. We leave the proof that for any term ¢, I(t) = r(t)
as an exercise.

1. ¢ = L: @ has 0 left and 0 right parentheses.

2.9 = R(ty,.. . tn): @) = 14+1(t)+ -+ 1(ty) = 1+7r(t) +---+
r(tn) = r(¢). Here we make use of the fact, left as an exercise, that
I(t) = r(t) for any term .

3. p=t =t (@) =1(t1) +1(t2) =r(t1) +r(t2) =r(9).

4. ¢ = —¢: By induction hypothesis, [() = r(¢). Thus I(¢) = I(y) =
() =r(e).

5. ¢ = (P * x): By induction hypothesis, () = r(¢) and I(x) = r(x).
Thusl( )=1+1y)+1(x)=1+r(p)+r(x) =r(¢p).

6. ¢ = Vx1p: By induction hypothesis, () = r(y). Thus, I(¢) = I(y) =
() =r(e).

7. ¢ = Jx: Similarly.
O

Definition 5.9 (Proper prefix). A string of symbols ¢ is a proper prefix of a
string of symbols ¢ if concatenating i and a non-empty string of symbols
yields ¢.

Lemma 5.10. If ¢ is a formula, and  is a proper prefix of ¢, then  is not a formula.
Proof. Exercise. O

Proposition 5.11. If ¢ is an atomic formula, then it satisfes one, and only one of the
following conditions.

1. o= 1.

2. ¢ = R(ty,...,tn) where R is an n-place predicate symbol, t1, ..., t, are terms,
and each of R, t1, ..., t, is uniquely determined.

3. ¢ = t1 = tp where t1 and t, are uniquely determined terms.
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Proof. Exercise. O

Proposition 5.12 (Unique Readability). Every formula satisfies one, and only one
of the following conditions.

1. ¢ is atomic.

2. @ is of the form —i.

3. @ is of the form (P A x).
4. @ is of the form (Y V x).
5. @ is of the form (¢ — x).
6. @ is of the form Vx 1.

7. @ is of the form 3x 1.

Moreover, in each case , or ¢ and ), are uniquely determined. This means that, e.g.,
there are no different pairs 1, x and ¢', x' so that ¢ is both of the form ( — x) and

(¥ =X

Proof. The formation rules require that if a formula is not atomic, it must start
with an opening parenthesis (, -, or with a quantifier. On the other hand,
every formula that start with one of the following symbols must be atomic:
a predicate symbol, a function symbol, a constant symbol, L.

So we really only have to show that if ¢ is of the form (¢ * x) and also of
the form (¢’ «' '), then p = ¢/, x = x/, and * = ¥

So suppose both ¢ = (¥ * x) and ¢ = (¢’ ' x'). Then either ¢ = ¢’ or not.
If it is, clearly * = x" and x = )/, since they then are substrings of ¢ that begin
in the same place and are of the same length. The other case is x #Z x’. Since
x and ' are both substrings of ¢ that begin at the same place, one must be a
prefix of the other. But this is impossible by Lemma 5.10. O

5.5 Main operator of a Formula

It is often useful to talk about the last operator used in constructing a for-
mula ¢. This operator is called the main operator of ¢. Intuitively, it is the
“outermost” operator of ¢. For example, the main operator of —¢ is -, the
main operator of (¢ V ¢) is V, etc.

Definition 5.13 (Main operator). The main operator of a formula ¢ is defined
as follows:

1. @ is atomic: ¢ has no main operator.

2. ¢ = —: the main operator of ¢ is —.
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@ = (P A x): the main operator of ¢ is A.
@ = (P V x): the main operator of ¢ is V.
¢ = (p — x): the main operator of ¢ is —.

@ = Vx1: the main operator of ¢ is V.

N g o ®

@ = Jx: the main operator of ¢ is 3.

In each case, we intend the specific indicated occurrence of the main opera-
tor in the formula. For instance, since the formula ((# — ) — (a« — 6)) is of
the form (¢ — x) where is (0 — &) and x is (« — 6), the second occurrence
of — is the main operator.

This is a recursive definition of a function which maps all non-atomic for-
mulas to their main operator occurrence. Because of the way formulas are de-
fined inductively, every formula ¢ satisfies one of the cases in Definition 5.13.
This guarantees that for each non-atomic formula ¢ a main operator exists.
Because each formula satisfies only one of these conditions, and because the
smaller formulas from which ¢ is constructed are uniquely determined in each
case, the main operator occurrence of ¢ is unique, and so we have defined a
function.

We call formulas by the following names depending on which symbol their
main operator is:

Main operator Type of formula Example
none atomic (formula) L, R(t1,...,tn), t1 =t
- negation -
A conjunction (p A1)
\Y disjunction (o V)
— conditional (¢ = )
v universal (formula) Vx ¢
3 existential (formula) Jx ¢

5.6 Subformulas

It is often useful to talk about the formulas that “make up” a given formula.
We call these its subformulas. Any formula counts as a subformula of itself; a
subformula of ¢ other than ¢ itself is a proper subformula.

Definition 5.14 (Immediate Subformula). If ¢ is a formula, the immediate sub-
formulas of ¢ are defined inductively as follows:

1. Atomic formulas have no immediate subformulas.
2. ¢ = —p: The only immediate subformula of ¢ is .

3. ¢ = (¢ * x): The immediate subformulas of ¢ are ¢ and x (* is any one
of the two-place connectives).
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4. ¢ = Vx: The only immediate subformula of ¢ is ¢.
5. ¢ = dx: The only immediate subformula of ¢ is 1.

Definition 5.15 (Proper Subformula). If ¢ is a formula, the proper subformulas
of ¢ are recursively as follows:

1. Atomic formulas have no proper subformulas.

2. ¢ = —y: The proper subformulas of ¢ are i together with all proper
subformulas of .

3. ¢ = (P xx): The proper subformulas of ¢ are ¥, x, together with all
proper subformulas of ¢ and those of yx.

4. ¢ = Vx¢: The proper subformulas of ¢ are ¢ together with all proper
subformulas of .

5. ¢ = dx¢: The proper subformulas of ¢ are ¢ together with all proper
subformulas of .

Definition 5.16 (Subformula). The subformulas of ¢ are ¢ itself together with
all its proper subformulas.

Note the subtle difference in how we have defined immediate subformulas
and proper subformulas. In the first case, we have directly defined the imme-
diate subformulas of a formula ¢ for each possible form of ¢. It is an explicit
definition by cases, and the cases mirror the inductive definition of the set of
formulas. In the second case, we have also mirrored the way the set of all
formulas is defined, but in each case we have also included the proper subfor-
mulas of the smaller formulas ¢, x in addition to these formulas themselves.
This makes the definition recursive. In general, a definition of a function on an
inductively defined set (in our case, formulas) is recursive if the cases in the
definition of the function make use of the function itself. To be well defined,
we must make sure, however, that we only ever use the values of the function
for arguments that come “before” the one we are defining—in our case, when
defining “proper subformula” for (¢ * x) we only use the proper subformulas
of the “earlier” formulas ¥ and x.

5.7 Free Variables and Sentences

Definition 5.17 (Free occurrences of a variable). The free occurrences of a vari-
able in a formula are defined inductively as follows:

1. ¢ is atomic: all variable occurrences in ¢ are free.

2. ¢ = . the free variable occurrences of ¢ are exactly those of .
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3. ¢ = (P = x): the free variable occurrences of ¢ are those in ¢ together
with those in x.

4. ¢ =Vx: the free variable occurrences in ¢ are all of those in ¢ except
for occurrences of x.

5. ¢ = dx ¢ the free variable occurrences in ¢ are all of those in ¢ except
for occurrences of x.

Definition 5.18 (Bound Variables). An occurrence of a variable in a formula ¢
is bound if it is not free.

Definition 5.19 (Scope). If Vx 1 is an occurrence of a subformula in a for-
mula ¢, then the corresponding occurrence of ¥ in ¢ is called the scope of the
corresponding occurrence of Vx. Similarly for Jx.

If ¢ is the scope of a quantifier occurrence Vx or 3x in ¢, then all occur-
rences of x which are free in ¢ are said to be bound by the mentioned quantifier
occurrence.

Example 5.20. Consider the following formula:
E'VO A%(Vo, Vl)
—_———
¥

1 represents the scope of 3v. The quantifier binds the occurence of vy in 1,
but does not bind the occurence of v4. So v is a free variable in this case.
We can now see how this might work in a more complicated formula ¢:
0
——

Vv (A(l)(vo) — A%(vo, vi)) = In (A%(vo, v1) V Vv —\A%(Vo))
Y X

P is the scope of the first Vv, x is the scope of Jv;, and 8 is the scope of the
second Vvp. The first Vv binds the occurrences of v in ¢, 3v; the occurrence of
vy in ), and the second Vv binds the occurrence of vy in 6. The first occurrence
of v; and the fourth occurrence of v are free in ¢. The last occurrence of v is
free in 6, but bound in x and ¢.

Definition 5.21 (Sentence). A formula ¢ is a sentence iff it contains no free
occurrences of variables.

5.8 Substitution

Definition 5.22 (Substitution in a term). We define s[t/ x|, the result of substi-
tuting t for every occurrence of x in s, recursively:

1. s =c: s[t/x]isjusts.
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2. s =y: s[t/x]isalsojusts, provided y is a variable other than x.
3. s=ux: s[t/x]ist.
4. s=f(ty,... tn): s[t/x]is f(t1[t/x], ..., ta[t/x]).

Definition 5.23. A term t is free for x in ¢ if none of the free occurrences of x
in @ occur in the scope of a quantifier that binds a variable in ¢.

Definition 5.24 (Substitution in a formula). If ¢ is a formula, x is a variable,
and f is a term free for x in ¢, then ¢[t/x] is the result of substituting ¢ for all
free occurrences of x in ¢.

1. ¢ = P(t1,...,ta): @[t/x]is P(t1[t/x],..., tu[t/x]).
2. 9=t =ty @[t/x]ist[t/x] = [t/ x].

3. ¢ = @[t/x]is [t/ x].

4 9= (P Ax): olt/x]is (p[t/x] Ax[t/x]).

5. 9= (pVx): olt/x]is (p[t/x] v x[t/x]).

6. ¢ = (Y = x): olt/x]is (p[t/x] = x[t/x]).

7. ¢ = Vyy: o[t/x] is Yy [t/ x|, provided y is a variable other than x;
otherwise ¢[t/x] is just ¢.

8. ¢ = 3yy: ¢[t/x] is y¢[t/x], provided y is a variable other than x;
otherwise ¢[t/x] is just ¢.

Note that substitution may be vacuous: If x does not occur in ¢ at all, then
@[t/ x] isjust ¢.

The restriction that t must be free for x in ¢ is necessary to exclude cases
like the following. If ¢ = Jyx < y and t = y, then ¢[t/x] would be Jyy <
y. In this case the free variable y is “captured” by the quantifier Jy upon
substitution, and that is undesirable. For instance, we would like it to be the
case that whenever Vx ¢ holds, so does [t/ x]. But consider Vx 3y x < y (here
Y is Jyx < y). It is sentence that is true about, e.g., the natural numbers:
for every number x there is a number y greater than it. If we allowed y as a
possible substitution for x, we would end up with ¢[y/x] = Jyy < y, which
is false. We prevent this by requiring that none of the free variables in ¢t would
end up being bound by a quantifier in ¢.

We often use the following convention to avoid cumbersume notation: If
¢ is a formula with a free variable x, we write ¢(x) to indicate this. When it is
clear which ¢ and x we have in mind, and ¢ is a term (assumed to be free for
x in ¢(x)), then we write ¢(t) as short for ¢(x)[t/x].
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5.9 Structures for First-order Languages

First-order languages are, by themselves, uninterpreted: the constant symbols,
function symbols, and predicate symbols have no specific meaning attached
to them. Meanings are given by specifying a structure. It specifies the domain,
i.e., the objects which the constant symbols pick out, the function symbols
operate on, and the quantifiers range over. In addition, it specifies which con-
stant symbols pick out which objects, how a function symbol maps objects
to objects, and which objects the predicate symbols apply to. Structures are
the basis for semantic notions in logic, e.g., the notion of consequence, valid-
ity, satisfiablity. They are variously called “structures,” “interpretations,” or
“models” in the literature.

Definition 5.25 (Structures). A structure 9, for a language L of first-order
logic consists of the following elements:

1. Domain: a non-empty set, ||

2. Interpretation of constant symbols: for each constant symbol c of £, an ele-
ment ¢™ € |90

3. Interpretation of predicate symbols: for each n-place predicate symbol R of
L (other than =), an n-place relation R™ C [90|"

4. Interpretation of function symbols: for each n-place function symbol f of
L, an n-place function f™: |9|" — ||

Example 5.26. A structure 91 for the language of arithmetic consists of a set,
an element of |, 0™, as interpretation of the constant symbol o, a one-place
function /M : |9| — M|, two two-place functions +™ and x™, both |M|* —
97|, and a two-place relation <™ C |9,

An obvious example of such a structure is the following:

1|9 =N

2.0 =0

3. M(n)=n+1foralln € N

4. +%(n,m)=n+mforalln,m € N

5. x(n,m) =n-mforalln,mc N

6. <M ={(n,m):ne€N,meN,n<m}

The structure 91 for £,4 so defined is called the standard model of arithmetic,
because it interprets the non-logical constants of £ exactly how you would
expect.
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However, there are many other possible structures for £,4. For instance,
we might take as the domain the set Z of integers instead of IN, and define the
interpretations of o, /, +, x, < accordingly. But we can also define structures
for £ 4 which have nothing even remotely to do with numbers.

Example 5.27. A structure 9t for the language L7 of set theory requires just a
set and a single-two place relation. So technically, e.g., the set of people plus
the relation “x is older than y” could be used as a structure for £z, as well as
N together with n > m for n,m € IN.

A particularly interesting structure for £z in which the elements of the
domain are actually sets, and the interpretation of € actually is the relation “x
is an element of y” is the structure $§ of hereditarily finite sets:

L 98] = QU p(@) U p(p(2)) Up(p(p(@)))U...;
2. €98 = {{x,y) 1 x,y € |9F|,x € y}.

The stipulations we make as to what counts as a structure impact our logic.
For example, the choice to prevent empty domains ensures, given the usual
account of satisfaction (or truth) for quantified sentences, that 3x (¢(x) V —¢(x))
is valid—that is, a logical truth. And the stipulation that all constant symbols
must refer to an object in the domain ensures that the existential generaliza-
tion is a sound pattern of inference: ¢(a), therefore Ix ¢(x). If we allowed
names to refer outside the domain, or to not refer, then we would be on our
way to a free logic, in which existential generalization requires an additional
premise: ¢(a) and 3x x = a, therefore Jx ¢(x).

5.10 Covered Structures for First-order Languages

Recall that a term is closed if it contains no variables.

Definition 5.28 (Value of closed terms). If ¢ is a closed term of the language £
and 9 is a structure for £, the value Valm(t) is defined as follows:

1. If t is just the constant symbol ¢, then Val™ (¢) = ¢™.

2. If tis of the form f(#,...,t,), then

Val™' (1) = P (Val™ (1), ..., Val™ (t,)).

Definition 5.29 (Covered structure). A structure is covered if every element of
the domain is the value of some closed term.

Example 5.30. Let £ be the language with constant symbols zero, one, two,
..., the binary predicate symbol <, and the binary function symbols + and
x. Then a structure 91 for L is the one with domain || = {0,1,2,...} and
assignments zero™M =0, one™ =1, two™ = 2, and so forth. For the binary
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relation symbol <, the set <™ is the set of all pairs (c1,cp) € |zm\2 such that
c1 is less than cy: for example, (1,3) € <™ but (2,2) ¢ <™. For the binary
function symbol +, define +”" in the usual way—for example, +”%(2, 3) maps
to 5, and similarly for the binary function symbol x. Hence, the value of
four is just 4, and the value of x(two, +(three, zero)) (or in infix notation,
two x (three + zero) ) is

Val™ (x (two, +(three, zero)) =
= xM(Val™ (two), Val™ (two, +(three, zero)))
M(Val™ (two), +™ (Val™ (three), Val™ (zero)))
(two™, +™ (three™, zero™))
(
(

t
2,+7(3,0))
2

5.11 Satisfaction of a Formula in a Structure

The basic notion that relates expressions such as terms and formulas, on the
one hand, and structures on the other, are those of value of a term and satisfac-
tion of a formula. Informally, the value of a term is an element of a structure—
if the term is just a constant, its value is the object assigned to the constant
by the structure, and if it is built up using function symbols, the value is com-
puted from the values of constants and the functions assigned to the functions
in the term. A formula is satisfied in a structure if the interpretation given to
the predicates makes the formula true in the domain of the structure. This
notion of satisfaction is specified inductively: the specification of the struc-
ture directly states when atomic formulas are satisfied, and we define when a
complex formula is satisfied depending on the main connective or quantifier
and whether or not the immediate subformulas are satisfied. The case of the
quantifiers here is a bit tricky, as the immediate subformula of a quantified for-
mula has a free variable, and structures don’t specify the values of variables.
In order to deal with this difficulty, we also introduce variable assignments and
define satisfaction not with respect to a structure alone, but with respect to a
structure plus a variable assignment.

Definition 5.31 (Variable Assignment). A wvariable assignment s for a struc-
ture 9 is a function which maps each variable to an element of |9, i.e.,
s: Var — |91

A structure assigns a value to each constant symbol, and a variable assign-
ment to each variable. But we want to use terms built up from them to also
name elements of the domain. For this we define the value of terms induc-
tively. For constant symbols and variables the value is just as the structure or
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the variable assignment specifies it; for more complex terms it is computed
recursively using the functions the structure assigns to the function symbols.

Definition 5.32 (Value of Terms). If ¢ is a term of the language £, 91 is a struc-
ture for £, and s is a variable assignment for 9, the value Val?" (t) is defined
as follows:

1. t =c: ValZl(t) = ™.
2. t=x: ValP'(t) = s(x).
3. t=f(t,... tn):
ValZ' (t) = f™(Val? (t1),..., Val? (t,)).
Definition 5.33 (x-Variant). If s is a variable assignment for a structure 9,

then any variable assignment s’ for 9 which differs from s at most in what it
assigns to x is called an x-variant of s. If ' is an x-variant of s we write s ~ .

Note that an x-variant of an assignment s does not have to assign something
different to x. In fact, every assignment counts as an x-variant of itself.

Definition 5.34 (Satisfaction). Satisfaction of a formula ¢ in a structure 9t rel-
ative to a variable assignment s, in symbols: M, s |= ¢, is defined recursively
as follows. (We write M, s [~ ¢ to mean “not M, s = ¢.”)

1. p = L: notM,s = ¢.

¢ =R(t,...,ty): M,s = @iff (ValP' (t1),...,Val?' (t,)) € R™.
9=t =ty Ms k= @iff Vall' (1) = Val7* (t).

@ =y M,s = @iff M,s & .

p=(PAx): Msk@iff M,s |=¢and M,s = x.
p=(Vyx): Ms=@iff M,s = ¢ or M, s = ¢ (or both).
p= (4 —x): Ms|=@iff M,s = or M, s = x (or both).

¢ =Vxyp: M, s = ¢ iff for every x-variant s’ of s, M, s’ |= ¢.

 ® N o @G o » DN

¢ = 3xp: M, s |= ¢ iff there is an x-variant s’ of s so that M, s’ |= .

The variable assignments are important in the last two clauses. We cannot
define satisfaction of Vx (x) by “for all a € ||, M = ¢(a).” We cannot
define satisfaction of 3x ¢(x) by “for at least one a € ||, M |= ¥(a).” The
reason is that a is not symbol of the language, and so (a) is not a formula (that
is, [a/x] is undefined). We also cannot assume that we have constant sym-
bols or terms available that name every element of 91, since there is nothing
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in the definition of structures that requires it. Even in the standard language
the set of constant symbols is denumerable, so if |91 is not enumerable there
aren’t even enough constant symbols to name every object.

A variable assignment s provides a value for every variable in the language.
This is of course not necessary: whether or not a formula ¢ is satisfied in a
structure with respect to s only depends on the assignments s makes to the free
variables that actually occur in ¢. This is the content of the next theorem. We
require variable assignments to assign values to all variables simply because
it makes things a lot easier.

Proposition 5.35. If the variables in a term t are among X1, ..., X, and s1(x;) =
sp(x;) fori=1,...,n, then Val?iﬁ(t) = Valgt(t).

Proof. By induction on the complexity of ¢. For the base case, t can be a con-
stant symbol or one one of the variables xq, ..., x,. If f = ¢, then Val??ln(t) =
M = Valg?(t). If t = x;, then Val??(t) = s1(x;)) = s2(x;) (by the hy-
pothesis of the proposition) = Val?f(t). For the inductive step, assume that

t = f(t,...,t) for some terms t4, ..., t, and that the claim holds for fy, ...,
te. Then Valglﬂ(t) =

Va2 (f(t1,.. ., b)) = f(Vall (1), ..., Vali! (1))

Fori =1, ..., t, its variables are among x1, ..., x;. So by induction hypothe-
sis, Valgft(tl-) = Valsmkt(ti). So,
= fM(ValZl(t),..., Vall' (t)) =
= ffm(VaIZt(tl),. . .,Val?f(tk)) =
= Vall) (f(t, ..., ) = Valoi (t).
O

Proposition 5.36. If the free variables in ¢ are among x1, ..., Xn, and s1(x;) =
so(xj) fori=1,...,n, then M,s1 = @ iff M,s5 = ¢.

Proof. We use induction on the complexity of ¢. For the base case, where ¢ is
atomic, ¢ canbe: L, R(ty,..., ;) for a k-place predicate R and terms 1, ..., t,
or t; = tp for terms t; and t».

1. ¢ = L: both 9,51 = ¢ and M, 55 = .
2. ¢ =R(ty,...,t): letM,s1 = ¢. Then
(ValZ' (t1),..., Val2* (t)) € R™.
Fori=1,...,k Valgln(ti) = Valgzt(ti) by Proposition 5.35. So we also
have <Val?§(t,-),...,Val??(tk)> € R™,
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3. 9=t =t ifMs; =g, Val??(tl) = Valgfln(tl) (by Proposition 5.35)
= Valgln(tz) (since M,s1 =t = 1) = Val??(tz) (by Proposition 5.35), so
M, sp ’: t1 = t.

Now assume 9, s; = @ iff M, s, = ¢ for all formulas i less complex

than ¢. The induction step proceeds by cases determined by the main op-
erator of ¢. In each case, we only demonstrate the forward direction of the
biconditional; the proof of the reverse direction is symmetrical.

1.

2.

3.

6.

@ =P if M, 51 = @, then M, 51 [~ ¢, so by the induction hypothesis,
M, s = P, hence M, s, = ¢.

p=ypAx: ifM,s1 = @, thenM, sy = ¢ and M, s; = x, so by induction
hypothesis, M, s, = ¢ and M, s, = x. Hence, M, s, |= ¢.

p=ypVx ifMs = ¢ then M, s; = ¢ or M,s; = x. By induction
hypothesis, M, s, = ¢ or M, s, = x, so M, s, = ¢.

@ =19 — x: exercise.

. =3dxy: if M, s; = ¢, there is an x-variant 57 of s; so that M, 57 |= ¢.

Let s, denote the x-variant of s, that assigns the same thing to x as does
s1. The free variables of ¢ are among x1, ..., x,, and x. 51(x;) = $2(x;),
since s7 and s; are x-variants of s; and s,, respectively, and by hypothesis
s1(x;) = sa(x;). s1(x) = $2(x) by the way we have defined s;. Then the
induction hypothesis applies to ¢ and s7, 53, so 9, 57 = ¢. Hence, there
is an x-variant of s, that satisfies ¢, so M, s, = ¢.

@ = Vx1: exercise.

By induction, we get that 9, 51 = ¢ iff M, sy |= ¢ whenever the free variables
in ¢ are among x1, ..., X, and s(x;) =s'(x;) fori=1,...,n. O

Definition 5.37. If ¢ is a sentence, we say that a structure 91 satisfies ¢, M = ¢,
iff M, s |= ¢ for all variable assignments s.
If M |= ¢, we also say that ¢ is true in ON.

Proposition 5.38. Suppose ¢(x) only contains x free, and 9 is a structure. Then:

1. M = Ix o(x) iff M, s = @(x) for at least one variable assignment s.
2. M = Vxp(x) iff M, s = ¢(x) for all variable assignments s.
Proof. Exercise. O
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5.12 Extensionality

Extensionality, sometimes called relevance, can be expressed informally as fol-
lows: the only thing that bears upon the satisfaction of formula ¢ in a struc-
ture 9 relative to a variable assignment s, are the assignments made by 91
and s to the elements of the language that actually appear in ¢.

One immediate consequence of extensionality is that where two struc-
tures M and O’ agree on all the elements of the language appearing in a
sentence ¢ and have the same domain, 9 and 9 must also agree on ¢
itself.

Proposition 5.39 (Extensionality). Let ¢ be a sentence, and I and O’ be struc-
tures. If ™ = ¢, RM = R™, and ™ = ™ for every constant symbol c,
relation symbol R, and function symbol f occurring in ¢, then M = ¢ iff M’ |= ¢.

Moreover, the value of a term, and whether or not a structure satisfies a
formula, only depends on the values of its subterms.

Proposition 5.40. Let O be a structure, t and t' terms, and s a variable assignment.
Let s' ~y s be the x-variant of s given by s'(x) = Val>* (¢'). Then Val>* (t[t' / x]) =
Val?' ().

Proof. By induction on ¢.

1. If t is a constant, say, t = c, then t[t'/x] = ¢, and Val?'(c) = ™ =
Val?,n(c).

2. If tis a variable other than x, say, t = v, then [t /x] = y, and Val"* (y) =
Val¥' (y) since s’ ~; s.
3. If t = x, then t[t'/x] = t. But ValZ' (x) = ValZ! (#') by definition of s'.

4. If t = f(t,...,tu) then we have:

ValZ ([t /x]) =

= ValP' (f(1[t' /x], ..., talt'/x]))
by definition of ¢[#'/x]

= A Val (41[t /x]), ..., ValPt (ta[t' /x]))
by definition of Val?* (f(...))

= P (Vall (t1), ..., Vall (ty))
by induction hypothesis

= ValZ* (t) by definition of Va7 (f(...))
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Proposition 5.41. Let 9 be a structure, ¢ a formula, t a term, and s a variable
assignment. Let s' ~y s be the x-variant of s given by s'(x) = Val>*(t). Then

M, = glt/x] iffM,s' = g.

Proof. Exercise. O

5.13 Semantic Notions

Give the definition of structures for first-order languages, we can define some
basic semantic properties of and relationships between sentences. The sim-
plest of these is the notion of validity of a sentence. A sentence is valid if it is
satisfied in every structure. Valid sentences are those that are satisfied regard-
less of how the non-logical symbols in it are interpreted. Valid sentences are
therefore also called logical truths—they are true, i.e., satisfied, in any struc-
ture and hence their truth depends only on the logical symbols occurring in
them and their syntactic structure, but not on the non-logical symbols or their
interpretation.

Definition 5.42 (Validity). A sentence ¢ is valid, £ ¢, iff M = ¢ for every
structure 9.

Definition 5.43 (Entailment). A set of sentences I entails a sentence ¢, I' = ¢,
iff for every structure M with M |=T, M = ¢.

Definition 5.44 (Satisfiability). A set of sentences I' is satisfiable if MM = T for
some structure 9. If T is not satisfiable it is called unsatisfiable.

Proposition 5.45. A sentence ¢ is valid iff I E ¢ for every set of sentences I'.

Proof. For the forward direction, let ¢ be valid, and let T be a set of sentences.
Let O be a structure so that M |=T. Since ¢ is valid, M |= ¢, hence T F ¢.
For the contrapositive of the reverse direction, let ¢ be invalid, so there is
a structure 9 with M = ¢. When T = {T }, since T is valid, 9t |= T'. Hence,
there is a structure 91 so that M |= T but M [~ ¢, hence I' does not entail
Q. O

Proposition 5.46. T' = ¢ iff I U {—¢} is unsatisfiable.

Proof. For the forward direction, suppose I' F ¢ and suppose to the contrary
that there is a structure 9 so that M = T'U {—¢}. Since M =T and T F ¢,
M = ¢. Also, since M =T U {—¢}, M = —¢, so we have both M = ¢ and
M F~ ¢, a contradiction. Hence, there can be no such structure 9, soT' U {¢}
is unsatisfiable.

For the reverse direction, suppose I' U {—¢} is unsatisfiable. So for every
structure M, either M = T or M = ¢. Hence, for every structure M with
MET, M= ¢, s0T F g. O
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Proposition 5.47. If T CT' and T F ¢, then T E ¢.

Proof. Suppose that T C I" and I' F ¢. Let 9 be such that 9 = I”; then
M = T, and since I' F ¢, we get that M |= ¢. Hence, whenever M |= I”,
M= ¢, s0T" F g. O

Theorem 5.48 (Semantic Deduction Theorem). T U {¢} E ¢ iff T E ¢ — .

