Engineering Mathematics

Third Edition

- ALGEBRA
- PLANE TRIGONOMETRY
- SPHERICAL TRIGONOMETRY
- PLANE GEOMETRY
- SOLID GEOMETRY
- ANALYTIC GEOMETRY
- RECENT BOARD EXAM QUESTIONS

NOW WITH OVER 1700 MULTIPLE-CHOICE QUESTIONS WITH DETAILED SOLUTION

by DIT GILLESANIA

Part 1 ALGEBRA & ADVANCED

BASIC LAW OF NATURAL NUMBERS

Let a, b, and c be any number.

1. Law of closure for addition: a + b

Commutative law for addition:.

$$a + b = b + a$$

Associative law for addition: a + (b + c) = (a + b) + c

Law of closure for multiplication: $a \times b$

Commutative law for multiplication $a \times b = b \times a$

6. Associative law for multiplication a(bc) = (ab)c

7. Distributive Law a(b+c)=ab+ac

BASIC LAWS OF **EQUALITY** Reflexive property

2. Symmetric property

If a = b, then b = a

Transitive property If a = b and b = c, then a = c. That is, things equal to the same thing are equal to each other.

4. If a = b and c = d, then a + c = b + d. That is, if equals are added to equals, the results are equal.

5. If a = b and c = d, then ac = bd. That is, if equals are multiplied to equals, the results are equal.

Algebra and Advanced Math

INEQUALITY

A statement that one quantity is greater than or less than another quantity

Symbols used in inequality

a is greater than b a > b*a* is less than *b* a < b

a is less than or equal to b $a \leq b$

a is greater than or equal to b $a \ge b$

Theorems on Inequalities

1. a > b if and only if -a < -b

2. If a > 0, then -a < 0

3. If -a < 0, then a < 0

4. If a > b, c < 0, then ac < bc

5. If a > b, c > d, then (a + c) > (b + d)
6. If a > b, c > d, and a, b, c, d > 0, then ac > bd

7. If a > 0, b > 0, a > b, then $\frac{1}{a} < \frac{1}{b}$

OTHER **IMPORTANT PROPERTIES IN ALGEBRA**

1.
$$a \times 0 = 0$$

2. If $a \times b = 0$, then either a = or b = 0 or both a and b

$$3. \quad \frac{0}{a} = 0 \text{ if } a \neq 0$$

4.
$$\frac{a}{0}$$
 = undefined

$$5. \frac{a}{\infty} = 0$$

LAWS OF **EXPONENTS** (INDEX LAW)

1.
$$a^n = a \times a \times a \dots (n \text{ factors})$$

$$2. \ a^m \times a^n = a^{m+n}$$

3.
$$\frac{a^m}{a^n} = a^{m-n}$$

$$4. \quad (a^m)^n = a^{mn}$$

5.
$$(abc)^n = a^n b^n c^n$$

$$6. \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

$$7. \quad a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

8.
$$a^{-m} = \frac{1}{a^m}$$
 and $\frac{1}{a^{-m}} = a^m$

9.
$$a^0 = 1$$

10. If
$$a^m = a^n$$
, then $m = n$ (provided $a \neq 0$)

PROPERILES OF RADICALS

$$1. \ a^{\frac{1}{n}} = \sqrt[n]{a}$$

2.
$$a^{\frac{m}{n}} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m$$

3. $(\sqrt[n]{a})^n = a$

3.
$$(\sqrt[n]{a})^n = a$$

$$4. \ \sqrt[n]{a} \times \sqrt[n]{b} = \sqrt[n]{ab}$$

5.
$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$$
 provided that $b \neq 0$

PROPERTIES OF LOGARITHM

1.
$$\log_a MN = \log_a M + \log_a N$$

$$2. \quad \log_a \frac{M}{N} = \log_a M - \log_a N$$

3.
$$\log_a M^n = n \log_a M$$

4.
$$\log_a a = 1$$

$$5. \quad \log_a a^x = x \log_a a = x$$

6.
$$\log_a 1 = 0$$

7. If
$$\log_a M = N$$
, then $a^N = M$

8. If
$$\log_a M = \log_a N$$
, then $M = N$

9.
$$\log_e M = \ln M$$

 $e = 2.71828...$ (Naperian logarithm)

