Chapter 2

Fundamental concepts in Python

(Literals, Variables and Data types)

2.1 What type of character set is used by Python?

Character set defines the valid characters that can be used in a source program .Python uses the character
set as the building block to form the basic program elements such as variables, identifiers ,constants,
expressions etc.

Python uses the traditional ASCII character set. The latest version also recognizes the Unicode character
set. The ASCII character set is a subset of the Unicode character set. The main limitation of ASCII character
is its inability to represent more than 256(=2%) Unicode character set, a set that use 2 bytes (16 bits) per
character. Due to its 16 bit per character representation the Unicode character set can represent 216 different
characters

2.2 What do you mean by tokens? Different types of tokens in Python.

Token is the smallest unit inside the given program. Tokens can be defined as a punctuator mark, reserved
words and each individual word in a statement.

There are following tokens in Python:

Identifiers like (emp _name, emp_id)
Keywords (reserved words like if; elif etc.)
Special characters like (#," ",""")
Literals like (12, 12.5,’A’)

Operators like (/, //, + etc.)

2.3 What do mean by Identifiers?

Identifier is the name given to entities like class, functions, variables etc. in Python. It helps differentiating
one entity from another.

Rules for writing identifiers:

e Identifiers can be a combination of letters in lowercase (a to z) or uppercase (A to Z) or digits (0 to
9) or an underscore (). Names like my Class, var_1 and print_this_to_screen, all are valid
example.

e An identifier must start with a letter or an underscore. It cannot start with a digit. variable and
_variable are valid identifiers but 1variable is invalid.

e An identifier cannot be a keyword .Keywords, also called reserved words, have special meanings in
Python. For example, import is a keyword, which tells the Python interpreter to import a module to
the program.

e An identifier can be of any length.

2.4 What do you mean by Keywords? Write various types of Keywords used in python.

Keywords are the reserved words in Python. Keywords cannot be used as variable name, function name or
any other identifier. They are used to define the syntax and structure of the Python language. In Python,
keywords are case sensitive.

There are 33 keywords in Python. All the keywords except True, False and None are in lowercase and they
must be written as it is. The list of all the keywords are given below.

False class finally is return

None continue for lambda try
True def from nonlocal while
and del global not with
as elif if or yield
assert else import pass

break except in raise

2.5 What do you mean by literals? Explain different types of literals in Python.
A literal is a sequence of one of more characters that stands for itself, such as the literal 12.
Different types of literals:

e Numeric Literals

A numeric literal is a literal containing only the digits 09, an optional sign character (+ or
-), and a possible decimal point. If a numeric literal contains a decimal point, then it denotes
a floating-point value, or “float” (e.g., 10.24); otherwise, it denotes an integer value (e.g.,
10). Commas are never used in numeric literals.

Numeric literals can belong to following different numerical types:

a) Integer (signed) -Numbers (can be both positive and negative) with no
fractional part.e.g. 100

b) Float pointing - Real numbers with both integer and fractional part e.g. -26.2

c) Complex - In the form of a+bj where a forms the real part and b forms the
imaginary part of complex number. e.g. 3+4j

e String Literals

Numerical values are not the only literal values in programming. String literals, or
“strings,” represent a sequence of characters,

'Hello' 'Virat, Rohit' "Hello, how are you"

In Python, string literals may be delimited (surrounded) by a matching pair of either single
(') or double (") quotes. Strings must be contained all on one line (except when delimited by
triple quotes).

Types of Strings:
There are two types of Strings supported in Python.
a) Single line String- Strings that are terminated within a single line are known as

Single line Strings.

Eg: text="hello'
text1="hello”

b) Multi line String- A piece of text that is spread along multiple lines is known as
multiple line String.

There are two ways to create Multiline Strings:

i Adding black slash at the end of each line.

| & Python 3.6.1 Shell

File Edit Shell Debug Options Window Help
Python 3.6.1 (v3.6.1:69c0db5, Mar 21 2017, 17:54:52) [MSC v.1900 32 bit (Intel)]

on win32

Type "copyright"™, "credits"™ or "license()" for more information.

>>> text="hello)\

admin’

>>> Text

'helloadmin’

>>> text="hello)\
admin®

>>> Text

'hello admin'

>>> |

ii.

Using triple quotation marks:-

| & *Python 3.6.1 Shell*

File Edit Shell Debug Options Window Help
Python 3.6.1 (v3.6.1:69c0db5, Mar 21 2017, 17:54:52) [MSC v.1900 32 bit (Intel)]

on win32

Type "copyright",

welcome

miurthan™Ten

>>> print (text)
hello

welcome

to the

python

>>>

"credits" or "license ()" for more information.

e Boolean literals

A Boolean literal can have any of the two values: True or False.

e Special literals.

