
Lecture Notes in Computer Science 2716
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Tokyo

Michael J. Voss (Ed.)

OpenMP
Shared Memory
Parallel Programming

International Workshop on OpenMP
Applications and Tools, WOMPAT 2003
Toronto, Canada, June 26-27, 2003
Proceedings

1 3

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editor

Michael J. Voss
University of Toronto
Edward S. Rogers Sr. Department of Electrical and Computer Engineering
10 King’s College Road, Toronto, Ontario, M5S 3G4 Canada
E-mail: voss@eecg.toronto.edu

Cataloging-in-Publication Data applied for

A catalog record for this book is available from the Library of Congress

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie;
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

CR Subject Classification (1998): C.1-4, D.1-4, F.1-3, G.1-2

ISSN 0302-9743
ISBN 3-540-40435-X Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2003
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Christian Grosche, Hamburg
Printed on acid-free paper SPIN: 10928813 06/3142 5 4 3 2 1 0

Preface

This book contains the proceedings of the Workshop on OpenMP Applications
and Tools, WOMPAT 2003. WOMPAT 2003 was held on June 26 and 27, 2003
in Toronto, Canada. The workshop brought together the users and developers
of the OpenMP API to meet, share ideas and experiences, and to discuss the
latest developments in OpenMP and its applications.

The OpenMP API is now a widely accepted standard for high-level shared-
memory parallel programming. Since its introduction in 1997, OpenMP has
gained support from the majority of high-performance compiler and hardware
vendors.WOMPAT 2003 was the latest in a series of OpenMP-related workshops,
which have included the annual offerings of the Workshop on OpenMP Applica-
tions and Tools (WOMPAT), the European Workshop on OpenMP (EWOMP)
and the Workshop on OpenMP: Experiences and Implementations (WOMPEI).

The WOMPAT 2003 program committee formally solicited papers. Extended
abstracts were submitted by authors and all abstracts were reviewed by three
members of the program committee. Of the 17 submitted abstracts, 15 were
selected for presentation at the workshop. This book was published in time to
be available at WOMPAT 2003, and therefore we hope that the papers contained
herein are timely and useful for current developers and researchers.

This book also contains selected papers from WOMPAT 2002. No formal
proceedings had been created for this previous offering of the workshop, and
so presenters were invited to prepare their papers for inclusion in this volume.
WOMPAT 2002 was held on August 5–7, 2002 at the Arctic Region Supercom-
puting Center at the University of Alaska, Fairbanks.

Sponsors

WOMPAT 2003 was cosponsored by the OpenMP Architecture Review Board
(ARB), the OpenMP users group cOMPunity, the Intel Corporation, and the
Edward S. Rogers Sr. Department of Electrical and Computer Engineering at
the University of Toronto.

WOMPAT 2002 was cosponsored by the OpenMP Architecture Review Board
(ARB), the OpenMP users group cOMPunity, and the Arctic Region Supercom-
puting Center at the University of Alaska, Fairbanks.

June 2003 Michael J. Voss

VI Preface

Organization

WOMPAT 2003 Program Committee

Michael J. Voss, University of Toronto, Canada (Workshop Chair)

Eduard Ayguade, Univ. Politecnica de Catalunya, Spain
Bob Blainey, IBM Toronto Laboratory, Canada

Mark Bull, University of Edinburgh, UK
Barbara Chapman, University of Houston, USA
Rudolf Eigenmann, Purdue University, USA
Timothy Mattson, Intel Corporation, USA

Mitsuhisa Sato, University of Tsukuba, Japan
Sanjiv Shah, KSL, Intel Corporation, USA

WOMPAT 2002 Program Committee

Guy Robinson, University of Fairbanks, USA (Workshop Chair)

Barbara Chapman, University of Houston, USA
Daniel Duffy, US Army Engineer Research and Development Center, USA

Rudolf Eigenmann, Purdue University, USA
Timothy Mattson, Intel Corporation, USA
Sanjiv Shah, KSL, Intel Corporation, USA

Table of Contents

Tools and Tool Technology I

OpenMP Support in the Intel r© Thread Checker . 1
Paul Petersen, Sanjiv Shah

A C++ Infrastructure for Automatic Introduction and Translation of
OpenMP Directives . 13

Dan Quinlan, Markus Schordan, Qing Yi, Bronis R. de Supinski

Analyses for the Translation of OpenMP Codes into SPMD Style with
Array Privatization . 26

Zhenying Liu, Barbara Chapman, Yi Wen, Lei Huang,
Tien-Hsiung Weng, Oscar Hernandez

A Runtime Optimization System for OpenMP . 42
Mihai Burcea, Michael J. Voss

OpenMP Implementations

A Practical OpenMP Compiler for System on Chips . 54
Feng Liu, Vipin Chaudhary

Evaluation of OpenMP for the Cyclops Multithreaded Architecture 69
George Almasi, Eduard Ayguadé, Călin Caşcaval, José Castaños,
Jesús Labarta, Francisco Mart́ınez, Xavier Martorell, José Moreira

Busy-Wait Barrier Synchronization Using Distributed Counters with Local
Sensor . 84

Guansong Zhang, Francisco Mart́ınez, Arie Tal, Bob Blainey

OpenMP Experience

An OpenMP Implementation of Parallel FFT and Its Performance on
IA-64 Processors . 99

Daisuke Takahashi, Mitsuhisa Sato, Taisuke Boku

OpenMP and Compilation Issues in Embedded Applications 109
Jaegeun Oh, Seon Wook Kim, Chulwoo Kim

Parallelizing Parallel Rollout Algorithm for Solving Markov Decision
Processes . 122

Seon Wook Kim, Hyeong Soo Chang

VIII Table of Contents

Tools and Tool Technology II

DMPL: An OpenMP DLL Debugging Interface . 137
James Cownie, John DelSignore, Jr., Bronis R. de Supinski,
Karen Warren

Is the Schedule Clause Really Necessary in OpenMP? . 147
Eduard Ayguadé, Bob Blainey, Alejandro Duran, Jesús Labarta,
Francisco Mart́ınez, Xavier Martorell, Raúl Silvera

Extended Overhead Analysis for OpenMP Performance Tuning 160
Chen Yongjian, Wang Dingxing, Zheng Weimin

OpenMP on Clusters

Supporting Realistic OpenMP Applications on a Commodity Cluster
of Workstations .170

Seung Jai Min, Ayon Basumallik, Rudolf Eigenmann

OpenMP Runtime Support for Clusters of Multiprocessors 180
Panagiotis E. Hadjidoukas, Eleftherios D. Polychronopoulos,
Theodore S. Papatheodorou

Selected Papers from WOMPAT 2002

An Evaluation of MPI and OpenMP Paradigms for Multi-Dimensional
Data Remapping . 195

Yun He, Chris H.Q. Ding

Experiences Using OpenMP Based on Compiler Directed Software DSM
on a PC Cluster . 211

Matthias Hess, Gabriele Jost, Matthias Müller, Roland Rühle

Managing C++ OpenMP Code and Its Exception Handling227
Shi-Jung Kao

Improving the Performance of OpenMP by Array Privatization 244
Zhenying Kiu, Barbara Chapman, Tien-Hsiung Weng, Oscar Hernandez

OpenMP Application Tuning Using Hardware Performance Counters260
Nils Smeds

Author Index .271

M.J. Voss (Ed.): WOMPAT 2003, LNCS 2716, pp. 1–12, 2003.
© Springer–Verlag Berlin Heidelberg 2003

OpenMP Support in the Intel® Thread Checker

Paul Petersen and Sanjiv Shah

Intel Corporation, 1906 Fox Drive, Champaign IL, USA
{ paul.petersen , sanjiv.shah }@intel.com

Abstract. The Intel® Thread Checker is the second incarnation of projec-
tion based dynamic analysis technology first introduced with Assure that
greatly simplifies application development with OpenMP. The ability to
dynamically analyze multiple sibling OpenMP teams enhances the previous
Assure support and complements previous work on static analysis. In addi-
tion, binary instrumentation capabilities allow detection of thread-safety
violations in system and third party libraries that most applications use.

1 Introduction

It is easy to write bad programs in any language, and OpenMP is no exception. Users
are faced with many challenges, some similar to other languages, and some unique to
OpenMP. When using OpenMP, many users start with a sequential algorithm encoded
in a sequential application that expresses the method by which the computation will
be performed. From this sequential specification, OpenMP directives are added to relax
the sequential execution restrictions. Relaxing these restrictions allows the algorithm
to be executed concurrently. The manner in which these directives are incorporated into
the serial program is crucial to determining the correctness and the performance of the
resulting parallel program. The correctness of the OpenMP program is not just a
function of which directives are added to the sequential program, but also a function of
the computation performed by the program as modified by the directives.

2 Correctness Analysis

It is possible to analyze the semantics of an OpenMP application either statically or
dynamically. Static analysis is usually limited by a number of significant factors.
Chief among them are the lack of availability of the entire program, increasing use of
third party libraries in applications, program flow dependencies on input data and
failure of alias analysis. Dynamic analysis is limited by the data sets available for
testing. However software programmers already tackle this problem in the validation
of their sequential program and have extensive tests available. These same tests can be
used to gain the same level of comfort with correctness of the OpenMP application
that the programmer already uses for the sequential application. While no dynamic

Paul Petersen and Sanjiv Shah2

analysis technique can prove arbitrary programs to be correct, dynamic analysis tech-
niques are very powerful at locating instances of defects in applications.

2.1 Correctness: Kinds of Threaded Errors

A threading error is defined as any defect in the program that would not have been a
defect if only a single thread of execution were used in the application. We classify all
threading errors into the following categories:

Data Races: Data races occur when a thread modifies a data object in an applica-
tion at a time when another thread is also accessing (modifying or using) the
same data object. Some parallel algorithms have deliberate data races and can tol-
erate them correctly (although they may pay a performance penalty), but in a ma-
jority of applications, data races indicate correctness errors. Mutual exclusion con-
structs like OpenMP CRITICAL or ORDERED constructs, or the OpenMP locks
API are usually necessary to prevent data races. Mutual exclusion constructs are a
part of what the OpenMP specifications define as synchronization constructs.

Deadlocks: Deadlocks occur when threads are unable to make forward progress
because they are waiting for resources that cannot become available. With
OpenMP, these typically occur when using mutual exclusion or BARRIER con-
structs. The OpenMP specifications define this set of constructs as synchroniza-
tion constructs. The classical example is with two threads, one holding lock A
and waiting for lock B, while the other thread is holding lock B and waiting for
lock A.

Stalls: Stalls are temporary conditions that occur when a thread is not able to
acquire a mutual exclusion resource. Stalls may be purposely introduced into ap-
plications, or may be the side effects of missed signals, or logic errors.

Undefined Behaviors: The OpenMP specifications have many instances of
undefined behaviors. In many instances, these behaviors cannot be validated by an
OpenMP implementation due to their dynamic nature. Examples of undefined be-
haviors are objects in PRIVATE clauses that are not defined before use, and lock
objects that are not initialized before locking. Data races are also undefined behav-
ior, but they are pervasive and important enough to justify a separate category.

Live Locks: Live locks occur when threads execute portions of the application
repeatedly and are not able to make forward progress out of this portion of the ap-
plication. Live locks are similar to stalls, and are usually caused by logic errors.
Any application that uses polling mechanisms may possibly miss the reception
of a signal. If the signal is not repeatedly sent the application may continue to
check for the missed signal indefinitely.

OpenMP Support in the Intel® Thread Checker 3

Logic Errors: Logic errors occur when some implicit assumptions of the ap-
plication are accidentally violated. For example, the application might assume
that certain events B must always be preceded by certain other events A, but the
presence of logic errors in the threading allows this to be violated and unexpected
events C sometimes precede B.

Certain classes of these errors have well researched solutions. Logic errors, however,
are usually detected as a side effect of the error, and not directly. Logic errors usually
cause the execution path of the program to diverge from the intended path.

2.2 Pros and Cons of Static Analysis for Correctness

Static analysis is a powerful analysis mode that theoretically has the potential to
prove the correctness of a program. It also has the power to do the analysis based
simply on the size of the input program and not dependent on the size of the input
data. The size of the programs and the use of 3rd party binary libraries often prevent
static analysis from fully analyzing programs. The combinations of the size of the
program, the number of different paths through the program together with a depend-
ence on the input data makes static analysis extremely conservative and difficult to use
for correctness checking of parallel programs.

2.3 Pros and Cons of Dynamic Analysis for Correctness

Dynamic analysis provides meaningful answers to programmers even when applica-
tions are too large or complex for static analysis. Instead of trying to provide answers
which are valid for all execution paths and all data sets, dynamic analysis instead fo-
cuses on “common” execution paths as exhibited by test data sets. Observing the
program as it runs helps generate examples that may prove the program incorrect.
Once such an example is detected, details that aid in understanding and fixing the prob-
lem can be collected and presented to the programmer. The biggest drawback to dy-
namic analysis for correctness is its cost: the increase in memory usage during analy-
sis can be more than an order of magnitude; the increase in execution time can be one
or two orders of magnitude. These drawbacks are significant, but are easily offset in
practice by carefully planned use of dynamic analysis tools and by the increase in
programmer productivity and efficiency (and reduction in development time) that is
attained when using such tools. Ideally, tools would combine both static and dynamic
analyses to offer the best of both worlds: static analysis for the kinds of errors that can
be diagnosed very quickly at compile time and dynamic analysis for the data dependent
errors, and for errors in which the entire program is not available.

Paul Petersen and Sanjiv Shah4

3 Dynamic Correctness Analysis of OpenMP Applications

Two approaches can be used to perform dynamic correctness analysis of OpenMP
applications. The first approach treats the OpenMP application as a specific instance
of the more general class of threaded applications. The relationships between threads
can be calculated using techniques pioneered by Lamport [1] and used in Eraser [2], and
RecPlay [3] to find instances of resources that are accessed by two or more threads
where the order of access is not guaranteed. This technique was used by Assure for
Java and Assure for Threads [4], and is a part of the analysis performed by Intel®

Thread Checker [5] for explicitly threaded applications. This approach is called “simu-
lation”. The second approach is to treat the OpenMP program as an annotation to a
sequential application. By treating the sequential application as a specification for the
correct behavior of the OpenMP program, any differences between the two programs
can be identified as likely errors in the OpenMP program. Using OpenMP in this way
requires some restrictions to the general OpenMP language: that the OpenMP program
has a sequential counterpart, and that the OpenMP program does not associate identi-
ties with particular threads and depend on the number of threads. OpenMP programs
that exhibit these properties are called “relaxed sequential programs”. Obviously, not
all OpenMP programs have sequential counterparts and exhibit these properties; pro-
grams that do not exhibit these properties cannot be analyzed by this latter method.
The technology behind this second approach to dynamic analysis of OpenMP applica-
tions is called “projection technology” and is the basis for the current version of Intel®

Thread Checker for OpenMP.

3.1 Relaxed Sequential Programming and Benefits

Parallel machines can be programmed in many different ways to exploit the available
hardware resources. A common way is to assign a unique identity to each thread (or
processor) and then using the identity of that thread to generate the work to be as-
signed to that thread. While this is a common way of creating a parallel program, it
diverts a lot of the programmer’s attention to the problem of determining the number
of threads or processors to use, remembering each threads or processors unique identity
and calculating the mapping of the available data and computation onto the hardware
and software environment.

Relaxed sequential programming allows the programmer to ignore this mapping
problem and the details of the particular hardware or software environment that the
program is running on and instead focus on only the simpler job of specifying the
parallelism in the data and computation. The mapping problem is delegated to the
OpenMP implementation and other software and hardware system components. The
OpenMP specifications have features like work-sharing constructs and orphaning that
allow a diligent programmer to avoid thread identities for the most part, as is natural
in sequential programming where there is no such concept.