10.
$$\log_{10} M = \log M$$
 (Common logarithm)

11.
$$\log_n M = \log M / \log n = \ln M / \ln n$$

12. If
$$\log_b x = a$$
 then $x = \text{antilog}_b a$

13.
$$a^x = \text{antilog}_a x$$

14.
$$\log_{10} 4250 = \log_{10} (1000 \times 4.25)$$

= $\log 1000 + \log 4.25$
 $\log_{10} 4250 = 3 + 0.6284 = 3.6284$

3, the integral part, is called the characteristic 0.6284, a non-negative decimal fraction part, is called the mantissa

POLYNOMIALS

Expanding **Brackets**

By multiplying two brackets together, each term in one bracket is multiplied by each term of the other bracket.

$$(a + b + c)(d + e) = ad + ae + bd + be + cd + ce$$

Factorization

Factorization is the opposite process of expanding brackets. The usual process includes changing a long expression without any brackets to a shorter expression that includes brackets.

$$2x^2 - 6x + 4 = 2(x^2 - 3x + 2) = 2(x - 2)(x - 1)$$

Special Products and Factoring

1.
$$(x + y)(x - y) = x^2 - y^2$$

2. $(x + y)^2 = x^2 + 2xy + y^2$

3.
$$(x - y)^2 = x^2 - 2xy + y^2$$

4.
$$(x + y + z)^2 = x^2 + y^2 + z^2 + 2xy + 2xz + 2yz$$

5.
$$x^3 + y^3 = (x + y)(x^2 - xy + y^2)$$

6. $x^3 - y^3 = (x - y)(x^2 + xy + y^2)$

7.
$$x^6 - y^6 = (x^2)^3 - (y^2)^3 = (x^2 - y^2)[(x^2)^2 + (x^2)(y^2) + (y^2)^2]$$

= $(x + y)(x - y)(x^4 + x^2 y^2 + y^4)$

Division of Polynomials

Carrying out the division of polynomials is no different, in principle, to numerical division. Consider the following example.

Example

Divide
$$x^4 - 10x^2 - 9x - 20$$
 by $x - 4$.

Solution A

By long division

Solution B

BY SYNTHETIC DIVISION

Write the coefficients of the terms, supplying zero as the coefficient of the missing power of x.

The quotient is $x^3 + 4x^2 + 6x + 15$ remainder 40

Factor Theorem

Consider a function f(x). If f(1) = 0 then (x - 1) is a factor of f(x). If f(-3) = 0 then (x + 3) is a factor of f(x). Use of factor theorem can produce the factors of an expression in a *trial and error* manner.

Example

Factorize $2x^3 + 5x^2 - x - 6$

Solution

$$f(x) = 2x^3 + 5x^2 - x - 6$$

$$f(1) = 2(1)^3 + 5(1)^2 - (1) - 6 = 0$$
,
hence $(x - 1)$ is a factor

$$f(-1) = 2(-1)^3 + 5(-1)^2 - (-1) - 6 = -2$$
,
hence $(x + 1)$ is not a factor

$$f(2) = 2(2)^3 + 5(2)^2 - (2) - 6 = 28$$
,
hence $(x - 2)$ is not a factor

$$f(-2) = 2(-2)^3 + 5(-2)^2 - (-2) - 6 = 0$$
,
hence $(x + 2)$ is a factor

$$f(-3/2) = 2(-3/2)^3 + 5(-3/2)^2 - (-3/2) - 6 = 0$$
,
hence $2x + 3$ is a factor.

Thus,
$$2x^3 + 5x^2 - x - 6 = (x - 1)(x + 2)(2x + 3)$$

Remainder 4

If a polynomial f(x) is divided by (x - r) until a remainder which is free of x is obtained, the remainder is f(r). If f(r) = 0 then (x - r) is a factor of f(x).