Proof. For the forward direction, let T U {¢} F ¢ and let M be a structure so
that M =T. If M |= ¢, then M =T U {¢}, so since I' U {p} entails ¢, we get
M |= ¢. Therefore, M = ¢ — P, s0T E ¢ — 1.

For the reverse direction, let I' F ¢ — ¢ and 9 be a structure so that
METU{p}. ThenM |=T,s0M = ¢ — ¢, and since M = ¢, M = 1p
Hence, whenever M =T U {¢}, M = ¢, soT U{¢p} E .
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Chapter 6

Theories and Their Models

6.1 Introduction

The development of the axiomatic method is a significant achievement in the
history of science, and is of special importance in the history of mathemat-
ics. An axiomatic development of a field involves the clarification of many
questions: What is the field about? What are the most fundamental concepts?
How are they related? Can all the concepts of the field be defined in terms of
these fundamental concepts? What laws do, and must, these concepts obey?
The axiomatic method and logic were made for each other. Formal logic
provides the tools for formulating axiomatic theories, for proving theorems
from the axioms of the theory in a precisely specified way, for studying the
properties of all systems satisfying the axioms in a systematic way.

Definition 6.1. A set of sentences I' is closed iff, whenever I' F ¢ then ¢ € I'.
The closure of a set of sentences I'is {¢ : T F ¢}.

We say that I' is axiomatized by a set of sentences A if I is the closure of A

We can think of an axiomatic theory as the set of sentences that is axiom-
atized by its set of axioms A. In other words, when we have a first-order lan-
guage which contains non-logical symbols for the primitives of the axiomat-
ically developed science we wish to study, together with a set of sentences
that express the fundamental laws of the science, we can think of the theory
as represented by all the sentences in this language that are entailed by the
axioms. This ranges from simple examples with only a single primitive and
simple axioms, such as the theory of partial orders, to complex theories such
as Newtonian mechanics.

The important logical facts that make this formal approach to the axiomatic
method so important are the following. Suppose I' is an axiom system for a
theory, i.e., a set of sentences.
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56

. We can state precisely when an axiom system captures an intended class

of structures. That is, if we are interested in a certain class of structures,
we will successfully capture that class by an axiom system I' iff the struc-
tures are exactly those 9 such that M =T.

. We may fail in this respect because there are 9 such that M |= T, but M

is not one of the structures we intend. This may lead us to add axioms
which are not true in 9.

. If we are successful at least in the respect that I' is true in all the intended

structures, then a sentence ¢ is true in all intended structures whenever
I' E @. Thus we can use logical tools (such as proof methods) to show
that sentences are true in all intended structures simply by showing that
they are entailed by the axioms.

. Sometimes we don’t have intended structures in mind, but instead start

from the axioms themselves: we begin with some primitives that we
want to satisfy certain laws which we codify in an axiom system. One
thing that we would like to verify right away is that the axioms do not
contradict each other: if they do, there can be no concepts that obey
these laws, and we have tried to set up an incoherent theory. We can
verify that this doesn’t happen by finding a model of I'. And if there are
models of our theory, we can use logical methods to investigate them,
and we can also use logical methods to construct models.

. The independence of the axioms is likewise an important question. It

may happen that one of the axioms is actually a consequence of the oth-
ers, and so is redundant. We can prove that an axiom ¢ in I' is redundant
by proving I' \ {¢} F ¢. We can also prove that an axiom is not redun-
dant by showing that (I'\ {¢}) U {—¢} is satisfiable. For instance, this is
how it was shown that the parallel postulate is independent of the other
axioms of geometry.

. Another important question is that of definability of concepts in a the-

ory: The choice of the language determines what the models of a theory
consists of. But not every aspect of a theory must be represented sep-
arately in its models. For instance, every ordering < determines a cor-
responding strict ordering <—given one, we can define the other. So it
is not necessary that a model of a theory involving such an order must
also contain the corresponding strict ordering. When is it the case, in
general, that one relation can be defined in terms of others? When is it
impossible to define a relation in terms of other (and hence must add it
to the primitives of the language)?
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6.2 Expressing Properties of Structures

It is often useful and important to express conditions on functions and rela-
tions, or more generally, that the functions and relations in a structure satisfy
these conditions. For instance, we would like to have ways of distinguishing
those structures for a language which “capture” what we want the predicate
symbols to “mean” from those that do not. Of course we're completely free
to specify which structures we “intend,” e.g., we can specify that the inter-
pretation of the predicate symbol < must be an ordering, or that we are only
interested in interpretations of £ in which the domain consists of sets and &
is interpreted by the “is an element of” relation. But can we do this with sen-
tences of the language? In other words, which conditions on a structure 9t can
we express by a sentence (or perhaps a set of sentences) in the language of 9t?
There are some conditions that we will not be able to express. For instance,
there is no sentence of £, which is only true in a structure 91 if || = IN.
We cannot express “the domain contains only natural numbers.” But there
are “structural properties” of structures that we perhaps can express. Which
properties of structures can we express by sentences? Or, to put it another
way, which collections of structures can we describe as those making a sen-
tence (or set of sentences) true?

Definition 6.2 (Model of a set). Let I be a set of sentences in a language £. We
say that a structure 9 is a model of T if M |= ¢ forall ¢ € T.

Example 6.3. The sentence Vx x < x is true in 9 iff <M ig a reflexive relation.
The sentence VxVy ((x < y Ay < x) — x = y) is true in M iff <™ is anti-
symmetric. The sentence VxVyVz ((x < y Ay < z) — x < z) is true in 9N iff
<M is transitive. Thus, the models of
{ Vxx<x,

Vxvy ((x <yAy <x) = x=y),

VaVyVz(x <yAy<z)—>x<z) }
are exactly those structures in which <M g reflexive, anti-symmetric, and

transitive, i.e., a partial order. Hence, we can take them as axioms for the
first-order theory of partial orders.

6.3 Examples of First-Order Theories

Example 6.4. The theory of strict linear orders in the language £ is axioma-
tized by the set

Vx—x < x,
VaVy((x <yVy<x)Vx=y),
VaVyVz ((x <yAy <z)—x<z)
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It completely captures the intended structures: every strict linear order is a
model of this axiom system, and vice versa, if R is a linear order on a set X,
then the structure 9 with |9t] = X and <™ = R is a model of this theory.

Example 6.5. The theory of groups in the language 1 (constant symbol), -
(two-place function symbol) is axiomatized by

Vx(x-1) =x
Vavyvz (x- (y-2)) = ((x-y)-2)
Vx3dy(x-y) =1

Example 6.6. The theory of Peano arithmetic is axiomatized by the following
sentences in the language of arithmetic £ 4.

-Jxx’ =0

VaVy (X' =y = x =)

VaVy (x <y <+ Jz(x+2 =y))
Vx(x+o0)=x

Vay (x+y') = (x +y)’

Vx(x x0)=o0

Vavy (x xy') = ((x x y) +x)

plus all sentences of the form

(9(0) AVx (p(x) = ¢(x))) = Vx p(x)

Since there are infinitely many sentences of the latter form, this axiom sys-
tem is infinite. The latter form is called the induction schema. (Actually, the
induction schema is a bit more complicated than we let on here.)

The third axiom is an explicit definition of <.

Example 6.7. The theory of pure sets plays an important role in the founda-
tions (and in the philosophy) of mathematics. A set is pure if all its elements
are also pure sets. The empty set counts therefore as pure, but a set that has
something as an element that is not a set would not be pure. So the pure sets
are those that are formed just from the empty set and no “urelements,” i.e.,
objects that are not themselves sets.

The following might be considered as an axiom system for a theory of pure
sets:

Ix—-Jyyex

VxVy (Vz(zex < z€y) = x=y)
ViVyIzVu(u ez (u=xVu=y))
Vx3JyVz(ze€y <« Ju(z€uhu€ x))
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plus all sentences of the form

IxVy (y € x < 9(y))

The first axiom says that there is a set with no elements (i.e., @ exists); the
second says that sets are extensional; the third that for any sets X and Y, the
set {X, Y} exists; the fourth that for any sets X and Y, the set X U Y exists.

The sentences mentioned last are collectively called the naive comprehension
scheme. It essentially says that for every ¢(x), the set {x : ¢(x)} exists—so
at first glance a true, useful, and perhaps even necessary axiom. It is called
“naive” because, as it turns out, it makes this theory unsatisfiable: if you take
¢(y) to be y € y, you get the sentence

IxVy(y e x &~y €y)
and this sentence is not satisfied in any structure.

Example 6.8. In the area of mereology, the relation of parthood is a fundamental
relation. Just like theories of sets, there are theories of parthood that axioma-
tize various conceptions (sometimes conflicting) of this relation.

The language of mereology contains a single two-place predicate sym-
bol P, and P(x,y) “means” that x is a part of y. When we have this inter-
pretation in mind, a structure for this language is called a parthood structure.
Of course, not every structure for a single two-place predicate will really de-
serve this name. To have a chance of capturing “parthood,” P™* must satisfy
some conditions, which we can lay down as axioms for a theory of parthood.
For instance, parthood is a partial order on objects: every object is a part (al-
beit an improper part) of itself; no two different objects can be parts of each
other; a part of a part of an object is itself part of that object. Note that in this
sense “is a part of” resembles “is a subset of,” but does not resemble “is an
element of” which is neither reflexive nor transitive.

Vx P(x,x),

Vavy ((P(x,y) AP(y,x)) = x =y),
VaxVyVz ((P(x,y) A P(y,z)) — P(x,z)),

Moreover, any two objects have a mereological sum (an object that has these
two objects as parts, and is minimal in this respect).

VaVy 3zVu (P(z,u) < (P(x,u) A P(y,u)))

These are only some of the basic principles of parthood considered by meta-
physicians. Further principles, however, quickly become hard to formulate or
write down without first introducting some defined relations. For instance,
most metaphysicians interested in mereology also view the following as a
valid principle: whenever an object x has a proper part y, it also has a part z
that has no parts in common with y, and so that the fusion of y and z is x.
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6.4 Expressing Relations in a Structure

One main use formulas can be put to is to express properties and relations in
a structure 91 in terms of the primitives of the language £ of M. By this we
mean the following: the domain of 9t is a set of objects. The constant symbols,
function symbols, and predicate symbols are interpreted in 9t by some objects
in|91|, functions on |9|, and relations on |9|. For instance, if A3 is in £, then

9 assigns to it a relation R = A%m. Then the formula A3 (v, v2) expresses that
very relation, in the following sense: if a variable assignment s maps v; to
a € |M|and v, to b € |M|, then

Rab iff 0M,s = Ad(vi, va).

Note that we have to involve variable assignments here: we can’tjust say “Rab
iff M |= A3(a,b)” because a and b are not symbols of our language: they are
elements of ||

Since we don’t just have atomic formulas, but can combine them using
the logical connectives and the quantifiers, more complex formulas can define
other relations which aren’t directly built into 9. We’re interested in how to
do that, and specifically, which relations we can define in a structure.

Definition 6.9. Let ¢(vi,...,v,) be a formula of £ in which only v,..., v,
occur free, and let Mt be a structure for L. ¢(vy, ..., v, ) expresses the relation R C
|om|" iff

Ray...a, iff 9M,sE=@(v,...,vn)

for any variable assignment s withs(v;) = a; (i =1,...,n).

Example 6.10. In the standard model of arithmetic 9, the formula vj < v, V
vi = v expresses the < relation on IN. The formula v, = v{ expresses the suc-
cessor relation, i.e., the relation R C IN?2 where Rnm holds if m is the successor
of n. The formula v; = v} expresses the predecessor relation. The formulas
dvz(v3 Z0A v, = (1 +v3)) and Jv3 (1 + v3') = vy both express the < re-
lation. This means that the predicate symbol < is actually superfluous in the
language of arithmetic; it can be defined.

This idea is not just interesting in specific structures, but generally when-
ever we use a language to describe an intended model or models, i.e., when
we consider theories. These theories often only contain a few predicate sym-
bols as basic symbols, but in the domain they are used to describe often many
other relations play an important role. If these other relations can be system-
atically expressed by the relations that interpret the basic predicate symbols
of the language, we say we can define them in the language.
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6.5 The Theory of Sets

Almost all of mathematics can be developed in the theory of sets. Developing
mathematics in this theory involves a number of things. First, it requires a set
of axioms for the relation €. A number of different axiom systems have been
developed, sometimes with conflicting properties of €. The axiom system
known as ZFC, Zermelo-Fraenkel set theory with the axiom of choice stands
out: it is by far the most widely used and studied, because it turns out that its
axioms suffice to prove almost all the things mathematicians expect to be able
to prove. But before that can be established, it first is necessary to make clear
how we can even express all the things mathematicians would like to express.
For starters, the language contains no constant symbols or function symbols,
so it seems at first glance unclear that we can talk about particular sets (such as
@ or IN), can talk about operations on sets (such as X U Y and p(X)), let alone
other constructions which involve things other than sets, such as relations and
functions.

To begin with, “is an element of” is not the only relation we are interested
in: “is a subset of” seems almost as important. But we can define “is a subset
of” in terms of “is an element of.” To do this, we have to find a formula ¢(x,y)
in the language of set theory which is satisfied by a pair of sets (X, Y) iff X C
Y. But X is a subset of Y just in case all elements of X are also elements of Y.
So we can define C by the formula

Vz(zex —zey)

Now, whenever we want to use the relation C in a formula, we could instead
use that formula (with x and y suitably replaced, and the bound variable z
renamed if necessary). For instance, extensionality of sets means that if any
sets x and y are contained in each other, then x and y must be the same set.
This can be expressed by Vx Vy ((x Cy Ay C x) — x = y), or, if we replace C
by the above definition, by

Vavy((Vz(z€x s zey)AVz(zE€y S 2z€X)) x=y).

This is in fact one of the axioms of ZFC, the “axiom of extensionality.”

There is no constant symbol for @, but we can express “x is empty” by
—3Jyy € x. Then “@ exists” becomes the sentence 3x -3y y € x. This is an-
other axiom of ZFC. (Note that the axiom of extensionality implies that there
is only one empty set.) Whenever we want to talk about @ in the language of
set theory, we would write this as “there is a set that’s empty and ...” As an
example, to express the fact that @ is a subset of every set, we could write

Ix (—-Fyy € x AVzx C z)

where, of course, x C z would in turn have to be replaced by its definition.
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To talk about operations on sets, such has X U Y and p(X), we have to use
a similar trick. There are no function symbols in the language of set theory,
but we can express the functional relations X UY = Z and p(X) = Y by

Vu((u e xVuey) < ucz)
Vu(uCx<>ucy)

since the elements of X UY are exactly the sets that are either elements of X or
elements of Y, and the elements of p(X) are exactly the subsets of X. However,
this doesn’t allow us to use x Uy or p(x) as if they were terms: we can only
use the entire formulas that define the relations X UY = Z and p(X) =Y.
In fact, we do not know that these relations are ever satisfied, i.e., we do not
know that unions and power sets always exist. For instance, the sentence
Vx 3y p(x) = y is another axiom of ZFC (the power set axiom).

Now what about talk of ordered pairs or functions? Here we have to ex-
plain how we can think of ordered pairs and functions as special kinds of sets.
One way to define the ordered pair (x,y) is as the set {{x}, {x,y}}. But like
before, we cannot introduce a function symbol that names this set; we can
only define the relation (x,y) = z,ie., {{x}, {x, y}} =z

Vu(uez+e Vo(veusv=x)V¥Ww(weu+ (v=xVo=y))))

This says that the elements u of z are exactly those sets which either have x
as its only element or have x and y as its only elements (in other words, those
sets that are either identical to {x} or identical to {x,y}). Once we have this,
we can say further things, e.g., that X x Y = Z:

Vz(z€Z+ IxJy(x e XAy e YA (x,y) =2))

A function f: X — Y can be thought of as the relation f(x) = y, ie., as
the set of pairs {(x,y) : f(x) = y}. We can then say that a set f is a function
from X to Y if (a) it is a relation C X x Y, (b) it is total, i.e., for all x € X
there is some y € Y such that (x,y) € f and (c) it is functional, i.e., whenever
(x,y),(x,y') € f,y =y (because values of functions must be unique). So “f
is a function from X to Y” can be written as:

Vu(ue f—IxJy(xe XAy eYA(x,y)=u))A
Vx(x € X — (Jy (v € Y Amaps(f,x,y)) A
(Vy vy’ ((maps(f, x,y) Amaps(f,x,y')) =y =y)))
where maps(f,x,y) abbreviates Jv (v € f A (x,y) = v) (this formula ex-
presses “f(x) = y”).
It is now also not hard to express that f: X — Y is injective, for instance:

f: X = YAVaVY ((x € XAX € XA
Jy (maps(f, x,y) Amaps(f,x',y))) = x = x')
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A function f: X — Y is injective iff, whenever f maps x,x’ € X to a single y,
x = x'. If we abbreviate this formula as inj(f, X, Y), we're already in a position
to state in the language of set theory something as non-trivial as Cantor’s
theorem: there is no injective function from p(X) to X:

VXVY (p(X) =Y — —~3f inj(f, Y, X))

One might think that set theory requires another axiom that guarantees
the existence of a set for every defining property. If ¢(x) is a formula of set
theory with the variable x free, we can consider the sentence

JyVx (x € y > ¢(x)).

This sentence states that there is a set y whose elements are all and only those
x that satisfy ¢(x). This schema is called the “comprehension principle.” It
looks very useful; unfortunately it is inconsistent. Take ¢(x) = —x € x, then
the comprehension principle states

JyVx(x ey < x & x),

i.e., it states the existence of a set of all sets that are not elements of them-
selves. No such set can exist—this is Russell’s Paradox. ZFC, in fact, contains
a restricted—and consistent—version of this principle, the separation princi-

ple:
VzIyVx (x € y < (x € z A @(x)).
6.6 Expressing the Size of Structures

There are some properties of structures we can express even without using
the non-logical symbols of a language. For instance, there are sentences which
are true in a structure iff the domain of the structure has at least, at most, or
exactly a certain number 7 of elements.

Proposition 6.11. The sentence

Aspy=3x13xp ... 3x, (M1 X0 AXL FX3AXL F Xy Ao AX] F# Xg A
Xo E X3 ANXp Xy N ANXy # Xy A\

Xp_1 # xn)

is true in a structure M iff | M| contains at least n elements. Consequently, M =
“P>ut1 Iff || contains at most n elements.
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Proposition 6.12. The sentence

Ay =3x13xp ... 3%, (M1 X0 AX] EX3AXL Xy N AXy # Xy A
Xp EX3AXp £ Xg N AXp £ Xy A

Xn—1 #xn/\
Yy(y=x1V...y =x4)...))

is true in a structure MM iff |IM| contains exactly n elements.

Proposition 6.13. A structure is infinite iff it is a model of

{@=1, 952, 9>3,... }

There is no single purely logical sentence which is true in 9 iff || is
infinite. However, one can give sentences with non-logical predicate symbols
which only have infinite models (although not every infinite structure is a
model of them). The property of being a finite structure, and the property of
being a non-enumerable structure cannot even be expressed with an infinite
set of sentences. These facts follow from the compactness and Léwenheim-
Skolem theorem:s.
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Chapter 7

The Sequent Calculus

7.1 Rules and Derivations

Let £ be a first-order language with the usual constants, variables, logical
symbols, and auxiliary symbols (parentheses and the comma).

Definition 7.1 (sequent). A sequent is an expression of the form

I'=A

where I and A are finite (possibly empty) sets of sentences of the language L.
The formulas in I are the antecedent formulas, while the formulae in A are the
succedent formulas.

The intuitive idea behind a sequent is: if all of the antecedent formu-
las hold, then at least one of the succedent formulas holds. That is, if I’ =
{Tq,..., Ty} and A = {Aq,..., A}, thenT = A holds iff

(Ty A ATw) = (B V-V A)

holds.
Whenm =0, = Aholdsiff AyV---V A, holds. Whenn =0,T =
holds iff I';y A - - - AT, does not.

An empty succedent is sometimes filled with the L symbol. he empty sequent
= canonically represents a contradiction.

We write T, ¢ (or ¢,T) forTU {¢}, and T, A for TUA.
Definition 7.2 (Inference). An inference is an expression of the form

where S, S1, and S; are sequents. S; and S, are called the upper sequents and S
the lower sequent of the inference.
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7.1. Rules and Derivations

In sequent calculus derivations, a correct inference yields a valid sequent,
provided the upper sequents are valid.

For the following, let I', A, I, A represent finite sets of sentences.

The rules for LK are divided into two main types: structural rules and logi-
cal rules. The logical rules are further divided into propositional rules (quantifier-
free) and quantifier rules.

Structural rules: Weakening:

= A
o T = A WL and
where ¢ is called the weakening formula.
A series of weakening inferences will often be indicated by double infer-
ence lines.

Cut:
I'= Ag eIl = A

ILIT = A A

Logical rules: The rules are named by the main operator of the principal for-
mula of the inference (the formula containing ¢ and/or ¥ in the lower se-
quent). The designations “left” and “right” indicate whether the logical sym-
bol has been introduced in an antecedent formula or a succedent formula (to
the left or to the right of the sequent symbol).

Propositional Rules:

I'= A o, I = A
-¢,T = A L T = A R
o, I = A P, I = A I'=> A9 = Ay R
AP, T = A A AP, T = A A = ANy 4
= A = A I' = A, I' = A,
¢ L4 V ¢ VR Ld VR
eV, I = A I'= AeVvy I'= A eVvy
I'= A9 P, I1 = A o, = Ay
— —R
o —y,II1 = A A IF'=AMAep—9y
Quantifier Rules:
p(t), T = A I = A ¢(a)
Vxg(x),T = A I' = AVxe(x)

where t is a ground term (i.e., one without variables), and a is a constant which
does not occur anywhere in the lower sequent of the VR rule. We call a the
eigenvariable of the VR inference.
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¢(a), T = A I = A ¢(t)
dx¢(x), I = A I = A Jxe(x)

where t is a ground term, and a is a constant which does not occur in the lower
sequent of the L rule. We call a the eigenvariable of the JL inference.

The condition that an eigenvariable not occur in the upper sequent of the
VR or JL inference is called the eigenvariable condition.

We use the term “eigenvariable” even though a in the above rules is a
constant. This has historical reasons.

In IR and VL there are no restrictions, and the term ¢ can be anything,
so we do not have to worry about any conditions. However, because the ¢
may appear elsewhere in the sequent, the values of ¢ for which the sequent is
satisfied are constrained. On the other hand, in the JL and V right rules, the
eigenvariable condition requires that a does not occur anywhere else in the
sequent. Thus, if the upper sequent is valid, the truth values of the formulas
other than ¢(a) are independent of 4.

Definition 7.3 (Initial Sequent). An initial sequent is a sequent of one of the
following forms:

1l.o=¢
2. 1=
for any sentence ¢ in the language.

Definition 7.4 (LK derivation). An LK-derivation of a sequent S is a tree of
sequents satisfying the following conditions:

1. The topmost sequents of the tree are initial sequents.

2. Every sequent in the tree (except S) is an upper sequent of an inference
whose lower sequent stands directly below that sequent in the tree.

We then say that S is the end-sequent of the derivation and that S is derivable in
LK (or LK-derivable).

Definition 7.5 (LK theorem). A sentence ¢ is a theorem of LK if the sequent
= ¢ is LK-derivable.

7.2 Examples of Derivations

Example 7.6. Give an LK-derivation for the sequent ¢ A ¢ = ¢.
We begin by writing the desired end-sequent at the bottom of the deriva-
tion.

pAY = ¢
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Next, we need to figure out what kind of inference could have a lower sequent
of this form. This could be a structural rule, but it is a good idea to start by
looking for a logical rule. The only logical connective occurring in a formula in
the lower sequent is A, so we're looking for an A rule, and since the A symbol
occurs in the antecedent formulas, we’re looking at the AL rule.

———— AL

PN = ¢
There are two options for what could have been the upper sequent of the AL
inference: we could have an upper sequent of ¢ = ¢, or of = ¢. Clearly,
@ = ¢ is an initial sequent (which is a good thing), while ¢ = ¢ is not
derivable in general. We fill in the upper sequent:

=9
PAY = ¢

We now have a correct LK-derivation of the sequent ¢ A i = ¢.

AL

Example 7.7. Give an LK-derivation for the sequent ¢ V ¢y = ¢ — ¢.
Begin by writing the desired end-sequent at the bottom of the derivation.

VY = 9y

To find a logical rule that could give us this end-sequent, we look at the log-
ical connectives in the end-sequent: —, V, and —. We only care at the mo-
ment about V and — because they are main operators of sentences in the end-
sequent, while — is inside the scope of another connective, so we will take care
of it later. Our options for logical rules for the final inference are therefore the
VL rule and the — R rule. We could pick either rule, really, but let’s pick the
— R rule (if for no reason other than it allows us to put off splitting into two
branches). According to the form of — R inferences which can yield the lower
sequent, this must look like:

PV = ¢
PVY = 9oy
Now we can apply the VL rule. According to the schema, this must split into
two upper sequents as follows:

— R

P o9VY =
VY = 9=y
Remember that we are trying to wind our way up to initial sequents; we seem

to be pretty close! The right branch is just one weakening away from an initial
sequent and then it is done:

VL
— R
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=9
WL
q)/_'q) = II] q)/lp = l/) \/L
¢,V = ¢
— R

PVY = 9

Now looking at the left branch, the only logical connective in any sentence
is the = symbol in the antecedent sentences, so we're looking at an instance of
the =L rule.

=49 v=19
-L WL
P eVY = ¢

— R
eV = 9=

Similarly to how we finished off the right branch, we are just one weakening
away from finishing off this left branch as well.

=9

————— WR
R T IN A 2
P ooVY = ¢
—R

eVY = 9y

Example 7.8. Give an LK-derivation of the sequent —¢ V =i = = (¢ A ¢)
Using the techniques from above, we start by writing the desired end-
sequent at the bottom.

eV = (e AY)

The available main connectives of sentences in the end-sequent are the V sym-
bol and the — symbol. It would work to apply either the VL or the —R rule
here, but we start with the —R rule because it avoids splitting up into two
branches for a moment:

A r
eV = a(pAYP)

Now we have a choice of whether to look at the AL or the VL rule. Let’s see
what happens when we apply the AL rule: we have a choice to start with
either the sequent ¢, ¢ V¢ = or the sequent ¢, 7¢ V¢ = . Since the
proof is symmetric with regards to ¢ and 1, let’s go with the former:

@,V P =
PAY, eV P =
eV P = (e AY)

AL

-R
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Continuing to fill in the derivation, we see that we run into a problem:

5
=9 =9
o= L op= L
9~V = VL

AL

T A R
eV = a(pAYP)

The top of the right branch cannot be reduced any further, and it cannot be
brought by way of structural inferences to an initial sequent, so this is not the
right path to take. So clearly, it was a mistake to apply the AL rule above.
Going back to what we had before and carrying out the VL rule instead, we
get

PAY, e = PAY, P =
PAY,~pV Y =
VP = 2(pAY)

Completing each branch as we’ve done before, we get

VL
-R

¢ = ¢ P =
¢A¢=>¢/% ¢A¢:$47At
PAY,—p = T gAY, = v;

PAY, 9V Y = R
VoY = o(eAY)

(We could have carried out the A rules lower than the — rules in these steps
and still obtained a correct derivation).

Example 7.9. Give an LK-derivation of the sequent Jx —¢(x) = —Vx ¢(x).
When dealing with quantifiers, we have to make sure not to violate the
eigenvariable condition, and sometimes this requires us to play around with
the order of carrying out certain inferences. In general, it helps to try and take
care of rules subject to the eigenvariable condition first (they will be lower
down in the finished proof). Also, it is a good idea to try and look ahead and
try to guess what the initial sequent might look like. In our case, it will have to
be something like ¢(a) = ¢(a). That means that when we are “reversing” the
quantifier rules, we will have to pick the same term—what we will call a—for
both the V and the 3 rule. If we picked different terms for each rule, we would
end up with something like ¢(a) = ¢(b), which, of course, is not derivable.
Starting as usual, we write
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dx—g(x) = Vx¢(x)

We could either carry out the 3L rule or the —R rule. Since the JL rule is
subject to the eigenvariable condition, it's a good idea to take care of it sooner
rather than later, so we’ll do that one first.

~¢(a) = ~Vxo(x)
Jx—p(x) = Vx(x)

Applying the =L and —R rules and then eliminating the double — signs on
both sides—the reader may do this as an exercise—we get

Vx ¢(x) = @(a)

“gla) = ~Wrg(x)
dx-¢p(x) = ~Vxe(x)

At this point, our only option is to carry out the VL rule. Since this rule is not
subject to the eigenvariable restriction, we're in the clear. Remember, we want
to try and obtain an initial sequent (of the form ¢(a) = ¢(a)), so we should
choose a as our argument for ¢ when we apply the rule.

p(a) = @(a)
Vx ¢(x) = @(a)

~p(a) > Vxo(x)
dx —¢(x) = Vx¢(x)

It is important, especially when dealing with quantifiers, to double check at
this point that the eigenvariable condition has not been violated. Since the
only rule we applied that is subject to the eigenvariable condition was 3L,
and the eigenvariable a does not occur in its lower sequent (the end-sequent),
this is a correct derivation.