OpenMP Support in the Intel® Thread Checker 5

The Intel® Thread Checker for OpenMP uses projection technology which exploits
relaxed sequential programming to find errors in OpenMP programs. Relaxed sequen-
tial programs are really two programs in one set of sources: the original sequential
program obtained by ignoring the OpenMP directives, and the OpenMP program.
Projection technology executes the sequential version of the application and treats it as
the specification for the OpenMP application. This approach can detect many different
kinds of errors, far more than possible with the simulation approach above. Besides
data-races, projection technology can also detect access patterns in the parallel program
that would cause values to be computed which are impossible in the sequential version
of the application. Sometimes these differences are due to the OpenMP directives
performing an algorithm substitution (such as a reduction), but in general these differ-
ences are indicative of correctness problems.

3.2 Projection Technology

The best way to understand the sequential specification is to run the sequential version
of the application. From the sequential execution an annotated memory trace is ex-
tracted which defines the sequential behavior of the application. This sequential anno-
tated memory trace can be transformed to generate a projection of the memory trace
that a parallel execution would generate. The sequential trace is partitioned at the
places where OpenMP annotations are present. These partitioned sections of the trace
are analyzed as if the trace were executed concurrently to determine if the parallel pro-
gram would violate the behavior specified by the serial program. This approach has
several consequences. First, since the serial program is generating the trace, it is not
possible to present multiple thread identities to the executing program. Each API call,
which asks for a thread identity, needs to return exactly the same value. Because of
this, applications that require unique thread identities to be present cannot be analyzed.
The second consequence is that any application, which depends on a specific number
of threads, also cannot be analyzed. This behavior is most notable in the execution of
work-shared constructs. The analysis performed via projection technology assigns a
logical thread to each independent unit of work in the work-shared construct. By as-
suming that maximal parallelism is exposed the maximal amount of data can be
checked for data races.

The combination of the relaxed sequential program and projection technology lets a
single projection automatically find errors in the OpenMP application for all numbers
of threads and for all possible schedules. This extremely powerful test is a solid reason
to use OpenMP for relaxed sequential programming.

Paul Petersen and Sanjiv Shah6

4 Intel® Tools for OpenMP

Intel® provides several tools for OpenMP. These tools are:

ß Intel® C++ and Fortran compilers [6]: implementation of OpenMP speci-
fications,

ß Thread profiler [5]: plug-in to the VTune™ Performance Environment [7].
The current version of the Thread profiler is designed only for OpenMP perform-
ance analysis, and

ß Intel® Thread Checker: the second incarnation of the technology pioneered in
the KAI Assure [4] line of products.

The Intel® Thread Checker represents a major redesign of the original Assure products.
The following breakdown shows the redesigned components:

Explicit Threading: The functionality of Assure for Threads and Assure for
OpenMP are now combined in a single product, which allows the analysis of explic-
itly threaded applications, whereby OpenMP has been added to one or more threads.
This kind of usage is common in the GUI world, which was a target for this redesign.
To accommodate this use, Intel® Thread Checker switches between simulation tech-
nology and the projection technology for OpenMP analysis as necessary in different
parts of the application.

Binary Instrumentation: To examine libraries and executables from third parties,
Intel® Thread Checker now has binary instrumentation capabilities. Modern software
uses many libraries from third parties, including the Operating System. Often thread-
ing related errors in applications are hidden in such third party component, making
source instrumentation alone impractical.

Source Instrumentation: For OpenMP applications we have added instrumenta-
tion capability to the Intel® C++ and Fortran compilers to analyze applications which
contain OpenMP directives.

User Interface: While building on the core concepts that were field proven in the
legacy products, the user interfaces have been redesigned to plug into the VTune™

Performance Environment and allow the user more flexibility in categorizing, and
displaying information.

4.1 Creating Parallel Applications

The Intel® Thread Checker can be used for two different usage models. The obvious
one is in debugging or quality assurance of parallel applications. But, a more funda-
mental mode of usage is even more valuable. Using a serial execution profiler the
significant sections of an application can be located. If these sections appear to in-
volve iterative application of functions to disjoint data, then an OpenMP directive can

OpenMP Support in the Intel® Thread Checker 7

be added to the application to specify a proposal for this section of code to be executed
in parallel.

The Intel® Thread Checker when used on this version of the application with the
proposed parallelism annotations causes the serial application to be run, but the analy-
sis to be performed as if the OpenMP construct was mapped to multiple threads. If
few or no diagnostics are generated from the introduction of this OpenMP construct
then you can assume that it may be a good candidate, but if many diagnostics are
generated this may indicate that significant work needs to occur before this section of
the application can be executed concurrently (or it may not have been a good candidate
to execute concurrently).

4.2 Debugging Parallel Applications

The obvious usage of the Intel® Thread Checker is as an intelligent debugger. Tradi-
tional debuggers (like dbx, or the Microsoft Visual Studio debugger) allow the execu-
tion of a program to be controlled via the use of breakpoints, and also to allow the
execution state of the program to be displayed at arbitrary points in the program’s
execution. These features allow a sophisticated software developer to examine what
went wrong, and to attempt to reconstruct the sequence of events that caused the appli-
cation to arrive at an incorrect conclusion. In contrast, the Thread Checker automati-
cally performs the consistency analysis while every instruction in the application is
executed. As soon as a violation of the OpenMP specification is detected, or a viola-
tion of common thread-safety rules is detected a diagnostic is generated. These thread
safety rules include data-races, deadlocks, stalls, and API violations.

5 Relaxed Sequential Programming: A Concrete Example

Consider the following simple computation:

void
histogram(double D[], int N,
 double(*F)(double), int S) {
 /* D[N] accumulates the distribution */
 /* F() is the function being measured */
 /* S is the number of samples to take */
 for (int i=0; i<S; ++i) {
 int k=(F(i/(double)S)*N);
 D[k] += 1;
 }
}

In this example you are given a function F, and asked to take a number S of sam-
ples of the function, and to classify these samples into discrete bins to record the
distribution D of the values of the function. The algorithm as stated says to sequen-

Paul Petersen and Sanjiv Shah8

tially enumerate the domain [0...1) and for each of the values calculate the value
of the function F. To create a parallel version of this algorithm a good question to ask
is “what serial constraints can I relax”. It is useful to pose this question for each of
the components of this algorithm in turn as a thought experiment.

The first question you may ask is; can I evaluate two instances of the function F
concurrently? If the function calculates a recurrence through the use of internal state it
may be difficult to produce the same set of answers using concurrent evaluation. If the
function does use internal state then does the function also use internal locking to
protect this state and make the thread safe to use in a threaded environment?

The next question is; can I relax the sequential constraints on calculating the num-
ber of samples in each bin of the histogram? Here the answer is simple. Since addi-
tion is commutative and associative it makes no difference if the samples are accumu-
lated in an order different from the sequential order.

The final question to ask is; can the domain of the function be calculated in non-
sequential order. From a mathematical standpoint the domain of a function is a set,
and sets do not have a predetermined order, so the fact that the domain was enumerated
in sequential order can be removed and a different concurrent order substituted. The
OpenMP “parallel for” pragma is useful to remove the serial dependence on the incre-
ment of the variable i which is used to specify the domain of the function.

6 Sample Use of Intel® Thread Checker

The results of our thought experiment on relaxing the sequential constraints on the
original serial algorithm produce the following proposal for a parallel program. Anno-
tating the loop that creates a number of samples with a “parallel for” pragma gives us
this parallel algorithm.

void
histogram(double D[], int N,
 double (*F)(double), int S) {
 /* D[N] accumulates the distribution */
 /* F() is the function being measured */
 /* S is the number of samples to take */
#pragma omp parallel for private(i) shared(D,F,N,S)
 for (int i=0; i<S; ++i) {
 int k=(F(i/(double)S)*N);
 D[k] += 1;
 }
}

This example can be compiled with the Intel 7.0 compilers using the command line
“icl /Qopenmp/Qtcheck h1.cpp” to prepare the program for analysis by the Intel®
Thread Checker. When this application is run inside the Intel® Thread Checker GUI,
the results shown in Fig. 1 are generated.

OpenMP Support in the Intel® Thread Checker 9

Fig. 1. A screen capture of the Intel® Thread Checker user interface showing the original
attempt at parallelization of the algorithm. Notice the Diagnostics display shows that
several access violations exist in this example

In Fig. 1 we see three significant user interface components. The first is the Diag-
nostics list. This control displays all of the diagnostics collected during the execution
of the instrumented application. The user is allows to customize this display, and to
organize the information into groups. The groups are displayed in the second user
interface component. The second component is the Graphical Summary. This bar chart
graphically displays the contents of each group in the Diagnostics list. Each bar is
color coded to display the severity level of the diagnostics in each group. The length
of the bars is proportional the number of diagnostics in each group. The final signifi-
cant component is the Source View. The source view consists of a component com-
prised of five tabs. The first four tabs (when possible) display different source code
locations (and stack traces) associated with this diagnostic.

The four types of source code locations are:

1) The “Context”: For OpenMP programs the context is the parallel region
that created the threads involved in the diagnostic.

2) The “Definition”: This is the allocation point of the object or memory lo-
cations under conflict in the diagnostic.

Paul Petersen and Sanjiv Shah10

Fig. 2. A screen capture from the Intel® Thread Checker user interface. In this example
the memory access errors have been removed by the introduction of the “critical” section

3) The “1st Access”: This is the state of the 1st thread when it accessed the
object or memory location in conflict

4) The “2nd Access”: This is the state of the 2nd thread when it accessed the
object or memory location in conflict.

The final tab in the Source View component displays a graphical view of the stack
traces for each of the 4 source code locations. If multiple dynamic paths are found
which all reach the same source locations for this error, the stack traces for these paths
are displayed in this graphic with common elements of the duplicate stack traces
merged into single nodes of the graphs.

In Fig. 2, we see the corrected version of the parallel application. In this version
the data-race detected in Fig. 1 has been eliminated by the use of a “critical”
pragma.

Running the example in Fig. 2 shows the observation that the execution time was
much worse than the original sequential algorithm. Eliminating the fine grain usage
of the “critical” pragma created the third version of the parallel application, as
shown in Fig. 3. This example shows an interesting property of the Intel® Thread
Checker. The analysis done for OpenMP applications is not to find bugs in the paral-
lel algorithm, but instead to find differences between the parallel algorithm and the
serial algorithm. The serial algorithm is defined as the parallel algorithm with the
OpenMP directives suppressed. In this particular case Thread Checker is pointing out

OpenMP Support in the Intel® Thread Checker 11

that the intermediate values of the local variable “MY_D” have different values when
using the parallel and serial algorithms. This is detected by noticing what would be a
data-race on a private variable. This memory access instead of causing non-
determinism to be introduced into the application instead causes the parallel algorithm
to have a different memory access pattern than the serial algorithm.

Fig. 3. A screen capture of the Intel® Thread Checker showing the analysis of the final
algorithm. This algorithm uses a thread local array to accumulate partial results. The high-
lighted diagnostic indicates that the behavior the values in this temporary array will be
different. Fortunately this difference is exactly what the application needs to be correct

7 Conclusion

The creation of parallel applications that are both correct and efficient is a challenging
task. The use of OpenMP as the language to express parallelism allows for rapid
specification of the parallel application. However, the programmer is faced with the
same question as with any other parallel language: Is the parallel program correct? By
restricting the domain of OpenMP applications to relaxed sequential programs, Intel®

Thread Checker offers very powerful analysis and insight into potential failures for
specific data sets, as has been demonstrated by it’s use in several very large projects
where the productivity and efficiency of the programmers and the time to completion
of the project was positively impacted by the use of Intel® Thread Checker.

Paul Petersen and Sanjiv Shah12

Acknowledgements

We would like to thank the contributions of the Threading Tools development team,
the Compiler team and the VTune™ Performance Environment development team.
This product has truly been a multidiscipline development effort. With out all of the
groups hard work and dedication the Intel® Thread Checker product would not have
been possible.

References

[1] Leslie Lamport. “Time, Clocks, and the Ordering of Events in a Distributed System.”
Communications of the ACM (CACM), 21(7): 558-565, July 1978

[2] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas
Anderson. “Eraser: A dynamic data race detector for multithreaded programs”, ACM
Transactions on Computer Systems (TOCS), 15(4): 391-411, November 1997

[3] Michiel Ronsse, Koen De Bosschere. “RecPlay: A fully integrated practical record/
replay system”, ACM Transactions on Computer Systems (TOCS), 17(2): 133-152,
May 1999

[4] KAI Software. “KAP/Pro™ Toolset Reference Manual Version 4.0”, 2001 (see also
http://developer.intel.com/software/products/kappro/) .

[5] Intel Corporation. “Intel® Thread Checker and Thread Profiler”, 2003 (see also
http://www.intel.com/software/products/threading/)

[6] Intel Corporation. “Intel® C++ and Fortran Compilers”, 2003 (see also
http://www.intel.com/software/products/compilers/)

[7] Intel Corporation. “VTune™ Performance Environment”, 2003 (see also
 http://www.intel.com/software/products/vtune/)

A C++ Infrastructure for Automatic

Introduction and Translation of OpenMP
Directives

Dan Quinlan, Markus Schordan, Qing Yi, and Bronis R. de Supinski

Lawrence Livermore National Laboratory��, USA
{dquinlan,schordan1,yi4,bronis}@llnl.gov

Abstract. In this paper we describe a C++ infrastructure for source-
to-source translation. We demonstrate the translation of a serial program
with high-level abstractions to a lower-level parallel program in two sepa-
rate phases. In the first phase OpenMP directives are introduced, driven
by the semantics of high-level abstractions. Then the OpenMP directives
are translated to a C++ program that explicitly creates and manages
parallelism according to the specified directives. Both phases are imple-
mented using the same mechanisms in our infrastructure.

1 Introduction

The use of OpenMP within the OpenMP research community seems compli-
cated by the lack of easy to use compiler infrastructure. Although much work
is focused on OpenMP for FORTRAN 77 and FORTRAN 90, and there may
be an abundance of C language compiler infrastructure; the unavailability of
C++ compiler infrastructure has significantly limited the many research oppor-
tunities. In this paper, we present a useful infrastructure, ROSE [1], to assist
the OpenMP research community generally, but particularly for OpenMP/C++
research.

Our infrastructure allows the automated introduction of OpenMP directives
based on the semantics of user-defined abstractions. The introduction of prag-
mas, when adding OpenMP directives to a given code, is one of many possible ap-
plications. Another one is the translation of OpenMP directives; the recognition
of specific pragma directives and the translation of associated code fragments to
generate a program that explicitly creates and manages parallelism. We shall use
a running example to illustrate both phases and how the ROSE infrastructure
[1] can simplify these tasks. Through this example, we demonstrate the rela-
tively simple specification of an OpenMP transformation to use the lower level
Nanos Library for OpenMP [2]. We also discuss how to modify that transfor-
mation to implement the full OpenMP standard. Given the semantic similarity

�� This work was performed under the auspices of the U.S. Department of Energy by
University of California Lawrence Livermore National Laboratory under contract
No. W-7405-Eng-48.

M.J. Voss (Ed.): WOMPAT 2003, LNCS 2716, pp. 13–25, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

14 Dan Quinlan et al.

between most OpenMP runtime libraries, we expect that transformations for
other OpenMP runtime libraries should be equally simple.

Since within ROSE we have the full type resolution within the AST, and
not just syntax, the type information of specific user-defined types can be used
as a basis for the optimization of applications that use them. And by including
knowledge of the semantics of specific abstractions, fundamentally more infor-
mation is available to the compiler and greater levels of optimization are often
possible, depending upon the abstractions. We will show through the use of an
array abstraction, that because the stronger array semantics is satisfied by the
weaker OpenMP constraints we can automate the introduction of OpenMP di-
rectives into otherwise serial code. This approach permits fundamentally serial
code to use the additional semantics of the array abstractions and be run as
parallel code.

