
Python Keywords and Identifiers

Keywords are the reserved words in Python.

We cannot use a keyword as a variable name, function name or any other
identifier. They are used to define the syntax and structure of the Python language.

In Python, keywords are case sensitive.

There are 33 keywords in Python 3.7. This number can vary slightly in the course
of time.

All the keywords except True, False and None are in lowercase and they must be
written as it is. The list of all the keywords is given below.

False class finally is return

None continue for lambda try

True def from nonlocal while

and del global not with

as elif if or yield

assert else import pass

break except in raise

Keywords in Python

Python Identifiers

An identifier is a name given to entities like class, functions, variables, etc. It helps
to differentiate one entity from another.

https://www.programiz.com/python-programming/variables-datatypes
https://www.programiz.com/python-programming/function

Rules for writing identifiers
1. Identifiers can be a combination of letters in lowercase (a to z) or

uppercase (A to Z) or digits (0 to 9) or an underscore _. Names
like myClass, var_1 and print_this_to_screen, all are valid example.

2. An identifier cannot start with a digit. 1variable is invalid, but variable1 is
perfectly fine.

3. Keywords cannot be used as identifiers.
a.
b. >>> global = 1
c. File "<interactive input>", line 1
d. global = 1
e. ^
f. SyntaxError: invalid syntax

4. We cannot use special symbols like !, @, #, $, % etc. in our identifier.
a.
b. >>> a@ = 0
c. File "<interactive input>", line 1
d. a@ = 0
e. ^
f. SyntaxError: invalid syntax

5. Identifier can be of any length.

Things to Remember
Python is a case-sensitive language. This means, Variable and variable are not the
same. Always name identifiers that make sense.
While, c = 10 is valid. Writing count = 10 would make more sense and it would be
easier to figure out what it does even when you look at your code after a long gap.
Multiple words can be separated using an underscore, this_is_a_long_variable.

Python Statement, Indentation and Comments

In this article, you will learn about Python statements, why indentation is
important and use of comments in programming.

Python Statement

Instructions that a Python interpreter can execute are called statements. For
example, a = 1is an assignment

statement. if statement, for statement, while statement etc. are other kinds of
statements which will be discussed later.
Multi-line statement

In Python, end of a statement is marked by a newline character. But we can make a
statement extend over multiple lines with the line continuation character (\). For
example:

1. a = 1 + 2 + 3 + \
2. 4 + 5 + 6 + \
3. 7 + 8 + 9

This is explicit line continuation. In Python, line continuation is implied inside
parentheses (), brackets [] and braces { }. For instance, we can implement the
above multi-line statement as

1. a = (1 + 2 + 3 +
2. 4 + 5 + 6 +
3. 7 + 8 + 9)

Here, the surrounding parentheses () do the line continuation implicitly. Same is
the case with [] and { }. For example:

1. colors = ['red',
2. 'blue',
3. 'green']

We could also put multiple statements in a single line using semicolons, as follows

1. a = 1; b = 2; c = 3

Python Indentation

Most of the programming languages like C, C++, Java use braces { } to define a
block of code. Python uses indentation.

A code block (body of a function, loop etc.) starts with indentation and ends with
the first unindented line. The amount of indentation is up to you, but it must be
consistent throughout that block.

Generally four whitespaces are used for indentation and is preferred over tabs.
Here is an example.

 script.py
 IPython Shell


1
2
3
4
for i in range(1,11):
 print(i)
 if i == 5:
 break

Python Indentation

Most of the programming languages like C, C++, Java use braces { } to
define a block of code. Python uses indentation.

A code block (body of a function, loop etc.) starts with indentation and ends
with the first unindented line. The amount of indentation is up to you, but it
must be consistent throughout that block.

Generally four whitespaces are used for indentation and is preferred over
tabs. Here is an example.

 script.py
 IPython Shell


https://www.programiz.com/python-programming/statement-indentation-comments
https://www.programiz.com/python-programming/statement-indentation-comments
https://www.programiz.com/python-programming/function
https://www.programiz.com/python-programming/for-loop
https://www.programiz.com/python-programming/statement-indentation-comments
https://www.programiz.com/python-programming/statement-indentation-comments
https://www.programiz.com/python-programming/for-loop
https://www.programiz.com/python-programming/function

1

2

3

4

for i in range(1,11):

 print(i)

 if i == 5:

 break

Run

Powered by DataCamp

The enforcement of indentation in Python makes the code look neat and
clean. This results into Python programs that look similar and consistent.