Python contains one special literal i.e., None. None is used to specify to that field that is not
created. It is also used for end of lists in Python.

2.6 Variables

| & Python 3.6.1 Shel - o X

File

Edit Shell Debug Options Window Help

Python 3.6.1 (v3.6.1:69c0dbS, Mar 21 2017, 17:54:52) [MSC v.1900 32 bit (Intel)]

on

win32

Type "copyright", "credits"™ or "license()" for more information.

>>>
>>>
>>>
10

>>>
>>>

valuel=10 i
value2=
valuel

value2
print (value2)

None

22>
10
22>

rint (valuel)

Literal Collections.
Collections such as tuples, lists and Dictionary are used in Python.
List:

List contain items of different data types. Lists are mutable i.e., modifiable. The values
stored in List are separated by commas (,) and enclosed within a square brackets ([]). We can
store different type of data in a List. Value stored in a List can be retrieved using the slice
operator ([] and [:]). The plus sign (+) is the list concatenation and asterisk (*) is the
repetition operator.

>>>a =1, 2.2, 'python']
Tuple:

Tuple is an ordered sequence of items same as list.The only difference is that tuples are
immutable. Tuples once created cannot be modified. Tuples are used to write-protect data
and are usually faster than list as it cannot change dynamically. It is defined within
parentheses () where items are separated by commas.

>>>t = (5,'program’, 1+3j)
Dictionary:

Dictionary is an unordered collection of key-value pairs. It is generally used when we have a
huge amount of data. Dictionaries are optimized for retrieving data. We must know the key
to retrieve the value. In Python, dictionaries are defined within braces {} with each item
being a pair in the form key: value. Key and value can be of any type.

>>>d = {1:'value','’key":2}
>>> type (d)

<class 'dict™>

Variables are used to reference values that may be changed in the program.
Variable is a name of the memory location where data is stored. Once a variable is stored
that means a space is allocated in memory.

e Assigning values to variables:

We need not to declare explicitly variable in Python as we do in ¢, ct++, and java.
int a, b;
float c, d;

When we assign any value to the variable that variable is declared automatically. The
statement for assigning a value to a variable is called an assignment statement. In Python,
the equal sign (=) is used as the assignment operator. The syntax for assignment statements
is as follows:

Variable = expression

An expression represents a computation involving values, variables, and operators that,
taken together, evaluate to a value. For example, consider the following code:

y=1 # Assign 1 to variable y

Radius =1.0 # Assign 1.0 to variable Radius
x=5*3/2)+3*2 # Assign the value of the expression to x
x=y+1 # Assign the addition of y and 1 to x
area = radius * radius * 3.14159 # Compute area

e Simultaneous Assignment
Python also supports simultaneous assignment in syntax like this:
varl, var2, varn = expl, exp2, expn

It tells Python to evaluate all the expressions on the right and assign them to the
corresponding variable on the left simultaneously. Swapping variable values is a common
operation in programming and simultaneous assignment is very useful to perform this
operation.

Consider two variables: x and y. How do you write the code to swap their values? A
common approach is to introduce a temporary variable as follows:

x=1

y=2

temp = X # Save x in a temp variable
X=y # Assign the value in y to x

y = temp # Assign the value in temp to y

But you can simplify the task using the following statement to swap the values of x and y.
X, Y=Y, X # Swap x with y

e Multiple Assignment:
Multiple assignment can be done in Python by assigning single value to multiple variables:

x=y=z=50

2.7 What do mean by data types? Explain various types of data types available in Python.

A data type is a set of values, and a set of operators that may be applied to those values. For example, the
integer data type consists of the set of integers, and operators for addition, subtraction, multiplication, and
division, among others. Integers, floats, complex numbers and strings are part of a set of predefined data
types in Python called the built-in types.

There are various data types in Python. Some of the important types are listed below.

Numbers

Integers, floating point numbers and complex numbers falls under Python numbers category.
They are defined as int, float and complex class in Python.

a) Integer (signed) -Numbers (can be both positive and negative) with no fractional part.e.g.
100

b) Float pointing - Real numbers with both integer and fractional part e.g. -26.

¢) Complex - In the form of a+bj where a forms the real part and b forms the imaginary part
of complex number. e.g. 3+4j

Strings

String is sequence of Unicode characters. We can use single quotes or double quotes to
represent strings. Multi-line strings can be denoted using triple quotes, "' or """.

s = "This is a string"
s ="'a multiline
List

List is an ordered sequence of items. It is one of the most used data type in Python and is
very flexible. All the items in a list do not need to be of the same type. Declaring a list is
pretty straight forward. Items separated by commas are enclosed within brackets [].

a=[1,2.2, 'python']

Lists are mutable, meaning, value of elements of a list can be altered.