2 Infrastructure

The ROSE infrastructure offers several components to build a source-to-source
translator. A complete C++ frontend is available that generates an object-
oriented annotated abstract syntax tree (AST) as intermediate representation.
Several different components can be used to build the midend of a transla-
tor: to operate on the AST, a predefined traversal mechanism, a restructuring
mechanism, and an attribute evaluation mechanism can be used to implement
a transformation. Other features are for example parsing of OpenMP directives
and integrating these directives into the AST. A C++ backend can be used to
unparse the AST and generate C++ code (see fig. 1).

frontend midend backend

unparsed AST fragment

ASTC++ source AST C++ source

attribute evaluation

restructure operators

AST

AST(completed) source fragment

Fig. 1. ROSE Source-to-Source infrastructure with frontend/backend reinvocation

2.1 Frontend

We use the Edison Design Group C++ frontend (EDG) [3] to parse C++ pro-
grams. The EDG frontend generates an AST and performs a full type evaluation
of the C++ program. The AST is represented as a C data structure. We trans-
late this data structure into an object-oriented abstract syntax tree which is
used by the midend as intermediate representation.

A C++ Infrastructure 15

2.2 Midend

The midend supports restructuring of the AST. Code that is added to the AST
can be specified as a source string, using C++ syntax, or by constructing subtrees
node by node. An AST restructuring operation specifies a location in the AST
where code should be inserted, deleted, or replaced. The code can be specified
as C++ source string or an AST subtree. A program transformation consists of
a series of AST restructuring operations.

The order of the restructuring operations is based on a pre-defined traversal.
In a transformation the AST is traversed and different restructuring operations
are invoked on the AST. The problem of restructuring the AST while traversing
it, is addressed by making restructuring operations side-effect free functions that
define a mapping from one subtree of the AST to another subtree. The new
subtree is not inserted before the traversal of this subtree is finished. We provide
interfaces for invoking restructuring operations that buffer these operations to
ensure that no subtrees are replaced while they are traversed.

The attribute evaluation mechanism allows the computation of attribute val-
ues for AST nodes. Context information can be passed down the AST as in-
herited attributes and results of computations on a subtree can be computed
as synthesized attributes (passing information upwards the tree). Examples for
values of inherited and synthesized attributes are type information, size of ar-
rays, the nesting level of loops, the scopes of associated pragma statements, etc.
These values can be used to specify constraints on a transformation, i.e. to decide
whether a restructuring operation should be applied.

Our infrastructure allows to use C++ source code strings to define code frag-
ments. Any source string which represents a valid declaration, statement(list), or
expression can specify a code pattern to be inserted into the AST. The transla-
tion of a source code string, s, into an AST fragment, is performed by reinvoking
the frontend. The string, s, is extended by our system to form a complete pro-
gram. This completed program is parsed into an AST by reinvoking the frontend.
From this AST, we extract the AST fragment that corresponds to the source
string s. This AST fragment is inserted into the AST.

2.3 Backend

The AST is unparsed and C++ source code is generated. It can be specified to
unparse all included (header) files or the source file(s) specified on the command
line only. This feature is important when transforming user-defined data types,
for example when adding generated methods.

The backend can also be invoked during a transformation, to obtain the
source code string that corresponds to a subtree of the AST. Such a string can
be combined with new code (also represented as a source string) and inserted
into the AST.

Both phases, the introduction of OpenMP directives and the translation of
OpenMP directives, can be automated using the above mechanisms, as described
in the following sections.

16 Dan Quinlan et al.

3 Semantics-Driven Introduction of OpenMP Directives

The use of high-level abstractions so greatly improves the productivity of de-
veloping scientific applications that we seek a way to address the numerous
performance issues associated with it.

3.1 User-Defined Abstractions

User-defined abstractions permit a way to tailor the user-environment to be more
domain specific than a general purpose language could allow. General purpose
languages are expensive to develop and result from many years of work. The
compilers that define the language are both expensive and difficult to develop.
Such an investment is only possible for a sufficiently large user group.

Simplifying the development of many applications within a specific domain
is commonly done through the development of domain-specific libraries. The
libraries invariably define abstractions that hide numerous tedious details as-
sociated with the development of applications within a specific domain. The
combination of a general purpose language and a domain specific library is not
the same as a domain-specific language. The essential difference is that the com-
plete semantics of a library’s abstractions are unknown at compile time and,
thus, some significant optimizations are impossible for the compiler to imple-
ment. The result is all too often that many essential abstractions are abandoned
because they can’t provide sufficiently high performance.

3.2 A++/P++ Serial and Parallel Array Class Library

We use a motivating example from the A++/P++ array class library [4] to
show how the ROSE framework can be used by the library writer to develop a
source-to-source translator that optimizes code based on high-level semantics.
The example uses two classes which are implemented twice; once in the serial
A++ library and again in the parallel P++ library. Within our motivating exam-
ple we consider the following trivial five-point stencil array operation. In figure
2, A and B are multidimensional array objects of type floatArray. I and J are
Range objects that together specify a two dimensional index space of the arrays A
and B. The following sections demonstrate how ROSE supports the optimization
of a scientific application code through our running example.

3.3 Automated Insertion of OpenMP Directives

Because of the parallel semantics of the A++ and P++ array objects, their use
is interchangeable. This permits serial applications to be developed using A++
(serial arrays) and then recompiled to run in distributed memory mode using
P++ (parallel arrays). Some simple constraints are that any use of non A++
array objects not constrain the data-parallel model that is hidden within the
array semantics.

A C++ Infrastructure 17

Since the parallel array semantics of A++ and P++ are consistent with those
of OpenMP, OpenMP directives can safely introduce shared memory parallelism
into all uses of A++ and P++ array objects. This is essential for the automated
insertion of OpenMP directives without complex dependence analysis of the
serial code.

3.4 Example C++ Code

The example codes in figure 2 and figure 3 demonstrate the transformation
of high-level A++ code to highly efficient OpenMP code. The two codes are
semantically equivalent, but the first code shows the use of high-level array ab-
stractions. The semantics of the array abstractions are similar to those of array
statements in FORTRAN 90, but the implementation is a (C++) class library
instead of a (FORTRAN77) language extension. Clearly, the standard compila-
tion process cannot take the semantics of the array class objects into account
since those semantics are user defined. At this high level of abstraction, the C++
compiler is quite powerless to introduce any significant optimizations, precisely
because the abstraction’s semantics that are relevant to critical optimizations
are user-defined and unknown.

int n;
Range I,J,K;
floatArray A(n,n,n);
floatArray rhs(n,n,n);
floatArray B(n,n,n);
...
A(I,J,K) = rhs(I,J,K) + (B(I+1,J,K) + B(I-1,J,K) + B(I,J-1,K) +

B(I,J+1,K) + B(I,J,K-1) + B(I,J,K+1) - 6.0 * B(I,J,K));

Fig. 2. Example: Code fragment showing the use of A++/P++ array semantics

The high-level A++ code can be automatically transformed into the greatly
expanded, but more efficient code shown in figure 3. The ROSE infrastructure
allows the library implementer to leverage the semantics of the array class ob-
jects that are required to implement the transformation in a source-to-source
translator that provides a library-specific compilation process. Specifically, the
ROSE frontend creates an AST. The traversal mechanism allows the targeted
array class statements to be located in the code. The restructuring mechanism
is used to replace the high-level code with the corresponding, but more efficient
code and the attribute mechanism supports important details of the transfor-
mation such as proper declaration of the loop control variables. A very small
and almost trivial part of the transformation is the additional step to have the
transformation also generate the OpenMP directive before the outermost loop.

3.5 Discussion

The ROSE mechanisms provide a general approach for the optimization of com-
plex libraries that is not specific to the A++/P++ library. We use this example

18 Dan Quinlan et al.

#define SC(x1,x2,x3) /* case UniformSizeUnitStride */ (x1)+(x2)*_size1+(x3)*_size2
#pragma omp parallel for private (_3, _2, _1) \

shared (AIJKpointer, rhsIJKpointer, BIJKpointer)
for (_3 = 0; _3 < _length3; _3++) {

for (_2 = 0; _2 < _length2; _2++) {
for (_1 = 0; _1 < _length1; _1++) {

AIJKpointer[SC(_1,_2,_3)] =
rhsIJKpointer[SC(_1,_2,_3)] +
(BIJKpointer[SC((_1 + 1),_2,_3)] + BIJKpointer[SC((_1 - 1),_2,_3)] +
BIJKpointer[SC(_1,(_2 - 1),_3)] + BIJKpointer[SC(_1,(_2 + 1),_3)] +
BIJKpointer[SC(_1,_2,(_3 - 1))] + BIJKpointer[SC(_1,_2,(_3 + 1))] -
6.0 * BIJKpointer[SC(_1,_2,_3)]);

}
}

}

Fig. 3. Example: Transformed A++/P++ array class code fragment showing the in-
sertion of an OpenMP directive (excluding preceding declarations)

because it is both a high-level abstraction specifically tailored to parallel sci-
entific computing and because it is one with which we are familiar. Improving
the performance of the A++/P++ library also has a direct impact on other
applications and libraries using it (the Overture Framework [5] in particular).

4 Translation of OpenMP Directives

We use ROSE to build a specialized source-to-source translator that transforms
OpenMP directives into lower-level code using an OpenMP runtime library. For
our work, we have selected the Nanos OpenMP runtime library [2], but our in-
tention is to demonstrate that any runtime library could be used. We believe our
approach would be nearly the same for any OpenMP runtime library, given the
seemingly strong semantic resemblance between the few that we have seen. An
aspect of our effort is to show how easily other researchers within the OpenMP
community could use the ROSE compiler infrastructure for OpenMP research.
We hope that access to open compiler infrastructure for C, and particularly for
C++, will be found useful.

4.1 Translation Specification

Before translating OpenMP directives into runtime library calls, we must first
define a specification that maps the input and output of the translation. Fig-
ure 4 presents an example of such mapping, which translates the OpenMP
parallel-for directive (with the shared, private, default and schedule
clauses) into calls to the lower-level Nanos OpenMP runtime library [2]. We
choose the parallel-for directive because it is suitable for illustrating our
OpenMP source-to-source translator (shown in Figure 5) and because the ROSE
infrastructure can automatically introduce it using the A++/P++ array seman-
tics, as shown in Figure 3. After applying the mapping in Figure 4, our OpenMP
source-to-source translator can further transform the OpenMP code in Figure 3
into the Nanos runtime library calls; the result is shown in Figure 6.

A C++ Infrastructure 19

Input:
#pragma omp parallel for schedule($scheduletype, $chunksize) default ($defaulttype) \

shared($shared var list) private($private var list)
for ($i = $lb; $i <= $ub; $i + = $step) {

$loop body
}

Output:
void supportingOpenMPFunction$id(int* intone me 01, int* intone nprocs 01,

int* intone master01, $shared var decl list)
{

$private var decl list;
int intone start, intone end, intone last;

intone begin for($lb, $ub, $step, $chunksize, $scheduletype);
while (intone next iters(&intone start, &intone end, &intone last)) {

for ($i = intone start; $i <= intone end-1; $i + = $step) {
$loop body

}
}
intone end for(true)

}

int intone nprocs 01 = intone cpus current();
intone spawnparallel(supportingOpenMPFunction$id, $numOfArgs, intone nprocs 01,

$shared var list);

Fig. 4. Specification for translating the OpenMP parallel-for directive into Nanos run-
time library calls (the bold text marks OpenMP keywords, and the $ sign denotes
parameters of the input and output fragments.)

(1)Parse the C++/C input program and construct an Abstract Syntax Tree
Parse the OpenMP directives in the constructed AST

(2)Traverse the Abstract Syntax Tree of the input program
At each tree node astNode:

if ((pragma = PrevStatement(astNode)) is an OpenMP directive)
string OpenMP support func = parameterized supporting-function string for pragma
for (each parameter par in OpenMP support func)

string par val = Compute-Parameter-Value(par,astNode)
String-Replace-Substring(OpenMP support func, par, par val)

Add OpenMP support func into global scope
OpenMP replace pragma = parameterized intone spawnparallel call for pragma
Substitute parameters in OpenMP replace pragma with correct values
replace pragma and astNode subtrees with OpenMP replace pragma

(3)Unparse the Abstract Syntax Tree

Fig. 5. Algorithm for translating OpenMP directives into runtime library within the
ROSE infrastructure

In general, to provide translation support for the entire set of OpenMP di-
rectives, we need to specify a translation mapping, such as the one in Figure 4,
for each OpenMP directive. These mappings should be easily constructed from
the manual of an OpenMP runtime library. We then use these mappings to in-
stantiate the general translation algorithm in Figure 5. Though currently we
have implemented only the translation of the parallel-for directive within the
ROSE infrastructure, other OpenMP directives can be translated in a similar
fashion.

20 Dan Quinlan et al.

void supportingOpenMPFunction__0_0(int* intone_me_01, int* intone_nprocs_01,
int* intone_master_01, float * AIJKpointer, float * rhsIJKpointer,
float * BIJKpointer, int _length1, int _length2, int _size1, int _size2)
{
int _1, _2, _3;
int intone_start, intone_end, intone_last;
intone_begin_for(0,100,1,0,0);
while(intone_next_iters(&intone_start,&intone_end,&intone_last)) {

for (_3 = intone_start; _3 <= intone_end; _3++) {
for (_2 = 0; _2 < _length2; _2++) {

for (_1 = 0; _1 < _length1; _1++) {
AIJKpointer[_1 + _2 * _size1 + _3 * _size2] =
rhsIJKpointer[_1 + _2 * _size1 + _3 * _size2] +
(BIJKpointer[(_1 + 1) + _2 * _size1 + _3 * _size2] +
BIJKpointer[(_1 - 1) + _2 * _size1 + _3 * _size2] +
BIJKpointer[_1 + (_2 - 1) * _size1 + _3 * _size2] +
BIJKpointer[_1 + (_2 + 1) * _size1 + _3 * _size2] +
BIJKpointer[_1 + _2 * _size1 + (_3 - 1) * _size2] +
BIJKpointer[_1 + _2 * _size1 + (_3 + 1) * _size2] -
6.0 * BIJKpointer[_1 + _2 * _size1 + _3 * _size2]);

}
}

}
}

intone_end_for(true);
}

intone_nprocs_01 = intone_cpus_current();
intone_spawnparallel(supportingOpenMPFunction__0_0, 8, intone_nprocs_01, AIJKpointer,

rhsIJKpointer, BIJKpointer, _length1,_length2,_size1,_size2);

Fig. 6. Example: Transformed A++/P++ array class code fragment using the Nanos
runtime library

4.2 Translation Algorithm

Figure 5 presents the structure of a ROSE source-to-source translator that trans-
forms an arbitrary OpenMP directive into its corresponding runtime library calls.
This source-to-source translator is separated into the following three phases.

The first phase uses the front end of ROSE to parse the input program into
an AST, which provides support for most C++ high-level constructs and thus
closely matches the structure of the original program. Within the same phase,
the source-to-source translator then makes a second pass of the constructed AST
to expand the OpenMP directives. Unlike the C++ front end, the OpenMP con-
struct parser is not already implemented in ROSE and thus needs to be provided
by the OpenMP source-to-source translator. It is our plan to provide a full im-
plementation of this parser within our OpenMP source-to-source translator.

The OpenMP construct parser not only translates each string pragma into
structured AST nodes, it also automatically collects all the implicit paralleliza-
tion information pertinent to the OpenMP directive. For example, after this pass,
even if the parallel-for directive in Figure 4 does not have a shared clause
(assuming all variables are shared by default), the OpenMP parser will auto-
matically collect the set of shared variables and then insert a shared clause into
the parsed pragma. The exact behavior for variables in either $shared var list
or $private var list is determined by the default clause (if present) and is im-

A C++ Infrastructure 21

plemented entirely in the OpenMP parser. Thus, the subsequent phases of the
translation algorithm can assume that all data storage attributes are explicit
(this is equivalent to having a default (none) clause in the original work-
sharing construct).

The second phase of the OpenMP source-to-source translator then traverses
the AST and transforms the fully expanded OpenMP directives within the AST.
At each node astNode, if the statement pragma immediately before astNode is
an OpenMP directive, we translate this directive by first constructing a support-
ing function (OpenMP support func) for the original code (the subtree rooted
at astNode). This supporting function is a parameterized string provided by
the translation mapping specification (e.g., the section output in Figure 4). We
then proceed to substitute all the parameters in the supporting-function string
with their corresponding string values pertinent to the original code. Since the
source-to-source translator has the pre-knowledge about all the parameters in
the OpenMP support func string, it can compute the values for these parame-
ters by invoking pre-defined AST analysis facilities within ROSE. We then insert
the fully expanded OpenMP support func into the global scope and thus make
it another function definition of the original C++ program. Next, we create a
string, OpenMP replace pragma, that invokes the expanded supporting func-
tion using parallel threads (e.g., the intone spawnparallel call in Figure 4).
Finally, after substituting the parameters in OpenMP replace pragma with cor-
responding values, we use OpenMP replace pragma to replace both the original
OpenMP directive (pragma) and the original code fragment (the subtree rooted
at astNode).