Example

Find the remainder when $x^4 - 10x^2 - 9x - 20$ is divided by x - 4.

Solution

$$f(x) = x^4 - 10x^2 - 9x - 20$$

$$x - r = x - 4$$

$$r = 4$$
Remainder = $f(4) = 4^4 - 10(4)^2 - 9(4) - 20$
Remainder = 40

Example

Find k such that x - 3 is a factor of $kx^3 - 6x^2 + 2kx - 12$.

Solution

Remainder = $f(3) = k(3)^3 - 6(3)^2 + 2k(3) - 12 = 0$ k = 2

BINOMIAL OF

Expansion of $(a+b)^n$

Properties

- 1. The number of terms in the expansion n + 1,
- 2. The first term is a^n & the last term is b^n ,
- 3. The exponent of a descends linearly from n to 0,

- 4. The exponent of b ascends linearly from 0 to n,
- 5. The sum of the exponents of a and b in any of the terms is equal to n,
- 6. The coefficient of the second term and the second from the last term is n,

Pascal's Triangle

Used to determine the coefficients of the terms in a binomial expansion.

$$r^{th}$$
 term of $(a + b)^n$

$$r^{\text{th}}$$
 term = $\frac{n!}{(n-r+1)!(r-1)!} a^{n-r+1} b^{r-1}$

To get the middle term (for even value of n),

$$set r = \frac{n}{2} + 1$$

Example

Find the 3^{rd} term in the expansion of $(x^2 + y)^5$.

Solution A

Using the properties and Pascal's triangle:

$$(x^2 + y)^5 = (x^2)^5 + 5(x^2)^4 y + 10(x^2)^3 y^2$$

= $x^{10} + 5x^8 y + 10x^6 y^2$

Solution B

Using the formula:

rth term =
$$\frac{n!}{(n-r+1)!(r-1)!} a^{n-r+1} b^{r-1}$$

$$r = 3 \qquad n = 5$$

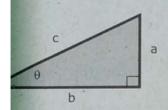
$$a = x^2 \qquad b = y$$

$$3^{\text{rd term}} = \frac{5!}{(5-3+1)!(3-1)!} (x^2)^{5-3+1} (y)^{3-1}$$
$$= 10 x^6 y^2$$

Part 2 PLANE & SPHERICAL RIGONOMETRY

Plane Trigonometry

INCTIONS
A RIGHT
RIANGLE



From the right triangle shown: (soh-cah-toa)

$$\sin \theta = \frac{opposite side}{hypotenuse} = \frac{a}{c}$$
 (soh)

$$\cos \theta = \frac{adjacentside}{hypotenuse} = \frac{b}{c}$$
 (cah)

$$\tan \theta = \frac{opposite side}{adjacent side} = \frac{a}{b}$$
 (toa)

$$\cot \theta = \frac{adjacent side}{opposite side} = \frac{b}{a}$$
 (tao)

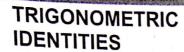
$$\sec \theta = \frac{hypotenuse}{adjacent side} = \frac{c}{b}$$
 (cha)

$$\csc \theta = \frac{hypotenuse}{opposite} = \frac{c}{a}$$
 (sho)

thagorean eorem "In any right triangle, the square of the longest side (hypotenuse) equals the sum of the squares of the other two sides".

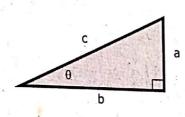
From the right triangle shown above:

$$c^2 = a^2 + b^2$$



Identity is a type of equation which is satisfied with any value of the variable or variables. Equations that are satisfied by some value or values of the variable are called *conditional equation*. Consider the following equations:

Basic Identities



From the right triangle shown:

$$\tan \theta = \frac{a}{b} = \frac{a/c}{b/c} = \frac{\sin \theta}{\cos \theta}$$

$$\cot \theta = \frac{b}{a} = \frac{b/c}{a/c} = \frac{\cos \theta}{\sin \theta}$$

$$\sec \theta = \frac{c}{b} = \frac{c/c}{b/c} = \frac{1}{\cos \theta}$$

$$\csc \theta = \frac{c}{a} = \frac{c/c}{a/c} = \frac{1}{\sin \theta}$$

Pythagorean Relations

de

From the Pythagorean theorem:

$$a^2 + b^2 = c^2$$

dividing both side by c^2 :

$$\frac{a^2}{c^2} + \frac{b^2}{c^2} = \frac{c^2}{c^2} \quad \text{or} \quad \left(\frac{a}{c}\right)^2 + \left(\frac{b}{c}\right)^2 = 1$$
then:

$$\sin^2\theta + \cos^2\theta = 1$$

Dividing
$$a^2 + b^2 = c^2$$
 by b^2 we get,

$$\tan^2\theta + 1 = \sec^2\theta$$

Dividing $a^2 + b^2 = c^2$ by a^2 we get,

$$1 + \cot^2 \theta = \csc^2 \theta$$

Sum and Difference of Two Angles

$$\sin(x + y) = \sin x \cos y + \cos x \sin y$$

$$\sin(x - y) = \sin x \cos y - \cos x \sin y$$

$$\cos(x + y) = \cos x \cos y - \sin x \sin y$$

$$\cos(x - y) = \cos x \cos y + \sin x \sin y$$

$$\tan(x + y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$$

$$\tan(x - y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$

Double Angle Formulas Double angle formulas can be derived using the sum of angle formulas.

Consider the following example:

$$\sin 2x = \sin (x + x) = \sin x \cos x + \cos x \sin x$$

Thus;

$$\sin 2x = 2\sin x \cos x$$

We ca apply similar procedure to the rest of the formulas.

$$\cos 2x = \cos^2 x - \sin^2 x$$

$$= 1 - 2\sin^2 x$$

$$= 2\cos^2 x - 1$$

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$$

Half-Angle Formulas The half-angle formulas may be derived from the following relations from double angle formula: $\cos 2x = 1 - 2 \sin^2 x$

$$\sin x = \sqrt{\frac{1 - \cos 2x}{2}}$$
Let $2x = \theta$, then $x = \frac{\theta}{2}$
then $\sin \frac{\theta}{2} = \sqrt{\frac{1 - \cos \theta}{2}}$

Applying similar procedure, the following formulas can be derived:

$$\cos\left(\frac{\theta}{2}\right) = \sqrt{\frac{1 + \cos\theta}{2}}$$

$$\tan\left(\frac{\theta}{2}\right) = \frac{1 - \cos\theta}{\sin\theta}$$

$$= \frac{\sin\theta}{1 + \cos\theta}$$

$$= \sqrt{\frac{1 - \cos\theta}{1 + \cos\theta}}$$

Powers of Functions

$$\sin^2 x = \frac{1 - \cos 2x}{2}$$
$$\cos^2 x = \frac{1 + \cos 2x}{2}$$
$$\tan^2 x = \frac{1 - \cos 2x}{1 + \cos 2x}$$

Product of Functions

$$\sin x \cos y = \frac{1}{2} [\sin (x + y) + \sin (x - y)]$$

$$\sin x \sin y = \frac{1}{2} [\cos (x - y) - \cos (x + y)]$$

$$\cos x \cos y = \frac{1}{2} [\cos (x + y) + \cos (x - y)]$$

Sum and Difference of Functions (Factoring Formulas)

$$\sin x + \sin y = 2 \sin \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)$$

$$\sin x - \sin y = 2 \cos \left(\frac{x+y}{2}\right) \sin \left(\frac{x-y}{2}\right)$$

$$\cos x + \cos y = 2 \cos \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)$$

$$\cos x - \cos y = -2 \sin \left(\frac{x+y}{2}\right) \sin \left(\frac{x-y}{2}\right)$$

$$\tan x + \tan y = \frac{\sin(x+y)}{\cos x \cos y}$$

$$\tan x - \tan y = \frac{\sin(x-y)}{\cos x \cos y}$$