Tuple

Tuple is an ordered sequence of items same as list. The only difference is that tuples are.
immutable. Tuples once created cannot be modified. Tuples are used to write-protect data
and are usually faster than list as it cannot change dynamically. It is defined within
parentheses () where items are separated by commas

t = (5,'program’, 1+3j)
Set

Set is an unordered collection of unique items. Set is defined by values separated by comma
inside braces { }. Items in a set are not ordered.

Dictionary

Dictionary is an unordered collection of key-value pairs. It is generally used when we have a
huge amount of data. Dictionaries are optimized for retrieving data. We must know the key
to retrieve the value. In Python, dictionaries are defined within braces {} with each item
being a pair in the form key: value. Key and value can be of any type.

Python knows different data types. To find the type of a variable, use the type () function:

Python 3.6.1 (v3.6.1:69c0dbS, Mar 21 2017, 17:54:52) [M5C v.1900 32 bit (Intel)]
on win32

Type "copyright", "credits" or "license()" for more information.
»>> a=10

»>»> type(a)

<class 'int'>

»>> b=10.5

»>»> type(b)

<class 'float'>

»>> €=3+4]

»>»> type(c)

<class 'complex'>

>>>a=[1, 2.2, 'python']

»>»> type(a)

<class 'list'>

»»>» t = (5,'program', 1+3j)
»>»> type(t)

<class 'tuple'>

»»> 8 = 'Hello world!

»>> type(s)

<class 'str'>

»> a= {52,314}

»>> type(a)

<class 'set'>

»»> d = {1:'value', "key':2}
»>> type(d)

<cl§ss ‘dict'>

2.8 What do you mean by an expression?

An expression represents a computation involving values, variables, and operators that, taken together,
evaluate to a value. For example, consider the following code:

y=1 # Assign 1 to variable y

radius = 1.0 # Assign 1.0 to variable radius
x=5%3/2)+3*2 # Assign the value of the expression to x
x=y+1 # Assign the addition of y and 1 to x
area = radius * radius * 3.14159 # Compute area

You can use a variable in an expression. A variable can also be used in both sides of the = operator. For
example,

x=x+1

In this assignment statement, the result of x + 1 is assigned to x. If x is 1 before the statement is executed,
then it becomes 2 after the statement is executed.

To assign a value to a variable, you must place the variable name to the left of the assignment operator.
Thus, the following statement is wrong:

I=x # Wrong

Mixed-type expression

A mixed-type expression is an expression containing operands of different type. The CPU can only
perform operations on values with the same internal representation scheme, and thus only on operands of
the same type. Operands of mixed-type expressions therefore must be converted to a common type. Values
can be converted in one of two ways—by implicit (automatic) conversion, called coercion, or by
explicit type conversion

Coercion vs. Type Conversion

Coercion is the implicit (automatic) conversion of operands to a common type. Coercion is automatically
performed on mixed-type expressions only if the operands can be safely converted, that is, if no loss of
information will result. The conversion of integer 2 to floating-point 2.0 below is a safe conversion—the
conversion of 4.5 to integer 4 is not, since the decimal digit would be lost,

a=2
b=4.5
c=a+b
2+45 — 20+45 —65 (automatic conversion of int to float)

Type conversion is the explicit conversion of operands to a specific type. Type conversion can be applied
even if loss of information results.

24+ int(45) —2+4-6
2.9 What Is an Operator? Explain different types of operators available in python.

An operator is a symbol that represents an operation that may be performed on one or more operands. For
example, the 1 symbol represents the operation of addition. An operand is a value that a given operator is
applied to, such as operands 2 and 3 in the expression 2 + 3. A unary operator operates on only one
operand, such as the negation operator in - 12. A binary operator operates on two operands, as with the
addition operator.

The different types of operators available in python are:
a) Arithmetic operators

Arithmetic operators are used to perform mathematical operations like addition, subtraction,
multiplication etc.

Operator Meaning Example
+ Add two operands or unary plus 5+2 =7
+2
- Subtract right operand from the left or unary minus 5-2=3
-2
* Multiply two operands 5*2=10
/ Divide left operand by the right one (always results into float) 5/2=2.5
% Modulus - remainder of the division of left operand by the right = 5%2=1
// Floor division - division that results into whole number 5//2=2
*x Exponent - left operand raised to the power of right 5#*2=25

b) Comparison operators

Comparison operators are used to compare values. It either returns True or False according to the
condition.