Most steps described above can be realized in a straightforward fashion by
simply invoking existing ROSE mechanisms. To illustrate the simplicity of this
mapping, Figure 7 presents the ROSE C++ implementation for translating the
parallel-for directive defined in Figure 4. Here we omit some parameter sub-
stitutions due to lack of space. Note that ROSE provides facilities to directly
edit parameters in strings and to insert strings directly into the AST (they are
parsed into abstract syntax subtrees before being inserted into the global AST).

As the final phase, after all the OpenMP directives have been translated, the
source-to-source translator unparses the transformed AST to produce a C++
program that includes only calls to the OpenMP runtime library.

4.3 Discussion

Generalizing the source-to-source translator discussed in the preceding sections
to provide support for the full OpenMP specification is the subject of on-going
work. In this section, we discuss the modifications that our approach requires to
provide that support. We consider all OpenMP directives, including any associ-
ated clauses.

The source-to-source translator presented thus far implements the OpenMP
parallel-for construct, including the private, shared, default and schedule
clauses. The source-to-source translator, as described, does not implement sev-
eral possible clauses of the directive; extending it to support the remaining

22 Dan Quinlan et al.

OpenMPSynthesizedAttribute
OpenMPTraversal::evaluateRewriteSynthesizedAttribute (

SgNode* astNode, OpenMPInheritedAttribute inheritedAttribute,
SubTreeSynthesizedAttributes synthesizedAttributeList) {

OpenMPSynthesizedAttribute returnAttribute(astNode);
if (OmpUtility::isOmpParallelFor(astNode)) {

SgForStatement *forStatement = isSgForStatement(astNode);
string supportFunction = " \n\

void supportingOpenMPFunction_$ID (int* intone_me_01, int* intone_nprocs_01,
int* intone_master01, $SHARED_VAR_DECL_LIST) { \n\

$PRIVATE_VAR_DECL_LIST; \n\
int intone_start, intone_end, intone_last; \n\
intone_begin_for($LB,$UB,$STEP,$CHUNKSIZE,$SCHEDULETYPE); \n\
while (intone_next_iters(&intone_start,&intone_end,&intone_last)) { \n\
for ($LOOPINDEX = intone_start; $LOOPINDEX <= intone_end; $LOOPINDEX += $STEP) { \n\

$LOOP_BODY; \n\
} \n\

} \n\
intone_end_for(true); \n\

} \n";
string spawnParallel = " \

intone_nprocs_01 = intone_cpus_current(); \n\
intone_spawnparallel(supportingOpenMPFunction_$ID,$NUM_ARGS,intone_nprocs_01,\
$SHARED_VAR_LIST);\n";

// Edit the function name and define a unique number as an identifier
string uniqueID = buildUniqueFunctionID();
supportFunction = StringUtility::copyEdit(supportFunction, "$ID",uniqueID);
spawnParallel = StringUtility::copyEdit(spawnParallel, "$ID",uniqueID);

// Edit the loop parameters into place
string loopBody = forStatement->get_loop_body()->unparseToString();
supportFunction = StringUtility::copyEdit(supportFunction, "$LOOP_BODY",loopBody);
... // similar copyEdits for $LOOPINDEX, $LB, $UB, $STEP

// Edit the OpenMP parameters into place
OmpUtility ompData (astNode);
string privateVarDeclList = ompData.generatePrivateVariableDeclaration();
string sharedVarList = ompData.generateSharedVariableFunctionParameters();
string sharedVarDeclList = ompData.generateSharedVariableFunctionDeclarations();
supportFunction = StringUtility::copyEdit(supportFunction,

"$SHARED_VAR_DECL_LIST",sharedVarDeclList);
supportFunction = StringUtility::copyEdit(supportFunction, "$SHARED_VAR_LIST",

sharedVarList);
spawnParallel = StringUtility::copyEdit(spawnParallel,

"$SHARED_VAR_LIST",sharedVarList);
supportFunction = StringUtility::copyEdit(supportFunction,

"$PRIVATE_VAR_DECL_LIST",privateVarDeclList);
... // similar copyEdits for $CHUNKSIZE,$SCHEDULETYPE, and $NUM_ARGS

AST_Rewrite::addSourceCodeString(returnAttribute, "#include \"nanos.h\"",
inheritedAttribute, AST_Rewrite::GlobalScope,
AST_Rewrite::TopOfScope, AST_Rewrite::TransformationString, false);

AST_Rewrite::addSourceCodeString(returnAttribute, supportFunction, inheritedAttribute,
AST_Rewrite::GlobalScope, AST_Rewrite::BeforeCurrentPosition,
AST_Rewrite::TransformationString, false);

AST_Rewrite::addSourceCodeString(returnAttribute, transformationVariables,
inheritedAttribute, AST_Rewrite::LocalScope, AST_Rewrite::TopOfScope,
AST_Rewrite::TransformationString, false);

AST_Rewrite::addSourceCodeString(returnAttribute, spawnParallel, inheritedAttribute,
AST_Rewrite::LocalScope, AST_Rewrite::ReplaceCurrentPosition,
AST_Rewrite::TransformationString, false);

}
return returnAttribute;

}

Fig. 7. Example: Code fragment showing translation of an OpenMP directive

A C++ Infrastructure 23

clauses is straightforward. As discussed in section 4.2, parsing of the construct
determines the lists of private and shared variables, including those for which
the storage attribute is implicit. The construct parsing can easily be modified to
build lists for the other data attribute clauses. As discussed in the Nanos doc-
umentation [6], variables with the firstprivate and lastprivate attributes
become arguments to the call of the supporting function with corresponding in-
ternal variable names for the parameters. The only other change necessary to
our source-to-source translator is to include the appropriate assignment between
the internal variable name and the name used in the loop body in the supporting
function string. The reduction clause requires similar changes, with the assign-
ment guarded by a lock that is initialized prior to spawning the parallel region.
The if clause requires that OpenMP replace pragma be extended to include
the intone spawnparallel call in an if statement with the original code cloned
into the else clause, which is easily implemented with the ROSE restructuring
mechanism.

Changes to the source-to-source translator that would support splitting the
combined parallel-for directive are not difficult. In order to support the
OpenMP parallel construct (i.e., without the for loop), the string used for the
supporting function would only include the portions that establish the variable
lists and the original code. We can support stand-alone OpenMP for constructs
by replacing the pragma and original code with the body of the supporting func-
tion instead of the intone spawnparallel call. In order to implement orphaned
directives correctly with separate compilation, the runtime library must support
this in-place replacement.

Straightforward modifications to the source-to-source translator will also ex-
tend it to implement the other work-sharing constructs and synchronization
directives. The Nanos documentation discusses how to implement the sections
construct and the single directive as variations of the for construct, while the
replacement code for the synchronization constructs are even simpler. Although
we could modify the replacement code to use other calls for runtime libraries
that provide calls specific to the sections construct and the single directive,
we plan to implement them as variants of the for construct initially.

We have not fully determined how to support threadprivate storage in our
source-to-source translator. Our support for threadprivate storage is highly de-
pendent on the support provided by the OpenMP run time library. The Nanos
runtime library targets FORTRAN, and uses pseudo-dynamically allocated stor-
age. More straightforward solutions are possible in C and C++ and one option
is to provide an alternative mechanism. Whether or not we use the existing sup-
port of the runtime library, we expect that providing support for threadprivate
storage will be fairly straightforward if it has static block-scope; while the sup-
port may be more complex for file-scope or name-space scope, particularly for
initializating the storage.

The generality of the OpenMP translation in Figure 5 and the just discussed
modifications depends on specific design properties of the OpenMP runtime li-
brary. In particular, given an OpenMP runtime library implementation, if a

24 Dan Quinlan et al.

translation interface similar to Figure 4 can be defined for each OpenMP direc-
tive, the source-to-source translator can easily be adapted to provide all the nec-
essary translation support. Otherwise, if the translation of a particular OpenMP
directive not only depends on itself and the source code that it applies to, but
also depends on the subtle variations of its enclosing context, the algorithm in
Figure 5 may not be directly applicable.

An example is the treatment of OpenMP threadprivate clauses. If the trans-
lation interface requires the OpenMP source-to-source translator to generate dif-
ferent output code patterns depending on whether or not threadprivate storage
has been previously used, a straightforward adaptation of Figure 5 will not work.
For such cases, more complicated global analysis and transformation techniques
are required.

5 Related Work

Although a number of compilers were developed to support OpenMP applica-
tions, most OpenMP research projects [2, 7–9] only support applications written
in C or FORTRAN. Because commercial C++ compilers, such as the SGI MIP-
Spro [10], the IBM XL [11], the Intel KAI Guide [12], and the Fujitsu for SPARC
Solaris [13], target specific machine architectures and do not provide an open
source-to-source transformation interface to the outside world, they cannot be
used by the research community directly to plug in different OpenMP imple-
mentations. As the result, no OpenMP source-to-source translator was available
for research into optimizing C++ applications. By providing a flexible source-
to-source translator, we present an open research infrastructure for optimizing
C++ constructs and OpenMP directives.

Previous research source-to-source translators provide various infrastructures
for optimizing OpenMP directives. In particular, the OdinMP/CCp compiler [7]
takes a C-program with OpenMP directives and produces a C-program for
POSIX threads. In contrast, the Omni compiler [8] translates the OpenMP prag-
mas in C-programs into runtime library calls, which in turn then invoke either
POSIX or Solaris threads. The NanosCompiler [2] and the Polaris compiler [9]
translate Fortran programs with OpenMP directives in a similar fashion as the
Omni compiler. In addition to OpenMP-directive translation, most of these in-
frastructures also investigate techniques to automatically generate OpenMP di-
rectives and to optimize the parallel execution of OpenMP applications. We
complement the previous research by presenting an infrastructure for the C++
OpenMP pragma translation and for the automatic generation and optimization
of C++ parallel applications.

6 Conclusions and Future Work

We have presented infrastructure for the transformation of C and C++ applica-
tions. We have used the semantics of high-level abstractions to demonstrate the
automated introduction of OpenMP directives to parallelize serial codes. Finally

A C++ Infrastructure 25

we demonstrated the translation of a representative OpenMP directive using the
Nanos library.

In future work we will make available the OpenMP translation phase as a
separate component. This will permit anyone defining transformations to spec-
ify them more simply via OpenMP directives and to then process the AST to
generate the final code automatically using an OpenMP runtime library.

We are considering applying the ROSE infrastructure to the optimization of
the use of OpenMP runtime libraries. This third aspect of ROSE-based OpenMP
support would be similar to the A++/P++ source-to-source translator in that
it would optimize library use, based domain-specific semantics. For example,
we could specialize the use of the Nanos runtime library for special cases for
which commercial compilers yield significant performance gains, such as when
the number of threads is set to one.

References

1. Daniel Quinlan, Brian Miller, Bobby Philip, and Markus Schordan. Treating a
user-defined parallel library as a domain-specific language. In 16th International
Parallel and Distributed Processing Symposium (IPDPS, IPPS, SPDP), pages 105–
114. IEEE, April 2002.

2. Eduard Ayguade, Marc Gonzalez, and Jesus Labarta. Nanoscompiler: A research
platform for openMP extensions. In European Workshop on OpenMP, September
1999.

3. Edison Design Group. http://www.edg.com.
4. R. Parsons and D. Quinlan. A++/P++ array classes for architecture indepen-
dent finite difference computations. In Proceedings of the Second Annual Object-
Oriented Numerics Conference, April 1994.

5. Federico Bassetti, David Brown, Kei Davis, William Henshaw, and Dan Quinlan.
OVERTURE: An object-oriented framework for high-performance scientific com-
puting. In Proceedings of Supercomputing’98 (CD-ROM), Orlando, FL, November
1998. ACM SIGARCH and IEEE. Los Alamos National Laboratory.

6. Centre Europeu de Parallelism de Barcelona, Spain. Nanos Manual.
http://nereida.deioc.ull.es/html/nanos.html.

7. Christian Brunschen and Mats Brorsson. OdinMP/CCp - a portable implementa-
tion of openMP for c. In European Workshop on OpenMP, September 1999.

8. Mitsuhisa Sato, Shigehisa Satoh, Kazuhiro Kusano, and Yoshio Tanaka. Design
of openMP compiler for an SMP cluster. In European Workshop on OpenMP,
September 1999.

9. Seung Jai Min, Seon Wook Kim, Michael Voss, Sang Ik Lee, and Rudolf Eighmann.
Portable compilers for openMP. InWorkshop on OpenMP Applications and Tools,
July 2001.

10. Silican Graphics Inc. Optimizing Compilers for High-Performance Computing.
htpp://www.sgi.com/developers/devtools/languages/mipspro.html.

11. IBM. VisualAge C++ Professional for AIX V6.0.
http://www-1.ibm.com/servers/eserver/ecatalog/us/software/6146.html.

12. Xinmin Tian, Aart Bik, Milind Girkar, Paul Grey, Hideki Saito, and Ernesto Su.
Intel openMP C++/Fortran compiler for hyper-threading technology: Implemen-
tation and performance. Intel Technology Journal, 6(1):36–46, 2002.

13. Fujitsu. Fortran & C Packages for SPARC Solaris.
http://www.fr.fse.fujitsu.com/devuk/solaris.shtml.

M.J. Voss (Ed.): WOMPAT 2003, LNCS 2716, pp. 26–41, 2003.
© Springer–Verlag Berlin Heidelberg 2003

Analyses for the Translation of OpenMP Codes into
 SPMD Style with Array Privatization*

Zhenying Liu, Barbara Chapman, Yi Wen, Lei Huang,
Tien-Hsiung Weng, and Oscar Hernandez

Department of Computer Science, University of Houston
{ zliu , chapman , yiwen , leihuang , thweng , oscar }@cs.uh.edu

Abstract. A so-called SPMD style OpenMP program can achieve scalabil-
ity on ccNUMA systems by means of array privatization, and earlier re-
search has shown good performance under this approach. Since it is hard to
write SPMD OpenMP code, we showed a strategy for the automatic transla-
tion of many OpenMP constructs into SPMD style in our previous work. In
this paper, we first explain how to interprocedurally detect whether the
OpenMP program consistently schedules the parallel loops. If the parallel
loops are consistently scheduled, we may carry out array privatization ac-
cording to OpenMP semantics. We give two examples of code patterns that
can be handled despite the fact that they are not consistent, and where the
strategy used to translate them differs from the straightforward approach that
can otherwise be applied.

1 Introduction

OpenMP has emerged as a popular parallel programming interface for medium-scale
high performance applications on shared memory platforms. However, there are some
problems associated with obtaining high performance under this model, and they are
exacerbated on ccNUMA platforms. These include the latency of remote memory
accesses, poor cache memory reuse, barriers and false sharing of data in cache.

SPMD-style programs access threads and assign computations to them using the
thread ID, rather than via the straightforward loop level OpenMP directives. By means
of the first-touch policy, data may be allocated to the local memory of a thread if they
are first accessed by this thread. Therefore the affinity between the data and thread is
constructed. The following loop iterations can be reorganized to reuse the data that are
already in the local memory. For example, [18] showed how this method can be used
to exploit memory affinity with the example of LU decomposition. The OpenMP LU
code is rewritten so that each thread will reuse the data that are first accessed by the
current thread. The performance of this kind of SPMD style code is better than the

* This work was partially supported by the DOE under contract DE-FC03-01ER25502 and
by the Los Alamos National Laboratory Computer Science Institute (LACSI) through
LANL contract number 03891-99-23.