Indentation can be ignored in line continuation. But it's a good idea to
always indent. It makes the code more readable. For example:

1. if True:
2. print('Hello')
3. a = 5

and

1. if True: print('Hello'); a = 5

both are valid and do the same thing. But the former style is clearer.

https://www.datacamp.com/

Incorrect indentation will result into IndentationError.

Python Comments

Comments are very important while writing a program. It describes what's
going on inside a program so that a person looking at the source code does
not have a hard time figuring it out. You might forget the key details of the
program you just wrote in a month's time. So taking time to explain these
concepts in form of comments is always fruitful.

In Python, we use the hash (#) symbol to start writing a comment.

It extends up to the newline character. Comments are for programmers for
better understanding of a program. Python Interpreter ignores comment.

1. #This is a comment
2. #print out Hello
3. print('Hello')
Multi-line comments

If we have comments that extend multiple lines, one way of doing it is to
use hash (#) in the beginning of each line. For example:

1. #This is a long comment
2. #and it extends
3. #to multiple lines
Another way of doing this is to use triple quotes, either ''' or """.

These triple quotes are generally used for multi-line strings. But they can
be used as multi-line comment as well. Unless they are not docstrings, they
do not generate any extra code.

1. """This is also a
2. perfect example of
3. multi-line comments"""
Docstring in Python

Docstring is short for documentation string.

It is a string that occurs as the first statement in a module, function, class,
or method definition. We must write what a function/class does in the
docstring.

Triple quotes are used while writing docstrings. For example:

 script.py
 IPython Shell


1

2

3

def double(num):

 """Function to double the value"""

 return 2*num

Run

Powered by DataCamp

Docstring is available to us as the attribute __doc__ of the function. Issue
the following code in shell once you run the above program.
1. >>> print(double.__doc__)
2. Function to double the value

https://www.datacamp.com/
https://www.programiz.com/python-programming/statement-indentation-comments
https://www.programiz.com/python-programming/statement-indentation-comments
https://www.programiz.com/python-programming/string

A code block (body of a function, loop etc.) starts with indentation and ends with
the first unindented line. The amount of indentation is up to you, but it must be
consistent throughout that block.

Generally four whitespaces are used for indentation and is preferred over tabs.
Here is an example.

 script.py
 IPython Shell


1

2

3

4

for i in range(1,11):

 print(i)

 if i == 5:

 break

Run

Powered by DataCamp

Python Variables, Constants and Literals

In this article, you will learn about Python variables, constants, literals
and their use cases.

Python Variables

https://www.datacamp.com/
https://www.programiz.com/python-programming/statement-indentation-comments
https://www.programiz.com/python-programming/statement-indentation-comments
https://www.programiz.com/python-programming/function
https://www.programiz.com/python-programming/for-loop

A variable is a named location used to store data in the memory. It is
helpful to think of variables as a container that holds data which can be
changed later throughout programming. For example,

1. number = 10
Here, we have created a named number. We have assigned value 10 to the
variable.

You can think variable as a bag to store books in it and those books can be
replaced at any time.

1. number = 10
2. number = 1.1
Initially, the value of number was 10. Later it's changed to 1.1.

Note: In Python, we don't assign values to the variables, whereas Python
gives the reference of the object (value) to the variable.

Assigning a value to a Variable in Python
As you can see from the above example, you can use the assignment
operator = to assign a value to a variable.
Example 1: Declaring and assigning a value to a variable

 script.py
 IPython Shell


1

2

website = "apple.com"

print(website)

Run

https://www.programiz.com/python-programming/variables-constants-literals
https://www.programiz.com/python-programming/variables-constants-literals

Powered by DataCamp

When you run the program, the output will be:

apple.com

In the above program, we assigned a value apple.com to the
variable website. Then we print the value assigned
to website i.e. apple.com
Note : Python is a type inferred language; it can automatically
know apple.com is a string and declare website as a string.

Example 2: Changing the value of a variable
 script.py
 IPython Shell


1

2

3

4

5

6

7

website = "apple.com"

print(website)

assigning a new variable to website

https://en.wikipedia.org/wiki/Type_inference
https://www.datacamp.com/
https://www.programiz.com/python-programming/variables-constants-literals
https://www.programiz.com/python-programming/variables-constants-literals

website = "programiz.com"

print(website)

Run

Powered by DataCamp

When you run the program, the output will be:

apple.com
programiz.com

In the above program, we have assigned apple.com to
the website variable initially. Then, it's value is changed
to programiz.com.