7.3 Proof-Theoretic Notions

Just as we’ve defined a number of important semantic notions (validity, entail-
ment, satisfiabilty), we now define corresponding proof-theoretic notions. These
are not defined by appeal to satisfaction of sentences in structures, but by ap-
peal to the derivability or non-derivability of certain sequents. It was an im-
portant discovery, due to Godel, that these notions coincide. That they do is
the content of the completeness theorem.
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Definition 7.10 (Theorems). A sentence ¢ is a theorem if there is a derivation
in LK of the sequent = ¢. We write -1k ¢ if ¢ is a theorem and ¥k ¢ if it
is not.

Definition 7.11 (Derivability). A sentence ¢ is derivable from a set of sentencesT’,
I' Fik ¢, if there is a finite subset Iy C I such that LK derives I'y = ¢. If ¢ is
not derivable from I' we write I' ¥k ¢.

Definition 7.12 (Consistency). A set of sentences I is consistent iff I' ¥ L. If
I' is not consistent, i.e., if I - x L, we say it is inconsistent.

Proposition 7.13. T Fyx ¢ iff T U {—¢} is inconsistent.

Proof. Exercise. O
Proposition 7.14. T’ is inconsistent iff I' Frk ¢ for every sentence ¢.

Proof. Exercise. O
Proposition 7.15. T ik ¢ iff for some finite Ty C T, T'g Frk ¢.

Proof. Follows immediately from the definion of Fyk. O

7.4 Properties of Derivability

We will now establish a number of properties of the derivability relation. They
are independently interesting, but each will play a role in the proof of the
completeness theorem.

Proposition 7.16 (Monotony). IfI' C Aand I’ -1k ¢, then A Frk ¢.

Proof. Any finite I'y C I is also a finite subset of A, so a derivation of I'y = ¢
also shows A Frk ¢. O

Proposition 7.17. IfT Fyx ¢ and T U{¢} Frk L, then T is inconsistent.

Proof. There are finite I'oand I'y C I' such that LK derivesI'y = ¢ andI'y, ¢ =
1. Let the LK-derivation of I'y = ¢ be Il and the LK-derivation ofI';, ¢ = L
be I'Ty. We can then derive

‘1T, ‘11,

o= ¢ Typ= 1
To, T = L
SinceI'g CTand Ty CTI,TyuUTl'y CT,hencel Fyg L. O

cut

Proposition 7.18. If T U {¢} ik L, then T Frx —e.
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Proof. Suppose that I' U {¢} Frk L. Then there is a finite set Iy C T such
that LK derives I'y, ¢ = L. Let Iy be an LK-derivation of I'y, ¢ = L, and
consider

Tl

To,p = L .
o= L,—¢ 1=
F0:> %

cut

Proposition 7.19. If TU {¢} bk LandTU{—-¢} Frx L, then T g L.

Proof. There are finite sets Iy C I"and I'1 C I' and LK-derivations Il and I1;
of I'g,¢ = L and I'y, =9 = L, respectively. We can then derive

*Tlo

T : 1 11y
0/90 —|R -

To = L, ¢ T1,—¢ = L
FO,F1 = |

cut

SinceI' CTand Ty CT,TouUTl; CT. Hencel Fyg L. O

Proposition 7.20. IfT U {¢} Frx Land TU{¢} bk L, thenTU{p V ¢} Frk
L.

Proof. There are finite sets I'g, I'; C I and LK-derivations Iy and Il such that

ITO Hl
1—'0/4)# J— r],lP:;J_

I, I', 9 = L To, Iy, = L
Fo,r1,§0V¢ = 1

VL

(Recall that double inference lines indicate several weakening inferences.)
SinceI'),I1 CTandTU{¢ V ¢} Frx L. O

Proposition 7.21. IfT Frx ¢ or I Frk ¢, then T Frx ¢ V .

Proof. There is an LK-derivation Iy and a finite set Iy C I" such that we can
derive
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‘Tl

Ty =
%VR
Ip= ¢V

Therefore I' Frk @ V ¢. The proof for when I' -y ¢ is similar. O
Proposition 7.22. IfT Frx ¢ A then T Fix @ and T Frg ¢.

Proof. If T Frx ¢ A 1, there is a finite set I'y C I' and an LK-derivation ITy of
I'p = ¢ A . Consider

Tl N
; =9
Iy= oAy gAp =g "
cut
F0:>q>

Hence, I' Fix ¢. A similar derivation starting with i = ¢ on the right side
shows that I" -k . O

Proposition 7.23. IfT' i ¢ and I’ ik ¢, then T Frg ¢ A .

Proof. If T Frk ¢ as well as I’ Frk ¢, there are finite sets I'g, I'1 C I and an
LK-derivations Il of I'y = ¢ and I1; of I'1 = ¢. Consider

11 11
To = ¢ T = ¢
Iy, I = ¢ Iy, I = P
Lo, I'1 = @Ay
SinceI'UI'y1 €T, wehavel Frx ¢ A . O

AR

Proposition 7.24. IfT g ¢ and T i ¢ — ¢, then T ik .
Proof. Exercise. O
Proposition 7.25. IfT Frx ~por T Fix ¢, then T Fix ¢ — ¢.
Proof. Exercise. O

Theorem 7.26. If ¢ is a constant not occurring in I or ¢(x) and T Frx ¢(c), then
Ik Vx o(x).

Proof. Let Iy be an LK-derivation of Iy = ¢(c) for some finite I'y C I'. By
adding a VR inference, we obtain a proof of I' = Vx ¢(x), since ¢ does not
occur in T or ¢(x) and thus the eigenvariable condition is satisfied. O
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Theorem 7.27. 1. IfT bk ¢(t) then T = Jx ¢(x).
2. IfT bk Vx ¢(x) then T = ¢(t).

Proof. 1. Suppose I' ik ¢(t). Then for some finite Iy C I', LK derives
I'o = ¢(t). Add an 3R inference to get a derivation of I'y = Jx ¢(x).

2. Suppose I' Frx Vx ¢(x). Then there is a finite Iy C I and an LK-
derivation IT of Iy = Vx ¢(x). Then

‘T1

: p(t) = o(t) L
Ty = Vxo(x) Vxp(x) = ¢(t) cut
To = ¢(t)

shows that T Frg ¢(t).

7.5 Soundness

A derivation system, such as the sequent calculus, is sound if it cannot de-
rive things that do not actually hold. Soundness is thus a kind of guaranteed
safety property for derivation systems. Depending on which proof theoretic
property is in question, we would like to know for instance, that

1. every derivable sentence is valid;

2. if a sentence is derivable from some others, it is also a consequence of
them;

3. if a set of sentences is inconsistent, it is unsatisfiable.

These are important properties of a derivation system. If any of them do not
hold, the derivation system is deficient—it would derive too much. Conse-
quently, establishing the soundness of a derivation system is of the utmost
importance.

Because all these proof-theoretic properties are defined via derivability in
the sequent calculus of certain sequents, proving (1)—(3) above requires prov-
ing something about the semantic properties of derivable sequents. We will
first define what it means for a sequent to be valid, and then show that every
derivable sequent is valid. (1)-(3) then follow as corollaries from this result.

Definition 7.28. A structure 9 satisfies a sequent I' = A iff either M [~ « for
some & € I or M = « for some & € A.
A sequent is valid iff every structure 91 satisfies it.

Theorem 7.29 (Soundness). If LK derives I = A, then I = A is valid.
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Proof. Let Il be a derivation of I' == A. We proceed by induction on the num-
ber of inferences in I1.

If the number of inferences is 0, then IT consists only of an initial sequent.
Every initial sequent ¢ = ¢ is obviously valid, since for every 9, either 9t }~=
porM = ¢.

If the number of inferences is greater than 0, we distinguish cases accord-
ing to the type of the lowermost inference. By induction hypothesis, we can
assume that the premises of that inference are valid, since the height of the
proof of any premise is smaller than n.

First, we consider the possible inferences with only one premise I = A’.

1. The last inference is a weakening. Then I” C T and A = A if it's a
weakening on the left, or I' = " and A’ C A if it’s a weaking on the
right. In either case, A’ C Aand I" C T. If M [~ a for some a € T”, then,
sinceI” C T, a € T as well, and so 9 £ « for the same o € T. Similarly,
if M = a forsomea € A',asa € A, M = « for some & € A. Since
I" = A is valid, one of these cases obtains for every 9. Consequently,
I' = Aisvalid.

2. The last inference is —L: Then for some ¢ € A’, m¢ € . Also, I' C T,
and A"\ {9} C A.

If M = ¢, then M [~ —¢, and since —¢ € T, M satisfies [ = A. Since
I = A isvalid, if M [~ ¢, then either M [~ « for some a € T’ or
M = « for some a € A’ different from ¢. Consequently, M F~ « for
some a € T (since I” C T) or M = a for some a € A’ different from ¢
(since A"\ {¢} C A).

3. The last inference is —R: Exercise.

4. The last inference is AL: There are two variants: ¢ A i may be inferred
on the left from ¢ or from ¢ on the left side of the premise. In the first
case, ¢ € I". Consider a structure 9. Since I' = A’ is valid, (a) M [~ ¢,
(b) M (= « for some a € 7\ {¢}, or (c) M = « for some a € A'. In
case (a), M = @ A . In case (b), thereisana € T\ {¢ A ¢} such that
M = a, since I'\ {9} C T\ {¢ Ay} Incase (c), thereis a a € A such
that M |= a, as A = A’. So in each case, 91 satisfies ¢ A 1, T = A. Since
M was arbitrary, I' = A is valid. The case where ¢ A 1 is inferred from
1 is handled the same, changing ¢ to .

5. The last inference is VR: There are two variants: ¢ V i may be inferred
on the right from ¢ or from ¥ on the right side of the premise. In the first
case, ¢ € A'. Consider a structure M. Since I = A’ is valid, (a) M | ¢,
(b) M }~ a for some a € T, or (c) M = a for some a € A\ {¢}. In case
(@), M = ¢ V . In case (b), there is &« € T such that M (= o, as T = T".
In case (c), there is an & € A such that M = «, since A’ \ {¢} C A. So
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in each case, M satisfies ¢ A p,I' = A. Since M was arbitrary, ' = A
is valid. The case where ¢ V ¥ is inferred from ¢ is handled the same,
changing ¢ to .

. The last inference is — R: engp € I, v € A, C T an
The last inf i R: Then ¢ I, ¢ N, T'\{¢ I and

A\ {y} C A. Since I" = A’ is valid, for any structure 9, (a) M [~ ¢,
b) M E ¢, (c) M ¥~ a for some a € I'\ {9}, or M = «a for some
a € A\ {y}. In cases (a) and (b), M = ¢ — . In case (c), for some
a €T, M [~ a. In case (d), for some « € A, M = «a. In each case, M
satisfies I' = A. Since 9 was arbitrary, I' = A is valid.

. The last inference is VL: Then there is a formula ¢(x) and a ground

term t such that ¢(t) € I/, Vx p(x) € T, and I \ {¢(¢)} C T. Consider a
structure M. Since I” = A’ is valid, (a) M = ¢(t), (b) M F~ a for some
a e T’"\ {g(t)}, or (c) M = a for some a € A'. In case (a), M = Vx ¢(x).
In case (b), thereis an a € T'\ {¢(t)} such that M [~ a. In case (c), there
isaa € Asuchthat M |= o, as A = A'. So in each case, M satisfies
I' = A. Since 9t was arbitrary, I' = A is valid.

. The last inference is dR: Exercise.

. The last inference is VR: Then there is a formula ¢(x) and a constant

symbol a such that ¢(a) € A’, Vx ¢(x) € A, and A"\ {¢(a)} C A. Fur-
thermore, a ¢ T U A. Consider a structure 9. Since I = A’ is valid,
(@ M = ¢(a), (b) M F~ a for some a € I”, or (c) M = a for some
ae A\ {g(a)}.

First, suppose (a) is the case but neither (b) nor (c), i.e., M = «a for all
a € I"and M [~ a forall « € A\ {¢(a)}. In other words, assume
9N = ¢(a) and that M does not satisfy I’ = A’ \ {¢(a)}. Sincea ¢ TUA,
alsoa ¢ I' U (A \ {@(a)}). Thus, if M’ is like M except that a™ # 4™,
9’ also does not satisfy I’ = A’ \ {¢(a)} by extensionality. But since
I" = A is valid, we must have M’ |= ¢(a).

We now show that 9t = Vx ¢(x). To do this, we have to show that for
every variable assignment s, M,s = Vx ¢(x). This in turn means that
for every x-variant s’ of s, we must have 9,5’ |= ¢(x). So consider any
variable assignment s and let s’ be an x-variant of s. Since I and A’
consist entirely of sentences, M,s = « iff M, s’ = a iff M = « for all
x € T"UA. Let 9 be like M except that a™ = s'(x). Then M,s’ =
@(x) iff M = ¢(a) (as ¢(x) does not contain a). Since we've already
established that 9 = ¢(a) for all 9 which differ from 9 at most in
what they assign to 4, this means that 91,5’ |= ¢(x). Thus weve shown
that M,s |= Vx ¢(x). Since s is an arbitrary variable assignment and
Vx ¢(x) is a sentence, then M |= Vx ¢(x).



7.5. Soundness

10.

If (b) is the case, there is a « € T such that M (= a, as T = I". If (¢) is the
case, there is an « € A"\ {¢(a)} such that M |= a. So in each case, M
satisfies I' = A. Since I was arbitrary, I' = A is valid.

The last inference is JL: Exercise.

Now let’s consider the possible inferences with two premises.

1.

2.

3.
4.

The last inference is a cut: Suppose the premises are I' = A’ and IT' =
A’ and the cut formula ¢ is in both A’ and IT'. Since each is valid, every
structure M satisfies both premises. We distinguish two cases: (a) M =
¢ and (b) M = ¢. In case (a), in order for I to satisfy the left premise,
it must satisfy I’ = A"\ {¢}. ButI" C T'and A’ \ {9} C A, so M also
satisfies I' = A. In case (b), in order for I to satisfy the right premise,
it must satisfy IT" \ {¢} = A’. ButIT'\ {¢} C T and A’ C A, so M also
satisfies I' = A.

The last inference is AR. The premises are I = A’ and I' = A", where
¢ € A an ¢ € A”. By induction hypothesis, both are valid. Consider
a structure 9. We have two cases: (a) M = ¢ A or (b) M = ¢ A ¢.
In case (a), either M = ¢ or M F~ . In the former case, in order for
9 to satisfy I' = A/, it must already satisfy I = A’ \ {¢}. In the latter
case, it must satisfy I' = A"\ {¢}. But since both A"\ {¢} C A and
A"\ {¢} C A, that means 9 satisfies [ = A. In case (b), I satisfies
I'= Asince p AP € A.

The last inference is VVL: Exercise.

The last inference is — L. The premises are I' = A’ and I’ = A, where
¢ € A and p € I'. By induction hypothesis, both are valid. Consider a
structure 91. We have two cases: (a) M = ¢ — ¢ or (b) M (= ¢ — ¢.
In case (a), either M [~ ¢ or M = . In the former case, in order for
9N to satisfy I' = A/, it must already satisfy I = A’ \ {¢}. In the latter
case, it must satisfy I'" \ {¢y} = A. But since both A"\ {¢} C A and
I\ {¢} C T, that means I satisfies I' = A. In case (b), 9 satisfies
I'> Asincep — p cT.

O

Corollary 7.30. If ik @ then ¢ is valid.

Corollary 7.31. IfT Frk @ thenT & ¢.

Proof. If I Frk ¢ then for some finite subset Iy C T, there is a derivation of
I'y = ¢. By Theorem 7.29, every structure 91 either makes some ¢ € I'y false
or makes ¢ true. Hence, if M |= T then also M |= ¢. O

Corollary 7.32. If T is satisfiable, then it is consistent.
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Proof. We prove the contrapositive. Suppose that I' is not consistent. Then
I' -1k L, i.e, there is a finite I'y C I' and a derivation of 'y = L. By The-
orem 7.29, Ty = L is valid. Since M F= L for every structure 9, for M to
satisfy ') = L there must be an a € Iy so that 9 [~ &, and since Ty C T, that
w is also in I'. In other words, no 9t satisfies I, i.e., I is not satisfiable. O

7.6 Derivations with Identity predicate

Derivations with the identity predicate require additional inference rules.

Initial sequents for =: If ¢ is a closed term, then = t = t is an initial
sequent.
Rules for =:

Ith =t = A,qt)(tl) — and It =t = A, (p(t2)

F, tl = tz = A,q)(tz) F, tl = fz = A, (P(tl)

where t; and t; are closed terms.

Example 7.33. If s and f are ground terms, then ¢(s),s = t Frk ¢(t):

o(s) = ¢(s)
p(s)s =t = ¢(s)
pis)s=1t= ¢(t)
This may be familiar as the principle of substitutability of identicals, or Leib-
niz’ Law.
LK proves that = is symmetric and transitive:

WL

=t =4 =1t =t =1
— — WL — — — WL
h=th=Hh=H h=th=1t3=>H=1t
1=t = th==%H ty=1ty,tr =13 = t1 =13

In the proof on the left, the formula x = #; is our ¢(x). On the right, we take
¢(x) tobe t; = x.

Proposition 7.34. LK with initial sequents and rules for identity is sound.

Proof. Initial sequents of the form = t = t are valid, since for every struc-
ture M, M |= t = t. (Note that we assume the term f to be ground, i.e., it
contains no variables, so variable assignments are irrelevant).

Suppose the last inference in a derivation is =. Then the premise I" = A’
contains f; = t; on the left and ¢(#;) on the right, and the conclusionis T = A
where I' = T" and A = (A" \ {¢(t1)}) U{¢(t2)}. Consider a structure O.
Since, by induction hypothesis, the premise I" = A’ is valid, either (a) for
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some a € I/, M [~ a, (b) for some o € A\ {¢(s)}, M = a, or (c) M =
@(t1). In both cases cases (a) and (b), since I' = I”, and A"\ {¢(s)} C A,
M satisfies I' = A. So assume cases (a) and (b) do not apply, but case (c)
does. If (a) does not apply, M |= « for all « € I”, in particular, M |= t; = .
Therefore, Val™ (t;) = Val™ (). Let s be any variable assignment, and s’ be
the x-variant given by s'(x) = Val™(t;) = Val™(t,). By Proposition 5.41,
M, s = @(ty) iff M,s" = @(x) iff M, s = ¢(t1). Since M = ¢(t1) therefore
M = ¢(t2). O
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Chapter 8

The Completeness Theorem

8.1 Introduction

The completeness theorem is one of the most fundamental results about logic.
It comes in two formulations, the equivalence of which we'll prove. In its first
formulation it says something fundamental about the relationship between
semantic consequence and our proof system: if a sentence ¢ follows from
some sentences I', then there is also a derivation that establishes I' - ¢. Thus,
the proof system is as strong as it can possibly be without proving things that
don’t actually follow. In its second formulation, it can be stated as a model
existence result: every consistent set of sentences is satisfiable.

These aren’t the only reasons the completeness theorem—or rather, its
proof—is important. It has a number of important consequences, some of
which we’ll discuss separately. For instance, since any derivation that shows
I' F ¢ is finite and so can only use finitely many of the sentences in T, it fol-
lows by the completeness theorem that if ¢ is a consequence of I', it is already
a consequence of a finite subset of I'. This is called compactness. Equivalently,
if every finite subset of I is consistent, then I itself must be consistent. It
also follows from the proof of the completeness theorem that any satisfiable
set of sentences has a finite or denumerable model. This result is called the
Lowenheim-Skolem theorem.

8.2 Outline of the Proof

The proof of the completeness theorem is a bit complex, and upon first reading
it, it is easy to get lost. So let us outline the proof. The first step is a shift of
perspective, that allows us to see a route to a proof. When completeness is
thought of as “whenever I' F ¢ then I' - ¢,” it may be hard to even come up
with an idea: for to show that I' - ¢ we have to find a derivation, and it does
not look like the hypothesis that I' F ¢ helps us for this in any way. For some
proof systems it is possible to directly construct a derivation, but we will take
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8.2. Outline of the Proof

a slightly different tack. The shift in perspective required is this: completeness
can also be formulated as: “if I' is consistent, it has a model.” Perhaps we can
use the information in I' together with the hypothesis that it is consistent to
construct a model. After all, we know what kind of model we are looking for:
one that is as I' describes it!

If I' contains only atomic sentences, it is easy to construct a model for it:
for atomic sentences are all of the form P(ay, ..., a,) where the a; are constant
symbols. So all we have to do is come up with a domain |9?| and an inter-
pretation for P so that 9 |= P(ay,...,a,). But nothing’s easier than that: put
|| = N, cl.fm = i, and for every P(ay,...,a,) € T, put the tuple (ky, ..., k,)
into P!, where k; is the index of the constant symbol 4; (i.e., a; = ).

Now suppose I' contains some sentence —, with ¢ atomic. We might
worry that the construction of 9 interferes with the possibility of making -~
true. But here’s where the consistency of I' comes in: if ~ip € I, then ¢ € T, or
else I' would be inconsistent. And if ¢ ¢ I', then according to our construction
of M, M [~ ¢, so M = —¢. So far so good.

Now what if I' contains complex, non-atomic formulas? Say, it contains
@ A . Then we should proceed as if both ¢ and i wereinI'. Andif oV ¢ €T,
then we will have to make at least one of them true, i.e., proceed as if one of
them was in I'.

This suggests the following idea: we add additional sentences to I so as to
(a) keep the resulting set consistent and (b) make sure that for every possible
atomic sentence ¢, either ¢ is in the resulting set, or —¢, and (c) such that,
whenever ¢ A is in the set, so are both ¢ and ¢, if ¢ V ¢ is in the set, at least
one of ¢ or ¢ is also, etc. We keep doing this (potentially forever). Call the
set of all sentences so added I'*. Then our construction above would provide
us with a structure for which we could prove, by induction, that all sentences
in I'* are true in 91, and hence also all sentence in I' since I' C T'*,

There is one wrinkle in this plan: if 3x ¢(x) € T we would hope to be able
to pick some constant symbol ¢ and add ¢(c) in this process. But how do we
know we can always do that? Perhaps we only have a few constant symbols
in our language, and for each one of them we have —¢(c) € I'. We can’t also
add ¢(c), since this would make the set inconsistent, and we wouldn’t know
whether 91 has to make ¥(c) or =¢(c) true. Moreover, it might happen that T
contains only sentences in a language that has no constant symbols at all (e.g.,
the language of set theory).

The solution to this problem is to simply add infinitely many constants at
the beginning, plus sentences that connect them with the quantifiers in the
right way. (Of course, we have to verify that this cannot introduce an incon-
sistency.)

Our original construction works well if we only have constant symbols in
the atomic sentences. But the language might also contain function symbols.
In that case, it might be tricky to find the right functions on IN to assign to
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8. THE COMPLETENESS THEOREM

these function symbols to make everything work. So here’s another trick: in-
stead of using i to interpret ¢;, just take the set of constant symbols itself as
the domain. Then 9 can assign every constant symbol to itself: ¢ = ¢;. But
why not go all the way: let |9] be all terms of the language! If we do this,
there is an obvious assignment of functions (that take terms as arguments and
have terms as values) to function symbols: we assign to the function sym-
bol £" the function which, given n terms ¢4, ..., t, as input, produces the term
f'(t, ..., tn) as value.

The last piece of the puzzle is what to do with =. The predicate symbol =
has a fixed interpretation: 9 |= t = ¢’ iff Val™ (t) = Val™ (#). Now if we set
things up so that the value of a term ¢ is ¢ itself, then this structure will make
no sentence of the form t = ' true unless t and t’ are one and the same term.
And of course this is a problem, since basically every interesting theory in a
language with function symbols will have as theorems sentences t = ' where
t and t' are not the same term (e.g., in theories of arithmetic: (0 4+ 0) = o). To
solve this problem, we change the domain of 9t: instead of using terms as the
objects in |9M1|, we use sets of terms, and each set is so that it contains all those
terms which the sentences in I require to be equal. So, e.g., if I is a theory of
arithmetic, one of these sets will contain: o, (0 + 0), (0 x 0), etc. This will be
the set we assign to 0, and it will turn out that this set is also the value of all
the terms in it, e.g., also of (0 + 0). Therefore, the sentence (0 + 0) = o will be
true in this revised structure.

8.3 Maximally Consistent Sets of Sentences

Definition 8.1 (Maximally consistent set). A set I' of sentences is maximally
consistent iff

1. T is consistent, and
2. if T C T/, then I is inconsistent.

An alternate definition equivalent to the above is: a set I' of sentences is
maximally consistent iff

1. T is consistent, and
2. IfT U {¢} is consistent, then ¢ € T.

In other words, one cannot add sentences not already in I' to a maximally
consistent set I' without making the resulting larger set inconsistent.
Maximally consistent sets are important in the completeness proof since
we can guarantee that every consistent set of sentences I' is contained in a
maximally consistent set I'*, and a maximally consistent set contains, for each
sentence ¢, either @ or its negation —¢. This is true in particular for atomic
sentences, so from a maximally consistent set in a language suitably expanded
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by constant symbols, we can construct a structure where the interpretation of
predicate symbols is defined according to which atomic sentences are in I'*.
This structure can then be shown to make all sentences in I'* (and hence also
in I') true. The proof of this latter fact requires that -¢ € I'* iff ¢ & I,
(pVy)eT*iff p e T oryp € T*, etc.

Proposition 8.2. Suppose I is maximally consistent. Then:

1
2
3

HN

5

IfT + @, then ¢ € T.

For any ¢, either ¢ € T or ¢ € T.
(pAy) €Tiffbothp € Tand p € T.
(pV ) €T iffeither p € Torp €T.
(¢ = ¢) € Tiffeither 9 ¢ T orp € T.

Proof. Let us suppose for all of the following that I' is maximally consistent.

1.

IfTF ¢, then ¢ € T.

Suppose that I' - ¢. Suppose to the contrary that ¢ ¢ I': then since I'
is maximally consistent, I' U {¢} is inconsistent, hence I' U {¢} - L. By
Proposition 7.17, I is inconsistent. This contradicts the assumption that
I is consistent. Hence, it cannot be the case that ¢ ¢ I', so ¢ € T".

For any ¢, either p € I'or ~p € T.

Suppose to the contrary that for some ¢ both ¢ ¢ I'and —¢ ¢ I'. Since I'
is maximally consistent, I U {¢} and T' U {—¢} are both inconsistent, so
F'u{¢} F Land T U{—¢} F L. By Proposition 7.19, T is inconsistent,
a contradiction. Hence there cannot be such a sentence ¢ and, for every
p,pclor—pel.

(pAyp) eTiffbothg e Tand p € T

For the forward direction, suppose (¢ A¢) € T. ThenT - ¢ A ¢. By
Proposition 7.22,I' - ¢ and I' = ¢. By (1), ¢ € I' and ¢ € I, as required.

For the reverse direction, let ¢ € I'and ¢ € I'. ThenI' - g and I' - 4. By
Proposition 7.23, T = ¢ A . By (1), (p A ) € T.

. (pVvy) eTiffeitherp e Tory €T.

For the contrapositive of the forward direction, suppose that ¢ ¢ I' and
¢ ¢ T. We want to show that (¢ V ¢) ¢ T. Since I is maximally consis-
tent, TU{¢} F Land TU{¢} L. By Proposition 7.20, TU {(¢ V ¢)}
is inconsistent. Hence, (¢ VV ¢) ¢ T, as required.

For the reverse direction, suppose that ¢ € I'or i € I'. ThenT - ¢ or
I' - ¢. By Proposition 7.21, T + ¢ VV ¢. By (1), (¢ V ¢) € T, as required.
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5. Exercise.

8.4 Henkin Expansion

Part of the challenge in proving the completeness theorem is that the model
we construct from a maximally consistent set I' must make all the quantified
formulas in I' true. In order to guarantee this, we use a trick due to Leon
Henkin. In essence, the trick consists in expanding the language by infinitely
many constants and adding, for each formula with one free variable ¢(x) a
formula of the form 3x ¢ — ¢(c), where c is one of the new constant symbols.
When we construct the structure satisfying I', this will guarantee that each
true existential sentence has a witness among the new constants.

Lemma 8.3. If I is consistent in L and L' is obtained from L by adding a denumer-
able set of new constant symbols dy, dy, ..., then T is consistent in L'.

Definition 8.4 (Saturated set). A set I of formulas of a language L is saturated
if and only if for each formula ¢ € Frm?(£) and variable x there is a constant
symbol ¢ such that 3x ¢ — ¢(c) € T.