Analyses for the Translation of OpenMP Codes 27

original OpenMP code due to the data locality [18]. However, when the reused data
are not stored consecutively in memory as can happen, for example, in an OpenMP
Fortran program, if an array is accessed frequently by row dimension simultaneously
by multiple threads, the array elements required by multiple threads may co-exist on
the same page. So the performance of the program may suffer from false sharing prob-
lems at the page level, depending on the size of each array dimension and the size of a
page. Even if we reuse data stored consecutively in memory, there may be some page
allocation overheads which are not controlled by the compiler or the user.

More aggressive SPMD style coding privatizes arrays systematically by creating
private instances of (sub-)arrays. These codes show good scalability for ccNUMA
systems [5, 6, 25]; they are superior to an OpenMP program with straightforward
parallelization of loops and an SPMD OpenMP program taking advantage of the first
touch policy running on ccNUMA systems. The false-sharing problem is alleviated
when accessing the privatized data, since the privatized arrays are allocated in the local
stack of the current thread. However, a number of nontrivial program modifications are
required to convert a program to the SPMD style. It is thus hard for a user to write
SPMD style OpenMP code, especially for a large application. Ease of program devel-
opment is a major motivation for adopting OpenMP and it is important to provide
some help for users who wish to improve their program performance by array privati-
zation. One method is to provide a tool that supports the generation of SPMD style
OpenMP code from an OpenMP code with loop-level parallelism. We are building
just such a tool based upon the open source Open64 compiler infrastructure.

We have developed a compiler strategy in order to translate loop-parallel OpenMP
code into an SPMD-like form [17]. This requires automatic privatization of a large
fraction of the data or arrays (that is, transformation of original shared arrays into
private or threadprivate ones), the creation of shared buffers to store the resulting non-
local array references (when one thread needs the private array elements from another
thread), storage for the non-local data accessed (the halo area), and the generation of
instructions to copy data to and from buffers with the required synchronization.

We show the components of the tool that translates OpenMP programs into
equivalent SPMD ones in Fig.
1: compiler frontend, consistent
loop scheduling, privatization
analysis, overlap analysis, trans-
lation, optimization and com-
piler backend. Oval objects
represent the f r o n t e n d and
backend of the existing OpenMP
compiler; we are using the
Open64 compiler [20] due to its
powerful analyses and optimiza-
tions. The rectangular objects
enclosed by dashed lines repre-
sent the main steps in our
SPMD translation. An OpenMP
program must be analyzed to

Consistent loop scheduling

Translation

Optimization

OpenMP codes

Backend of OpenMP
compiler

Executables

IR

 Fig. 1. The framework of SPMD translation

Frontend of OpenMP
compiler

Privatization analysis

User
interaction

Zhenying Liu et al.28

test for consistent loop scheduling before the privatization analysis, which determines
the profitability of the privatization. Sometimes we may be able to enforce the consis-
tency of loop schedules. However, our definition of consistency is relatively restrictive
and there are a variety of additional situations in which we are able to perform our
SPMD transformation despite the fact that this test fails. We give two examples of
code patterns that can be handled despite the fact that they are not consistent, and
where the strategy used to translate them differs from the straightforward approach that
can otherwise be applied. In other cases, we need to interact with the user if we are to
accomplish the task of array privatization. The basic translation and optimization have
been thoroughly described in [17]. In this paper, we focus on issues related to consis-
tency of loop scheduling and privatization analysis.

2 Consistent Loop Scheduling for Data Reuse

The goal of our SPMD transformation is to help the user achieve a scalable OpenMP
code. To do so, we attempt to perform array privatization by following the semantics
OpenMP loop scheduling. Therefore we need to ensure that the different parallel loops
in the code lead to a consistent reuse of portions of individual arrays. If they do so, the
area that they reference will be used to construct a private array. Without consistency
in array accesses, array privatization will potentially lead to large private arrays and
involve extensive sharing of data between threads, both of which are undesirable. We
may exploit compiler technology to detect whether the loop scheduling is consistent,
by using the semantics of loop scheduling directives in OpenMP to discover the loop
partitioning and summarize the array sections associated with each thread within the
loop using regular section analysis. In this section, we discuss the consistency test.
Afterwards, we show how we deal with loops involving procedure calls, before consid-
ering how this information is exploited. Our ability to handle programs is not limited
to those with consistency; this issue is explored later.

2.1 Consistency Test

In order to test the consistency of loop scheduling, we use regular section analysis to
construct the array sections referenced by individual threads within parallel loops.
Array section analysis is a technique to summarize rectilinear sub-regions of an array
referenced in a statement, sequence of statements, loop or program unit. Here, our
main focus is on forming a section to describe the references made by a thread within a
parallel loop. An array section will suffice to describe the region of an array referenced
by a thread as the result of a single occurrence of that array in a statement within the
loop. We summarize the region of the array referenced by that thread by forming the
union of the array sections that are derived from the individual references. Currently,
we have decided to rely on a standard, efficient triplet notation based regular sections
[10], rather than more precise methods such as simple sections [1], and region analysis
[24]. However, when a union of two array sections cannot be precisely summarized,
we do not summarize them immediately, but keep them in a linked list. A summary

Analyses for the Translation of OpenMP Codes 29

of the linked list is forced if the length of the list reaches a certain threshold, and we
mark that the access region of that parallel loop is approximate. We refer to this in-
formation as the array section per thread for the loop. We also compute the complete
array section that is referenced in the parallel loop (by all threads). We check the
consistency of the regions loop scheduling for each shared array. If the parallel loops
are consistent for a shared array, we call this array privatizable.

Once we have created the array section per thread information for each parallel loop,
we must check to determine whether or not threads consistently access the same por-
tion of an array. Our consistency test algorithm works as follows. We first summarize
the array section accesses for each parallel loop as indicated above. We then compare
the array sections obtained for a given thread throughout the computation. We cur-
rently have strict requirements for consistency, as given in the three rules below. We
hope to be able to relax them somewhat in future. Essentially, these rules describe a
test between a pair of loop nests and cover a few cases. In one case, two loop nests are
operating on entirely different regions of an array, so that the data referenced by a
thread in one loop is distinct from the data referenced by any thread in the second loop.
An example would be a pair of loops where one loop initializes the boundary of a
mesh and the second loop initializes interior elements. Another case covers the situa-
tion when the array section per thread in one loop subsumes the array section per
thread in the second loop. We give a simple example below. There are a number of
ways in which the definition of consistency might be extended to cover cases where
the array sections referenced in the loops are “roughly” the same. At present, we have
chosen to rely upon the following definitions and to explore separately how to treat a
variety of codes that only partially conform to it, or do not conform at all.

Let A1 be the section of a shared array A that is accessed (by all threads) in a paral-
lel loop L1. Let A1

t be the subsection of A1 that is accessed by thread t. Similarly, let
A2 be the section of array A that is referenced in loop L2 and A2

t
 be the subsection of

A2 that is accessed by thread t in L2. We consider the references to array A , and there-
fore the loop scheduling with respect to A, to be consistent between the parallel loops
L1 and L2 if one of the following rules apply.
ß Rule 1: In order to know if the loop scheduling is consistent, we first com-

pute whether the intersection of A1 « A2 =f . If so, it is consistent; other-
wise, we apply rule 2.

ß Rule 2: We check whether the array section accessed by thread t in one of
the loops contains the array section accessed by thread t in the other parallel
loop by using the union operation. If A1

t » A2
t = A1

t or A1
t » A2

t = A2
t one

array section contains the other. In this case, we consider the references in the
pair of loops to be consistent. Otherwise, we apply rule 3 to further compute
the array sections of C.

ß Rule 3: We compute region C = A1
t « A2

t, where C is the intersection of
array section A1 and A2, and it is the common subsection shared by A1 and
A2. If it is 90% of the entire set of elements A accessed in the two loops by
thread t, we consider the references in the pair of loops to be consistent.

The rules for the consistency test are conservative in that they handle only some of the
cases in real world applications that can be handled. Further investigation is needed to
extend this test. The test will be applied interprocedurally for each shared array.

Zhenying Liu et al.30

2.2 Examples of Consistent and Inconsistent Schedules

In OpenMP, a parallel do loop is partitioned into several sets of iterations according to
the loop scheduling clauses (which may be the default clause). Threads will be as-
signed their own sets of iterations and will therefore require access to the subsections
of shared arrays that occur in their iterations simultaneously. As mentioned, we use
the term consistent loop scheduling to imply that threads access roughly the same
regions of an array within multiple parallel loops in OpenMP.

We use the Jacobi program excerpt in Fig. 2 as an example to illustrate the concept
of consistency and to show how to apply the consistency test. This code contains
references to two arrays. We consider array B; similar reasoning applies to A. Our first
rule for consistency checks whether the pair of loops access disjoint regions B1 and B2
of the array. However, the intersection of these regions is not empty and so we apply
rule 2. Rule 2 is not satisfied either, because B1

t » B2
t ≠ B1

t and B1
t » B2

t ≠ B2
t. In

other words, B1 and B2 do not contain each other. Then we calculate the C as shown in
Fig. 4(c), where thread 0 is selected to determine the consistency. Since C is far less
than 90% of the entire set of elements A accessed in the two loops by thread t, the
loop schedule is not consistent and B is not privatizable.

If we examine the loop nest informally, we will see that the strategy for paralleliz-
ing the first loop implies that a given thread will access a block of rows of B, whereas
n the second loop nest, the thread will access a block of columns of B. This lack of
consistency in access is in some sense encouraged by OpenMP, as the user is advised
that loop nests may be individually parallelized. Although better strategies exist, they
may not have been chosen. The program in Fig. 3 shows a different parallelization
strategy. In this case, threads will access blocks of rows of A and B in each loop nest.
Furthermore, when we evaluate these regions, we determine that for array A the array
sections per thread are identical. For array B, the region referenced in the first loop will
subsume the region accessed in the second loop. Therefore the loop schedules are
consistent with reference to both A and B, these arrays are privatizable, and we will
be able to apply our privatization algorithm without further examination of the code.

!$omp parallel default(shared) private(i,j)
!$omp do
 do j = 2 , 999
 do i = 2 , 999
 A(i,j) = (B(i-1,j)+B(i+1,j)
 + B(i,j-1)+B(i,j+1)) * c
 end do
 end do
!$omp do
 do i=1, 1000
 do j= 1, 1000
 B(i,j) = A(i,j)
 end do
 end do
!$omp end parallel

Fig. 2. A Jacobi code example with
inconsistent loop scheduling

!$omp parallel default(shared) private(i,j)
!$omp do
 do j = 2 , 999
 do i = 2 , 999
 A(i,j) = (B(i-1,j)+B(i+1,j)
 + B(i,j-1)+B(i,j+1)) * c
 end do
 end do
!$omp do
 do j=1, 1000
 do i= 1, 1000
 B(i,j) = A(i,j)
 end do
 end do
!$omp end parallel

Fig. 3. Another Jacobi code example
with consistent loop scheduling

Analyses for the Translation of OpenMP Codes 31

Fig. 4. Jacobi program and consistency test of Fig. 2

3 Interprocedural Analysis

Our ability to determine consistency of access in a reasonable fashion relies on our
ability to determine the array elements accessed by threads accurately. For this we may
defer combining array sections in a loop nest. However, we also want to minimize the
introduction of inaccuracies during interprocedural analysis. We consider how to do so
next.

3.1 Call Graph

Parallel loops may contain calls to procedures. We must also evaluate access patterns
throughout the entire program. In order to do so well, our interprocedural analysis is
implemented on call graphs created by a precise call graph algorithm [26]. For any
data flow problem including our privatization problem, one call site may have several
different sequences of actual arguments as a consequence of several different call chains
that will be followed at run time. The call graphs constructed by most call graph
algorithms are not able to take the multiple sequences of actual arguments into con-
sideration [3, 9, 22]. Hence they are sometimes imprecise. To overcome this, we have
developed an algorithm that enables us to precisely determine the call chains that will
occur. Our call graph is a multi-graph where each procedure in the program is repre-
sented by a single node, as usual. Directed edges between nodes indicate that the source
procedure invokes the sink procedure. An edge records information on the predecessor
edge in a call chain of the program. For each pair of nodes in the call graph, there may
be zero, one or more edges connecting them. However, no two edges will be identical
with respect to the associated information.

x

B1
’

B2
’

B3
’

B4
’

1

250

500
750

1000

 C

B1
0

 B2
01 250 500 750

y
B1 B2 B3 B4

(a) Array sections for 4
threads, first parallel loop

(b) Array sections for 4 threads,
second parallel loop

(c) Array sections for
thread 0, both parallel loop

Zhenying Liu et al.32

Fig. 5. A Jacobi OpenMP program with several program units

We give a simple example to show the information that is appended to the edges in
the graph. It considers a Jacobi program consisting of several program units in Fig. 5
and its call graph in Fig. 6. There are four nodes in the call graph to represent the
procedures. The edges in the call graph represent the calling relations. For example,
the edge e1 depicts that the main calls sub1.

Fig. 6. The call graph for the Jacobi OpenMP program in Fig. 5

3.2 Interprocedural Algorithm

In order to handle parallel loops containing procedure calls, we must determine the
array region accessed within the called procedure, using our call graph to help do so.

subroutine sub1(A,size)
integer size,i,j
double precision A(0:size,0:size)
!$omp do
 do j=0,size
 do i=0, size
 A(i,j) = 1.0
 end do
 end do
!$omp end do
end

subroutine sub3(C,D,size)
integer m,n,size
double precision C(0:size,0:size)
double precision D(0:size,0:size)
!$omp do
 do m = 0, size-1
 do n = 0, size-1
 D(m,n) = C(m,n)
 enddo
 enddo
!$omp end do
end

subroutine sub2(A,B,size)
integer i,j,size
double precision A(0:size,0:size)
double precision B(0:size,0:size)
!$omp do
 do i = 1, size-2
 do j = 1, size-2
 A(i,j) = (B(i,j-1) + B(i,j+1)
 + B(i-1,j) + B(i+1,j))
 enddo
 enddo
!$omp end do
end

 Program Jacobi
 …
!$omp parallel default(shared)
!$omp&shared(A,B,size) private(k)

 do k=1,ITER
 call sub1(B,size)
 call sub2(A,B,size)
 call sub3(A,B,size)
 end do

!$omp end parallel
…

e1 e2
e3

 Main

 sub1 sub2 sub3

Analyses for the Translation of OpenMP Codes 33

The algorithm in Fig. 7 operates on the call graphs we introduced in Section 3.1. It
traverses the call graph in a depth-first manner. The algorithm is recursive. It follows
a call chain from a program entry point to the end of this call chain. Upon returning,
the algorithm gathers and binds information in bottom-up order which guarantees
correct binding between formal parameters and actual arguments.

The initial invocation will be Inter_consistency_analysis(Main, Null) where Main
is the program entry point and thus has no (Null) predecessor edges. In our call graph,
each out edge of Main node has no predecessor. The local consistency analysis in line
3 involves the consistency test in Section 2.1, and records the corresponding array
section information. When we execute line 7 to line 10, each out edge of Main node
will be examined individually. The algorithm gathers and assembles information for
determining consistency from their callees and callees’ successors, then binds the
information to these edges. The array section per thread is finally achieved by forming
the union of the individual array sections corresponding to array references. Here, we
also follow the strategy of deferring the merging of array sections unless a threshold is
reached. We also use this call graph and the associated information to ensure that our
subsequent handling of the program is accurate, as will be explained in the previous
section.

Fig. 7. The interprocedural consistency analysis algorithm

The algorithm needs to calculate local information for a procedure node only once,
while the algorithm may visit a node more than once. Line 2 to line 5 of the algo-
rithm in Fig. 7 guarantees this by examining the value of v1.complete, which is true
for completeness, and false for incompleteness. Lines 7 to line 11 gather and assemble
array section information for every edge, for which eprev is their predecessor edge in
the call chain. The binding function binds the formal parameters to the actual ones,
where ej stands for one of the out edges of the current procedure node v1, and v2 for one
of the callees of the procedure v1.