Example 3: Assigning multiple values to multiple variables
 script.py
 IPython Shell


1

2

3

4

5

a, b, c = 5, 3.2, "Hello"

print (a)

https://www.datacamp.com/
https://www.programiz.com/python-programming/variables-constants-literals
https://www.programiz.com/python-programming/variables-constants-literals

print (b)

print (c)

Run

Powered by DataCamp

If we want to assign the same value to multiple variables at once, we can
do this as

 script.py
 IPython Shell


1

2

3

4

5

x = y = z = "same"

print (x)

print (y)

print (z)

Run

Powered by DataCamp

https://www.datacamp.com/
https://www.datacamp.com/
https://www.programiz.com/python-programming/variables-constants-literals
https://www.programiz.com/python-programming/variables-constants-literals

The second program assigns the same string to all the three
variables x, y and z.

Constants

A constant is a type of variable whose value cannot be changed. It is
helpful to think of constants as containers that hold information which
cannot be changed later.

Non technically, you can think of constant as a bag to store some books
and those books cannot be replaced once placed inside the bag.

Assigning value to a constant in Python

In Python, constants are usually declared and assigned on a module. Here,
the module means a new file containing variables, functions etc which is
imported to main file. Inside the module, constants are written in all capital
letters and underscores separating the words.

Example 3: Declaring and assigning value to a constant

Create a constant.py

1. PI = 3.14
2. GRAVITY = 9.8

Create a main.py

1. import constant
2.
3. print(constant.PI)
4. print(constant.GRAVITY)

When you run the program, the output will be:

3.14
9.8

Rules and Naming convention for variables and constants

1. Create a name that makes sense. Suppose, vowel makes more
sense than v.

2. Use camelCase notation to declare a variable. It starts with lowercase
letter. For example:

3. myName

4. myAge

myAddress

5. Use capital letters where possible to declare a constant. For example:

6. PI

7. G

8. MASS

TEMP

9. Never use special symbols like !, @, #, $, %, etc.
10. Don't start name with a digit.
11. Constants are put into Python modules and meant not be changed.
12. Constant and variable names should have combination of letters in

lowercase (a to z) or uppercase (A to Z) or digits (0 to 9) or an underscore
(_). For example:

13. snake_case

14. MACRO_CASE

15. camelCase

CapWords

Literals

Literal is a raw data given in a variable or constant. In Python, there are
various types of literals they are as follows:

Numeric Literals

Numeric Literals are immutable (unchangeable). Numeric literals can
belong to 3 different numerical types Integer, Float and Complex.

Example 4: How to use Numeric literals in Python?

 script.py
 IPython Shell


1

2

3

4

https://www.programiz.com/python-programming/variables-constants-literals
https://www.programiz.com/python-programming/variables-constants-literals

5

6

7

8

9

10

11

12

13

14

15

a = 0b1010 #Binary Literals

b = 100 #Decimal Literal

c = 0o310 #Octal Literal

d = 0x12c #Hexadecimal Literal

#Float Literal

float_1 = 10.5

float_2 = 1.5e2

#Complex Literal

x = 3.14j

print(a, b, c, d)

print(float_1, float_2)

print(x, x.imag, x.real)

Run

Powered by DataCamp

When you run the program, the output will be:

10 100 200 300
10.5 150.0
3.14j 3.14 0.0

In the above program,

 We assigned integer literals into different variables. Here, a is binary
literal, b is a decimal literal, c is an octal literal and d is a hexadecimal
literal.

 When we print the variables, all the literals are converted into decimal
values.

 10.5 and 1.5e2 are floating point literals. 1.5e2 is expressed with
exponential and is equivalent to 1.5 * 102.

 We assigned a complex literal i.e 3.14j in variable x. Then we use
imaginary literal (x.imag) and real literal (x.real) to create imaginary and
real part of complex number.
To learn more about Numeric Literals, refer Python Numbers.

String literals

A string literal is a sequence of characters surrounded by quotes. We can
use both single, double or triple quotes for a string. And, a character literal
is a single character surrounded by single or double quotes.