The following definition will be used in the proof of the next theorem.

Definition 8.5. Let £’ be as in Lemma 8.3. Fix an enumeration (@1, x1), (¢2, X2),
...of all formula-variable pairs of £’. We define the sentences 6, by recursion

on n. Assuming that 0y, ..., 8, have already been defined, let c,,;1 be the first

new constant symbol among the d; that does not occur in 6y, ..., 8,, and let

0,11 be the formula 3x;,11 @y 41 (Xp+1) = @ni1(cpp1). This includes the case

where n = 0 and the list of previous 6;’s is empty, i.e., 0 is Ix1 ¢1 — @1(cq).

Theorem 8.6. Every consistent set I can be extended to a saturated consistent set I".

Proof. Given a consistent set of sentences I' in a language £, expand the lan-
guage by adding a denumerable set of new constant symbols to form £'. By
the previous Lemma, I is still consistent in the richer language. Further, let 6;
be as in the previous definition: then T'U {64, 6, ... } is saturated by construc-
tion. Let

Ip=T
Iﬂn—',—l =I,U {Qn—i-l}

ie, [, =TU{0y,...,0,}, and letT" = |J,, T;y. To show that I" is consistent it
suffices to show, by induction on #, that each set I';, is consistent.

The induction basis is simply the claim that I'j = I is consistent, which
is the hypothesis of the theorem. For the induction step, suppose that I';,_; is
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consistentbut I', = I';,_1 U {6, } is inconsistent. Recall that 6, is Ix,, ¢n(xn) —
¢n(cn). where ¢(x) is a formula of £’ with only the variable x, free and not
containing any constant symbols c; where i > n.

If T;,_1 U {6y} is inconsistent, then T, 1 F —6,, and hence both of the
following hold:

Tyoq b 3x, @n(xn) Tyoq b —@n(cn)

Here ¢, doesnot occurinT',,_; or ¢, (x,) (remember, it was added only with 6,,).
By Theorem 7.26, from I' - —¢,(c,), we obtain T’ - Vx, =¢,(x,). Thus we
have that both T',_1 - 3x, ¢, and T;,_1 F Vx, —¢n(xy), so T itself is incon-
sistent. (Note that Vx, ~¢,(x,) F —3x, ¢n(xy,).) Contradiction: T),_; was
supposed to be consistent. Hence I';, U {6, } is consistent. O

8.5 Lindenbaum’s Lemma

We now prove a lemma that shows that any consistent set of sentences is con-
tained in some set of sentences which is not just consistent, but maximally so,
and moreover, is saturated. The proof works by first extending the set to a sat-
urated set, and then adding one sentence at a time, guaranteeing at each step
that the set remains consistent. The union of all stages in that construction
then contains, for each sentence ¢, either it or its negation —¢, is saturated,
and is also consistent.

Lemma 8.7 (Lindenbaum’s Lemma). Every consistent set I can be extended to a
maximally consistent saturated set I'*.

Proof. Let T be consistent, and let I be as in the proof of Theorem 8.6: we
proved there that I' UT” is a consistent saturated set in the richer language £’
(with the denumerable set of new constants). Let ¢, ¢1, ... be an enumera-
tion of all the formulas of £’. Define g = T UT”, and

r _Jryu {en} T, U{@,} is consistent;
i I'nU{-¢,} otherwise.

LetT* = U, I'n- Since I" C T'*, for each formula ¢, T'* contains a formula
of the form 3x ¢ — ¢(c) and thus is saturated.

Each T, is consistent: Iy is consistent by definition. If ', 1 = I', U {¢},
this is because the latter is consistent. If itisn’t, I’ 11 = I', U {—¢}, which must
be consistent. If it weren't, i.e., both ', U {¢} and ', U {—¢} are inconsistent,
thenI'y F g and I';, - ¢, so I'; would be inconsistent contrary to induction
hypothesis.

Every formula of Frm?(L£') appears on the list used to define I'*. If ¢,, ¢ T,
then that is because I', U {¢,} was inconsistent. But that means that I'* is
maximally consistent. O
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8.6 Construction of a Model

We will begin by showing how to construct a structure which satisfies a max-
imally consistent, saturated set of sentences in a language £ without =.

Definition 8.8 (Term model). Let I'* be a maximally consistent, saturated set
of sentences in a language L. The term model M(T*) of T* is the structure
defined as follows:

1. The domain |9t(T*)| is the set of all closed terms of L.

2. The interpretation of a constant symbol c is c itself: ¢™T™) = ¢,

3. The function symbol f is assigned the function which, given as argu-
ments the closed terms t4, ..., t,, has as value the closed term f (1, ..., t,):

PO, b)) = f(b e )
4. If Ris an n-place predicate symbol, then (t1,...,t,) € R jff R(t1,...,ty) €
r=.
Lemma 8.9 (Truth Lemma). Suppose ¢ does not contain =. Then M(T*) = ¢ iff
pcTI™
Proof. We prove both directions simultaneously, and by induction on ¢.

1. ¢ = L: M(T*) = L by definition of satisfaction. On the other hand,
L ¢ I'* since I'* is consistent.

2. ¢ = R(ty,... ty): IM(T*) = R(ty, ..., ty) iff (t,..., 1) € RV (by
the definition of satisfaction) iff R(#y,...,t,) € T'* (the construction of
M(T*).

3. ¢ =~ M(T) = @ iff M(T™*) = ¢ (by definition of satisfaction).
By induction hypothesis, 9(I'*) = o iff ¢ ¢ I'*. By Proposition 8.2(2),
~peI*ifyp ¢ I'*;and ¢ ¢ I' if p € T'* since I'* is consistent.

4. o=y Ax: M) = ¢iff wehaveboth M(T*) = ¢ and M(T™*) = x (by
definition of satisfaction) iff both y € I'" and x € I'* (by the induction
hypothesis). By Proposition 8.2(3), this is the case iff ( A x) € T'*.

5. 9 =9 Vx M) E ¢iff at M(T*) = ¢ or M(T'™) |= x (by definition
of satisfaction) iff y € I'" or x € I'* (by induction hypothesis). This is
the case iff (i V x) € I'* (by Proposition 8.2(4)).

6. ¢ =1 — x: exercise.

7. ¢ =Vxip(x): exercise.
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8. ¢ = Jx1p(x): First suppose that M(I'*) = ¢. By the definition of sat-
isfaction, for some variable assignment s, M(I'*),s |= ¢(x). The value
s(x) is some term ¢t € |M(T*)|. Thus, M(I'*) = ¥(t), and by our in-
duction hypothesis, ¢(t) € I'*. By Theorem 7.27 we have I'* - Jx ¢(x).
Then, by Proposition 8.2(1), we can conclude that ¢ € I'*.

Conversely, suppose that 3x ¢(x) € I'*. Because I'* is saturated, (3x ¢(x) —
P(c)) € I'*. By Proposition 7.24 together with Proposition 8.2(1), ¢(c) €
I'*. By inductive hypothesis, 9(I'*) = ¢(c). Now consider the variable
assignment with s(x) = ¢™ "), Then 9(T'*),s |= ¢(x). By definition of
satisfaction, M(T™*) = Ix (x).

O

8.7 Identity

The construction of the term model given in the preceding section is enough
to establish completeness for first-order logic for sets I' that do not contain =.
The term model satisfies every ¢ € I'" which does not contain = (and hence
all ¢ € I). It does not work, however, if = is present. The reason is that I'*
then may contain a sentence t = #, but in the term model the value of any
term is that term itself. Hence, if t and #' are different terms, their values in
the term model—i.e., t and t/, respectively—are different, and so t = #' is false.
We can fix this, however, using a construction known as “factoring.”

Definition 8.10. Let I'* be a maximally consistent set of sentences in £. We
define the relation ~ on the set of closed terms of £ by

tet iff t=tel*
Proposition 8.11. The relation ~ has the following properties:
1. = is reflexive.
2. = is symmetric.
3. & is transitive.
4. Ift = t', f is a function symbol, and t1, ..., t;_1, tiv1, ..., by are terms, then
b, tic bt b)) = f(by o i E b, ).

5. Ift = ', Ris a predicate symbol, and t1, ..., t; 1, tis1, ..., tn are terms, then

R(tl,...,ti,l,t,tprl,...,i’n) er* lff
R(t1,..., ti1,t tig1, ..., ty) €T
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Proof. Since I'* is maximally consistent, t = ' € I iff I'*  + = /. Thus it is
enough to show the following;:

1. I+t = t for all terms .
2. fT*Ft=+tthenT*Ft =t
BT Ht=tand "t =t/ thenT* -t =1¢".
4. IfT*+t =+, then
T F f(t, oo tict, btipt,, oo tn) = F(t, oo tim, Eotigt, o tn)

for every n-place function symbol f and terms ¢y, ..., tj_1, tiyq, ..., tn.

5. fT*Ft=+tandT* - R(ty,...,ti1,t,tis1, .-, tn), thenT* = R(ty, ... t;i 1t tigq, ...

for every n-place predicate symbol R and terms t1, ..., t;_1, tit1, ..., tu.

O

Definition 8.12. Suppose I'* is a maximally consistent set in a language L, t is
a term, and ~ as in the previous definition. Then:

(e ={t:t' € Trm?(L),t = t'}
and Trm?(L)/~ = {[t]~ : t € Trm?(L)}.

Definition 8.13. Let 9t = 9(I'™*) be the term model for I'*. Then MM/~ is the
following structure:

1. M/ ~| = Trm?(L)/ ~.
2. M= =[]~

3. fgm/z([tl]%/""[t”]z) = [f(tl/"'rtn>]z
4. ([t)my .-+, [tn]~) € RV=iff M = R(ty, ..., t).

Note that we have defined ™/~ and R™/~ for elements of Trm?(L)/ ~ by
referring to them as [t]~, i.e., via representatives t € [t]~. We have to make sure
that these definitions do not depend on the choice of these representatives, i.e.,
that for some other choices t' which determine the same equivalence classes
([t]~ = [t']~), the definitions yield the same result. For instance, if R is a one-
place predicate symbol, the last clause of the definition says that [t~ € R™/~
iff M | R(t). If for some other term ' with t ~ t/, M [~ R(t), then the
definition would require [t']~ ¢ R™/~. If t ~ t, then [t|~ = [t']~, but we
can’t have both [t]~ € R™/~ and [t]~ ¢ R™/~. However, Proposition 8.11
guarantees that this cannot happen.
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Proposition 8.14. M/ ~ is well defined, i.e., if t1, ..., ty, t}, ..., t}, are terms, and
t; ~ t then

Lo [f(ty,.. o tn)]e = [f(t], .. 1))~ Le.,
ft, o tn) = f(H, .- 1)
and
2. MER(, ... ta) iff M =R, 1), de.,

R(t, ..., tn) € T iff R(t},...,t,) € T".

Proof. Follows from Proposition 8.11 by induction on 7. O
Lemma 8.15. M/~ = ¢ iff ¢ € T* for all sentences ¢.

Proof. By induction on ¢, just as in the proof of Lemma 8.9. The only case that
needs additional attention is when ¢ =t = /.

M/~ | t =t iff |~ = [']~ (by definition of M/ <)
iff t ~ t' (by definition of [t]~)
iff t = t' € T* (by definition of ~).

O

Note that while 9(T'"*) is always enumerable and infinite, 91/~ may be
finite, since it may turn out that there are only finitely many classes [t|~. This
is to be expected, since I' may contain sentences which require any structure
in which they are true to be finite. For instance, Vx Vy x = y is a consistent
sentence, but is satisfied only in structures with a domain that contains exactly
one element.

8.8 The Completeness Theorem

Let’s combine our results: we arrive at the Godel’s completeness theorem.

Theorem 8.16 (Completeness Theorem). Let I' be a set of sentences. If I' is con-
sistent, it is satisfiable.

Proof. Suppose I is consistent. By Lemma 8.7, there is a I'* O I' which is max-
imally consistent and saturated. If I' does not contain =, then by Lemma 8.9,
M(I*) = ¢ iff ¢ € T'*. From this it follows in particular that for all ¢ € T,
M(T*) = ¢, so T is satisfiable. If T does contain =, then by Lemma 8.15,
M/~ = @ iff ¢ € T for all sentences ¢. In particular, M/~ = ¢ forallg €T,
so I' is satisfiable. O
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Corollary 8.17 (Completeness Theorem, Second Version). For all T and ¢ sen-
tences: if I' E @ then T = ¢.

Proof. Note that the I'’s in Corollary 8.17 and Theorem 8.16 are universally
quantified. To make sure we do not confuse ourselves, let us restate Theo-
rem 8.16 using a different variable: for any set of sentences A, if A is consistent,
it is satisfiable. By contraposition, if A is not satisfiable, then A is inconsistent.
We will use this to prove the corollary.

Suppose that I' £ ¢. Then I' U {—¢} is unsatisfiable by Proposition 5.46.
Taking I' U {—¢} as our A, the previous version of Theorem 8.16 gives us that
I'U {—¢} is inconsistent. By Proposition 7.13, T I ¢. O

8.9 The Compactness Theorem

One important consequence of the completeness theorem is the compactness
theorem. The compactness theorem states that if each finite subset of a set
of sentences is satisfiable, the entire set is satisfiable—even if the set itself is
infinite. This is far from obvious. There is nothing that seems to rule out,
at first glance at least, the possibility of there being infinite sets of sentences
which are contradictory, but the contradiction only arises, so to speak, from
the infinite number. The compactness theorem says that such a scenario can
be ruled out: there are no unsatisfiable infinite sets of sentences each finite
subset of which is satisfiable. Like the copmpleteness theorem, it has a version
related to entailment: if an infinite set of sentences entails something, already
a finite subset does.

Definition 8.18. A set I' of formulas is finitely satisfiable if and only if every
finite Iy C T is satisfiable.

Theorem 8.19 (Compactness Theorem). The following hold for any sentences T
and ¢:

1. T E @ iff thereis a finite Ty C I' such that Iy F ¢.
2. T is satisfiable if and only if it is finitely satisfiable.

Proof. We prove (2). If I is satisfiable, then there is a structure 9t such that
M = ¢ for all ¢ € T. Of course, this 1 also satisfies every finite subset of T,
so I is finitely satisfiable.

Now suppose that I' is finitely satisfiable. Then every finite subsetI'y C T
is satisfiable. By soundness, every finite subset is consistent. Then I itself
must be consistent. For assume it is not, i.e., I' - L. But derivations are finite,
and so already some finite subset 'y C I' must be inconsistent (cf. Proposi-
tion 7.15). But we just showed they are all consistent, a contradiction. Now by
completeness, since I is consistent, it is satisfiable. O
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Example 8.20. In every model 91 of a theory I, each term f of course picks out
an element of |9|. Can we guarantee that it is also true that every element
of || is picked out by some term or other? In other words, are there theo-
ries I" all models of which are covered? The compactness theorem shows that
this is not the case if I has infinite models. Here’s how to see this: Let 9t be
an infinite model of I, and let ¢ be a constant symbol not in the language of I'.
Let A be the set of all sentences ¢ # t for f a term in the language £ of I, i.e.,

A={c#t:teTm?L)}.

A finite subset of I' U A can be written as I’ UA’, withI" C T'and A’ C A. Since
A is finite, it can contain only finitely many terms. Let a € || be an element
of |97 not picked out by any of them, and let 2 be the structure that is just
like 90, but also ¢™' = a. Since a # Val™ (t) for all t occuring in A/, M’ |= A'.
Since M = T, I’ C T, and ¢ does not occur in T, also M’ |= I". Together,
M = T' U A for every finite subset I U A’ of ' U A. So every finite subset
of I' U A is satisfiable. By compactness, I' U A itself is satisfiable. So there are
models M = I'UA. Every such 9 is a model of T, but is not covered, since
Val™ (c) # Val™(t) for all terms ¢ of L.

Example 8.21. Consider a language £ containing the predicate symbol <, con-
stant symbols o, 1, and function symbols +, x, —, +. Let I be the set of all
sentences in this language true in Q with domain Q and the obvious interpre-
tations. T is the set of all sentences of £ true about the rational numbers. Of
course, in Q (and even in R), there are no numbers which are greater than 0
but less than 1/k for all k € Z*. Such a number, if it existed, would be an
infinitesimal: non-zero, but infinitely small. The compactness theorem shows
that there are models of T in which infinitesimals exist: Let Abe {0 < c} U {c <
(1+k):kez'} (wherek= (14 (1+- -+ (1+1)...)) withk 1’s). For any
finite subset Ay of A there is a K such that all the sentences ¢ < k in Ag have
k < K. If we expand Q to Q' with Q' = 1/K we have that Q' E TUA,,
and so I' U A is finitely satisfiable (Exercise: prove this in detail). By com-
pactness, I' U A is satisfiable. Any model & of I' U A contains an infinitesimal,
namely cS.

Example 8.22. We know that first-order logic with identity predicate can ex-
press that the size of the domain must have some minimal size: The sen-
tence @>, (which says “there are at least n distinct objects”) is true only in
structures where |9t| has at least n objects. So if we take

A={¢>y:n>1}

then any model of A must be infinite. Thus, we can guarantee that a theory
only has infinite models by adding A to it: the models of I' U A are all and only
the infinite models of T".
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So first-order logic can express infinitude. The compactness theorem shows
that it cannot express finitude, however. For suppose some set of sentences A
were satisfied in all and only finite structures. Then A U A is finitely satisfiable.
Why? Suppose A’ UA’ C AU A is finite with A’ C Aand A’ C A. Let n be the
largest number such that A>, € A. A, being satisfied in all finite structures,
has a model 9 with finitely many but > 1 elements. But then 9 = A’ U A’
By compactness, A U A has an infinite model, contradicting the assumption
that A is satisfied only in finite structures.

8.10 The Lowenheim-Skolem Theorem

The Lowenheim-Skolem Theorem says that if a theory has an infinite model,
then it also has a model that is at most denumerable. An immediate con-
sequene of this fact is that first-order logic cannot express that the size of
a structure is non-enumerable: any sentence or set of sentences satisfied in all
non-enumerable structures is also satisfied in some denumerable structure.

Theorem 8.23. If T is consistent then it has a denumerable model, i.e., it is satisfiable
in a structure whose domain is either finite or infinite but enumerable.

Proof. If T is consistent, the structure 9t delivered by the proof of the com-
pleteness theorem has a domain |9t| whose cardinality is bounded by that of
the set of the terms of the language £. So 9t is at most denumerable. O

Theorem 8.24. If I is consistent set of sentences in the language of first-order logic
without identity, then it has a denumerable model, i.e., it is satisfiable in a structure
whose domain is infinite and enumerable.

Proof. If T is consistent and contains no sentences in which identity appears,
then the structure 9 delivered by the proof of the completness theorem has a
domain |9t| whose cardinality is identical to that of the set of the terms of the
language £. So 9t is denumerably infinite. O

Example 8.25 (Skolem’s Paradox). Zermelo-Fraenkel set theory ZFC is a very
powerful framework in which practically all mathematical statements can be
expressed, including facts about the sizes of sets. So for instance, ZFC can
prove that the set IR of real numbers is non-enumerable, it can prove Can-
tor’s Theorem that the power set of any set is larger than the set itself, etc. If
ZFC is consistent, its models are all infinite, and moreover, they all contain
elements about which the theory says that they are non-enumerable, such as
the element that makes true the theorem of ZFC that the power set of the
natural numbers exists. By the Lowenheim-Skolem Theorem, ZFC also has
enumerable models—models that contain “non-enumerable” sets but which
themselves are enumerable.
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8.11 Overspill

Theorem 8.26. If a set I of sentences has arbitrarily large finite models, then it has
an infinite model.

Proof. Expand the language of I' by adding countably many new constants cg,
c1, -.-and consider the set T U {¢; # ¢; : i # j}. To say that I has arbitrarily
large finite models means that for every m > 0 there is n > m such that I'
has a model of cardinality . This implies that I' U {c; # ¢; : i # j} is finitely
satisfiable. By compactness, T U {c; # ¢; : i # j} has a model M whose
domain must be infinite, since it satisfies all inequalities ¢; # Cj. O

Proposition 8.27. There is no sentence ¢ of any first-order language that is true in
a structure M if and only if the domain |9 of the structure is infinite.

Proof. If there were such a ¢, its negation —¢ would be true in all and only the
finite structures, and it would therefore have arbitrarily large finite models
but it would lack an infinite model, contradicting Theorem 8.26. O
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Computability and Incompleteness
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Chapter 9

Recursive Functions

9.1 Introduction

In order to develop a mathematical theory of computability, one has to first
of all develop a model of computability. We now think of computability as the
kind of thing that computers do, and computers work with symbols. But at
the beginning of the development of theories of computability, the paradig-
matic example of computation was numerical computation. Mathematicians
were always interested in number-theoretic functions, i.e., functions f: IN" —
IN that can be computed. So it is not surprising that at the beginning of the
theory of computability, it was such functions that were studied. The most
familiar examples of computable numerical functions, such as addition, mul-
tiplication, exponentiation (of natural numbers) share an interesting feature:
they can be defined recursively. It is thus quite natural to attempt a general
definition of computable function on the basis of recursive definitions. Among
the many possible ways to define number-theoretic functions recursively, one
particulalry simple pattern of definition here becomes central: so-called prim-
itive recursion.

In addition to computable functions, we might be interested in computable
sets and relations. A set is computable if we can compute the answer to
whether or not a given number is an element of the set, and a relation is com-
putable iff we can compute whether or not a tuple (11, ..., 1) is an element
of the relation. By considering the characteristic function of a set or relation,
discussion of computable sets and relations can be subsumed under that of
computable functions. Thus we can define primitive recursive relations as
well, e.g., the relation “n evenly divides m” is a primitive recursive relation.

Primitive recursive functions—those that can be defined using just primi-
tive recursion—are not, however, the only computable number-theoretic func-
tions. Many generalizations of primitive recursion have been considered, but
the most powerful and widely-accepted additional way of computing func-
tions is by unbounded search. This leads to the definition of partial recur-
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sive functions, and a related definition to general recursive functions. General
recursive functions are computable and total, and the definition character-
izes exactly the partial recursive functions that happen to be total. Recursive
functions can simulate every other model of computation (Turing machines,
lambda calculus, etc.) and so represent one of the many accepted models of
computation.

9.2 Primitive Recursion

Suppose we specify that a certain function / from IN to IN satisfies the follow-
ing two clauses:

10) = 1
I(x+1) = 2-1(x).
It is pretty clear that there is only one function, [, that meets these two criteria.

This is an instance of a definition by primitive recursion. We can define even
more fundamental functions like addition and multiplication by

f(x,0) = «x
flxy+1) = flxy)+1

and

g(x,0) = 0
glxy+1) = f(g(xy) x).

Exponentiation can also be defined recursively, by

h(x,0) = 1
h(x,y+1) = g(h(x,y),x).

We can also compose functions to build more complex ones; for example,

k(x) = x"+(x+3)-x
= f(h(x,x),8(f(x,3),x)).

Remember that the arity of a function is the number of arguments. Let
zero(x) be the function that always returns 0, regardless of what x is, and
let succ(x) = x + 1 be the successor function. The set of primitive recursive
functions is the set of functions from IN” to IN that you get if you start with
zero and succ by iterating the two operations above, primitive recursion and
composition. The idea is that primitive recursive functions are defined in a
straightforward and explicit way, so that it is intuitively clear that each one
can be computed using finite means.
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Definition 9.1. If f is a k-ary function and gy, ..., gx—1 are l-ary functions on
the natural numbers, the composition of f with g, ..., g¢_1 is the I-ary function
h defined by

h(xo, ..., x;—1) = f(go(x0, -+, X1-1), -, §k—1(X0, . ., X1_1)).

Definition 9.2. If f is a k-ary function and g is a (k + 2)-ary function, then the
function defined by primitive recursion from f and g is the (k + 1)-ary function 1
defined by the equations

h(O,Z(),...,Zk_l) = f(Zo,...,Zk_l)
h(x+1,z,...,2k1) = g(xh(x,z0,...,2k-1),20,---,2k_1)

In addition to zero and succ, we will include among primitive recursive
functions the projection functions,

PI'(x0,...,Xp—1) = Xj,
for each natural number n and i < 7. In the end, we have the following:

Definition 9.3. The set of primitive recursive functions is the set of functions
of various arities from IN” to IN, defined inductively by the following clauses:

1. zero is primitive recursive.
succ is primitive recursive.

Each projection function P/ is primitive recursive.

L

If f is a k-ary primitive recursive function and gy, . .., gx_1 are [-ary prim-
itive recursive functions, then the composition of f with go, ..., gx—1 is
primitive recursive.

5. If f is a k-ary primitive recursive function and g is a k + 2-ary primi-
tive recursive function, then the function defined by primitive recursion
from f and g is primitive recursive.

Put more concisely, the set of primitive recursive functions is the smallest
set containing zero, succ, and the projection functions P].”, and which is closed
under composition and primitive recursion.

Another way of describing the set of primitive recursive functions keeps
track of the “stage” at which a function enters the set. Let Sy denote the set of
starting functions: zero, succ, and the projections. Once S; has been defined,
let S;+q be the set of all functions you get by applying a single instance of
composition or primitive recursion to functions in S;. Then

s=1Js

ieIN
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is the set of all primitive recursive functions
Our definition of composition may seem too rigid, since gy, ..., gx—1 are
all required to have the same arity, I. But adding the projection functions
provides the desired flexibility. For example, suppose f and g are ternary
functions and £ is the binary function defined by
h(x,y) = f(x,8(x,2,9),y)-

The definition of & can be rewritten with the projection functions, as

h(x,y) = f(P3(x,y),8(P3(x,y), P (x,y), P (x,y)), PF(x,y)).

Then & is the composition of f with Pg, I, and Plz, where

I(x,y) = §(P5(x,), Pg (x,y), Pf (x,v)),

i.e., I is the composition of g with P2, Pg, and Plz.
For another example, let us again consider addition. This is described re-
cursively by the following two equations:
x+0 = «x
x+(y+1) = succ(x+y).
In other words, addition is the function add defined recursively by the equa-
tions
add(0,x) = «x
add(y+1,x) = succ(add(y, x)).
But even this is not a strict primitive recursive definition; we need to put it in
the form
add(0,x) = f(x)
add(y+1,x) = g(y,add(y, x),x)

for some 1-ary primitive recursive function f and some 3-ary primitive recur-
sive function g. We can take f to be P, and we can define g using composition,

ey, w,x) = succ(Pf(y, w,x)).

The function g, being the composition of basic primitive recursive functions,
is primitive recursive; and hence so is . (Note that, strictly speaking, we
have defined the function g(y, x) meeting the recursive specification of x +
y; in other words, the variables are in a different order. Luckily, addition is
commutative, so here the difference is not important; otherwise, we could
define the function g’ by

§'(x,y) = g(P{(y,x)), Py (y,x)) = g(y,x),
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using composition.

One advantage to having the precise description of the primitive recur-
sive functions is that we can be systematic in describing them. For example,
we can assign a “notation” to each such function, as follows. Use symbols
zero, succ, and P for zero, successor, and the projections. Now suppose
f is defined by composition from a k-ary function h and I-ary functions g,
..., 8k—1, and we have assigned notations H, Gy, ..., Gx_1 to the latter func-
tions. Then, using a new symbol Comp, ;, we can denote the function f by
Compk,l [H,Gy,...,Gi_1]. For the functions defined by primitive recursion,
we can use analogous notations of the form Rec[G, H], where k denotes that
arity of the function being defined. With this setup, we can denote the addi-
tion function by

Recy[Pg, Comp; 3[succ, Pl

Having these notations sometimes proves useful.

9.3 Primitive Recursive Functions are Computable

Suppose a function / is defined by primitive recursion
h(0,2) = f(2)
h(x+1,Z) = g(x,h(x,2),2)

and suppose the functions f and g are computable. Then (0, Z) can obviously
be computed, since it is just f(Z) which we assume is computable. /(1,Z) can
then also be computed, since 1 = 0+ 1 and so h(1,Z) is just

8(0,1(0,2),2) = (0, f(2),2)-

We can go on in this way and compute

h(2,7) = g(1,8(0, f(2),2),Z)
h(3,2) = 8(2,8(1,8(0, f(2),2),2),7)
h(4,7) = g(3,8(2,¢(1,8(0, f(2),2),2),2),Z)

Thus, to compute h(x, Z) in general, successively compute 1(0,2), h(1,2), ...,
until we reach h(x,Z).

Thus, primitive recursion yields a new computable function if the func-
tions f and g are computable. Composition of functions also results in a com-
putable function if the functions f and g; are computable.

Since the basic functions zero, succ, and P" are computable, and compo-
sition and primitive recursion yield computable functions from computable
functions, his means that every primitive recursive function is computable.
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9.4 Examples of Primitive Recursive Functions

Here are some examples of primitive recursive functions:

1. Constants: for each natural number 7, the function that always returns n
primitive recursive function, since it is equal to succ(succ(. . . succ(zero(x)))).