1. Procedure Inter_consistency_analysis(node v1, Edge eprev)
2. if v 1.complete = False then
3. v1.privatizaion =Local_consistency_analysis(v1)
4. v1.complete=True
5. end if
6. Result = 1
7. for each edge ej where ej.prev= eprev in v1
8. ej.privatizable=binding(Inter_consistency_analysis(ej.v 2,ej),ej)
9. Result = Result « ej.privatization
10. end for
11. Result = v1.privatization « Result
12. return Result
13. End procedure

Zhenying Liu et al.34

4 Privatization Analysis

4.1 Privatization Algorithm

Our privatization analysis works as follows. We first test if the OpenMP program has
consistent loop scheduling. If so, we will carry out the privatization according to
OpenMP semantics. If it is largely consistent, then we may be able to modify the
remaining “inconsistent” parallel loops to obtain consistency. This entails identifying
which loop in the loop nest would result in the prevailing access pattern if parallel-
ized; if dependence tests prove that this is legal, we then replace the originally parallel-
ized loop with this one and an appropriate schedule. We may also be able to apply
loop interchange to support this. Since only one level of parallelism is supported in
OpenMP, we deal with one dimensional privatization at this stage. BLOCK partition
is a default manner of privatization. Even if the loop scheduling is consistent, we still
have to detect whether it is profitable to privatize arrays. For example, if we have
large shadow areas (halos) for threads and share data extensively between threads, it is
not likely to be profitable to privatize arrays. If the above methods do not enable us to
privatize arrays, we may be able to detect and deal with a known special case. We
illustrate this by discussing two important special cases, LU decomposition OpenMP
program and ADI-like code, below. Although neither of these have consistent array
usage, array privatization can be used in both cases to achieve good performance. In
Fig. 8, we show the above process in the privatization analysis algorithm.

Fig. 8. Privatization analysis algorithm

We use an LBE OpenMP example to illustrate the local privatization algorithm. In
Fig. 9, part of the OpenMP LBE program is shown. LBE, a computational fluid
dynamics code, solves the Lattice Boltzmann equation and is provided by Li-Shi Luo
of ICASE, NASA Langley Research Center [11]. It uses a 9-point stencil, and the
neighboring elements are updated at each iteration. The consistency test will have a
positive result in this case: the loop schedule is consistent and array f and fold are

1. Procedure Privatization_Analysis
2. Consistency test
3. if (inconsistent) then
4. Data dependence test
5. Applying loop transformation
6. else
7. Profitability test
8. Translation OpenMP into SPMD style with array privation
9. end if
10. if (known special cases) then handling the special cases
11. else reporting to the users
12. end if
13. End procedure

Analyses for the Translation of OpenMP Codes 35

privatizable, since both of the parallel loops distribute the iterations in the j-loop
which sweeps the second dimension of array f and fold. Each thread will access a con-
tiguous set of columns of the original array. When such results are obtained from the
test, we can immediately determine the size and shape of the corresponding private
arrays for individual threads: we simply use the union of the array sections reference in
the different parallel loops. In this case, the transformation will be profitable because
each thread only accesses the array elements inside an individual array section all the
time. Once we privatize f and fold, only two columns of arrays are non-local and the
data sharing between threads is trivial in contrast to the computation.

4.2 Special Case 1: LU

In some cases when the loop scheduling in OpenMP program is not consistent, we
cannot arrive at a suitable array privatization by means of following its OpenMP
semantics, for instance, the Jacobi program in Fig. 2 and the LU OpenMP program in
Fi.g 10. If we apply loop interchange to the second loop nest, and parallelize the new
outer loop to get another Jacobi program in Fig. 3, then threads will access roughly
the same set of data in each loop and will moreover reference contiguous areas in
memory.

In the case of LU decomposition, since its OpenMP program does not consistent
schedule the loops, we may ask the user if we can privatize the arrays. In the LU
program, the inner loop is a parallel one, while the loop bounds of the inner loop
involve the upper level loop iteration variable. Therefore the inner parallel has the
dynamic loop bounds and the associate array regions for each thread changes from

!$omp parallel
 do k = 1, n-1
!$omp single
 lu(k+1:n,k) = lu(k+1:n,k)/lu(k,k)
!$omp end single
!$omp do
 do j = k+1,n
 lu(k+1:n, j) =
 lu(k+1:n,j) – lu(k,j)* lu(k+1:n,k)
 end do
!$omp end do
 end do
!$omp end parallel

Fig. 10. OpenMP LU decomposition

!$omp parallel
 do iter = 1, niters
!$omp do
 do j = 1, Ygrid
 do i = 1, Xgrid
 fold(i,0,j) = f(i,0,j)

……
fold(i,8,j) = f(i,8,j)

 end do
 end do
!$omp end do
……
!$omp do
do j=1, Ygrid – 1
 do i=2, Xgrid -1
 f (i,0,j) = Fn(fold(i,0,j)
 f (i+1,1,j) = Fn(fold(i,1,j))
 f (i,2,j+1) = Fn(fold(i,2,j))
 ……
 f(i+1,8,j-1) = Fn(fold(i,8,j))
 end do
end do
!$omp end do
……

Fig. 9. OpenMP LBE code

Zhenying Liu et al.36

iteration to iteration and the size of array regions is shrinking. Although it is incon-
sistent loop scheduling, it is a good candidate to privatize arrays in the CYCLIC man-
ner in the column dimension, and there is little data sharing between threads.

4.3 Special Case 2: ADI

ADI (Alternating Direction Implicit) application [12] is another special example in
which each parallel loop sweeps a distinct dimension, and it spends almost the same
execution time on each parallel loop. The data dependence in ADI prevents from loop
interchanging. Therefore we are not able to privatize arrays by directly following
OpenMP semantics.

Double precision A(0:N,N),B(0:N,N)
!$omp parallel
 chunk = N/omp_get_num_threads()
!$omp do
 do j=1, N
 do i= 1, N
 A(i,j) = A(i,j) - B(i,j) * A(i-1,j)
 end do
 end do
!$omp end do
 sync(1:N,omp_get_thread_num())=.F.
 do i= 1,N
!$omp flush (A, sync)
 if(id.ne.0 .and..not. sync(i,id-1))then
 do while (.not. sync(i,id-1))
!$omp flush (A, sync)
 end do
 end if
 do j=1+id*chunk,chunk + id*chunk
 A(i,j) = A(i,j)- B(i,j) * A(i,j-1)
 end do
 sync(i,id) = .T.
!$omp flush
 end do
!$omp end parallel

Fig. 12. ADI-like OpenMP code
in SPMD style

!$omp threadprivate(Aloc, Bloc)
 sync = .F.
 chunk = N/omp_get_num_threads()
!$omp parallel shared(shadow, sync)
 do j=1, chunk
 do i= 1, N
 Aloc(i,j)=Aloc(i,j) &
 Bloc(i,j)*Aloc(i-1,j)
 end do
 end do
 do i= 1,N
!$omp flush (shadow, sync)
 if (id .ne. 0) then
 do while (.not. sync(i,id-1))
!$omp flush (shadow, sync)
 end do
 Aloc(i,0) = shadow(i,id-1)
 end if
 do j= 1, chunk
 Aloc(i,j)=Aloc(i,j)- &
 Bloc(i,j)*Aloc(i,j-1)
 end do
 shadow(i,id) = Aloc(i,chunk)
 sync(i,id) = .T.
!$omp flush (shadow,sync)
 end do
!$omp end parallel

Fig. 13. ADI-like OpenMP code in
SPMD style with array privatization

!$omp parallel
!$omp do
 do j=1, N
 do i= 1, N
 A(i,j)=A(i,j)-B(i,j)*A(i-1,j)
 end do
 end do
!$omp end do
!$omp do
 do i= 1,N
 do j= 1, N
 A(i,j)=A(i,j)-B(i,j) * A(i,j-1)
 end do
 end do
!$omp end do
!$omp end parallel

Fig. 11. The ADI-like OpenMP code

Analyses for the Translation of OpenMP Codes 37

ADI OpenMP code can be rewritten into an SPMD style one containing consistent
loop scheduling. Furthermore, we may privatize arrays according to the OpenMP
semantics of this OpenMP SPMD code. In Fig. 14, we show results of executing
three different versions of the ADI code. The experiments were conducted on Origin
2000 systems at the National Center for Supercomputing Applications (NCSA) in
multi-user mode. MIPSpro 7.3.1.3 Fortran 90 compiler was used with the options: -
mp. We set on the first touch policy and set off the page migration environmental
variable. Altogether, the SPMD style code with array privatization outperforms its
OpenMP and SPMD OpenMP code without array privatization.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2 4 8 16 32

OpenMP

SPMD

Array privatization

5 Related Work

Scalability of OpenMP codes is naturally a concern on large-scale platforms. The data
locality problem for OpenMP on ccNUMA architectures is well known and a variety
of means have been provided by vendors to deal with it, including first touch alloca-
tion. Researchers have proposed strategies for page allocation [19] and migration; data
distribution directives are implemented by SGI [23] and Compaq [2] to improve data
locality, although their directives differ. Page granularity distributions are easier to
handle, but may be imprecise. An element-wise (HPF-like) data distribution can
distribute array elements to the desired processor or memory. For example, the
DISTRIBUTE_RESHAPE directive provided by SGI uses the specification of the
distribution to construct a “processor_array” which contains pointers to the array ele-
ments belonging to each processor, so as to guarantee the desired distribution. How-
ever, a consequence is that pointer arithmetic is introduced to realize accesses to the
array elements, and performance of the resulting code is poor if options that optimize

Fig. 14. The execution time of a pure OpenMP program,
SPMD OpenMP programs without and with array privatization

Zhenying Liu et al.38

pointers are not selected. Instead of this approach, our strategy is to base the transla-
tion on threadprivate arrays which are guaranteed to be local and do not involve the use
of additional pointers.

A number of researchers investigated the problem of finding an efficient data layout
automatically for codes that were being compiled for distributed memory systems in
the context of HPF [8, 13]. The major steps that they identified in the search for a data
distribution are as follows: alignment analysis [15, 14], decision on the manner of
distribution (BLOCK or CYCLIC), adjustments to the block size of dimensions for a
cyclic distribution, and determination of how many processors are to be used as the
target for each distributed dimension.

But there are significant differences between this problem and ours. On distributed
memory systems, each array must be distributed in order to enable parallelism: it is
usually not feasible to replicate more than a few arrays, as memory costs will be
prohibitive. This is not true for OpenMP programs. Even if some of the shared arrays
in an OpenMP program are not privatized, we are still able to execute the code in
parallel quite reasonably. Therefore, we have more options. In addition to that, auto-
matic data distribution for distributed memory systems is based on sequential pro-
grams which have no analysis for potential parallelism. In contrast, OpenMP pro-
grams already include information that some loops are parallelizable. Moreover, if we
follow the semantics of the user-specified OpenMP loops, we are provided with an
assignment of work, and hence data references, to the individual threads. This informa-
tion, in the form of array sections that are accessed by the threads, gives us initial
information for determining an appropriate array privatization. Note, too, that the
regions may overlap and that our analysis is greatly simplified by the fact that
OpenMP specifies a simple and direct mapping of loop iterations to threads, rather
than requiring us to consider each statement in a loop nest individually. While this
may lead to a larger amount of data being referenced by multiple threads, it makes our
problem much more tractable.

A large body of work exists that considers strategies for gathering and storing in-
formation on array sections accessed, and for summarizing these both within individ-
ual procedures and across a program. Among the best know strategies are regular sec-
tions [3], simple sections [1], atomic images and atoms [16]. We use bounded regular
sections in this context. However, we have adopted a new strategy for obtaining preci-
sion, by merging regions where this does not lead to loss of precision and otherwise
recording lists of references. We have also considered the problem of recording and
using the correct call chains when performing this analysis.

In this paper, we have focused on the problem of array privatization for arrays that
are accessed in regular (structured) patterns, which is quite widespread. In [21], the
access pattern statistics are summarized for Perfect and SPEC benchmark suite. The
authors note a very high percentage of simple affine subscripts (e.g., A(i)) in many
applications. For instance, among the thirteen programs in its statistical table 1, four
of them including swim and tomcatv, have at least 97% accesses that are simple affine
subscripts. The Ocean program has only 32.3% affine subscripts; all the other 12
programs have at least more than 50% simple affine subscripts.

Analyses for the Translation of OpenMP Codes 39

6 Conclusions and Future Work

OpenMP codes must contend with the data locality problems incurred by multiple
caches and remote memory access latency. The SPMD style enhances the capability of
OpenMP to achieve better data locality. This paper discusses the analyses and optimi-
zations which will enable us to partially automate the translation of loop-parallel
codes to SPMD style via a compiler. Thus the performance benefits are obtained
without devolving this burden onto the users.

We have focused our attention here on applications with regular data access pat-
terns. OpenMP programs provide an explicit mapping of computation to threads and
hence specify which data is needed by an individual thread; we thus have a basis for
implementing a privatization algorithm. However, these codes may lead to some
difficult problems. In the ADI (Alternating Direction Implicit) kernel, the access pat-
tern of shared arrays changes for different parallel loops makes the array privatization
very hard to perform according to OpenMP semantics. We have determined that a
transformation into a macro pipelined version (that can be described by using FLUSH
directives) can help us obtain data locality and considerably lessen the synchronization
cost for ADI-like applications. In the current state of our work, we must ask the user
to help us decide how to deal with codes where the access patterns change.

More work is needed to improve our ability to perform this work automatically, to
determine in some cases whether or not privatization is profitable, and to lessen the
amount of global synchronization incurred in OpenMP codes. There are also many
possible ways in which we could attempt to improve upon the code produced. We plan
to perform experiments to learn more about these issues. We will also experiment to
find out whether it is beneficial in practice to break one critical section into two or
more smaller critical sections, and how beneficial it is to change global synchroniza-
tion to point-to-point synchronization. We expect to replace the barriers in our gener-
ated SPMD style codes via FLUSH directives in order to improve our results.

Finally, we plan to test our SPMD style codes not only on ccNUMA systems, but
also in a PC cluster running Omni/Scash, where our aggressive array privatization
should have a strong impact on performance.

References

1. Balasundaram, V., and Kennedy, K.: A Technique for Summarizing Data Access and Its
Use in Parallelism Enhancing Transformations. Proceedings of the 1989 ACM
SIGPLAN Conference on Programming Language Design and Implementation, Portland,
Oregon, June 21-23, (1989) 41-53

2. Bircsak, J., Craig, P., Crowell, R., Cvetanovic, Z., Harris, J., Nelson, C.A., and Offner,
C.D.: Extending OpenMP for NUMA machines. Scientific programming. Vol. 8, No. 3 ,
(2000)

3 . Callahan, D. and Kennedy, K.: Analysis of Interprocedural Side Effects in a Parallel
Programming Environment. Journal of Parallel and Distributed Computing. Vol. 5 ,
(1988)

4 . Chandra, R., Chen, D.-K., Cox, R., Maydan, D.E., Nedeljkovic, N., and Anderson,

Zhenying Liu et al.40

J.M.: Data Distribution Support on Distributed Shared Memory Multiprocessors. Pro-
ceedings of the ACM SIGPLAN'97 Conference on Programming Language Design and
Implementation, Las Vegas, NV, June (1997)

5 . Chapman, B., Bregier, F., Patil, A., and Prabhakar, A.: Achieving High Performance
under OpenMP on ccNUMA and Software Distributed Share Memory Systems. Currency
and Computation Practice and Experience. Vol. 14, (2002) 1-17

6 . Chapman, B., Patil, A., and Prabhakar, A.: Performance Oriented Programming for
NUMA Architectures. Workshop on OpenMP Applications and Tools (WOMPACT‘01),
Purdue University, West Lafayette, Indiana. July 30-31 (2001)

7 . Gonzalez, M., Ayguade, E., Martorell, X., and Labarta, J.: Complex Pipelined Execu-
tions in OpenMP Parallel Appliations. International Conferences on Parallel Process-
ing(ICPP 2001), September (2001)

8. Gupta M., and Banerjee, P.: PARADIGM: A Compiler for Automated Data Distribution
on Multicomputers. Proceedings of the 7th ACM International Conference on
Supercomputing, Tokyo, Japan, July 1993.