Comparison operators in Python:

Operator Meaning Example
> Greater that - True if left operand is greater than the right X>y
< Less that - True if left operand is less than the right x<y
== Equal to - True if both operands are equal X==y
I= Not equal to - True if operands are not equal x!=y
>= Greater than or equal to - True if left operand is greater than or equal to the right x>=y
<= Less than or equal to - True if left operand is less than or equal to the right X<=y

¢) Logical operators
Logical operators are the and, or, not operators.

Logical operators in Python are:

Operator Meaning Example
and True if both the operands are true x and y
or True if either of the operands is true Xory
not True if operand is false (complements the operand) not x

d) Bitwise operators

Bitwise operators act on operands as if they were string of binary digits. It operates bit by bit, hence
the name.

For example, 2 is 10 in binary and 7 is 111.
In the table below: Let x = 10 (0000 1010 in binary) and y =4 (0000 0100 in binary)

Bitwise operators in Python are:

Operator Meaning Example
& Bitwise AND x& y = 0 (0000 0000)
| Bitwise OR X |y =14 (0000 1110)
~ Bitwise NOT ~x =-11 (1111 0101)
A Bitwise XOR x Ny =14 (0000 1110)
>> Bitwise right shift x>>2 =2 (0000 0010)
<< Bitwise left shift x<<2 =40 (0010 1000

e) Assignment operators

Assignment operators are used in Python to assign values to variables.

a =10 is a simple assignment operator that assigns the value 10 on the right to the variable a on the
left. There are various compound operators in Python like a += 10 that adds to the variable and later
assigns the same. It is equivalent to a =a + 10.

Assignment operators in Python are:

Operator Example Equivalent to
= Xx=5 Xx=5

+= Xx+=35 x=x+5
-= X -= X=x-5
*= X *=5 X=x%*5
= X/=5 Xx=x/5
Y%= X %=15 x=x%35
/= X //=5 x=x//5
*ok— X *x=§ X =x ** 5
&= X &=35 x=x&5
|= xX[=5 Xx=x|5
A= x"=35 x=x"5
>>= X >>=5 X=xX>>5
<<= X <<=15 X=x<<5

) Special operators

Python language offers some special type of operators like the identity operator or the membership
operator. They are described below with examples.

e Identity operators

is and is not are the identity operators in Python. They are used to check if two values (or
variables) are located on the same part of the memory. Two variables that are equal does not
imply that they are identical.

Identity operators in Python are:
Operator Meaning Example
is True if the operands are identical (refer to the same object) x is True

isnot True if the operands are not identical (do not refer to the same object) x is not True

xl =5
yl=5
x2 ="Hello'
y2 ="Hello'
x3 =1[1,2,3]

y3=1[1,2,3]

print(x1 is not y1) # output is false
print(x2 is y2) # output is true
print(x3 is y3) # output is false

Here, we see that x1 and y1 are integers of same values, so they are equal as well as identical. Same is
the case with x2 and y2 (strings).But x3 and y3 are list. They are equal but not identical. Since list are
mutable (can be changed), interpreter locates them separately in memory although they are equal.

o Membership operators

in and not in are the membership operators in Python. They are used to test whether a value
or variable is found in a sequence (string, list, tuple, set and dictionary). In a dictionary we
can only test for presence of key, not the value.

Operator Meaning Example
in True if value/variable is found in the sequence 5inx
not in True if value/variable is not found in the sequence S5notinx

x = 'Hello world'

y = {l:'a', 2:'b'}

print('H' in x) # output is true
print(‘hello' not in x) # output is true
print(1 in y) # output is true
print(‘a' in y) # output is false

Here, 'H' is in x but 'hello' is not present in x (remember, Python is case sensitive).
Similarly, 1 is key and 'a' is the value in dictionary y. Hence, 'a' in y returns False.

2.10 Operator Precedence and Associativity
a) Operator Precedence

The combination of values, variables, operators and function calls is termed as an expression. The way
we commonly represent expressions, in which operators appear between their operands, is referred to as
infix notation. For example, the expression 4 + 3 is in infix notation since the + operator appears between
its two operands, 4 and 3. There are other ways of representing expressions called prefix and postfix
notation, in which operators are placed before and after their operands, respectively.

The expression 4 + (3 * 5) is also in infix x notation. It contains two operators, + and *. The parentheses
denote that (3 * 5) is a sub expression. Therefore, 4 and (3 * 5) are the operands of the addition operator,
and thus the overall expression evaluates to 19.70 evaluate these type of expressions there is a rule of
precedence in Python. It guides the order in which operation are carried out.