. The identity function: id(x) = x, i.e. P}

. Addition, x +y

. Multiplication, x - y

. Exponentiation, x¥ (with 0° defined to be 1)

. Factorial, x!

N O O ok WN

. The predecessor function, pred(x), defined by
pred(0) =0, pred(x+1)=x
8. Truncated subtraction, x — y, defined by
x=0=x x=(y+1)=pred(x —y)
9. Maximum, max(x,y), defined by
max(x,y) =x+ (y — x)

10. Minimum, min(x, y)
11. Distance between x and y, |x — y|

In our definitions, we’ll often use constants n. This is ok because the con-
stant function const, (x) is primitive recursive (defined from zero and succ).
So if, e.g., we want to define the function f(x) = 2 - x can obtain it by com-
position from const, (x) and multiplication as f(x) = consty(x) - P§ (x). We'll
make use of this trick from now on.

You'll also have noticed that the definition of pred does not, strictly speak-
ing, fit into the pattern of definition by primitive recursion, since that pattern
requires an extra argument. It is also odd in that it does not actually pred(x)
in the definition of pred(x + 1). But we can define pred’(x,y) by

pred’(0,y) = zero(y) = 0
pred’(x +1,y) = PB3(x,pred’ (x,y),y) = x

and then define pred from it by composition, e.g., as pred(x) = pred’(P}(x), zero(x)).

The set of primitive recursive functions is further closed under the follow-
ing two operations:
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1. Finite sums: if f(x,Z) is primitive recursive, then so is the function
Y

s(y.2) =) f(x2).

x=0

2. Finite products: if f(x,Z) is primitive recursive, then so is the function
¥
hy,2) = T f(x2).
x=0
For example, finite sums are defined recursively by the equations
g(0,2) = f(0,2), gly+1,2)=gy2)+f(y+132).

We can also define boolean operations, where 1 stands for true, and 0 for false:

1. Negation, not(x) =1 - x

2. Conjunction, and(x,y) = x -y
Other classical boolean operations like or(x, y) and ifthen(x, y) can be defined
from these in the usual way.

9.5 Primitive Recursive Relations

Definition 9.4. A relation R(¥) is said to be primitive recursive if its charac-
teristic function,
) = { 1 if R(X)

Xr(¥ 0 otherwise

is primitive recursive.

In other words, when one speaks of a primitive recursive relation R(X),
one is referring to a relation of the form xg(X¥) = 1, where xr is a primitive
recursive function which, on any input, returns either 1 or 0. For example,
the relation IsZero(x), which holds if and only if x = 0, corresponds to the
function X1szero, defined using primitive recursion by

XIsZero(O) =1, XIsZero(x + 1) =0.

It should be clear that one can compose relations with other primitive re-
cursive functions. So the following are also primitive recursive:

1. The equality relation, x = y, defined by IsZero(|x — y|)

2. The less-than relation, x < y, defined by IsZero(x — y)
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9. RECURSIVE FUNCTIONS

Furthermore, the set of primitive recursive relations is closed under boolean
operations:

1. Negation, =P

2. Conjunction, P A Q
3. Disjunction, PV Q
4. Implication, P — Q

are all primitive recursive, if P and Q are. For suppose xp(Z) an xq(Z) are
primitive recursive. Then the relation R(Z) that holds iff both P(Z) and Q(Z
hold has the characteristic function xr(Z) = and(xp(Z), xo(2))

One can also define relations using bounded quantification:

1. Bounded universal quantification: if R(x,Z) is a primitive recursive re-
lation, then so is the relation

(Vx < y) R(x,2)
which holds if and only if R(x,Z) holds for every x less than y.

2. Bounded existential quantification: if R(x,Z) is a primitive recursive re-
lation, then so is
(Ix <y) R(x,2).

By convention, we take (Vx < 0) R(x,Z) to be true (for the trivial reason
that there are no x less than 0) and (3x < 0) R(x,Z) to be false. A universal
quantifier functions just like a finite product; it can also be defined directly by

g(0,2) =1, g(y+1,2) =and(g(y,2), xr(y, 2))-

Bounded existential quantification can similarly be defined using or. Alter-
natively, it can be defined from bounded universal quantification, using the
equivalence, (3x < y) ¢(x) + —(Vx < y) —¢(x). Note that, for exam-
ple, a bounded quantifier of the form (Ix < y) ...x... is equivalent to
(Ix<y+1) ...x....

Another useful primitive recursive function is:

1. The conditional function, cond(x, y,z), defined by

_Jy ifx=0
cond(x,y,z) = { z otherwise
This is defined recursively by

cond(0,y,z) =y, cond(x+1,y,z)=z.

One can use this to justify:
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9.6. Bounded Minimization

1. Definition by cases: if go(¥X), ..., gm(X) are functions, and Ry (X), ..., R, —1(X)

are relations, then the function f defined by

go(¥)  if Ro(X)
21(%) if R1(¥) and not Ry(X)

Sm—1(X) if Ryy—1(¥) and none of the previous hold
m(X) otherwise

is also primitive recursive.

When m = 1, this is just the function defined by

f(X) = cond(x-r, (%), g0(X), §1(%))-

For m greater than 1, one can just compose definitions of this form.

9.6 Bounded Minimization

Proposition 9.5. If R(x,Z) is primitive recursive, so is the function mg(y,Z) which
returns the least x less than y such that R(x,Z) holds, if there is one, and 0 otherwise.
We will write the function mpg as

(min x < y) R(x,2),

Proof. Note than there can be no x < 0 such that R(x, Z) since there isno x < 0
atall. So mg(x,0) = 0.

In case the bound is i + 1 we have three cases: (a) There is an x < y such
that R(x,Z), in which case mg(y + 1,Z) = mg(y,Z). (b) There is no such x
but R(y, Z) holds, then mg(y +1,Z) = y. (c) There is no x < y + 1 such that
R(x,Z), then mg(y+1,Z) = 0. So,

mR(O, Z) =0
mg(y,Z) if (3x <y) R(x,2)
mr(y+1,2) =<y otherwise, provided R(y, 2)
0 otherwise.

O

The choice of “0 otherwise” is somewhat arbitrary. It is in fact even easier
to recursively define the function m; which returns the least x less than y such
that R(x,Z) holds, and y + 1 otherwise. When we use min, however, we will
always know that the least x such that R(x,Z) exists and is less than y. Thus,
in practice, we will not have to worry about the possibility that if (min x <
y) R(x,Z) = 0 we do not know if that value indicates that R(0,Z) or that for
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no x < y, R(x,Z). As with bounded quantification, (min x < y) ... can be
understood as (minx <y +1) ....

All this provides us with a good deal of machinery to show that natural
functions and relations are primitive recursive. For example, the following
are all primitive recursive:

1. The relation “x divides y”, written x | y, defined by

x|lye (Fz<y) (x-2)=y.

2. The relation Prime(x), which holds iff x is prime, defined by

Prime(x) & (x >2A (Vy<x) (y|x = y=1Vy=x)).

3. The function nextPrime(x), which returns the first prime number larger
than x, defined by

nextPrime(x) = (miny < x!' 4+ 1) (y > x A Prime(y))

Here we are relying on Euclid’s proof of the fact that there is always a
prime number between x and x! + 1.

4. The function p(x), returning the xth prime, defined by p(0) = 2, p(x +
1) = nextPrime(p(x)). For convenience we will write this as py (starting
with 0; i.e. po = 2).

9.7 Sequences

The set of primitive recursive functions is remarkably robust. But we will be
able to do even more once we have developed an adequate means of handling
sequences. We will identify finite sequences of natural numbers with natural
numbers in the following way: the sequence (ag, a1, 4y, . . ., ax) corresponds to

the number

ap+1 ap+1 a+1 a+1
Poo P11 P2 .

We add one to the exponents to guarantee that, for example, the sequences
(2,7,3) and (2,7,3,0,0) have distinct numeric codes. We can take both 0 and 1
to code the empty sequence; for concreteness, let @ denote 0.

Let us define the following functions:

1. len(s), which returns the length of the sequence s: Let R(i, s) be the rela-
tion defined by

R(i,s)iff pi | sA(Vj<s) (j>i—pj [s)
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R is primitive recursive. Now let

len(s) = 0 ifs=0ors=1
14 (mini < s)R(i,s) otherwise

Note that we need to bound the search on i; clearly s provides an accept-
able bound.

2. append(s, a), which returns the result of appending a to the sequence s:

2a+1 ifs=0ors=1
append(s, ) = at1

S Plens) otherwise

3. element(s, i), which returns the ith element of s (where the initial ele-
ment is called the Oth), or 0 if i is greater than or equal to the length of
s:

. 0 ifi > len(s)
element(s,i) = o j+2 .
minj <s (p; " [s)—1 otherwise

Instead of using the official names for the functions defined above, we
introduce a more compact notation. We will use (s); instead of element(s, i),
and (sg, ..., sx) to abbreviate

append(append(...append(@,so) ... ), sk).

Note that if s has length k, the elements of s are (s)o, ..., (5)k_1-

It will be useful for us to be able to bound the numeric code of a sequence
in terms of its length and its largest element. Suppose s is a sequence of length
k, each element of which is less than equal to some number x. Then s has at
most k prime factors, each at most pj_1, and each raised to at most x 4 1 in the
prime factorization of s. In other words, if we define

sequenceBound(x, k) = p,’igﬂ),
then the numeric code of the sequence s described above is at most sequenceBound (x, k).

Having such a bound on sequences gives us a way of defining new func-
tions using bounded search. For example, suppose we want to define the
function concat(s, t), which concatenates two sequences. One first option is to
define a “helper” function hconcat(s, t, n) which concatenates the first n sym-
bols of t to s. This function can be defined by primitive recursion, as follows:

hconcat(s,t,0) = s
hconcat(s, t,n + 1) = append (hconcat(s, t, 1), (t),)
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Then we can define concat by

concat(s, t) = hconcat(s, t,len(t)).

But using bounded search, we can be lazy. All we need to do is write down a
primitive recursive specification of the object (number) we are looking for, and
a bound on how far to look. The following works:

concat(s, t) = (min v < sequenceBound(s + t,len(s) + len(t)))
(len(v) = len(s) + len(t) A
(Vi <len(s)) ((0); = (s)i) A
(Vj <len(t)) ((0)ien(s)+j = (£)}))
(

We will write s ~ t instead of concat(s, t).

9.8 Other Recursions

Using pairing and sequencing, we can justify more exotic (and useful) forms
of primitive recursion. For example, it is often useful to define two functions
simultaneously, such as in the following definition:

f0(0,2) ko(Z)

f(0,2) = k(2
fo(x+1,2) ho(x, fo(x,2), f1(x,2),2)
filx+1,2) hi(x, fo(x,2), f1(x,2),2)

This is an instance of simultaneous recursion. Another useful way of defining
functions is to give the value of f(x + 1,Z) in terms of all the values f(0,Z),
., f(x,Z), as in the following definition:

f0.2) = g(@
f(x+1,2) = h(x, (f(0,2),..., f(x,2),2).

The following schema captures this idea more succinctly:

f(x,2) = h(x, (f(0,2),..., f(x = 1,2)))

with the understanding that the second argument to / is just the empty se-
quence when x is 0. In either formulation, the idea is that in computing the
“successor step,” the function f can make use of the entire sequence of values
computed so far. This is known as a course-of-values recursion. For a particular
example, it can be used to justify the following type of definition:

flx,7) = {h(x,f(k(x,i’),f),;’z’) ifk(x,2) < x

z Q(x,2) otherwise
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In other words, the value of f at x can be computed in terms of the value of f
at any previous value, given by k.

You should think about how to obtain these functions using ordinary prim-
itive recursion. One final version of primitive recursion is more flexible in that
one is allowed to change the parameters (side values) along the way:

f02) = 5@
fx+1,2) = hix f(xk(z))2)
This, too, can be simulated with ordinary primitive recursion. (Doing so is
tricky. For a hint, try unwinding the computation by hand.)
Finally, notice that we can always extend our “universe” by defining addi-
tional objects in terms of the natural numbers, and defining primitive recur-
sive functions that operate on them. For example, we can take an integer to

be given by a pair (m, n) of natural numbers, which, intuitively, represents the
integer m — n. In other words, we say

Integer(x) < length(x) =2
and then we define the following;:
1. iequal(x,y)
2. iplus(x,y)
3. iminus(x,y)
4. itimes(x,y)

Similarly, we can define a rational number to be a pair (x,y) of integers with
y # 0, representing the value x/y. And we can define gequal, qplus, gminus,
gtimes, qdivides, and so on.

9.9 Non-Primitive Recursive Functions

The primitive recursive functions do not exhaust the intuitively computable
functions. It should be intuitively clear that we can make a list of all the unary
primitive recursive functions, fy, f1, f2, ...such that we can effectively com-
pute the value of fy on input y; in other words, the function g(x,y), defined

by
g(xy) = fx(y)

is computable. But then so is the function

h(x) = g(x,x)+1
= fr(x)+1
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For each primitive recursive function f;, the value of # and f; differ ati. So h
is computable, but not primitive recursive; and one can say the same about g.
This is a an “effective” version of Cantor’s diagonalization argument.

One can provide more explicit examples of computable functions that are
not primitive recursive. For example, let the notation ¢ (x) denote g(g(. .. g(x))),
with 7 ¢’s in all; and define a sequence gy, g1, . . . of functions by

go(x) = x+1
gni1(x) = gu(x)

You can confirm that each function g, is primitive recursive. Each successive
function grows much faster than the one before; ¢1(x) is equal to 2x, g»(x)
is equal to 2* - x, and g3(x) grows roughly like an exponential stack of x 2’s.
Ackermann’s function is essentially the function G(x) = gx(x), and one can
show that this grows faster than any primitive recursive function.

Let us return to the issue of enumerating the primitive recursive functions.
Remember that we have assigned symbolic notations to each primitive recur-
sive function; so it suffices to enumerate notations. We can assign a natural
number #(F) to each notation F, recursively, as follows:

) (0)
) (1
#(P" = (2,n,i)
) (3,k,1,#(H),#(Go), ..., #(Gx_1))
) (4,1,#(G),#(H))

Here I am using the fact that every sequence of numbers can be viewed as
a natural number, using the codes from the last section. The upshot is that
every code is assigned a natural number. Of course, some sequences (and
hence some numbers) do not correspond to notations; but we can let f; be the
unary primitive recursive function with notation coded as i, if i codes such a
notation; and the constant 0 function otherwise. The net result is that we have
an explicit way of enumerating the unary primitive recursive functions.

(In fact, some functions, like the constant zero function, will appear more
than once on the list. This is not just an artifact of our coding, but also a result
of the fact that the constant zero function has more than one notation. We will
later see that one can not computably avoid these repetitions; for example,
there is no computable function that decides whether or not a given notation
represents the constant zero function.)

We can now take the function g(x, y) to be given by f,(y), where f, refers
to the enumeration we have just described. How do we know that g(x,y) is
computable? Intuitively, this is clear: to compute g(x,y), first “unpack” x
and see if it a notation for a unary function; if it is, compute the value of that
function on input y.

110



9.10. Partial Recursive Functions

You may already be convinced that (with some work!) one can write
a program (say, in Java or C++) that does this; and now we can appeal to
the Church-Turing thesis, which says that anything that, intuitively, is com-
putable can be computed by a Turing machine.

Of course, a more direct way to show that g(x,y) is computable is to de-
scribe a Turing machine that computes it, explicitly. This would, in partic-
ular, avoid the Church-Turing thesis and appeals to intuition. But, as noted
above, working with Turing machines directly is unpleasant. Soon we will
have built up enough machinery to show that g(x,y) is computable, appeal-
ing to a model of computation that can be simulated on a Turing machine:
namely, the recursive functions.

9.10 Partial Recursive Functions

To motivate the definition of the recursive functions, note that our proof that
there are computable functions that are not primitive recursive actually estab-
lishes much more. The argument was simple: all we used was the fact was
that it is possible to enumerate functions fy, f1,... such that, as a function of
x and y, fx(y) is computable. So the argument applies to any class of functions
that can be enumerated in such a way. This puts us in a bind: we would like to
describe the computable functions explicitly; but any explicit description of a
collection of computable functions cannot be exhaustive!

The way out is to allow partial functions to come into play. We will see
that it is possible to enumerate the partial computable functions. In fact, we
already pretty much know that this is the case, since it is possible to enumerate
Turing machines in a systematic way. We will come back to our diagonal
argument later, and explore why it does not go through when partial functions
are included.

The question is now this: what do we need to add to the primitive recur-
sive functions to obtain all the partial recursive functions? We need to do two
things:

1. Modify our definition of the primitive recursive functions to allow for
partial functions as well.

2. Add something to the definition, so that some new partial functions are
included.

The first is easy. As before, we will start with zero, successor, and projec-
tions, and close under composition and primitive recursion. The only differ-
ence is that we have to modify the definitions of composition and primitive
recursion to allow for the possibility that some of the terms in the definition
are not defined. If f and g are partial functions, we will write f(x) | to mean
that f is defined at x, i.e., x is in the domain of f; and f(x) T to mean the
opposite, i.e., that f is not defined at x. We will use f(x) ~ g(x) to mean that
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either f(x) and g(x) are both undefined, or they are both defined and equal.
We will use these notations for more complicated terms as well. We will adopt
the convention that if & and gy, ..., gx all are partial functions, then

h(go(%),- -, 8k(¥))

is defined if and only if each g; is defined at ¥, and & is defined at gy(¥),
..., 8k(X). With this understanding, the definitions of composition and prim-
itive recursion for partial functions is just as above, except that we have to
replace “=" by “~".

What we will add to the definition of the primitive recursive functions to
obtain partial functions is the unbounded search operator. If f(x,Z) is any partial
function on the natural numbers, define px f(x,Z) to be

the least x such that f(0,2), f(1,2),..., f(x,Z) are all defined, and
f(x,Z) = 0, if such an x exists

with the understanding that ux f(x,Z) is undefined otherwise. This defines
ux f(x,Z) uniquely.

Note that our definition makes no reference to Turing machines, or algo-
rithms, or any specific computational model. But like composition and prim-
itive recursion, there is an operational, computational intuition behind un-
bounded search. When it comes to the computability of a partial function,
arguments where the function is undefined correspond to inputs for which
the computation does not halt. The procedure for computing ux f(x,Z) will
amount to this: compute f(0,2), f(1,Z), f(2,Z) until a value of 0 is returned. If
any of the intermediate computations do not halt, however, neither does the
computation of ux f(x,Zz).

If R(x,Z) is any relation, px R(x,Z) is defined to be ux (1 - xr(x,Z)). In
other words, px R(x, Z) returns the least value of x such that R(x, Z) holds. So,
if f(x,Z) is a total function, ux f(x,z) is the same as ux (f(x,Z) = 0). But note
that our original definition is more general, since it allows for the possibility
that f(x,Z) is not everywhere defined (whereas, in contrast, the characteristic
function of a relation is always total).

Definition 9.6. The set of partial recursive functions is the smallest set of partial
functions from the natural numbers to the natural numbers (of various arities)
containing zero, successor, and projections, and closed under composition,
primitive recursion, and unbounded search.

Of course, some of the partial recursive functions will happen to be total,
i.e., defined for every argument.

Definition 9.7. The set of recursive functions is the set of partial recursive func-
tions that are total.

A recursive function is sometimes called “total recursive” to emphasize
that it is defined everywhere.
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9.11 The Normal Form Theorem

Theorem 9.8 (Kleene’s Normal Form Theorem). There is a primitive recursive re-
lation T (e, x, s) and a primitive recursive function U (s), with the following property:
if f is any partial recursive function, then for some e,

f(x) = U(us T(e,x,5))
for every x.

The proof of the normal form theorem is involved, but the basic idea is
simple. Every partial recursive function has an index e, intuitively, a number
coding its program or definition. If f(x) J, the computation can be recorded
systematically and coded by some number s, and that s codes the computation
of f on input x can be checked primitive recursively using only x and the
definition e. This means that T is primitive recursive. Given the full record of
the computation s, the “upshot” of s is the value of f(x), and it can be obtained
from s primitive recursively as well.

The normal form theorem shows that only a single unbounded search is
required for the definition of any partial recursive function. We can use the
numbers e as “names” of partial recursive functions, and write ¢, for the func-
tion f defined by the equation in the theorem. Note that any partial recursive
function can have more than one index—in fact, every partial recursive func-
tion has infinitely many indices.

9.12 The Halting Problem

The halting problem in general is the problem of deciding, given the specifica-
tion e (e.g., program) of a computable function and a number 7, whether the
computation of the function on input # halts, i.e., produces a result. Famously,
Alan Turing proved that this problem itself cannot be solved by a computable
function, i.e., the function

he,n) =

1 if computation e halts on input n
0 otherwise,

is not computable.

In the context of partial recursive functions, the role of the specification
of a program may be played by the index ¢ given in Kleene’s normal form
theorem. If f is a partial recursive function, any e for which the equation in
the normal form theorem holds, is an index of f. Given a number e, the normal
form theorem states that

@e(x) >~ U(us T(e, x,s))
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is partial recursive, and for every partial recursive f: IN — IN, there is an
e € N such that ¢.(x) ~ f(x) for all x € N. In fact, for each such f there is
not just one, but infinitely many such e. The halting function h is defined by

He, x) = {1 if pe(x) |

0 otherwise.

Note that h(e, x) = 0 if ¢.(x) 1, but also when e is not the index of a partial
recursive function at all.

Theorem 9.9. The halting function h is not partial recursive.

Proof. If h were partial recursive, we could define

1 if h(y,y) =0
a(y) = { )
ux x #x otherwise.

From this definition it follows that

1. d(y) | iff @,(y) T or y is not the index of a partial recursive function.

2. d(y) Tiff oy (y) I

If i were partial recursive, then d would be partial recursive as well. Thus,
by the Kleene normal form theorem, it has an index e;. Consider the value of
h(ey,e4). There are two possible cases, 0 and 1.

1. If h(eg,eq) = 1 then ¢, (eg) |. But ¢, ~ d, and d(e;) is defined iff
h(eg,eq) =0.S0 h(ey,eq) # 1.

2. If h(eg,e4) = 0 then either e is not the index of a partial recursive func-
tion, or it is and ¢, (e;) 1. But again, @,, ~ d, and d(e;) is undefined iff

Pe, (ed) .

The upshot is that e; cannot, after all, be the index of a partial recursive func-
tion. But if & were partial recursive, d would be too, and so our definition of
e; as an index of it would be admissible. We must conclude that /i cannot be
partial recursive. O

9.13 General Recursive Functions

There is another way to obtain a set of total functions. Say a total function
f(x,Z) is reqular if for every sequence of natural numbers Z, there is an x such
that f(x,Z) = 0. In other words, the regular functions are exactly those func-
tions to which one can apply unbounded search, and end up with a total func-
tion. One can, conservatively, restrict unbounded search to regular functions:
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Definition 9.10. The set of general recursive functions is the smallest set of func-
tions from the natural numbers to the natural numbers (of various arities)
containing zero, successor, and projections, and closed under composition,
primitive recursion, and unbounded search applied to regular functions.

Clearly every general recursive function is total. The difference between
Definition 9.10 and Definition 9.7 is that in the latter one is allowed to use
partial recursive functions along the way; the only requirement is that the
function you end up with at the end is total. So the word “general,” a historic
relic, is a misnomer; on the surface, Definition 9.10 is less general than Defi-
nition 9.7. But, fortunately, the difference is illusory; though the definitions
are different, the set of general recursive functions and the set of recursive
functions are one and the same.
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Chapter 10

Arithmetization of Syntax

10.1 Introduction

In order to connect computability and logic, we need a way to talk about the
objects of logic (symbols, terms, formulas, derivations), operations on them,
and their properties and relations, in a way amenable to computational treat-
ment. We can do this directly, by considering computable functions and re-
lations on symbols, sequences of symbols, and other objects built from them.
Since the objects of logical syntax are all finite and built from an enumerable
sets of symbols, this is possible for some models of computation. But other
models of computation—such as the recursive functions—-are restricted to
numbers, their relations and functions. Moreover, ultimately we also want
to be able to deal with syntax within certain theories, specifically, in theo-
ries formulated in the language of arithmetic. In these cases it is necessary to
arithmetize syntax, i.e., to represent syntactic objects, operations on them, and
their relations, as numbers, arithmetical functions, and arithmetical relations,
respectively. The idea, which goes back to Leibniz, is to assign numbers to
syntactic objects.

Itis relatively straightforward to assign numbers to symbols as their “codes.

Some symbols pose a bit of a challenge, since, e.g., there are infinitely many
variables, and even infinitely many function symbols of each arity n. But of
course it’s possible to assign numbers to symbols systematically in such a way
that, say, v» and v3 are assigned different codes. Sequences of symbols (such
as terms and formulas) are a bigger challenge. But if can deal with sequences
of numbers purely arithmetically (e.g., by the powers-of-primes coding of se-
quences), we can extend the coding of individual symbols to coding of se-
quences of symbols, and then further to sequences or other arrangements of
formulas, such as derivations. This extended coding is called “Godel number-
ing.” Every term, formula, and derivation is assigned a Godel number.

By coding sequences of symbols as sequences of their codes, and by chos-
ing a system of coding sequences that can be dealt with using computable
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functions, we can then also deal with Godel numbers usign computable func-
tions. In practice, all the relevant functions will be primitive recursive. For
instance, computing the length of a sequence and computing the i-th element
of a sequence from the code of the sequence are both primitive recursive. If
the number coding the sequence is, e.g., the Godel number of a formula ¢,
we immediately see that the length of a formula and the (code of the) i-th
symbol in a formula can also be computed from the Godel number of ¢. It
is a bit harder to prove that, e.g., the property of being the Gédel number of
a correctly formed term, of being the Godel number of a corret derivation is
primitive recursive. It is nevertheless possible, because the sequences of inter-
est (terms, formulas, derivations) are inductively defined.

As an example, consider the operation of substitution. If ¢ is a formula,
x a variable, and t a term, then ¢[t/x] is the result of replacing every free
occurrence of x in ¢ by t. Now suppose we have assigned Godel numbers to ¢,
x, t—say, k, I, and m, respectively. The same scheme assignes a Godel number
to [t/x], say, n. This mapping—of k, I, m to n—is the arithmetical analog of
the substitution operation. When the substitution operation maps ¢, x, t to
@[t/ x], the arithmetized substitution functions maps the Gédel numbers k, ,
m to the Godel number n. We will see that this function is primitive recursive.

Arithmetization of syntax is not just of abstract interest, although it was
originally a non-trivial insight that languages like the language of arithmetic,
which do not come with mechanisms for “talking about” languages can, after
all, formalize complex properties of expressions. It is then just a small step to
ask what a theory in this language, such as Peano arithmetic, can prove about
its own language (including, e.g., whether sentences are provable or true).
This leads us to the famous limitative theorems of Gédel (about unprovabil-
ity) and Tarski (the undefinability of truth). But the trick of arithmetizing syn-
tax is also important in order to prove some important results in computability
theory, e.g., about the computational prower of theories or the relationship be-
tween different models of computability. The arithmetization of syntax serves
as a model for arithmetizing other objects and properties. For instance, it is
similarly possible to arithmetize configurations and computations (say, of Tur-
ing machines). This makes it possible to simulate computations in one model
(e.g., Turing machines) in another (e.g., recursive functions).

10.2 Coding Symbols
The basic language L of first order logic makes use of the symbols
L = v A = VvV I = (),

together with enumerable sets of variables and constant symbols, and enu-
merable sets of function symbols and predicate symbols of arbitrary arity. We
can assign codes to each of these symbols in such a way that every symbol is
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assigned a unique number as its code, and no two different symbols are as-
signed the same number. We know that this is possible since the set of all
symbols is enumerable and so there is a bijection between it and the set of nat-
ural numbers. But we want to make sure that we can recover the symbol (as
well as some information about it, e.g., the arity of a function symbol) from
its code in a computable way. There are many possible ways of doing this,
of course. Here is one such way, which uses primitive recursive functions.
(Recall that (ny, .. ., ng) is the number coding the sequence of numbers ny, ...,

ny.)

Definition 10.1. If s is a symbol of L, let the symbol code cs be defined as fol-
lows:

1. If s is among the logical symbols, ¢ is given by the following table:

1 = V AN — A
(0,00 (0,1) (0,2) (0,3) (0,4) (0,5)

1 = ( ) ,
(0,6) (0,7) (0,8 (0,9) (0,10)

2. If s is the i-th variable v;, then ¢s = (1, 7).

3. If s is the i-th constant symbol ¢}, then ¢s = (2,1).

4. If s is the i-th n-ary function symbol £, then ¢s = (3,n,i).

5. If s is the i-th n-ary predicate symbol P, then ¢s = (4,1, 1).
Proposition 10.2. The following relations are primitive recursive:

1. Fn(x,n) iff x is the code of £ for some i, i.e., x is the code of an n-ary function
symbol.

2. Pred(x,n) iff x is the code of P]" for some i or x is the code of = and n = 2,
i.e., x is the code of an n-ary predicate symbol.