9. Hall, M.W., and Kennedy, K.: Efficient call graph analysis. ACM Letters on Program-
ming Languanges and Systems, Vol. 1, No. 3, (1992) 227-242

10. Havlak, P., and Kennedy, K.: An Implementation of Interprocedural Bounded Regular
Section Analysis. IEEE Transactions on Parallel and Distributed Systems, Vol. 2, No.
3, July (1991) 350-360

11. He, X., and Luo, L.-S.: Theory of the Lattice Boltzmann Method: From the Boltzmann
Equation to the Lattice Boltzmann Equation. Phys. Rev. Lett. E, No. 56, Vol. 6, (1997)
6811

1 2 . Jin, H., Frumkin, M., and Yan, J.: The OpenMP Implementation of NAS Parallel
Benchmarks and its Performance. NAS Technical Report NAS-99-011, Oct. (1999)

13. Kennedy, K. and Kremer, U.: Automatic Data Layout for High Performance Fortran.
Proceedings of the 1995 Conference on Supercomputing (CD-ROM), ACM Press,
(1995)

14. Laure, E."and Chapman, B.: Interprocedural Array Alignment Analysis. Proceedings
HPCN Europe 1998, Lecture Notes in Computer Science 1401. Springer, April (1998)

15. Li, J. and Chen, M.: Index domain alignment: Minimizing cost of cross-referencing
between distributed arrays. Proc. Third Symp. on the Frontiers of Massively Parallel
Computation, IEEE. October (1990): 424-433

1 6 . Li, Z., and Yew, P.-C.: Program Parallelization with Interprocedural Analysis, The
Journal Jin, H., Frumkin, M., and Yan, J.: The OpenMP Implementation of NAS Paral-
lel Benchmarks of Supercomputing, Vol. 2, No. 2, October (1988) 225-244

17. Liu, Z., Chapman, B., Weng, T.-H., and Hernandez, O.: Improving the Performance of
OpenMP by Array Privatization. In the Workshop on OpenMP Applications and Tools
(WOMPAT 2002), Fairbanks, Alaska, August (2002)

1 8 . Nikolopolous, D.S., Artiaga, E., Ayguadé, E., and Labarta, J.: Exploiting Memory
Affinity in OpenMP through Schedule Reuse. Third European Workshop on OpenMP
(EWOMP 2001), (2001)

19. Nikolopoulos, D.S., Papatheodorou, T. S., Polychronopoulos, C. D., Labarta, J., and
Ayguadé, E.: Is Data Distribution Necessary in OpenMP? Proceedings of Supercomput-
ing 2000, Dallas, Texas, November (2000)

20. The Open64 compiler. http://open64.sourceforge.net/
21. Paek, Y., Navarro, A., Zapata, E., Hoeflinger, J., and Padua, D.: An Advanced Compiler

Framework for Non-Cache-Coherent Multiprocessors, IEEE Transactions on Parallel
and Distributed Systems. Vol. 13, No. 3, March (2002) 241-259

22. Ryder, B.G.: Constructing the Call Graph of a Program. IEEE Transactions on Software

Analyses for the Translation of OpenMP Codes 41

Engineering, Vol. 5, No. 3, (1979) 216-225
23. Silicon Graphics Inc. MIPSpro 7 FORTRAN 90 Commands and Directives Reference

Manual, Chapter 5: Parallel Processing on Origin Series Systems. Documentation num-
ber 007-3696-003. http://techpubs.sgi.com/

24. Triolet, R., Irigoin, F., and Feautrier, P.: Direct Parallelization of CALL statements.
Proceedings of ACM SIGPLAN ’86 Symposium on Compiler Construction, July (1986)
176-185

25. Wallcraft, A.J.: SPMD OpenMP vs. MPI for Ocean Models. Proceedings of First Euro-
pean Workshops on OpenMP (EWOMP’99), Lund, Sweden, (1999)

26. Weng, T.-H., Chapman, B., and Wen, Y.: Practical Call Graph and Side Effect Analysis
in One Pass. Technical Report, University of Houston, Submitted to ACM TOPLAS
(2003)

A Runtime Optimization System for OpenMP�

Mihai Burcea and Michael J. Voss

Edwards S. Rogers Sr. Department of
Electrical and Computer Engineering

University of Toronto, Toronto, ON, Canada
{burceam,voss}@eecg.toronto.edu

Abstract. This paper introduces stOMP: a specializing thread-library
for OpenMP. Using a combined compile-time and run-time system, stOMP
specializes OpenMP parallel regions for frequently-seen values and the
configuration of the runtime system. An overview of stOMP is pre-
sented as well as motivation for the runtime optimization of OpenMP
applications. The overheads incurred by a prototype implementation of
stOMP are evaluated on three Spec OpenMP Benchmarks and the EPCC
scheduling microbenchmark. The results are encouraging and suggest
that there is a large potential for improvement by the runtime optimiza-
tion of OpenMP applications.

1 Introduction

In recent years, there has been an increased interest in the runtime optimization
of applications. At compile-time, optimizers are severely restricted by incom-
plete knowledge of the program input, target architecture, and library modules.
By performing optimization at runtime, more complete knowledge is available
allowing programs to be highly tuned to their exact runtime environment and
usage.

In this paper, we present stOMP: a specializing thread-library for OpenMP.
stOMP is an implementation of the OpenMP API [1,2] based on the Omni
compiler and runtime library [3]. In addition to the implementation of OpenMP
provided by Omni, stOMP leverages properties of OpenMP applications and the
Omni runtime library to provide an environment for the dynamic optimization
and compilation of parallel regions. At runtime, stOMP is used to specialize par-
allel regions for runtime constant or well-behaved variables, and for the current
configuration of the parallel environment.

In Section 2, we present related work in dynamic and adaptive program
optimization. In Section 3, we discuss the unique properties of OpenMP appli-
cations that make them ideal for runtime optimization. In Section 4, we present
an overview of the stOMP compilation and runtime subsystems, and details of
the stOMP prototype that is currently under development. An initial evaluation
of our prototype is provided in Section 5. In Section 6, we present our conclusions
and plans for future work.
� This work is supported in part by the National Science and Engineering Research
Council, Bell Canada University Labs, the Connaught Foundation and Dell Canada.

M.J. Voss (Ed.): WOMPAT 2003, LNCS 2716, pp. 42–53, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

A Runtime Optimization System for OpenMP 43

2 Related Work in Runtime Optimization

Runtime compilation and optimization has been most successfully applied in
languages that have high abstraction penalties, such as Java, C# and Smalltalk
[4,5,6,7]. Often in these languages, runtime compilation can be used to remove
some of the high overheads incurred by advanced language features, such as vir-
tual/polymorphic function invocation, dynamic class loading and array bounds
checking. Just-in-time and adaptive compilation are now accepted practice for
these languages.

There have been mixed results for dynamic optimization when applied to
non-object-oriented imperative languages, such as C. The DyC, ’C, and Tempo
projects have explored user-directed dynamic compilation of C programs [8,9,10].
These approaches require user-annotation of application programs to select code
regions and variables for optimization. Unlike Java, C# and Smalltalk, C pro-
grams are less tolerant of the overheads incurred by runtime compilation, and
therefore users must carefully select code regions where dynamic compilation
will be profitable. In [11], a profile-directed tool, Calpa, is used to automate
the selection of regions and specialization targets for DyC. However in [11], it is
unclear if the approach scales to large programs.

In [12], ADAPT is proposed for the runtime optimization of loop-based For-
tran applications. ADAPT is a generic system that allows compiler developers
to easily add and experiment with adaptive optimizations. In [12], the dynamic
serialization of parallel OpenMP regions is used as an example application of
the system. Unlike stOMP, ADAPT cannot directly influence or leverage the
OpenMP runtime library.

3 OpenMP as a Target for Runtime Optimization

The OpenMP API has bindings for both the Fortran [1] and C/C++ [2] lan-
guages. As discussed in Section 2, dynamic compilation systems that target
these languages usually require users to hand-annotate regions for optimization
[8,9,10]. However in the case of OpenMP applications, we believe that useful opti-
mization directives can be inferred from the already existing OpenMP directives,
and that OpenMP libraries provide needed features for easily implementing a
runtime optimization system.

3.1 Runtime Characteristics of OpenMP Applications

To perform runtime optimization on an application, two basic choices must be
made: (1) what code regions should be optimized and (2) what runtime values
should be used to specialize these regions. A natural choice for the code regions
to optimize in OpenMP applications are PARALLEL regions. These regions
have been annotated by users because they are important to the application’s
performance and they have execution times that are large enough to tolerate par-
allelization overheads. These traits make them not only ideal for parallelization
but for runtime optimization as well.

44 Mihai Burcea and Michael J. Voss

The second choice that needs to be made is to select the runtime values
to use in optimization. Fig. 1 shows the behavior of shared variables in the C
and Fortran77 SPEC OpenMP benchmarks [13]. In Fig. 1 (a), a histogram of
the number of distinct values per shared-variable is shown by type. Fig. 1 (a)
demonstrates that shared variables have only a few values over a program run.

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 15 >= 70

Number of Distinct Values

N
u

m
b

er
 o

f
O

cc
u

rr
en

ce
s

INT
DOUBLE
LONGLONG
ARRAY
STRUCT
POINTER

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 >=15

Number of Distinct Combinations

N
u

m
b

er
 o

f
O

cc
u

rr
en

ce
s

All
<= 8 Values

(a) (b)

Fig. 1. Figure (a) is a histogram of the number of distinct values held by shared
variables at entry to parallel regions in the C and Fortran77 SPEC OpenMP
Benchmarks. For ARRAYs, STRUCTs and POINTERs, “Values” correspond
to the addresses of the variables, not their content. Figure (b) is a histogram
of the total number of combinations of variable values seen at entry to parallel
regions. In (b), the combinations obtained when using all variables, as well as
the well-behaving variables with less than 8 distinct values each are shown. In
both (a) and (b), “Occurrences” is the static count of regions or variables that
exhibit the behavior.

Fig. 1 (b) shows the number of distinct combinations of variable values.
A combination of variable values is the set of values held by all variables of
interest at entry to the region. For example, if a region has two shared variables,
A and B, a combination might be A = 1, B = 3. In Fig. 1 (b), we present
data for combinations derived from all shared variables, as well as combinations
derived from the shared variables that have 8 or less distinct values (as shown in
Fig. 1 (a)). Fig. 1 (b) suggests that if regions are optimized for frequently-seen
combinations of values, only a small number of code versions need to be compiled
and managed at runtime.

3.2 Features of OpenMP Implementations

Standard implementations of OpenMP provide the necessary hooks for easily
implementing a runtime optimization system. Fig. 2 shows an example of an
OpenMP parallel region as annotated by a user. In Fig. 3 (a) and 3 (b), the code
generated by the Omni compiler to implement this region is shown.

The call to ompc do parallel in Fig. 3 (a), causes the Omni runtime library
to create a team of threads to execute the code found in the ompc func 0 rou-

A Runtime Optimization System for OpenMP 45

#pragma omp parallel shared(x, npoints) private(iam, np, ipoints)

{

iam = omp_get_thread_num();

np = omp_get_num_threads();

ipoints = npoints / np;

subdomain(x, iam, ipoints);

}

Fig. 2. The source code for a simple parallel region

tine. In Section 4, we propose a system that uses the call to ompc do parallel
to select and create highly specialized and optimized versions of code for each
parallel region at runtime.

3.3 Optimization Opportunities

If shared variables can be used to specialize OpenMP applications, there are a
number of opportunities for enhancing the performance of these applications. An
inspection of the SPEC OpenMP benchmarks shows that simple expressions of
shared variables, the thread id and the number of threads, often determine loop
bounds and branch conditions. Many static optimizations are severely handi-
capped when loop bounds and conditionals are unknown. By capturing these
values at runtime, more accurate and aggressive loop transformations might be
applied to these important parallel nests.

In addition, the transformations applied by OpenMP compilers often create
complicated code that is less amenable to compiler optimization. For example,
functions calls are added to determine loop schedules, and shared variables may
be accessed through pointers, instead of directly, leading to added aliases. A
runtime optimization system may be able to see through, or remove, these com-
plications using runtime information, generating better code as a result.

4 The stOMP Runtime Optimization System

Fig. 4 shows an overview of our proposed system, stOMP. The system consists
of three major components: a modified version of the Omni OpenMP compiler,
a modified version of the Omni runtime library and a Dynamic Optimizer. We
briefly describe these three components in the sections below.

4.1 The stOMP Compiler

For each parallel region in the OpenMP application, the stOMP compiler creates
a new file that contains the source code for that region. For the code in Fig. 2, this
new file would contain a copy of the code shown in Fig. 3 (b). Special attention
is paid to ensure that global variables, static variables, and Fortran Common
blocks are properly transformed to allow the code to be placed in a separate

46 Mihai Burcea and Michael J. Voss

(*(__ompc_argv)) =

(((void *) (&x)));

(*((__ompc_argv) + (1))) =

(((void *) (&npoints)));

_ompc_do_parallel (__ompc_func_0,

__ompc_argv);

(a)

static void

__ompc_func_0 (__ompc_args)

void **__ompc_args;

{

auto int _p_iam;

auto int _p_np;

auto int _p_ipoints;

auto int **_pp_x = (((int **)

(*__ompc_args)));

auto int *_pp_npoints = (((int *)

(*((__ompc_args) + (1)))));

(_p_iam) = (omp_get_thread_num());

(_p_np) = (omp_get_num_threads());

(_p_ipoints) =

((*_pp_npoints) / (_p_np));

subdomain (*_pp_x, _p_iam,

_p_ipoints);

}

(b)

Fig. 3. The parallel region from Fig. 2 after being transformed by Omni: (a) the
site of the parallel region and (b) the function created by Omni to encapsulate
the body of the parallel region

file, while retaining the semantics of the original code. These files are stored for
future processing by the stOMP Dynamic Optimizer. In addition to generating
the parallel region files, the stOMP compiler also creates application-specific
functions for runtime code management and compilation.

4.2 The stOMP Runtime Library

The runtime system, shown in Fig. 4 (b), tracks shared variables and invokes
the stOMP Dynamic Optimizer. The runtime library maintains 8-element, per-
region code caches that store dynamically generated code. At each call to the
ompc do parallel function, the code cache corresponding to the first argument
is inspected for a version that matches the current values of the shared variables,
number of threads and thread id (referred to as a combination of values in
Section 3).

Fig. 5 shows an overview of the flow through the ompc do parallel function.
Before spawning worker threads, the master thread invokes the match function
generated by the stOMP compiler for this parallel region. The match function
returns a set of functions, one for each thread, that should be invoked to execute
the parallel region. If this region has already been specialized for the current
combination of runtime values, the set of specialized functions is returned.

A Runtime Optimization System for OpenMP 47

Source Code for
Region 0

Modified Omni
OpenMP Compiler

OpenMP
Application

App. with
stOMP Calls

Source Code for
Region 0Source Code for

Region 0

The stOMP
Dynamic Optimizer

The Running OpenMP
Application

Source Code for
Region 0Source Code for

Region 0Source Code for
Region 0

invokes

Specialized
Region 0 DLLSpecialized

Region 0 DLLSpecialized
Region 0 DLL

invokes based on
values and
thread number

specializes for
values and thread
number

invokesThe stOMP
Runtime Library

(a) (b)

Fig. 4. An overview of stOMP: (a) the compiler and (b) the runtime system

If no matching functions are found, the number of times this combination
of values has been seen for this region is compared against a user-set threshold.
If the threshold has been exceeded, the stOMP compile function for this region
is invoked to create the corresponding set of functions. If the threshold has not
yet been exceeded, the statically-compiled default set of functions is returned
and a counter for this combination of values is incremented. If more than 8
combinations are seen for a region, the least-frequently-used cache block will be
evicted.

In addition to the heuristic in Fig. 5, we also always specialize immediately
for the combination seen during the first invocation of each parallel region. We
immediately specialize for the first combination since Fig. 1 shows that most re-
gions have only a single combination of values. This approach also allows regions
that execute only once to benefit from runtime optimization.