Operator precedence rule in Python:

Operators Meaning

0 Parentheses
woH Exponent
+X, -X, ~X Unary plus, Unary minus, Bitwise NOT
* 1,1, % Multiplication, Division, Floor division, Modulus
+, - Addition, Subtraction
<<, >> Bitwise shift operators
& Bitwise AND
A Bitwise XOR
Bitwise OR
=== > >= < <=, is, IS not, in, not in Comparisons, Identity, Membership operators
not Logical NOT
and Logical AND
or Logical OR

b) Operator Associativity

We can see in the above table that more than one operator exists in the same group. These operators
have the same precedence. When two operators have the same precedence, associativity helps to
determine which the order of operations.

Associativity is the order in which an expression is evaluated that has multiple operator of the same
precedence. Almost all the operators have left-to-right associativity.

For example, multiplication and floor division have the same precedence. Hence, if both of them are
present in an expression, left one is evaluates first.

Left-right associativity

print(5 * 2 // 3) # Output: 3
Shows left-right associativity
print(5 * (2//3)) # Output: 0

¢) Non associative operators

Some operators like assignment operators and comparison operators do not have associativity in
Python. There are separate rules for sequences of this kind of operator and cannot be expressed as
associativity. For example, x <y < z neither means (x <y) <z nor x < (y <z). x <y < z is equivalent
to x <y and y < z, and is evaluates from left-to-right.

2.11 Comments

Python, comments are preceded by a pound sign (#) on a line, called a line comment, or enclosed between
three consecutive single quotation marks (") on one or several lines, called a paragraph comment.

When the Python interpreter sees #, it ignores all text after # on the same line. When it sees ", it scans for
the next "' and ignores any text between the triple quotation marks. Here are examples of comments:

This program displays Welcome to Python
" This program displays Welcome to Python and
Python is fun
2.12 Indentation

Indentation matters in Python. Note that the statements are entered from the first column in the new line.
The Python interpreter will report an error if the program is typed as follows:

Display two messages
print("Welcome to Python")
print("Python is fun")

| & Python 3.6.1 Shell — O X
File Edit Shell Debug Options Window Help

Python 3.6.1 (v3.6.1:69c0dbS, Mar 21 2017, 17:54:52) [MSC v.1900 32 bit (Intel)]
on win32

Iype "copyright", "credits" or "license()" for more information.

>>> print ("Welcome to Python")

Welcome to Python

>>> print ("Welcome to Python"™)

SyntaxError: unexpected indent

>>>

Don’t put any punctuation at the end of a statement. For example, the Python interpreter will report errors
for the following code:

Display two messages
print("Welcome to Python").
print("Python is fun"),
2.13 Different types of Programming Errors
Programming errors can be categorized into three types: syntax errors, runtime errors, and logic errors.
e Syntax Errors

The most common error you will encounter are syntax errors. Like any programming language,
Python has its own syntax, and you need to write code that obeys the syntax rules. If your program
violates the rules—for example, if a quotation mark is missing or a word is misspelled—Python will
report syntax errors. Syntax errors result from errors in code construction, such as mistyping a
statement, incorrect indentation, omitting some necessary punctuation, or using an opening parenthesis
without a corresponding closing parenthesis. These errors are usually easy to detect, because Python
tells you where they are and what caused them.

o Runtime Errors

Runtime errors are errors that cause a program to terminate abnormally. They occur while a program is
running if the Python interpreter detects an operation that is impossible to carry out. Input mistakes
typically cause runtime errors. An input error occurs when the user enters a value that the program
cannot handle. For instance, if the program expects to read in a number, but instead the user enters a
string of text, this causes data-type errors to occur in the program. Another common source of runtime
errors is division by zero. This happens when the divisor is zero for integer divisions.

e Logic errors

Logic errors occur when a program does not perform the way it was intended to. Errors of this kind
occur for many different reasons. For example, suppose you wrote the program, to convert a
temperature (35 degrees) from Fahrenheit to Celsius.

Convert Fahrenheit to Celsius
print("Fahrenheit 35 is Celsius degree ")
print(5 /9 * 35 - 32)

#Output

Fahrenheit 35 is Celsius degree
-12.555555555555554

You will get Celsius —12.55 degrees, which is wrong. It should be 1.66. To get the correct result, you
need to use 5/ 9 * (35 — 32) rather than 5 / 9 * 35 — 32 in the expression. That is, you need to add
parentheses around (35 — 32) so Python will calculate that expression first before doing the division. In
Python, syntax errors are actually treated like runtime errors because they are detected by the
interpreter when the program is executed. In general, syntax and runtime errors are easy to find and
easy to correct, because Python gives indications as to where the errors came from and why they are
wrong.