Definition 10.3. If s,...,5,_1 is a sequence of symbols, its Godel number is

(T

Note that codes and Godel numbers are different things. For instance, the
variable vs has a code ¢y, = (1,5) = 22 - 3°. But the variable v5 considered as
a term is also a sequence of symbols (of length 1). The Gddel number *vs* of the
term vs is (cyg) = 251 = 227341,

Example 10.4. Recall that if k, ..., k,_1 is a sequence of numbers, then the
code of the sequence (ky, ..., k,_1) in the power-of-primes coding is
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where p; is the i-th prime (starting with py = 2). So for instance, the formula
vy = 0, or, more explicitly, =(v, ¢y), has the Gédel number

<c:,c(,cvo,c,,cco,c)>.
Here, c— is (0,7) = 2971.37=1, ¢, is (1,0) = 211.39%1 etc. So *= (v, o)* is

2C:+1 . 3C(+1 . 5CV0+1 . 7C/+1 . 11CCO+1 . 13C)+1 _

0213841 9213741 223141 p2l3M41 19233141 32031041 _

13123 339367 513 354295 1125 13118099

10.3 Coding Terms

A term is simply a certain kind of sequence of symbols: it is built up induc-
tively from constants and variables according to the formation rules for terms.
Since sequences of symbols can be coded as numbers—using a coding scheme
for the symbols plus a way to code sequences of numbers—assigning Godel
numbers to terms is not difficult. The challenge is rather to show that the
property a number has if it is the Godel number of a correctly formed term is
computable, or in fact primitive recursive.

Proposition 10.5. The relations Term(x) and ClTerm(x) which hold iff x is the
Gadel number of a term or a closed term, respectively, are primitive recursive.

Proof. A sequence of symbols s is a term iff there is a sequence sy, ..., sx_1 = s
of terms which records how the term s was formed from constant symbols
and variables according to the formation rules for terms. To express that such
a putative formation sequence follows the formation rules it has to be the case
that, for each i < k, either

1. s;is a variable vj, or
2. s;is a constant symbol ¢;, or

3. s; is built from n terms ¢4, ..., t; occurring prior to place i using an n-
place function symbol f]-”.

To show that the corresponding relation on Godel numbers is primitive re-
cursive, we have to express this condition primitive recursively, i.e., using
primitive recursive functions, relations, and bounded quantification.

Suppose y is the number that codes the sequence s, ..., sx_1, i.e, y =
(*so*, ..., "s;"). It codes a formation sequence for the term with Godel num-
ber x iff for all i < k:

1. there is a j such that (y); = *v;*, or
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2. thereis a j such that (y); = *¢*, or

3. there is an n and a number z = (z3,...,z,) such that each z; is equal to
some (y); fori’ < iand

(y); =" (" ~ flatten(z) —~ )",

and moreover (y);_1 = x. The function flatten(z) turns the sequence (*t1*,...,*t,")
into *t1,...,t," and is primitive recursive.

The indices j, n, the Godel numbers z; of the terms t;, and the code z of the
sequence (z1,...,2zy,), in (3) are all less than y. We can replace k above with
len(y). Hence we can express “y is the code of a formation sequence of the
term with Gédel number x” in a way that shows that this relation is primitive
recursive.

We now just have to convince ourselves that there is a primitive recursive
bound on y. But if x is the Godel number of a term, it must have a forma-
tion sequence with at most len(x) terms (since every term in the formation
sequence of s must start at some place in s, and no two subterms can start at
the same place). The Godel number of each subterm of s is of course < x.
Hence, there always is a formation sequence with code < x'en(*),

For ClTerm, simply leave out the clause for variables. O

Alternative proof of Proposition 10.5. The inductive definition says that constant
symbols and variables are terms, and if f4, . . ., , are terms, then so is f;-” (t1,.-.,tn),
for any n and j. So terms are formed in stages: constant symbols and variables

at stage 0, terms involving one function symbol at stage 1, those involving at
least two nested function symbols at stage 2, etc. Let’s say that a sequence of
symbols s is a term of level [ iff s can be formed by applying the inductive
definition of terms [ (or fewer) times, i.e., it “becomes” a term by stage [ or
before. So s is a term of level I 4 1 iff

1. sis a variable vj, or
2. s is a constant symbol ¢;, or

3. s is built from n terms ¢y, ..., t, of level | and an n-place function sym-
bol .
]

To show that the corresponding relation on Godel numbers is primitive re-
cursive, we have to express this condition primitive recursively, i.e., using
primitive recursive functions, relations, and bounded quantification.

The number x is the Godel number of a term s of level | + 1 iff

1. there is a j such that x = *v*, or

2. thereis a j such that x = “‘C]-#, or
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3. there is an 7, a j, and a number z = (z1,...,z,) such that each z; is the
Godel number of a term of level I and

x="f'(" ~ flatten(z) ~ %),

and moreover (y);_1 = x.

The indices j, n, the Godel numbers z; of the terms t;, and the code z of the
sequence (z1,...,zy), in (3) are all less than x. So we get a primitive recursive
definition by:

1Term(x,0) = Var(x) V Const(x)
ITerm(x,! 4 1) = Var(x) V Const(x) V
(Fz < x) ((Vi < len(z)) 1Term((z);,1) A
(3 < x) x = (£ ~ flatten(z) ~ *)*))

We can now define Term(x) by 1Term(x, x), since the level of a term is always
less than the Godel number of the term. O

10.4 Coding Formulas

Proposition 10.6. The relation Atom(x) which holds iff x is the Godel number of
an atomic formula, is primitive recursive.

Proof. The number x is the Godel number of an atomic formula iff one of the
following holds:

1. There are 1, j < x, and z < x such that for each i < n, Term((z);) and
X =
P (* ~ flatten(z) —~ )"

2. There are z1,zp < x such that Term(z;), Term(z;), and x =

%:(#/_\Zl/\##

JF o~z A%)#‘

O

Proposition 10.7. The relation Frm(x) which holds iff x is the Godel number of
a formula is primitive recursive.

Proof. A sequence of symbols s is a formula iff there is formation sequence sy,
..., Sg_1 = s of formula which records how s was formed from atomic formu-
las according to the formation rules. The code for each s; (and indeed of the
code of the sequence (s, . ..,sk_1) is less than the code x of s. O
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Proposition 10.8. The relation FreeOcc(x, z, 1), which holds if the i-th symbols of
the formula with Godel number x is a free occurrence of the variable with Godel num-
ber z, is primitive recursive.

Proof. Exercise. O

Proposition 10.9. The property Sent(x) which holds iff x is the Godel number of a
sentence is primitive recursive.

Proof. A sentence is a formula without free occurrences of variables. So Sent(x)
holds iff

(Vi <len(x)) (Vz < x) ((3j < z) z ="v;* = —FreeOcc(x, z,1)).

10.5 Substitution

Proposition 10.10. There is a primitive recursive function Subst(x,y,z) with the
property that
Subst ("¢, *t, *u") = *o[t/u]’

Proof. We can then define a function hSubst by primitive recursion as follows:

hSubst(x,y,z,0) =@

hSubst(x,y,z,i+ 1) =
hSubst(x,y,z,i) ~y if FreeOcc(x,z,i+ 1)
append (hSubst(x,y,z,1), (x);11) otherwise.

Subst(x, y,z) can now be defined as hSubst(x, y, z,len(x)). O

Proposition 10.11. The relation FreeFor(x,y,z), which holds iff the term with
Godel number y is free for the variable with Godel number z in the formula with
Gadel number x, is primitive recursive.

Proof. Exercise. O

10.6 Derivations in LK

In order to arithmetize derivations, we must represent derivations as num-
bers. Since derivations are trees of sequents where each inference carries also
a label, a recursive representation is the most obvious approach: we represent
a derivation as a tuple, the components of which are the end-sequent, the la-
bel, and the representations of the sub-derivations leading to the premises of
the last inference.
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Definition 10.12. If T is a finite set of sentences, I' = {¢1, ..., ¢, }, then *T* =

{(for", ..

R out).

If I' = Ais a sequent, then a Godel number of I' = A is

#I'\ = A# — <%I'\#I¥¥A#>

If 7t is a derivation in LK, then *7t* is

1.

2.

(0,*T = A*) if 7t consists only of the initial sequent I' = A.

(1,*T = A"k, *n'*) if T ends in an inference with one premise, k is given
by the following table according to which rule was used in the last infer-
ence, and 77’ is the immediate subproof ending in the premise of the last
inference.

Rule: Contr —left —right Aleft Vright — right

k: 1 2 3 4 5 6

Rule: Vleft Vright Jleft Jright =
k: 7 8 9 10 11

. (2,%T = A%k, *rc'*, %"} if 7 ends in an inference with two premises, k

is given by the following table according to which rule was used in the
last inference, and 7/, 7" are the immediate subproof ending in the left
and right premise of the last inference, respectively.

Rule: Cut Aright Vleft — left
k: 1 2 3 4

Having settled on a representation of derivations, we must also show that
we can manipulate such derivations primite recursively, and express their es-
sential properties and relations so. Some operations are simple: e.g., given a
Godel number d of a derivation, (s); gives us the Gédel number of its end-
sequent. Some are much harder. We’ll at least sketch how to do this. The
goal is to show that the relation “7t is a derivation of ¢ from I'” is primitive
recursive on the Godel numbers of 77 and ¢.

Proposition 10.13. The following relations are primitive recursive:

1.

2.

pel.

rcA

I' = A is an initial sequent.

I' = A follows from I" = A’ (and T" = A") by a rule of LK.

7t is a correct LK-derivation.
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Proof. We have to show that the corresponding relations between Gédel num-
bers of formulas, sequences of Gddel numbers of formulas (which code sets
of formulas), and Godel numbers of sequents, are primitive recursive.

1. ¢ € T'iff *¢* occurs in the sequence *T*,i.e, IsIn(x, g) < (3i < len(g)) (g); =
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x. We'll abbreviate this as x € g.

. I C Aiff every element of *I'* is also an an element of *A*, i.e., SubSet(g, d) <

(Vi <len(g)) ()i € d. We'll abbreviate this as g C d.

. I' = Ais an initial sequent if either there is a sentence ¢ such thatT' = A

is ¢ = ¢, or there is a term ¢ such that' = Ais @ = t = t. In terms of
Godel numbers, InitSeq(s) holds iff

(Ix <'s) (Sent(x) As = ((x),(x))) V

(3t <s) (Term(t) As = (0, (*=(* ~t ~"F ~t ~F)")).

. Here we have to show that for each rule of inference R the relation

FollowsByyp (s, s’) which holds if s and s’ are the Godel numbers of con-
clusion and premise of a correct application of R is primitive recursive.
If R has two premises, FollowsBy, of course has three arguments.

For instance, I' = A follows correctly from I’ = A’ by Jright iff T =
I and there is a formula ¢, a variable x and a closed term f such that
p[t/x] € A and Ix ¢ € A, for every ¢ € A, either p = Fxporyp € A/,
and for every i € A, = ¢[t/x] or € A. We just have to translate this
into Godel numbers. If s = *T' = A* then (s)o = *I* and (s); = *A*. So,
FollowsByon (s, s") holds iff

(s)o € (s")o A (s")o € (s)o A

(3f <s) (3x <s) (3t <§') (Frm(f) A Var(x) A Term(t) A
Subst(f, t,x) € ()1 A#(3) ~x —~ f € (s)1 A
(Vi <len((s)1)) (((s)1)i =#(3) ~x ~ fV ((s)1)i € (s)1) A
(Vi <len((s")1)) (((s)1)i = Subst(f,t,x) V ((s)1);i € (s)1))

The individual lines express, respectively, “I' C I" AT” C T,” “there is
a formula with Godel number f, a variable with Godel number x, and a
term with Godel number t,” “¢[t/x] € A’ ANIx ¢ € A,” “forall ¢ € A,
either p = Ixporyp € A',” “forall ¢ € A/, either p = ¢[t/x] or ¢ € A.
Note that in the last two lines, we quantify over the elements ¢ of A and
A’ not directly, but via their place i in the Godel numbers of A and A'.
(Remember that *A* is the number of a sequence of Godel numbers of
formulas in A.)

We first define a helper relation hDeriv (s, n) which holds if s codes a cor-
rect derivation at least to n inferences up from the end sequent. If n = 0
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we let the relation be satisfied by default. Otherwise, hDeriv (s, n + 1) iff
either s consists just of an initial sequent, or it ends in a correct inference
and the codes of the immediate subderivations satisfy hDeriv (s, n).

hDeriv(s,0) < true

hDeriv(s,n+1) <

= 0 A InitialSeq((s)1)) V
1

((s)2 = 1A FollowsBy o, ((5)1, ((8)3)1)) V

((s)2 = 11 A FollowsBy_ ((s)1, ((s)3)1)) A
hDeriv((s)s, n)) V

((s)o=2A
((s)2 = 1 A FollowsBy . ((s)1, ((s)3)1), ((s)4)1)) V

((s)2 = 4 A FollowsBy ;.. ((s)1, ((s)3)1), ((s)4)1)) A
hDeriv((s)s, n) A hDeriv((s)4, 1))

This is a primitive recursive definition. If the number 7 is large enough,
e.g., larger than the maximum number of inferences between an initial
sequent and the end sequent in s, it holds of s iff s is the Godel number
of a correct derivation. The number s itself is larger than that maximum
number of inferences. So we can now define Deriv(s) by hDeriv(s, s).

O

Proposition 10.14. Suppose I is a primitive recursive set of sentences. Then the
relation Prfr(x,y) expressing “x is the code of a derivation 7t of Tg = ¢ for some
finite Tg C T and x is the Godel number of ¢” is primitive recursive.

Proof. Suppose “y € T'” is given by the primitive recursive predicate Rr(y).
We have to show that Prfr(x,y) which holds iff y is the Godel number of a
sentence ¢ and x is the code of an LK-derivation with end sequent I'y = ¢ is
primitive recursive.

By the previous proposition, the property Deriv(x) which holds iff x is the
code of a correct derivation 7t in LK is primitive recursive. If x is such a code,
then (x); is the code of the end sequent of 77, and so ((x)1)o is the code of the
left side of the end sequent and ((x)1); the right side. So we can express “the
right side of the end sequent of 7 is ¢” aslen(((x)1)1) = 1A (((x)1)1)0 = x.
The left side of the end sequent of 7t is of course automatically finite, we just
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have to express that every sentence in it is in I'. Thus we can define Prfr(x,y)
by

Prfr(x,y) < Sent(y) A Deriv(x) A

(Vi <len(((x)1)0)) Rr((((x)1)0)i) A
len(((x)1)1) = 1A (((x)1)1)o =x
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Chapter 11

Representability in Q

11.1 Introduction

We will describe a very minimal such theory called “Q” (or, sometimes, “Robin-
son’s Q,” after Raphael Robinson). We will say what it means for a function
to be representable in Q, and then we will prove the following:

A function is representable in Q if and only if it is computable.

For one thing, this provides us with another model of computability. But we
will also use it to show that the set {¢ : Q F ¢} is not decidable, by reducing
the halting problem to it. By the time we are done, we will have proved much
stronger things than this.

The language of Q is the language of arithmetic; Q consists of the fol-
lowing axioms (to be used in conjunction with the other axioms and rules of
first-order logic with identity predicate):

Vavy (x' =y = x=y) Q1)
Vxo # x' (Q2)
Vx(x#o0— Jyx=y') (Qa)
Vx(x+0) =x (Q4)
VxVy (x+y') = (x+y)’ (Qs)
Vx(x x0)=o0 (Qs)
VaVy (x xy') = ((x xy) +x) Q)
VaVy (x <y <+ Fz(Z +x) =) (Qs)

For each natural number 7, define the numeral 7 to be the term 0"’/ where
there are n tick marks in all. So, 0 is the constant symbol o by itself, 1 is o/, 2 is
0", etc.

As a theory of arithmetic, Q is extremely weak; for example, you can’t even
prove very simple facts like Vx x # x" or Vx Vy (x +y) = (v + x). But we will
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see that much of the reason that Q is so interesting is because it is so weak. In
fact, it is just barely strong enough for the incompleteness theorem to hold.
Another reason Q is interesting is because it has a finite set of axioms.

A stronger theory than Q (called Peano arithmetic PA) is obtained by adding
a schema of induction to Q:

(9(0) AVx (p(x) = ¢(x))) = Vx p(x)

where ¢(x) is any formula. If ¢(x) contains free variables other than x, we add
universal quantifiers to the front to bind all of them (so that the corresponding
instance of the induction schema is a sentence). For instance, if ¢(x,y) also
contains the variable y free, the corresponding instance is

Vy ((@(0) AVx (p(x) = @(x'))) —= Vx p(x))

Using instances of the induction schema, one can prove much more from the
axioms of PA than from those of Q. In fact, it takes a good deal of work to
find “natural” statements about the natural numbers that can’t be proved in
Peano arithmetic!

Definition 11.1. A function f(xo, ..., xx) from the natural numbers to the nat-
ural numbers is said to be representable in Q if there is a formula ¢ ¢ (xo, . . ., X, ¥)
such that whenever f(ny,...,n;) = m, Q proves

1. ¢f(ng, ..., Mg, 1)

There are other ways of stating the definition; for example, we could equiv-
alently require that Q proves Vy (¢f(to, . .., ig, y) > y = 7).

Theorem 11.2. A function is representable in Q if and only if it is computable.

There are two directions to proving the theorem. The left-to-right direction
is fairly straightforward once arithmetization of syntax is in place. The other
direction requires more work. Here is the basic idea: we pick “general recur-
sive” as a way of making “computable” precise, and show that every general
recursive function is representable in Q. Recall that a function is general re-
cursive if it can be defined from zero, the successor function succ, and the
projection functions P/, using composition, primitive recursion, and regular
minimization. So one way of showing that every general recursive function is
representable in Q is to show that the basic functions are representable, and
whenever some functions are representable, then so are the functions defined
from them using composition, primitive recursion, and regular minimization.
In other words, we might show that the basic functions are representable, and
that the representable functions are “closed under” composition, primitive
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recursion, and regular minimization. This guarantees that every general re-
cursive function is representable.

It turns out that the step where we would show that representable func-
tions are closed under primitive recursion is hard. In order to avoid this step,
we show first that in fact we can do without primitive recursion. That is, we
show that every general recursive function can be defined from basic func-
tions using composition and regular minimization alone. To do this, we show
that primitive recursion can actually be done by a specific regular minimiza-
tion. However, for this to work, we have to add some additional basic func-
tions: addition, multiplication, and the characteristic function of the identity
relation y—. Then, we can prove the theorem by showing that all of these basic
functions are representable in Q, and the representable functions are closed
under composition and regular minimization.

11.2 Functions Representable in Q are Computable
Lemma 11.3. Every function that is representable in Q is computable.

Proof. All we need to know is that we can code terms, formulas, and deriva-
tions in such a way that the relation “d is a derivation of ¢ from the axioms
of Q” is computable, as well as the function which returns the result of substi-
tuting the numeral corresponding to n for the variable x in the formula ¢. In
terms of Godel numbers, SubNumeral (*¢*, n, *x*), returns *¢[11/ x]*.

Assuming this, suppose the function f is represented by ¢¢(xo, ..., Xk, ¥)-
Then the algorithm for computing f is as follows: on input ny, ..., 1, search
for a number m and a derivation of the formula ¢ f(nT), ..., T, M); when you
find one, output m. Since f is represented by ¢ (xo, ..., X}, ¥), such an m ex-
ists, namely, m = f(ny,...,n;). Using sequences and minimization, we can
write f as

f(no,...,ng) = (us “(s)o is a derivation of ¢ (7, ..., 7, (s)1) in Q”)1.

This completes the proof, modulo the (involved but routine) details of coding
and defining the function and relation above. O

11.3 The Beta Function Lemma

In order to show that we can carry out primitive recursion if addition, multi-
plication, and x— are available, we need to develop functions that handle se-
quences. (If we had exponentiation as well, our task would be easier.) When
we had primitive recursion, we could define things like the “n-th prime,”
and pick a fairly straightforward coding. But here we do not have primitive
recursion—in fact we want to show that we can do primitive recursion using
minimization—so we need to be more clever.
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Lemma 11.4. There is a function B(d, i) such that for every sequence ay, ..., a, there
is a number d, such that for every i < n, B(d,i) = a;. Moreover, B can be defined
from the basic functions using just composition and reqular minimization.

Think of d as coding the sequence (ay, . .., a,), and B(d, i) returning the i-th
element. (Note that this “coding” does not use the prower-of-primes coding
we're already familiar with!). The lemma is fairly minimal; it doesn’t say we
can concatenate sequences or append elements, or even that we can compute
d from ay, ..., a, using functions definable by composition and regular min-
imization. All it says is that there is a “decoding” function such that every
sequence is “coded.”

The use of the notation § is Godel’s. To repeat, the hard part of proving
the lemma is defining a suitable § using the seemingly restricted resources,
i.e., using just composition and minimization—however, we're allowed to use
addition, multiplication, and y—. There are various ways to prove this lemma,
but one of the cleanest is still Godel’s original method, which used a number-
theoretic fact called the Chinese Remainder theorem.

Definition 11.5. Two natural numbers a and b are relatively prime if their great-
est common divisor is 1; in other words, they have no other divisors in com-
mon.

Definition 11.6. 4 = b mod ¢ means ¢ | (a — b), i.e., a and b have the same
remainder when divided by c.

Here is the Chinese Remainder theorem:

Theorem 11.7. Suppose xy, ..., x, are (pairwise) relatively prime. Let yo, ..., yn be
any numbers. Then there is a number z such that

z=1yo mod xg
z=1y; mod x;

z=Y, mod xy.

Here is how we will use the Chinese Remainder theorem: if xy, ..., x, are
bigger than yyo, ..., y, respectively, then we can take z to code the sequence
(Yo, - - -, Yn). To recover y;, we need only divide z by x; and take the remainder.
To use this coding, we will need to find suitable values for xy, ..., x;.

A couple of observations will help us in this regard. Given vy, ..., yx, let

j = max(n,yo,. . .,yn) + 1/

130



11.3. The Beta Function Lemma

and let
x0:1+j!
X1 :1—|—2~j!
Xp=14+3-]!

xp=1+m+1)-;!
Then two things are true:
1. xq, ..., x, are relatively prime.
2. For each i, y; < x;.

To see that (1) is true, note that if p is a prime number and p | x; and p | xy,
thenp |1+ (i+1)jland p | 1 + (k+ 1)j!. But then p divides their difference,

I+@+1))— A+ (k+1)j") = (i—k)j.

Since p divides 1 + (i + 1)j!, it can’t divide j! as well (otherwise, the first divi-
sion would leave a remainder of 1). So p divides i — k, since p divides (i — k)j!.
But |i — k| is at most , and we have chosen j > n, so this implies that p | j!,
again a contradiction. So there is no prime number dividing both x; and xy.
Clause (2) is easy: we have y; < j < j! < x;.

Now let us prove the § function lemma. Remember that we can use 0,
successor, plus, times, x—, projections, and any function defined from them
using composition and minimization applied to regular functions. We can
also use a relation if its characteristic function is so definable. As before we can
show that these relations are closed under boolean combinations and bounded
quantification; for example:

1. not(x) = x=(x,0)
2. (minx < z)R(x,y) = ux (R(x,y) Vx = z)
3. (3x <z) R(x,y) & R((min x < z) R(x,y),y)

We can then show that all of the following are also definable without primitive
recursion:

1. The pairing function, J(x,y) = 3[(x +y)(x +y +1)] +x
2. Projections
K(z) = (minx < q) By < z[z = J(x,y)])

and

L(z) = (miny <¢) Bx < z[z = J(x,y)]).
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3. x<y
4. x|y

5. The function rem(x,y) which returns the remainder when y is divided
by x

Now define
ﬁ* (do, d1, l) = rem(l + (l + 1)d1,d0)

and
B(d,i) = p*(K(d),L(d),i).
This is the function we need. Given ay, .. ., a,, as above, let

j=max(n,ag,...,a,)+1,

and letd; = j!. By the observations above, we know that1+dy,1+2dq,...,1+
(n+1)d; are relatively prime and all are bigger than ay, . . ., a,,. By the Chinese
Remainder theorem there is a value d; such that for each i,

do=a; mod (1+ (i+1)dy)
and so (because d; is greater than a;),
a; = rem(1+ (i + 1)dq, dyp).
Letd = J(do,d1). Then for each i < n, we have

ﬁ(d/ l) = :B*<d0/dlri>
rem(1+ (i 4+ 1)dy,do)

= ai

which is what we need. This completes the proof of the S-function lemma.

11.4 Simulating Primitive Recursion

Now we can show that definition by primitive recursion can be “simulated”
by regular minimization using the beta function. Suppose we have f(Z) and
g(u,v,Z). Then the function h(x,Z) defined from f and g by primitive recur-
sion is
h0,2) = f(2)
hix+1,Z) = g(xh(x,2),2).

We need to show that / can be defined from f and g using just composition
and regular minimization, using the basic functions and functions defined
from them using composition and regular minimization (such as f).
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Lemma 11.8. If h can be defined from f and g using primitive recursion, it can be
defined from f, g, the functions zero, succ, P/', add, mult, x—, using composition
and regular minimization.

Proof. First, define an auxiliary function /i(x, Z) which returns the least num-
ber d such that d codes a sequence which satisfies

1. (d)o = f(Z), and
2. foreachi < x, (d)iy1 = g(i,(d);,2),

where now (d); is short for B(d,i). In other words, /i returns the sequence
(h(0,2),h(1,Z),...,h(x,Z)). We can write /1 as

h(x,z) = ud (B(d,0) = f(Z) AVi < xB(d,i+1) = g(i,B(d,i),Z)).

Note: no primitive recursion is needed here, just minimization. The function
we minimize is regular because of the beta function lemma Lemma 11.4.
But now we have

h(x,2) = B(h(x,2),%),

so h can be defined from the basic functions using just composition and regu-
lar minimization. O

11.5 Basic Functions are Representable in Q

First we have to show that all the basic functions are representable in Q. In the
end, we need to show how to assign to each k-ary basic function f (x0, .-+, Xk_1)
a formula @ (xo, ..., x;_1,y) that represents it.

We will be able to represent zero, successor, plus, times, the characteristic
function for equality, and projections. In each case, the appropriate represent-
ing function is entirely straightforward; for example, zero is represented by
the formula y = o, successor is represented by the formula x|, = y, and addi-
tion is represented by the formula (xo + x1) = y. The work involves showing
that Q can prove the relevant sentences; for example, saying that addition
is represented by the formula above involves showing that for every pair of
natural numbers m and n, Q proves

n+m=n+mand
Yy((i+m) =y —y=n+m).
Proposition 11.9. The zero function zero(x) = 0 is represented in Q by y = o.

Proposition 11.10. The successor function succ(x) = x + 1 is represented in Q by
y=x\.

Proposition 11.11. The projection function P} (xo,...,X,—1) = X; is represented
inQbyy = x;.
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Proposition 11.12. The characteristic function of =,

1 ifxg=x
X(Xo,xl)—{ fx0=n

0 otherwise
is represented in Q by
(xo=x1 Ay =1)V(x0 #x1 Ay =0).
The proof requires the following lemma.

Lemma 11.13. Given natural numbers n and m, if n # m, then Q =71 # m.

Proof. Use induction on n to show that for every m, if n # m, then Q - n # m.

In the base case, n = 0. If m is not equal to 0, then m = k + 1 for some
natural number k. We have an axiom that says Vx0 # x’. By a quantifier
axiom, replacing x by k, we can conclude 0 # K. Butk is just 7.

In the induction step, we can assume the claim is true for n, and consider
n + 1. Let m be any natural number. There are two possibilities: either m = 0
or for some k we have m = k + 1. The first case is handled as above. In the
second case, suppose 11 + 1 # k + 1. Then n # k. By the induction hypothesis
for n we have Q I 71 # k. We have an ax1om that says VxVyx' =y = x =y.
Using a quantifier axiom, we have 77/ = =K —> 7 = k. Using propositional
logic, we can conclude, in Q, 77 # k— 7 * k . Using modus ponens, we can
conclude 77’ # E,, which is what we want, since K is 7. O

Note that the lemma does not say much: in essence it says that Q can
prove that different numerals denote different objects. For example, Q proves
0” # 0. But showing that this holds in general requires some care. Note also
that although we are using induction, it is induction outside of Q.

Proof of Proposition 11.12. If n = m, then 7 and 7 are the same term, and
X=(n,m)=1.ButQ+tF (m=mA1=1),so0itproves p_(7,7,1). If n # m,
then x—(n,m) = 0. By Lemma 11.13, Q |- 7 # 7 and so also (77 # m Ao = o).
Thus Q + ¢—(7,7,0).