Example 7: How to use string literals in Python?

 script.py
 IPython Shell


https://www.programiz.com/python-programming/numbers
https://www.datacamp.com/
https://www.programiz.com/python-programming/variables-constants-literals
https://www.programiz.com/python-programming/variables-constants-literals

fruits = ["apple", "mango", "orange"] #list

numbers = (1, 2, 3) #tuple

alphabets = {'a':'apple', 'b':'ball', 'c':'cat'} #dictionary

vowels = {'a', 'e', 'i' , 'o', 'u'} #set

print(fruits)

print(numbers)

print(alphabets)

print(vowels)

strings = "This is Python"

char = "C"

multiline_str = """This is a multiline string with more than
one line code."""

unicode = u"\u00dcnic\u00f6de"

raw_str = r"raw \n string"

print(strings)

print(char)

print(multiline_str)

print(unicode)

print(raw_str)

Run

Powered by DataCamp

https://www.datacamp.com/

When you run the program, the output will be:

This is Python
C
This is a multiline string with more than one line
code.
Ünicöde
raw \n string

In the above program, This is Python is a string literal and C is a
character literal. The value with triple-quote """ assigned in
the multiline_str is multi-line string literal.
The u"\u00dcnic\u00f6de" is a unicode literal which supports characters
other than English and r"raw \n string" is a raw string literal.

Boolean literals
A Boolean literal can have any of the two values: True or False.

Example 8: How to use boolean literals in Python?

 script.py
 IPython Shell


1

2

3

4

5

6

https://www.programiz.com/python-programming/variables-constants-literals
https://www.programiz.com/python-programming/variables-constants-literals

7

8

9

x = (1 == True)

y = (1 == False)

a = True + 4

b = False + 10

print("x is", x)

print("y is", y)

print("a:", a)

print("b:", b)

Run

Powered by DataCamp

When you run the program, the output will be:

x is True
y is False
a: 5
b: 10

In the above program, we use boolean literal True and False. In
Python, True represents the value as 1 and False as 0. The value
of x is True because 1 is equal to True. And, the value
of y is False because 1 is not equal to False.
Similarly, we can use the True and False in numeric expressions as the
value. The value of a is 5 because we add True which has value
of 1 with 4. Similarly, b is 10 because we add the False having value
of 0 with 10.

https://www.datacamp.com/

When you run the program, the output will be:

Available
None

In the above program, we define a menu function. Inside menu, when we set
parameter as drink then, it displays Available. And, when the parameter
is food, it displays None.

Literal Collections

There are four different literal collections List literals, Tuple literals, Dict
literals, and Set literals.

Example 10: How to use literals collections in Python?

 script.py
 IPython Shell


1

2

3

4

5

6

7

8

9

https://www.programiz.com/python-programming/variables-constants-literals
https://www.programiz.com/python-programming/variables-constants-literals

fruits = ["apple", "mango", "orange"] #list

numbers = (1, 2, 3) #tuple

alphabets = {'a':'apple', 'b':'ball', 'c':'cat'} #dictionary

vowels = {'a', 'e', 'i' , 'o', 'u'} #set

print(fruits)

print(numbers)

print(alphabets)

print(vowels)

Run

Powered by DataCamp

When you run the program, the output will be:

['apple', 'mango', 'orange']
(1, 2, 3)
{'a': 'apple', 'b': 'ball', 'c': 'cat'}
{'e', 'a', 'o', 'i', 'u'}

In the above program, we created a list of fruits, tuple of numbers,
dictionary dict having values with keys desginated to each value and set
of vowels.
To learn more about literal collections, refer Python Data Types.

https://www.programiz.com/python-programming/variables-datatypes
https://www.datacamp.com/

	Python Keywords and Identifiers
	Python Identifiers
	Rules for writing identifiers
	Things to Remember

	Python Statement, Indentation and Comments
	Python Statement
	Multi-line statement

	Python Indentation
	Python Indentation
	Python Comments
	Multi-line comments
	Docstring in Python

	Python Variables, Constants and Literals
	Python Variables
	Assigning a value to a Variable in Python

	Constants
	Assigning value to a constant in Python
	Example 3: Declaring and assigning value to a constant

	Rules and Naming convention for variables and constants
	Literals
	Numeric Literals
	Example 4: How to use Numeric literals in Python?

	String literals
	Example 7: How to use string literals in Python?

	Boolean literals
	Example 8: How to use boolean literals in Python?

	Literal Collections
	Example 10: How to use literals collections in Python?