For the second part, we also have two cases. If n = m, we have to show that
that Q + V(¢—(7,7,y) — y = 1). Arguing informally, suppose ¢ (7,7, y),
ie.,

m=nAy=1)V(@E#nAYy=0)
The left disjunct implies y = 1 by logic; the right contradicts 77 = 7 which is
provable by logic.

Suppose, on the other hand, that n # m. Then ¢_ (71,7, y) is

m=mAy=1)V(m#AmAy=0)

Here, the left disjunct contradicts 7 # 71, which is provable in Q by Lemma 11.13;
the right disjunct entails y = 0. O
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Proposition 11.14. The addition function add(xg, x1) = xo + x1 is is represented
in Q by
y = (xo +x1).

Lemma11.15. QF (m+m) =n+m

Proof. We prove this by induction on m. If m = 0, the claim is that Q F (77 +
0) = 7. This follows by axiom Q4. Now suppose the claim for m; let’s prove
the claim for m + 1, i.e., prove that Q - (7 +m + 1) = n+ m + 1. Note that
m+1is just 7', and 11+ m + 1 is just n + m'. By axiom Qs, Q F (7 +7') =
(m+ ﬁ/)’ . By induction hypothesis, Q + (i+7) =n+m. SoQ F (n+m') =
n+m. O

Proof of Proposition 11.14. The formula ¢,q4(x0, X1,y) representing add is y =
(xo + x1). First we show that if add(n,m) = k, then Q - @.qq(7,71,k), i.e.,
Q F k = (7 +m). Butsince k = n + m, k just is n + m, and we’ve shown in
Lemma 11.15that Q - (7 +m) = n + m.

We also have to show that if add(n,m) = k, then Q & Yy (¢aqq(7, 7, y) —
y = k). But if we have (7 + 71 = y, since

QF (i+7) =n+m,
we also have n + m = y, for arbitrary y. O

Proposition 11.16. The multiplication function mult(xg,x1) = Xq - X1 is repre-
sented in Q by

y = (x0 X x1).
Proof. Exercise. O
Lemma 11.17. QF (m xm) = n-m

Proof. Exercise. O

11.6 Composition is Representable in Q

Suppose h is defined by

h(xo, .-, x1-1) = f(go(x0,- -+, X1-1),- -, k—1(X0, - -, X1_1))-

where we have already found formulas ¢, @, . .., ¢g,_, representing the func-
tions f, and gy, ..., gk—1, respectively. We have to find a formula ¢}, represent-
ing h.

Let’s start with a simple case, where all functions are 1-place, i.e., consider
h(x) = f(g(x)). If ¢¢(y,z) represents f, and @g(x,y) represents g, we need
a formula ¢y (x,z) that represents h. Note that h(x) = z iff there is a y such
that both z = f(y) and y = g(x). (If h(x) = z, then g(x) is such a y; if such a

135



11. REPRESENTABILITY IN Q

y exists, then since y = ¢(x) and z = f(y), z = f(g(x)).) This suggests that
Jy (@g(x,y) A @f(y,2)) is a good candidate for ¢y (x,z). We just have to verify
that Q proves the relevant formulas.

Proposition 11.18. If h(n) = m, then Q +- ¢, (7, ).
Proof. Suppose h(n) = m, i.e., f(g(n)) = m. Letk = g(n). Then
Q H 4’g (ﬁ/ E)

since ¢ represents g, and

QF ¢f(k,m)
since ¢ represents f. Thus,
QF (Pg(ﬁj) A q’f@/m)
and consequently also
Q 3y (9s(y) A gsly,m)),
ie, QF ¢u(n,m). O
Proposition 11.19. If h(n) = m, then Q - Vz (¢, (7, 2) — z = m).
Proof. Suppose h(n) = m, i.e., f(g(n)) = m. Letk = g(n). Then
Q= Vy (g5(my) =y =k)
since @, represents g, and
QFVz (q)f(f,z) —z=Tm)
since ¢y represents f. Using just a little bit of logic, we can show that also
QF vz (Jy (9s(1y) A 9r(y,2)) = 2 =)
ie, QFVy(on(n,y) —y=m). O

The same idea works in the more complex case where f and g; have arity
greater than 1.

Proposition 11.20. If ¢¢(yo, ..., Yx—1,2) represents f(yo,...,yx—1) in Q, and
@q,(x0, ..., x1_1,Yy) represents g;(xo, ..., X;_1) in Q, then

3}/0/ oo Elyk—l (q)go ('xOI cee s X1—1, yO) JARERFA Pgr 1 (xOr s X1—1, ]/k—l)/\
‘Af(yOr cee /ykfllz))

represents
h(xo, ..., xk-1) = f(go(x0,- -+, Xk—1),---,80(X0, - - -, Xk—1))-
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11.7 Regular Minimization is Representable in Q

Let’s consider unbounded search. Suppose g(x, z) is regular and representable
in Q, say by the formula ¢g¢(x,z,y). Let f be defined by f(z) = ux [g(x,z) =
0]. We would like to find a formula ¢¢(z,y) representing f. The value of f(z)
is that number x which (a) satisfies g(x,z) = 0 and (b) is the least such, i.e.,
forany w < x, g(w,z) # 0. So the following is a natural choice:

95(z,y) = 9g(y,2,0) A\Vw (w <y = —~¢g(w,z,0)).

In the general case, of course, we would have to replace z with zy, ..., z.
The proof, again, will involve some lemmas about things Q is strong enough
to prove.

Lemma 11.21. For every variable x and every natural number n,
QF (X' +7) = (x+7)".

Proof. The proof is, as usual, by induction on 7. In the base case, n = 0, we
need to show that Q proves (x' +0) = (x +0)’. But we have:

F(x'4+0) =x" byaxiom Q4 (11.1)
F(x+0)=x byaxiom Q4 (11.2)
F(x+0) =x" byeq.(11.2) (11.3)
F(x'+0)=(x+0) byeq.(11.1) and eq. (11.3)

In the induction step, we can assume that we have shown that Q  (x' +7) =
(x+7)’. Since n + 1is 7', we need to show that Q proves (x' +7') = (x +7')’.
We have:

QF (X' +7) = (x+7)" byaxiom Qs (11.4)
QF (x'+7) = (x+7) inductive hypothesis (11.5)
QF (x'+7) = (x+7) byeq.(11.4) and eq. (11.5).

It is again worth mentioning that this is weaker than saying that Q proves
VxVy (v’ +y) = (x+y)’. Although this sentence is true in 0N, Q does not
prove it.

Lemma 11.22. 1. QFVx—x <o.

2. For every natural number n,
QFV¥x(x<n+1l— (x=o0V---Vx=n)).
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Proof. Letus do 1 and part of 2, informally (i.e., only giving hints as to how to
construct the formal derivation).

For part 1, by the definition of <, we need to prove -3y (' +x) = o
in Q, which is equivalent (using the axioms and rules of first-order logic) to
Vy (' + x) # 0. Here is the idea: suppose (y' + x) = o. If x = o, we have
(¥ + 0) = o. But by axiom Qy of Q, we have (' 4+ 0) =/, and by axiom Q;
we have y' # o, a contradiction. So Yy (¥ + x) # o. If x # o, by axiom Qj3,
there is a z such that x = z’. But then we have (' 4 z’) = 0. By axiom Qs, we
have (y' 4+ z)" = o, again contradicting axiom Q.

For part 2, use induction on 7. Let us consider the base case, when n = 0.
In that case, we need to show x < 1 — x = o. Suppose x < 1. Then by the
defining axiom for <, we have 3y (y' + x) = o’. Suppose y has that property;
sowehavey +x = 0.

We need to show x = o. By axiom Q3, if x # 0, we get x = 2/ for some z.
Then we have (v +z') = o’. By axiom Qs of Q, we have (y' +2z) = 0.
By axiom Qj, we have (y' +z) = o. But this means, by definition, z < o,
contradicting part 1. O

Lemma 11.23. For everym € N,
QFYy((y<mvVvm<y)Vy=m).

Proof. By induction on m. First, consider the case m = 0. Q - Vy (y # o —

Jzy = 2') by Q3. Butif y = 2/, then (2 + 0) = (y + o) by the logic of =. By

Qs, (y +0) =y, so we have (z' + 0) = y, and hence 3z (z + 0) = y. By the

definition of < in Qg, 0 < y. If 0 < y, then also 0 < y Vy < 0. We obtain:

y#0— (0 <yVy <o), whichisequivalentto (0 <yVy <o) Vy=o.
Now suppose we have

QFVYy((y<mvim<y)Vy=im)
and we want to show

QFVYy((y<m+1vm+1l<y)Vy=m+1)

The first disjunct y < 7 is equivalent (by Qs) to 3z (z/ +y) = m. If (' +y) =
7, then also (2 +y) ='. By Q4, (' +y)' = (2" +y). Hence, (2" +vy) = .
We get Ju (1’ + y) = m + 1 by existentially generalizing on z’ and keeping in
mind that 777’ is m + 1. Hence, if y < i theny < m + 1.

Now suppose 7 < y, i.e., 3z (z2/ + ) = y. By Q3 and some logic, we have
z=o0oV3uz=u'.Ifz=o0,wehave (o' +7) = y.SinceQ F (o' +7) =m+1,
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we have y = m + 1. Now suppose Juz = . Then:

y = (' +m) by assumption

(Z +m)=w"+m) fromz=1

(u” +m) = (u'+m) byLemma 11.21

(' +m) = (' +m') by Qs so0
y=u'+m+1)

By existential generalization, Ju (v’ +m +1) = y,i.e, m+1 < y. So,ifm <y,
thenm+1<yVy=m+1.

Finally, assume y = . Then, since Q F (o' +7) = m+1, (o +y) =
m+ 1. From thiswe get 3z (z/ +y) =m+1,ory < m+ 1.

Hence, from each disjunct of the case for m, we can obtain the case for m +
1. O

Proposition 11.24. If ¢¢(x,z,y) represents g(x,y) in Q, then
95(z,y) = g(y,2,0) AVw (w <y = ~¢g(w,z,0)).
represents f(z) = ux [g(x,z) = 0].
Proof. First we show that if f(n) = m, then Q - ¢((7,m), i.e.,
QF (pg(ﬁ,ﬁ,o) AVw (w < m — ﬁgog(w,ﬁ,o)).
Since (pg(x, z,) represents ¢(x,z) and g(m,n) = 01if f(n) = m, we have
Qr (pg(ﬁ,ﬁ,o).
If f(n) = m, then for every k < m, g(k,n) # 0. So
QF ﬂq)g(E,ﬁ,o).
We get that

QF Vw (w <7 — =gg(w,7,0)). (11.6)

by Lemma 11.22 (by (1) in case m = 0 and by (2) otherwise).

Now let’s show that if f(n) = m, then Q &= Vy (¢f(11,y) — y = m). We
again sketch the argument informally, leaving the formalization to the reader.

Suppose ¢¢(7,y). From this we get (a) ¢¢(y,7,0) and (b) Vw (w < y —
—¢¢(w,7,0)). By Lemma 11.23, (y < mVm < y) Vy = m. We'll show that
both y < m and m < y leads to a contradiction.

If m < y, then —~¢q (71,7, 0) from (b). But m = f(n), so g(m,n) = 0, and so
Q F ¢¢(m,1,0) since ¢q represents g. So we have a contradiction.

Now suppose y < 7. Then since Q = Vw (w < m — —¢@¢(w,7,0)) by
eq. (11.6), we get ~¢¢(y, 7, 0). This again contradicts (a). O
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11.8 Computable Functions are Representable in Q

Theorem 11.25. Every computable function is representable in Q.

Proof. For definiteness, and using the Church-Turing Thesis, let’s say that a
function is computable iff it is general recursive. The general recursive func-
tions are those which can be defined from the zero function zero, the successor
function succ, and the projection function P}' using composition, primitive re-
cursion, and regular minimization. By Lemma 11.8, any function / that can
be defined from f and g can also be defined using composition and regular
minimization from f, ¢, and zero, succ, P/', add, mult, x—. Consequently, a
function is general recursive iff it can be defined from zero, succ, P/, add,
mult, Y= using composition and regular minimization.

We've furthermore shown that the basic functions in question are rep-
resentable in Q (Propositions 11.9 to 11.12, 11.14 and 11.16), and that any
function defined from representable functions by composition or regular min-
imization (Proposition 11.20, Proposition 11.24) is also representable. Thus
every general recursive function is representable in Q. O

We have shown that the set of computable functions can be characterized
as the set of functions representable in Q. In fact, the proof is more general.
From the definition of representability, it is not hard to see that any theory
extending Q (or in which one can interpret Q) can represent the computable
functions. But, conversely, in any proof system in which the notion of proof is
computable, every representable function is computable. So, for example, the
set of computable functions can be characterized as the set of functions repre-
sentable in Peano arithmetic, or even Zermelo-Fraenkel set theory. As Godel
noted, this is somewhat surprising. We will see that when it comes to prov-
ability, questions are very sensitive to which theory you consider; roughly,
the stronger the axioms, the more you can prove. But across a wide range
of axiomatic theories, the representable functions are exactly the computable
ones; stronger theories do not represent more functions as long as they are
axiomatizable.

11.9 Representing Relations

Let us say what it means for a relation to be representable.

Definition 11.26. A relation R(xp,...,x;) on the natural numbers is repre-
sentable in Q if there is a formula ¢g(xo, . . ., X ) such that whenever R(ny, . .., ny)
is true, Q proves ¢ (T, . . ., g ), and whenever R(ny, ..., ny) is false, Q proves

~@r (70, - - -, Tk

Theorem 11.27. A relation is representable in Q if and only if it is computable.
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Proof. For the forwards direction, suppose R(xo, ..., xx) is represented by the
formula @r(xo,...,xx). Here is an algorithm for computing R: on input ny,
..., Ny, simultaneously search for a proof of ¢gr(7y,...,7;) and a proof of
—¢r(7o, ..., 7). By our hypothesis, the search is bound to find one or the
other; if it is the first, report “yes,” and otherwise, report “no.”

In the other direction, suppose R(xy, ..., xx) is computable. By definition,
this means that the function xg(xo, ..., x;) is computable. By Theorem 11.2,
XR is represented by a formula, say @y, (xo,..., X, y). Let gr(xo,...,xx) be
the formula ¢, (xo, ..., xk,1). Then for any ny, ..., ny, if R(ny, ..., ng) is true,
then xg(ng,...,ng) = 1, in which case Q proves ¢, (ng,..., 7, 1), and so
Q proves ¢g(7y,...,ng). On the other hand, if R(ny,...,ny) is false, then
Xr(ng,...,ng) = 0. This means that Q proves

Vy((PXR(rTOf“'IYTkry) —Y :6)

Since Q proves 0 # 1, Q proves —¢y, (7, . . ., 7, 1), and so it proves —gg (T, . . -

O

11.10 Undecidability

We call a theory T undecidable if there is no computational procedure which, af-
ter finitely many steps and unfailingly, provides a correct answer to the ques-
tion “does T prove ¢?” for any sentence ¢ in the language of T. So Q would
be decidable iff there were a computational procedure which decides, given a
sentence ¢ in the language of arithmetic, whether Q - ¢ or not. We can make
this more precise by asking: Is the relation Provg(y), which holds of y iff y is
the Godel number of a sentence provable in Q, recursive? The answer is: no.

Theorem 11.28. Q is undecidable, i.e., the relation
Provg(y) < Sent(y) A 3xPrg(x,y)

is not recursive.

Proof. Suppose it were. Then we could solve the halting problem as follows:
Given e and 1, we know that ¢.(n) | iff there is an s such that T(e, n,s), where
T is Kleene’s predicate from Theorem 9.8. Since T is primitive recursive it is
representable in Q by a formula ¢, that is, Q  yr(e,7,5) iff T(e,n,s). If
Q F yr(e,n,53) then also Q F Jyyr(e,n,y). If no such s exists, then Q +
—pr(e,7,5) for every s. But Q is w-consistent, i.e., if Q - —¢(7) for every n €
N, then Q ¥ 3y ¢(y). We know this because the axioms of Q are true in the
standard model M. So, Q ¥ 3y ¢r(e,7,y). In other words, Q - Iy yr(e, 7, y)
iff there is an s such that T(e,n,s), i.e., iff g.(n) |. From e and n we can
compute *3y (e, 7,y)*, let g(e, n) be the primitive recursive function which
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does that. So

0 otherwise.

he,m) = {1 if Pro(g(e,n))

This would show that / is recursive if Prg is. But  is not recursive, by Theo-
rem 9.9, so Prg cannot be either. O

Corollary 11.29. First-order logic is undecidable.

Proof. If first-order logic were decidable, provability in Q would be as well,
since Q I~ ¢ iff - w — @, where w is the conjunction of the axioms of Q. [
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Chapter 12

Incompleteness and Provability

12.1 Introduction

Hilbert thought that a system of axioms for a mathematical structure, such as
the natural numbers, is inadequate unless it allows one to derive all true state-
ments about the structure. Combined with his later interest in formal systems
of deduction, this suggests that he thought that we should guarantee that, say,
the formal systems we are using to reason about the natural numbers is not
only consistent, but also complete, i.e., every statement in its language is either
provable or its negation is. Godel’s first incompleteness theorem shows that
no such system of axioms exists: there is no complete, consistent, axiomatiz-
able formal system for arithmetic. In fact, no “sufficiently strong,” consistent,
axiomatizable mathematical theory is complete.

A more important goal of Hilbert’s, the centerpiece of his program for the
justification of modern (“classical”) mathematics, was to find finitary consis-
tency proofs for formal systems representing classical reasoning. With regard
to Hilbert’s program, then, Godel’s second incompleteness theorem was a
much bigger blow. The second incompleteness theorem can be stated in vague
terms, like the first incompleteness theorem. Roughly speaking, it says that no
sufficiently strong theory of arithmetic can prove its own consistency. We will
have to take “sufficiently strong” to include a little bit more than Q.

The idea behind Godel’s original proof of the incompleteness theorem can
be found in the Epimenides paradox. Epimenides, a Cretan, asserted that all
Cretans are liars; a more direct form of the paradox is the assertion “this sen-
tence is false.” Essentially, by replacing truth with provability, Godel was able
to formalize a sentence which, in a roundabout way, asserts that it itself is not
provable. If that sentence were provable, the theory would then be inconsis-
tent. Assuming w-consistency—a property stronger than consistency—Godel
was able to show that this sentence is also not refutable from the system of
axioms he was considering.

The first challenge is to understand how one can construct a sentence that
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12. INCOMPLETENESS AND PROVABILITY

refers to itself. For every formula ¢ in the language of Q, let "¢ denote the
numeral corresponding to *¢*. Think about what this means: ¢ is a formula in
the language of Q, *¢” is a natural number, and "¢ is a term in the language
of Q. So every formula ¢ in the language of Q has a name, "¢, which is a
term in the language of Q; this provides us with a conceptual framework in
which formulas in the language of Q can “say” things about other formulas.
The following lemma is known as the fixed-point lemma.

Lemma 12.1. Let T be any theory extending Q, and let (x) be any formula with
only the variable x free. Then there is a sentence ¢ such that T proves ¢ <> p("¢™).

The lemma asserts that given any property (x), there is a sentence ¢ that
asserts “i(x) is true of me.”

How can we construct such a sentence? Consider the following version of
the Epimenides paradox, due to Quine:

“Yields falsehood when preceded by its quotation” yields false-
hood when preceded by its quotation.

This sentence is not directly self-referential. It simply makes an assertion
about the syntactic objects between quotes, and, in doing so, it is on par with
sentences like

1. “Robert” is a nice name.
2. “I'ran.” is a short sentence.
3. “Has three words” has three words.

But what happens when one takes the phrase “yields falsehood when pre-
ceded by its quotation,” and precedes it with a quoted version of itself? Then
one has the original sentence! In short, the sentence asserts that it is false.

12.2 The Fixed-Point Lemma

The fixed-point lemma says that for any formula (x), there is a sentence ¢
such that T F ¢ <> ¢("¢"), provided T extends Q. In the case of the liar sen-
tence, we’d want ¢ to be equivalent (provably in T) to “" ¢ is false,” i.e., the
statement that *¢* is the Godel number of a false sentence. To understand the
idea of the proof, it will be useful to compare it with Quine’s informal gloss
of ¢ as, “yields a falsehood when preceded by its own quotation’ yields a
falsehood when preceded by its own quotation.” The operation of taking an
expression, and then forming a sentence by preceding this expression by its
own quotation may be called diagonalizing the expression, and the result its
diagonalization. So, the diagonalization of ‘yields a falsehood when preceded
by its own quotation” is ““yields a falsehood when preceded by its own quo-
tation” yields a falsehood when preceded by its own quotation.” Now note
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that Quine’s liar sentence is not the diagonalization of ‘yields a falsehood’ but
of ‘yields a falsehood when preceded by its own quotation.” So the property
being diagonalized to yield the liar sentence itself involves diagonalization!

In the language of arithmetic, we form quotations of a formula with one
free variable by computing its Godel numbers and then substituting the stan-
dard numeral for that Godel number into the free variable. The diagonal-
ization of a(x) is a(7), where n = *a(x)*. (From now on, let’s abbreviate
*o(x)* as "a(x) ) So if (x) is “is a falsehood,” then “yields a falsehood if
preceded by its own quotation,” would be “yields a falsehood when applied
to the Godel number of its diagonalization.” If we had a symbol diag for
the function diag(n) which computes the Godel number of the diagonaliza-
tion of the formula with Godel number 1, we could write a(x) as ¢(diag(x)).
And Quine’s version of the liar sentence would then be the diagonalization of
it, i.e., a("a™) or P(diag("(diag(x))")). Of course, P(x) could now be any
other property, and the same construction would work. For the incomplete-
ness theorem, we'll take 1(x) to be “x is unprovable in T.” Then a(x) would
be “yields a sentence unprovable in T when applied to the Gédel number of
its diagonalization.”

To formalize this in T, we have to find a way to formalize diag. The func-
tion diag(n) is computable, in fact, it is primitive recursive: if n is the Godel
number of a formula «(x), diag(n) returns the Godel number of a("a(x)").
(Recall, "a(x)" is the standard numeral of the Gédel number of a(x), i.e.,
*a(x)*). If diag were a function symbol in T repqresenting the function diag,
we could take ¢ to be the formula ¢(diag("(diag(x))')). Notice that

diag(*yp(diag(x))*) = "y(diag("y(diag(x))")"

Assuming T can prove
diag("y(diag(x))") = "¢,

it can prove ¢(diag("y(diag(x)) ")) <> P("¢7). But the left hand side is, by
definition, ¢.

Of course, diag will in general not be a function symbol of T, and cer-
tainly is not one of Q. But, since diag is computable, it is representable in Q
by some formula 6g4;ag(x, ¥). So instead of writing i(diag(x)) we can write
Ty (Oaiag(x,y) A P(y)). Otherwise, the proof sketched above goes through,
and in fact, it goes through already in Q.

Lemma 12.2. Let (x) be any formula with one free variable x. Then there is a
sentence ¢ such that Q = ¢ < p("¢™7).

Proof. Given y(x), let a(x) be the formula 3y (64iag(x,¥) A $(y)) and let ¢ be
its diagonalization, i.e., the formula a("a(x) ).
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Since 64;,g represents diag, and diag(*a(x)*) = *¢*, Q can prove

!Ddiag(r“(x)—lr r(P_|) (12-1)
VY (Odiag ("2(x) L y) =y ="¢7). (12.2)

Now we show that Q - ¢ <+ ¢("¢7). We argue informally, using just logic
and facts provable in Q.

First, suppose ¢, i.e., a("a(x) ). Going back to the definition of a(x), we
see that a("a(x) ") just is

Ty (Odiag ("2 (x) L y) Ap(y)).

Consider such a y. Since Ogiqq (" #(x) ', ¥), by eq. (12.2), y = "¢™. So, from ¢ (y)
we have ¢("¢7).

Now suppose §("¢"). By eq. (12.1), we have O4i, ("2 (x) ,"@7) A9(T97).
It follows that 3y (Ogiag("a(x) ,y) A¢(y)). But that'sjusta("a”),ie, . O

You should compare this to the proof of the fixed-point lemma in com-
putability theory. The difference is that here we want to define a statement in
terms of itself, whereas there we wanted to define a function in terms of itself;
this difference aside, it is really the same idea.

12.3 The First Incompleteness Theorem

We can now describe Godel’s original proof of the first incompleteness theo-
rem. Let T be any computably axiomatized theory in a language extending
the language of arithmetic, such that T includes the axioms of Q. This means
that, in particular, T represents computable functions and relations.

We have argued that, given a reasonable coding of formulas and proofs
as numbers, the relation Prfr(x,y) is computable, where Prfr(x,y) holds if
and only if x is the Godel number of a derivation of the formula with Godel
number y in T. In fact, for the particular theory that Godel had in mind, Godel
was able to show that this relation is primitive recursive, using the list of 45
functions and relations in his paper. The 45th relation, xBy, is just Prfr(x,y)
for his particular choice of T. Remember that where Godel uses the word
“recursive” in his paper, we would now use the phrase “primitive recursive.”

Since Prfr(x,y) is computable, it is representable in T. We will use Prfr(x, y)
to refer to the formula that represents it. Let Provy(y) be the formula 3x Prfy(x, y).
This describes the 46th relation, Bew(y), on Godel’s list. As Godel notes, this
is the only relation that “cannot be asserted to be recursive.” What he proba-
bly meant is this: from the definition, it is not clear that it is computable; and
later developments, in fact, show that it isn’t.

Definition 12.3. A theory T is w-consistent if the following holds: if 3x ¢(x)
is any sentence and T proves =¢(0), —¢(1), =¢(2), ...then T does not prove

dx ¢(x).
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We can now prove the following.

Theorem 12.4. Let T be any w-consistent, axiomatizable theory extending Q. Then
T is not complete.

Proof. Let T be an axiomatizable theory containing Q Then Prfr(x,y) is de-
cidable, hence representable in Q by a formula Prfr(x,y). Let Provr(y) be the
formula we described above. By the fixed-point lemma, there is a formula
such that Q (and hence T) proves

YT < —‘PI’OVT(I—’yT_‘). (123)

Note that ¢ says, in essence, “¢ is not provable.”
We claim that

1. If T is consistent, T doesn’t prove 7yt
2. If T is w-consistent, T doesn’t prove —7yt.

This means that if T is w-consistent, it is incomplete, since it proves neither
nor —yt. Let us take each claim in turn.

Suppose T proves yt. Then there is a derivation, and so, for some number
m, the relation Prfr(m, *y7*) holds. But then Q proves the sentence Prfr (7, "yt 7).
So Q proves 3x Prfr(x, "yt "), which is, by definition, Provy("yt). By eq. (12.3),
Q proves —yt, and since T extends Q, so does T. We have shown that if T
proves v, then it also proves =7y, and hence it would be inconsistent.

For the second claim, let us show that if T proves =y, then it is w-inconsistent.
Suppose T proves —yt. If T is inconsistent, it is w-inconsistent, and we are
done. Otherwise, T is consistent, so it does not prove 1. Since there is no
proof of y1 in T, Q proves

—|PrfT(6, '_’)/Tj), —\PrfT(T, '_’)/T—'), —\PrfT (Z, '—’)’T—'), .
and so does T. On the other hand, by eq. (12.3), =y is equivalent to 3x Prfr(x, "y1™).
So T is w-inconsistent. O
12.4 Rosser’s Theorem

Can we modify Godel’s proof to get a stronger result, replacing “w-consistent”
with simply “consistent”? The answer is “yes,” using a trick discovered by
Rosser. Rosser’s trick is to use a “modified” provability predicate RProvr(y)
instead of Provr(y).

Theorem 12.5. Let T be any consistent, axiomatizable theory extending Q. Then T
is not complete.
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Proof. Recall that Provr(y) is defined as 3x Prfr(x,y), where Prfr(x,y) repre-
sents the decidable relation which holds iff x is the Godel number of a deriva-
tion of the sentence with Godel number y. The relation that holds between x
and y if x is the Godel number of a refutation of the sentence with Godel num-
ber y is also decidable. Let not(x) be the primitive recursive function which
does the following: if x is the code of a formula ¢, not(x) is a code of —¢.
Then Refr(x,y) holds iff Prfr(x,not(y)). Let Refr(x,y) represent it. Then, if
T F —¢ and J is a corresponding derivation, Q - Refr("67,7¢™). We define
RProvr(y) as

3x (Prr(x,y) AVz(z < x — —Refr(z,y))).

Roughly, RProvr(y) says “there is a proof of y in T, and there is no shorter
refutation of y.” (You might find it convenient to read RProvr(y) as “y is
shmovable.”) Assuming T is consistent, RProvy(y) is true of the same num-
bers as Provy(y); but from the point of view of provability in T (and we now
know that there is a difference between truth and provability!) the two have
different properties. (If T is inconsistent, then the two do not hold of the same
numbers!)
By the fixed-point lemma, there is a formula pt such that

Q+ pr > =RProvr(Tpr 7). (12.4)

In contrast to the proof of Theorem 12.4, here we claim that if T is consistent,
T doesn’t prove pt, and T also doesn’t prove —p. (In other words, we don’t
need the assumption of w-consistency.)

First, let’s show that T ¥ pr. Suppose it did, so there is a derivation of pr
from T; let n be its Godel number. Then Q + Prfr(7, "pr™), since Prfr repre-
sents Prfr in Q. Also, for each k < n, k is not the Godel number of —p7, since
T is consistent. So for each k < 1, Q F —Refr(k, "pr"). By Lemma 11.22(2),
QF Vz(z <7 — —Refr(z,"pr™)). Thus,

Q = Fx (Prfr(x, "pr™) AVz (2 < x = —Refr(z,"pr7))),

but that’s just RProvr("pr™). By eq. (12.4), Q = —p7. Since T extends Q, also
T = —pr. We've assumed that T - p1, so T would be inconsistent, contrary to
the assumption of the theorem.

Now, let’s show that T ¥ —pr. Again, suppose it did, and suppose n
is the Godel number of a derivation of —pr. Then Refr(n,*p7*) holds, and
since Refr represents Refr in Q, Q + Refr (7, pr™). We’'ll again show that
T would then be inconsistent because it would also prove pr. Since Q -
pr <> —RProvy(Tpr7), and since T extends Q, it suffices to show that Q +
—RProvr(Tp7™"). The sentence —RProvr(Tpr™), i.e.,

—3x (Prfr(x,"pr7) AVz (z < x — —Refr(z,"p1")))
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is logically equivalent to

Vx (Prfr(x,"pr™) — 3z (z < x ARefr(z,"p17)))

We argue informally using logic, making use of facts about what Q proves.
Suppose x is arbitrary and Prfr(x, "pr™). We already know that T ¥ pr, and
so for every k, Q = —Prfr(k,"pr7). Thus, for every k it follows that x # k.
In particular, we have (a) that x # 7. We also have =(x = 0Vx = 1V
-++Vx =n—1) and so by Lemma 11.22(2), (b) =(x < 7). By Lemma 11.23,
7 < x. Since Q - Refr (7, "pr "), we have 1 < x A Refr (7, "pr™), and from that
3z (z < x ARefr(z,"pr™)). Since x was arbitrary we get

v (Prfr(x,"or) = 3z (z < x ARefr(z,"pr7)))

as required. O

12.5 Comparison with Godel’s Original Paper

It is worthwhile to spend some time with Godel’s 1931 paper. The introduc-
tion sketches the ideas we have just discussed. Even if you just skim through
the paper, it is easy to see what is going on at each stage: first Godel describes
the formal system P (syntax, axioms, proof rules); then he defines the prim-
itive recursive functions and relations; then he shows that xBy is primitive
recursive, and argues that the primitive recursive functions and relations are
represented in P. He then goes on to prove the incompleteness theorem, as
above. In section 3, he shows that one can take the unprovable assertion to
be a sentence in the language of arithmetic. This is the origin of the -lemma,
which is what we also used to handle sequences in showing that the recursive
functions are representable in Q. Godel doesn’t go so far to isolate a minimal
set of axioms that suffice, but we now know that Q will do the trick. Finally,
in Section 4, he sketches a proof of the second incompleteness theorem.

12.6 The Provability Conditions for PA

Peano arithmetic, or PA, is the theory extending Q with induction axioms for
all formulas. In other words, one adds to Q axioms of the form

(9(0) AVx (9(x) = 9(x'))) = Vx (x)

for every formula ¢. Notice that this is really a schema, which is to say, in-
finitely many axioms (and it turns out that PA is not finitely axiomatizable).
But since one can effectively determine whether or not a string of symbols is
an instance of an induction axiom, the set of axioms for PA is computable. PA
is a much more robust theory than Q. For example, one can easily prove that
addition and multiplication are commutative, using induction in the usual
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way. In fact, most finitary number-theoretic and combinatorial arguments can
be carried out in PA.

Since PA is computably axiomatized, the provability predicate Prfpa (x, y)
is computable and hence represented in Q (and so, in PA). As before, I will
take Prfpa (x, 1) to denote the formula representing the relation. Let Provpa (i)
be the formula 3x Prfpa (x, y), which, intuitively says, “y is provable from the
axioms of PA.” The reason we need a little bit more than the axioms of Q is
we need to know that the theory we are using is strong enough to prove a
few basic facts about this provability predicate. In fact, what we need are the
following facts:

1. If PA+ ¢, then PA I Provpa (T¢™)

2. For every formula ¢ and ¢, PA I Provpa ("¢ — ¢7) — (Provpa(T¢") —
PrOVpA(rlle))

3. For every formula ¢, PA = Provpa ("¢ ) — Provpa ("Provpa(T¢™) ).

The only way to verify that these three properties hold is to describe the for-
mula Provpa () carefully and use the axioms of PA to describe the relevant
formal proofs. Clauses 1 and 2 are easy; it is really clause 3 that requires work.
(Think about what kind of work it entails...) Carrying out the details would
be tedious and uninteresting, so here we will ask you to take it on faith that
PA has the three properties listed above. A reasonable choice of Provpa ()
will also satisfy

4. If PA proves Provpa ("¢™), then PA proves ¢.

But we will not need this fact.

Incidentally, Godel was lazy in the same way we are being now. At the
end of the 1931 paper, he sketches the proof of the second incompleteness
theorem, and promises the details in a later paper. He never got around to it;
since everyone who understood the argument believed that it could be carried
out (he did not need to fill in the details.)

12.7 The Second Incompleteness Theorem

How can we express the assertion that PA doesn’t prove its own consistency?
Saying PA is inconsistent amounts to saying that PA proves 0 = 1. So we
can take Conpy to be the formula —Provpa ("0 = 17), and then the following
theorem does the job:

Theorem 12.6. Assuming PA is consistent, then PA does not prove Conpa.

It is important to note that the theorem depends on the particular repre-
sentation of Conpp (i.e., the particular representation of Provpa (y)). All we
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will use is that the representation of Provpa (1) has the three properties above,
so the theorem generalizes to any theory with a provability predicate having
these properties.

It is informative to read Godel’s sketch of an argument, since the theorem
follows like a good punch line. It goes like this. Let ps be the Godel sentence
that we constructed in the proof of Theorem 12.4. We have shown “If PA is
consistent, then PA does not prove ypa.” If we formalize this in PA, we have
a proof of

Conpp — ﬁProvPA('_')/pA—').

Now suppose PA proves Conpa. Then it proves —=Provpa ("ypa ). But since
pa is a Godel sentence, this is equivalent to ypa. So PA proves ypa.

But: we know that if PA is consistent, it doesn’t prove ypa! So if PA is
consistent, it can’t prove Conpy.

To make the argument more precise, we will let ypa be the Godel sentence
for PA and use properties 1-3 above to show that PA proves Conpps — Ypa.
This will show that PA doesn’t prove Conpa. Here is a sketch of the proof,
in PA:

!Gpa — —Provpa (T ypa™) since 7ypa is a Godel sentence
Provpa (" ypa — —Provpa("ypa™) ) by 1
Provpa ("rpa™) —

Provpa (" —Provpa ("ypa™) ") by 2

ProvPA('_’ypA—‘) —
Provpa ("Provpa("ypa™’) - 0=1") by1land?2

PI’OVPA (I—')’PA—I) —

Provpa ("Provpa ("ypa™) ") by 3
Provpa ("ypa™) — Provpa ("0 =17) using 1 and 2
Conpa — —Provpa ("ypa™) by contraposition
Conpa — YpA since ypa is a Godel sentence

The move from the third to the fourth line uses the fact that =Provpa ("ypa ™)
is equivalent to Provps ("ypa™) — 0 = 1 in PA. The more abstract version of
the incompleteness theorem is as follows:

Theorem 12.7. Let T be any axiomatized theory extending Q and let Provr(y) be
any formula satisfying 1-3 for T. Then if T is consistent, then T does not prove Conr.

The moral of the story is that no “reasonable” consistent theory for math-
ematics can prove its own consistency. Suppose T is a theory of mathematics
that includes Q and Hilbert’s “finitary” reasoning (whatever that may be).
Then, the whole of T cannot prove the consistency of T, and so, a fortiori, the
finitary fragment can’t prove the consistency of T either. In that sense, there
cannot be a finitary consistency proof for “all of mathematics.”
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There is some leeway in interpreting the term “finitary,” and Godel, in the
1931 paper, grants the possibility that something we may consider “finitary”
may lie outside the kinds of mathematics Hilbert wanted to formalize. But
Godel was being charitable; today, it is hard to see how we might find some-
thing that can reasonably be called finitary but is not formalizable in, say,
ZFC.

12.8 Lob’s Theorem

In this section, we will consider a fun application of the fixed-point lemma.
We now know that any “reasonable” theory of arithmetic is incomplete, which
is to say, there are sentences ¢ that are neither provable nor refutable in the
theory. One can ask whether, in general, a theory can prove “If I can prove ¢,
then it must be true.” The answer is that, in general, it can’t. More precisely,
we have:

Theorem 12.8. Let T be a axiomatizable theory extending Q, and suppose Provr(y)
is a formula satisfying conditions 1-3 from section 12.7. If T proves Provy("¢™) —
@, then in fact T proves ¢.

Put differently, if ¢ is not provable in T, T can’t prove Provr("¢™) — ¢.
This is known as Lob’s theorem.

The heuristic for the proof of Lob’s theorem is a clever proof that Santa
Claus exists. (If you don't like that conclusion, you are free to substitute any
other conclusion you would like.) Here it is:

1. Let X be the sentence, “If X is true, then Santa Claus exists.”

2. Suppose X is true.

3. Then what it says is true; i.e., if X is true, then Santa Claus exists.

4. Since we are assuming X is true, we can conclude that Santa Claus exists.
5. So, we have shown: “If X is true, then Santa Claus exists.”

6. But this is just the statement X. So we have shown that X is true.

7. But then, by the argument above, Santa Claus exists.

A formalization of this idea, replacing “is true” with “is provable,” yields the
proof of Lob’s theorem.

Proof. Suppose ¢ is a sentence such that T proves Provr("¢™) — ¢. Let (y)
be the formula Provy(y) — ¢, and use the fixed-point lemma to find a sen-
tence 6 such that T proves 6 <> 1»("6™). Then each of the following is provable
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inT:
!D — (Provy(T67) — ¢)
Provr ("0 — (Provr(T67) — ¢) ) by 1
Provy(707) — Provy("Provr(T67) — ¢ ) using 2
Provr(707) —

(Provr("Provr(707) ") — Provr(T¢™)) using 2
Provr("67) — Provy (" Provy(T67) ) by 3
Provr("07) — ProvT( ¢7)

Provy(T¢™) — by assumption
Provr(T67) —

'D def of 0
Provr(767) by 1

1A

O

With Lob’s theorem in hand, there is a short proof of the first incomplete-
ness theorem (for theories having a provability predicate satisfying 1-3): if a
theory proves Provy("0 =17) — 0 =1, it proves 0 = 1.

12.9 The Undefinability of Truth

The notion of definability depends on having a formal semantics for the lan-
guage of arithmetic. We have described a set of formulas and sentences in
the language of arithmetic. The “intended interpretation” is to read such sen-
tences as making assertions about the natural numbers, and such an assertion
can be true or false. Let 91 be the structure with domain IN and the standard
interpretation for the symbols in the language of arithmetic. Then 91 = ¢
means “¢ is true in the standard interpretation.”

Definition 12.9. A relation R(xq, ..., x;) of natural numbers is definable in O if
and only if there is a formula ¢(xy, ..., x;) in the language of arithmetic such
that for every ny,...,ng, R(ny,...,ng) if and only if M |= ¢(71y, ..., Ag).

Put differently, a relation is definable in in 91 if and only if it is repre-
sentable in the theory TA, where TA = {¢ : M |= ¢} is the set of true sentences
of arithmetic. (If this is not immediately clear to you, you should go back and
check the definitions and convince yourself that this is the case.)

Lemma 12.10. Every computable relation is definable in 1.

Proof. It is easy to check that the formula representing a relation in Q defines
the same relation in 9. O
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Now one can ask, is the converse also true? That is, is every relation defin-
able in 9 computable? The answer is no. For example:

Lemma 12.11. The halting relation is definable in N.

Proof. Let H be the halting relation, i.e.,
H={{e,x):3sT(e,x,9)}.
Let 07 define T in D1. Then
H={{e,x) : M =3s6r(¢,%,s)},
so 3s0r1(z, x,s) defines H in M. O

What about TA itself? Is it definable in arithmetic? That is: is the set
{*¢* : M |= ¢} definable in arithmetic? Tarski’s theorem answers this in the
negative.

Theorem 12.12. The set of true statements of arithmetic is not definable in arith-
metic.

Proof. Suppose 6(x) defined it. By the fixed-point lemma, there is a formula
¢ such that Q proves ¢ ++ —6("¢™), and hence N |= ¢ < —6("¢™). But then
N = ¢ if and only if N = —6("¢™), which contradicts the fact that 8(y) is
supposed to define the set of true statements of arithmetic. O

Tarski applied this analysis to a more general philosophical notion of truth.
Given any language L, Tarski argued that an adequate notion of truth for L
would have to satisfy, for each sentence X,

‘X’ is true if and only if X.
Tarski’s oft-quoted example, for English, is the sentence
‘Snow is white’ is true if and only if snow is white.

However, for any language strong enough to represent the diagonal function,
and any linguistic predicate T(x), we can construct a sentence X satisfying
“X if and only if not T(‘X").” Given that we do not want a truth predicate
to declare some sentences to be both true and false, Tarski concluded that
one cannot specify a truth predicate for all sentences in a language without,
somehow, stepping outside the bounds of the language. In other words, a the
truth predicate for a language cannot be defined in the language itself.
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Problems for Chapter 1

Problem 1.1. Show that there is only one empty set, i.e., show that if X and Y
are sets without members, then X = Y.

Problem 1.2. List all subsets of {a,b,c,d}.

Problem 1.3. Show that if X has n elements, then (X) has 2" elements.
Problem 1.4. Prove rigorously thatif X C Y, then XUY =Y.

Problem 1.5. Prove rigorously thatif X C Y, then XNY = X.

Problem 1.6. Prove in detail that X U (X NY) = X. Then give a shortened,
compressed proof. (Hint: for the X U (XNY) C X direction you will need
proof by cases, aka VElim.)

Problem 1.7. List all elements of {1,2,3}3.

Problem 1.8. Show that if X has 1 elements, then X¥ has ¥ elements.

Problems for Chapter 2

Problem 2.1. List the elements of the relation C on the set p({a,b,c}).

Problem 2.2. Give examples of relations that are (a) reflexive and symmetric
but not transitive, (b) reflexive and anti-symmetric, (c) anti-symmetric, transi-
tive, but not reflexive, and (d) reflexive, symmetric, and transitive. Do not use
relations on numbers or sets.

Problem 2.3. Complete the proof of Proposition 2.19, i.e., prove that if R is a
partial order on X, then R~ = R\ Idy is a strict order.

Problem 2.4. Consider the less-than-or-equal-to relation < on the set {1,2,3,4}
as a graph and draw the corresponding diagram.

Problem 2.5. Show that the transitive closure of R is in fact transitive.
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Problems for Chapter 3

Problem 3.1. Show that if f is bijective, an inverse g of f exists, i.e., define
such a g, show that it is a function, and show that it is an inverse of f, i.e.,
f(g(y)) =yand g(f(x)) =xforallx € Xandy € Y.

Problem 3.2. Show thatif f: X — Y has an inverse g, then f is bijective.

Problem 3.3. Show thatifg: Y — Xand ¢’: Y — X areinversesof f: X — Y,
theng=¢/,ie, forally € Y, ¢(y) = ¢ ().

Problem 3.4. Show thatif f: X — Y and g: Y — Z are both injective, then
gof: X — Zis injective.
Problem 3.5. Show thatif f: X — Y and g: Y — Z are both surjective, then

go f: X — Zis surjective.

Problem 3.6. Given f: X + Y, define the partial function g: Y + X by: for
any y € Y, if there is a unique x € X such that f(x) = y, then g(y) = x;
otherwise g(y) 1. Show that if f is injective, then g(f(x)) = x for all x €

dom(f), and f(g(y)) =y forally € ran(f).

Problem 3.7. Suppose f: X — Y and g: Y — Z. Show that the graph of
(8o f)isRs | Re.

Problems for Chapter 4

Problem 4.1. According to Definition 4.4, a set X is enumerable iff X = @ or
there is a surjective f: ZT — X. It is also possible to define “enumerable set”
precisely by: a set is enumerable iff there is an injective function g: X — Z™.
Show that the definitions are equivalent, i.e., show that there is an injective
function g: X — Z7 iff either X = @ or there is a surjective f: ZT — X.

Problem 4.2. Define an enumeration of the positive squares 4, 9, 16, ...
Problem 4.3. Show that if X and Y are enumerable, sois X UY.

Problem 4.4. Show by induction on n thatif X, X», ..., X, are all enumerable,
sois X U---UXj,.

Problem 4.5. Give an enumeration of the set of all positive rational numbers.
(A positive rational number is one that can be written as a fraction n/m with
n,meZ").

Problem 4.6. Show that Q is enumerable. (A rational number is one that can
be written as a fraction z/m withz € Z, m € Z™).

Problem 4.7. Define an enumeration of B*.
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Problem 4.8. Recall from your introductory logic course that each possible
truth table expresses a truth function. In other words, the truth functions are
all functions from B¥ — B for some k. Prove that the set of all truth functions
is enumerable.

Problem 4.9. Show that the set of all finite subsets of an arbitrary infinite
enumerable set is enumerable.

Problem 4.10. A set of positive integers is said to be cofinite iff it is the com-
plement of a finite set of positive integers. Let I be the set that contains all the
finite and cofinite sets of positive integers. Show that I is enumerable.

Problem 4.11. Show that the enumerable union of enumerable sets is enumer-
able. That is, whenever Xy, X5, ... are sets, and each X; is enumerable, then
the union (J; ; X; of all of them is also enumerable.

Problem 4.12. Show that p(IN) is non-enumerable by a diagonal argument.

Problem 4.13. Show that the set of functions f: Z* — Z™* is non-enumerable
by an explicit diagonal argument. That is, show thaﬁ if f1, f2, ..., is a list of
functions and each f;: Z* — Z™, then there is some f: ZT — Z" not on this
list.

Problem 4.14. Show that if there is an injective function g: Y — X, and Y is
non-enumerable, then so is X. Do this by showing how you can use g to turn
an enumeration of X into one of Y.

Problem 4.15. Show that the set of all sets of pairs of positive integers is non-
enumerable by a reduction argument.

Problem 4.16. Show that IN“, the set of infinite sequences of natural numbers,
is non-enumerable by a reduction argument.

Problem 4.17. Let P be the set of functions from the set of positive integers
to the set {0}, and let Q be the set of partial functions from the set of positive
integers to the set {0}. Show that P is enumerable and Q is not. (Hint: reduce
the problem of enumerating B¢ to enumerating Q).

Problem 4.18. Let S be the set of all surjective functions from the set of positive
integers to the set {0,1}, i.e., S consists of all surjective f: Z* — B. Show that
S is non-enumerable.

Problem 4.19. Show that the set R of all real numbers is non-enumerable.

Problem 4.20. Show that if X is equinumerous with U and and Y is equinu-
merous with V, and the intersections X N'Y and U N V are empty, then the
unions X UY and U U V are equinumerous.

157



PROBLEMS

Problem 4.21. Show that if X is infinite and enumerable, then it is equinumer-
ous with the positive integers Z ™.

Problem 4.22. Show that there cannot be an injective function g: p(X) — X,
for any set X. Hint: Suppose g: p(X) — X is injective. Then for each x € X
there is at most one Y C X such that g(Y) = x. Define a set Y such that for
every x € X, g(Y) # x.

Problems for Chapter 5

Problem 5.1. Prove Lemma 5.10.

Problem 5.2. Prove Proposition 5.11 (Hint: Formulate and prove a version of
Lemma 5.10 for terms.)

Problem 5.3. Give an inductive definition of the bound variable occurrences
along the lines of Definition 5.17.

Problem 5.4. Is M1, the standard model of arithmetic, covered? Explain.

Problem 5.5. Let £ = {c, f, A} with one constant symbol, one one-place func-
tion symbol and one two-place predicate symbol, and let the structure 9 be
given by

1. |9m| = {1,2,3}

2. M =3

3. fM(1) =2, fM(2) =3, fM(3) =2
4. AM = {(1,2),(2,3),(3,3)}

(a) Let s(v) = 1 for all variables v. Find out whether

M,s = Ix (A(f(2),¢) = Vy (Aly, x) V A(f(y), x)))

Explain why or why not.
(b) Give a different structure and variable assignment in which the formula
is not satisfied.

Problem 5.6. Complete the proof of Proposition 5.36.

Problem 5.7. Show that if ¢ is a sentence, MM |= ¢ iff there is a variable assign-
ment s so that M, s = ¢.

Problem 5.8. Prove Proposition 5.38.

Problem 5.9. Suppose L is a language without function symbols. Given a
structure M and a € |M|, define M[a/c] to be the structure that is just like 9N,
except that ¢™%/¢] = 4. Define 9 | = ¢ for sentences ¢ by:
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1. ¢ = L: notM |= ¢.

2. 9 =R(dy,...,dy): M| @iff (dT,...,d7%) € R

3. p=dy =dy: M| @iffd? =dF".

4. ¢ =P M| @iff not M |= 1.

5. 9=(pAx): M| @iff M [= ¢ and M [|= x.

6. 9= (V) M| @ iff M |i= ¢ or M= x (or both).

7. 9= (Y — x): M|E @iff not M ||= ¢ or M ||= x (or both).

8. ¢ =Vxy: M| giffforalla € M|, M[a/c] ||= P[c/x], if ¢ does not
occur in .

9. ¢ = Ixy: M | ¢ iff there is an a € |M| such that M[a/c| |= P[c/x],
if ¢ does not occur in .

Let x1, ..., x, be all free variables in ¢, c1, ..., ¢, constant symbols not in ¢,
ay, ..., ay € M|, and s(x;) = a;.
Show that M, s |= @ iff M[ay/c1,...,an/cn] ||= @lc1/x1] ... [cn/xu)-

Problem 5.10. Suppose that f is a function symbol not in ¢(x,y). Show that
there is a M such that M = Vx 3y ¢(x,y) iff there is a 9’ such that M’ |=

Vx g(x, £(x)).

Problem 5.11. Prove Proposition 5.41

Problem 5.12. 1. Show thatI' F L iff I' is unsatisfiable.
2. Show thatTU{¢} E Liff T £ —¢.

3. Suppose ¢ does not occur in ¢ or I'. Show that T F Vx ¢ iff ' F ¢[c/x].

Problems for Chapter 6

Problem 6.1. Find formulas in £4 which define the following relations:
1. nis between i and j;
2. n evenly divides m (i.e., m is a multiple of n);

3. n is a prime number (i.e., no number other than 1 and n evenly di-
vides n).

Problem 6.2. Suppose the formula @(v;, v;) expresses the relation R C |9
in a structure 1. Find formulas that express the following relations:

1. the inverse R~ of R;
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2. the relative product R | R;
Can you find a way to express R, the transitive closure of R?

Problem 6.3. Let £ be the language containing a 2-place predicate symbol
< only (no other constant symbols, function symbols or predicate symbols—
except of course =). Let 91 be the structure such that [91| = N, and <™ =
{(n,m) : n < m}. Prove the following:

1. {0} is definable in O1;

2. {1} is definable in 0;

3. {2} is definable in 0;

4. for each n € IN, the set {n} is definable in 91;
5. every finite subset of |91 is definable in O;

6. every co-finite subset of |91| is definable in 91 (wWhere X C IN is co-finite
iff IN '\ X is finite).

Problem 6.4. Show that the comprehension principle is inconsistent by giving
a derivation that shows

JyVx(x ey x¢x)F L

It may help to first show (A — =A) A (A — A) - L.

Problems for Chapter 7
Problem 7.1. Give derivations of the following sequents:
L=-(g—=¢) = (eAy)

2. Vx(p(x) =)= Gy oly) = ¢)
Problem 7.2. Prove Proposition 7.13
Problem 7.3. Prove Proposition 7.14
Problem 7.4. Prove Proposition 7.20.
Problem 7.5. Prove Proposition 7.21.
Problem 7.6. Prove Proposition 7.22.
Problem 7.7. Prove Proposition 7.23.

Problem 7.8. Prove Proposition 7.24.
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Problem 7.9. Prove Proposition 7.25.
Problem 7.10. Complete the proof of Theorem 7.29.

Problem 7.11. Give derivations of the following sequents:

1. =VaVy (x=yAex)) = ¢y))

2. Ixg(x) ANVyVz ((e(y) Np(z)) 2y =2z) =
Jx (@(x) ANVy (@(y) =y =x))

Problems for Chapter 8

Problem 8.1. Complete the proof of Proposition 8.2.
Problem 8.2. Complete the proof of Lemma 8.9.
Problem 8.3. Complete the proof of Proposition 8.11.

Problem 8.4. Use Corollary 8.17 to prove Theorem 8.16, thus showing that the
two formulations of the completeness theorem are equivalent.

Problem 8.5. In order for a derivation system to be complete, its rules must
be strong enough to prove every unsatisfiable set inconsistent. Which of the
rules of LK were necessary to prove completeness? Are any of these rules not
used anywhere in the proof? In order to answer these questions, make a list or
diagram that shows which of the rules of LK were used in which results that
lead up to the proof of Theorem 8.16. Be sure to note any tacit uses of rules in
these proofs.

Problem 8.6. Prove (1) of Theorem 8.19.

Problem 8.7. In the standard model of arithmetic 91, there is no element k €
|91] which satisfies every formula 7 < x (where 7 is o'~/ with n /’s). Use
the compactness theorem to show that the set of sentences in the language of
arithmetic which are true in the standard model of arithmetic 91 are also true
in a structure 9N’ that contains an element which does satisfy every formula
n < x.

Problem 8.8. Let I be the set of all sentences ¢ in the language of arithmetic
such that M |= ¢, i.e., I contains all sentences true in the “standard model.”
Show that there is a model 9 of T’ which is not covered, i.e., some a € || is
such that a # Val™ (t) for all closed terms t.
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Problems for Chapter 9

Problem 9.1. Multiplication satisfies the recursive equations
0-y=y
(+1)-y=(xy)+x

Give the explicit precise definition of the function mult(x, y) = x - y, assuming
thatadd(x,y) = x +y is already defined. Give the complete notation for mult.

Problem 9.2. Show that

2X
o=z s
is primitive recursive.

Problem 9.3. Show that d(x,y) = |x/y] (i.e., division, where you disregard
everything after the decimal point) is primitive recursive. When y = 0, we
stipulate d(x,y) = 0. Give an explicit definifion of d using primitive recursion
and composition. You will have detour through an axiliary function—you
cannot use recursion on the arguments x or y themselves.

Problem 9.4. Define integer division d(x, y) using bounded minimization.

Problem 9.5. Show that there is a primitive recursive function sconcat(s) with
the property that

sconcat({sg,...,Sk)) =80 — --.... ~ S-

Problems for Chapter 10

Problem 10.1. Show that the function flatten(z), which turns the sequence
(*t1*,..., ") into *tq, ..., t,*, is primitive recursive.

Problem 10.2. Give a detailed proof of Proposition 10.7 along the lines of the
first proof of Proposition 10.5

Problem 10.3. Give a detailed proof of Proposition 10.7 along the lines of the
alternate proof of Proposition 10.5

Problem 10.4. Prove Proposition 10.8. You may make use of the fact that any
substring of a formula which is a formula is a sub-formula of it.

Problem 10.5. Prove Proposition 10.11

Problem 10.6. Define the following relations as in Proposition 10.13:
1. FollowsByAright(S, s',s"),
2. FollowsBy_(s,s’),

3. FollowsBy\yon (s, s).
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Problems for Chapter 11

Problem 11.1. Prove that y = o, y = x/, and y = x; represent zero, succ, and
P!, respectively.

Problem 11.2. Prove Lemma 11.17.
Problem 11.3. Use Lemma 11.17 to prove Proposition 11.16.

Problem 11.4. Show that if R is representable in Q, so is xr.

Problems for Chapter 12

Problem 12.1. Show that PA proves yps — Conpa.

Problem 12.2. Let T be a computably axiomatized theory, and let Provr be a
provability predicate for T. Consider the following four statements:

1. f TF ¢, then T = Provy(T¢™).
2. TF ¢ — Provp(T¢™).
3. If T+ Provy(T¢7), then T I ¢.
4. TF Provr(T97) — ¢
Under what conditions are each of these statements true?

Problem 12.3. Show that Q(n) < n € {*¢* : Q I ¢} is definable in arithmetic.
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