4.3 The stOMP Dynamic Optimizer

The stOMP Dynamic Optimizer is a hand-coded preprocessor that calls gcc as
a back-end to generate shared libraries. The stOMP compile x function, shown
in Fig. 5, invokes the Dynamic Optimizer and dynamically loads the result-
ing libraries into the executable using standard dlopen and dlsym calls. When
the stOMP compile function is invoked by the runtime library, it is passed the
current number of threads and the current values (or addresses) of the shared
variables in use by the region.

A single call to the Dynamic Optimizer creates P specialized versions, one for
each thread. The Dynamic Optimizer is coded in C and uses OpenMP pragmas
to perform compilation of these P versions in parallel. However, the Dynamic
Optimizer itself is currently not being optimized by stOMP. We have yet to
fully explore mechanisms for decreasing the overhead of our runtime compilation
system, but believe that significant reductions are possible.

Our current optimizer implements a very limited form of runtime constant
propagation. The values or addresses of shared variables are explicitly assigned
at the top of each parallel region function, providing more accurate values and

48 Mihai Burcea and Michael J. Voss

 __ompc_func_x_N

ompc_func_x_match

Dynamic Optimizer

executable

 __ompc_do_parallel

stOMP_compile_x

 __ompc_func_x_N

 __ompc_func_x

matched a compiled version below threshold

above threshold

Fig. 5. The process used by the match function to select a copy of the par-
allel region to execute: The gray boxes represent the selected versions. The
ompc func x box is the statically-compiled default version of the code and

the ompc func x N box is a region specialized for the current shared variables,
number of threads and thread id

addresses to the back-end optimizer. Also, each call to omp get thread num and
omp get num threads is replaced by its corresponding runtime value (as com-
municated by the runtime library). Fig. 6 shows an example of a snippet from a
parallel region in Equake, a SPEC OpenMP benchmark, before and after opti-
mization by our current Dynamic Optimizer.

The optimizations currently implemented in our Dynamic Optimizer, as
Shown in Fig. 6, are unlikely to yield large performance improvements on most
programs. However, our current prototype does allow us to gain invaluable in-
sight into the lower-bound on the overheads we can expect from our full system.
A study of these overheads is presented in the next section.

5 A Preliminary Evaluation

As described in Section 4, only limited optimizations have been implemented
in the current stOMP prototype. In this Section, we therefore present an initial
study of the overheads associated with our system. We first explore the overheads
added to parallel regions by examining the EPCC Scheduling Microbenchmark
(schedbench) [14]. Next, we show results from applying our system to three of
the SPEC OpenMP Benchmarks: Apsi, Art, and Equake.

Our test system is a 4-processor Intel Xeon server with 1.6 GHz Hyper-
threaded processors running Redhat Linux 7.3. We present results for 1 through
4 threads, restricting ourselves to the number of physical processors in the sys-
tem. All code is compiled using gcc version 2.96 with the -O2 optimization flag.

A Runtime Optimization System for OpenMP 49

extern struct smallarray_s **w1;
extern int ARCHnodes;

void quake__ompc_func_31 (__ompc_args)
void **__ompc_args;

{
auto int *_pp_j;
(_pp_j) = (((int *) (*__ompc_args)));
{

auto int _p_i;
auto int _p_i_28;
auto int _p_i_29;
auto int _p_i_30;
(_p_i_28) = (0);
(_p_i_29) = (ARCHnodes);
(_p_i_30) = (1);
_ompc_default_sched (&_p_i_28,

&_p_i_29, &_p_i_30);

extern struct smallarray_s **w1;
extern int ARCHnodes;

void
quake__ompc_func_31 (__ompc_args)

void **__ompc_args;
{

int _stomp_pp_j = (int) 0;
auto int *_pp_j;
_pp_j = &_stomp_pp_j;
w1 = 0x8538d30;
ARCHnodes = 30169;
{

auto int _p_i;
auto int _p_i_28;
auto int _p_i_29;
auto int _p_i_30;
(_p_i_28) = (0);
(_p_i_29) = (ARCHnodes);
(_p_i_30) = (1);
_ompc_default_sched (&_p_i_28,

&_p_i_29, &_p_i_30);

Fig. 6. An example of code from one of the parallel loop in Equake: (a) the
code before being transformed by the runtime optimizer and (b) the code after
runtime optimization

5.1 The Performance of the EPCC Scheduling Microbenchmark

Fig. 7 shows results from schedbench. This benchmark determines the over-
heads associated with starting and scheduling parallel regions. stOMP uses calls
to ompc do parallel to select and compile specialized code, and therefore its
overheads are directly measured by this benchmark.

In Fig. 7, the improvement of schedbench when optimized by stOMP is
presented. Fig. 7 (a) and (b) show the improvement for the static scheduling
part of the microbenchmark. This benchmark executes a statically scheduled
parallel region using varying chunk sizes (ranging from 1 to 128). The benchmark
executes the region 50 times for each configuration, and calculates the average
execution time of the region for each chunk size.

Fig. 7 (a) shows the improvement calculated from the average execution
time measurements. These measurements include the overheads incurred by our
Dynamic Optimizer. The Optimizer will be invoked once for each <processor
number, chunk size> pair. Fig. 7 (b) shows the improvement calculated when
the Dynamic Optimizer overhead is removed (this result includes 49 invocations
of the parallel region).

Fig. 7 (b) suggests that the overhead incurred by the stOMP Dynamic Op-
timizer is the major reason for the poor performance shown in Fig. 7 (a). In
fact, when the runtime compilation overhead is removed, stOMP outperforms
the orginal Omni code in almost all cases, with an average improvement of 13.2%
and gains as large as 33%.

The measurements shown in Fig. 7 (b) include all of the code cache lookup
and management overheads incurred by the runtime library. These results show

50 Mihai Burcea and Michael J. Voss

that improvements are possible from the simple optimizations currently imple-
mented in stOMP, but that the runtime of our Optimizer might need to be
reduced.

-60

-50

-40

-30

-20

-10

0

10

20

30

40

1 2 3 4

Threads

%
 Im

p
ro

ve
m

en
t

None
1
2
4
8
16
32
64
128

0

5

10

15

20

25

30

35

1 2 3 4

Threads

%
 Im

p
ro

ve
m

en
t

None
1
2
4
8
16
32
64
128

(a) (b)

-50

-40

-30

-20

-10

0

10

20

30

40

1 2 3 4

Threads

%
 Im

p
ro

ve
m

en
t

1
2
4
8
16
32
64
128

-5

0

5

10

15

20

25

30

35

40

45

1 2 3 4

Threads

%
 Im

p
ro

ve
m

en
t

1
2
4
8
16
32
64
128

(c) (d)

Fig. 7. Evaluation of the EPCC schedbench benchmark. The improvement of
stOMP over Omni on the statically scheduled loop (a) including the time to
spent in the Dynamic Optimizer and (b) excluding the time spent in the Dy-
namic Optimizer. The improvement of stOMP over Omni on the dynamically
scheduled loop when (c) including the time spent in the Dynamic Optimizer and
(d) excluding the time spent in the Dynamic Optimizer

The results for the dynamic scheduling part of schedbench are shown in
Fig. 7 (c) and 7 (d). These results reinforce the conclusions drawn from Fig. 7
(a) and 7 (b). When the Dynamic Optimizer overhead is ignored, the average
improvement on the dynamic loop is 14%, with improvements as large as 40%.

5.2 The Performance of Apsi, Art, and Equake

Fig. 8, 9 and 10 show the performance of three Spec OpenMP Benchmarks:
Apsi, Art, and Equake. For both Apsi and Art we used the SPECOMP2001
train data set and for Equake we used the SPECOMP2001 reference data set.
Due to the limited optimizations currently implemented in our system, both Apsi
and Equake perform worse with stOMP than with the original Omni compiler
and library.

A Runtime Optimization System for OpenMP 51

Apsi: Apsi has the largest number of parallel regions (with 28) of the three
benchmarks that we tested, and also has a large number of shared variables for
each parallel region. All regions in Apsi have at least 10 shared variables, with
some having as many as 18. We therefore expect to see a larger overhead with
Apsi. Fig. 8 (a) shows that on 4 processors Apsi runs 10% slower than the original
version. Fig. 8 (b) clearly indicates that this degradation is due to the time spent
in the Dynamic Optimizer. Because of the large number of regions, the runtime
optimizer is invoked frequently, generating 136 shared libraries during a single
execution of the benchmark.

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4

Threads

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Omni
stOMP

0

20

40

60

80

100

120

1 2 3 4

Threads

%
 o

f
O

ri
g

in
al

Runtime Compilation
Computation

(a) (b)

Fig. 8. The Spec OpenMP Benchmark Apsi: (a) the runtime of the original and
stOMP versions and (b) the breakdown of the execution time of the stOMP
version

Art: Art has 3 parallel regions, each of which is only invoked once. Therefore
stOMP just-in-time compiles each region once and incurs no further overheads
from compiling or matching. Consequently, the performance of Art in Fig. 9 (a)
and (b) is the best of the three benchmarks. The stOMP version of Art shows
improvements for all but the 1-processor run, with a gain of 14% on 3 processors.
The runtime compilation overheads for Art are negligible.

Eqake: Equake has 11 parallel regions, many of which are called multiple times.
In Fig. 10 (a), the stOMP version of Equake is always within 3% of the origi-
nal code. Fig. 10 (b) shows that while compilation overheads increase with the
number of threads, the time spent in the Dynamic Optimizer is small.

The results from our initial evaluation of stOMP are encouraging. Both Art
and Equake show small runtime compilation overheads, with Art already showing
an improvement from the limited optimizations performed by our prototype.
The overhead of stOMP when running Equake is always less than 3% and when
running Apsi is always less than 10%. In the future, we plan to look at running
the Dynamic Optimizer in the background, as is done in ADAPT [12], and
thereby hide some of the latencies incurred in programs, such as Apsi, that have
a large number of parallel regions.

52 Mihai Burcea and Michael J. Voss

0

100

200

300

400

500

600

700

1 2 3 4

Threads

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Omni
stOMP

0

20

40

60

80

100

120

1 2 3 4

Threads

%
 o

f
O

ri
g

in
al

Runtime Compilation
Computation

(a) (b)

Fig. 9. The Spec OpenMP Benchmark Art: (a) the runtime of the original and
stOMP versions and (b) the breakdown of the execution time of the stOMP
version

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4

Threads

R
u

n
ti

m
e

(s
ec

o
n

d
s)

Omni
stOMP

0

20

40

60

80

100

120

1 2 3 4

Threads

%
 o

f
O

ri
g

in
al

Runtime Compilation
Computation

(a) (b)

Fig. 10. The Spec OpenMP Benchmark Equake: (a) the runtime of the original
and stOMP versions and (b) the breakdown of the execution time of the stOMP
version

6 Conclusions

In this paper, we have introduced stOMP: a specializing thread library for
OpenMP. The stOMP system is built on the Omni OpenMP compiler and li-
brary, and provides a system for the runtime optimization of parallel regions. In
Section 3, we present motivation for the runtime optimization of OpenMP ap-
plications. In the SPEC OpenMP Benchmarks, it is shown that shared variables
are in general runtime constant, or have only a few values during a program’s
execution.

In Section 4, we describe the architecture of stOMP. Using a combined
compile-time and run-time system, stOMP specializes parallel regions for fre-
quently-seen values and the configuration of the runtime system. In Section 5, a
preliminary evaluation of stOMP is presented. Our results are encouraging and
suggest that there is room for improvement using runtime optimization, but that
our runtime compilation system needs to be refined to minimize overheads. In

A Runtime Optimization System for OpenMP 53

future work, we will explore a range of runtime optimizations using the stOMP
system.

References

1. OpenMP Architecture Review Board. OpenMP Fortran Application Program In-
terface, V. 2.0, 2002.

2. OpenMP Architecture Review Board. OpenMP C and C++ Application Program
Interface, V. 2.0, 2002.

3. The Omni OpenMP Compiler. http://phase.etl.go.jp/Omni/ , 2003.
4. Sun Microsystems. The Java HotSpot Performance Engine Architecture. Technical
White Paper, http://java.sun.com/products/hotspot/whitepaper.html, April
1999.

5. Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Peter F. Sweeney.
Adaptive optimization in the jalapeno jvm. In Proc. of the ACM SIGPLAN 2000
Conf. on Object-Oriented Programming Systems, Languages and Applications, Min-
neapolis, MN, October 2000.

6. Standard ECMA-335: Common Language Infrastructure (CLI).
http://www.ecma.ch/ecma1/STAND/ecma-335.htm , February 2002.

7. L. Peter Deutsch and Allan M. Schiffman. Efficient Implementation of the
Smalltalk-80 System. In Proc. of the Conf. on Principles of Programming Lan-
guages, Salt Lake City, Utah, 1984.

8. Brian Grant, Matthai Philipose, Markus Mock, Craig Chambers, and Susan J.
Eggers. An evaluation of staged run-time optimizations in DyC. In Proc. of the
SIGPLAN’99 Conf. on Programming Language Design and Implementation, pages
293–304, Atlanta, GA, May 1999.

9. Massimiliano Polettto, Wilson C Hsieh, Dawson R Engler, and M. Frans Kaashoek.
’C and tcc: A language and compiler for dynamic code generation. ACM Transac-
tions on Programming Languages and Systems, 21(2):324–369, March 1999.

10. Renaud Marlet, Charles Consel, and Philippe Boinot. Efficient incremental run-
time specialization for free. In Proc. of the SIGPLAN’99 Conf. on Programming
Language Design and Implementation, pages 281–292, Atlanta, GA, May 1999.

11. Markus Mock, Craig Chambers, and Susan Eggers. Calpa: A Tool for Automating
Selective Dynamic Compilation. In 33rd Annual Symposium on Microarchitecture,
December 2000.

12. Michael Voss and Rudolf Eigenmann. High-Level Adaptive Program Optimiza-
tion with ADAPT. In Proc. of PPoPP’01: Principles and Practice of Parallel
Programming, Snow Bird, Utah, June 2001.

13. Vishal Aslot, Max Domeika, Rudolf Eigenmann, Greg Gaertner, Wesley B. Jones,
and Bodo Parady. SPEComp: A New Benchmark Suite for Measuring Parallel
Computer Performance. InWorkshop on OpenMP Applications and Tools (WOM-
PAT), pages 1–10, July 2001.

14. J. M. Bull. Measuring Synchronization and Scheduling Overheads in OpenMP. In
European Workshop on OpenMP (EWOMP), 1999.

M.J. Voss (Ed.): WOMPAT 2003, LNCS 2716, pp. 54–68, 2003.
© Springer–Verlag Berlin Heidelberg 2003

A Practical OpenMP Compiler for System on Chips

Feng Liu1 and Vipin Chaudhary2

1 Department of Electrical & Computer Engineering, WSU, USA
fliu@ece.eng.wayne.edu

2 Institute for Scientific Computing, WSU and Cradle Technologies, Inc.
vipin@wayne.edu

Abstract. With the advent of modern System-on-Chip (SOC) design, the inte-
gration of multiple-processors into one die has become the trend. By far there
are no standard programming paradigms for SOCs or heterogeneous chip mul-
tiprocessors. Users are required to write complex assembly language and/or C
programs for SOCs. Developing a standard programming model for this new
parallel architecture is necessary. In this paper, we propose a practical OpenMP
compiler for SOCs, especially targeting 3SoC. We also present our solutions to
extend OpenMP directives to incorporate advanced architectural features of
SOCs. Preliminary performance evaluation shows scalable speedup using dif-
ferent types of processors and effectiveness of performance improvement
through optimization.

1. Introduction

OpenMP is an industrial standard [1, 2] for shared memory parallel programming
with growing popularity. The standard API consists of a set of compiler directives to
express parallelism, work sharing, and synchronization. With the advent of modern
System-on-Chip (SOC) design, chip multiprocessors (CMP) have become a new
shared memory parallel architecture. Two major shared memory models exist today:
Symmetric Multiprocessor machines (SMP) and distributed memory machines or
clusters. Unlike these two models, SOCs incorporate multiple distinct processors into
one chip. Accordingly, it has a lot of new features which normal OpenMP standard
could not handle, or at least could not take advantage of.

By far there are no standard programming paradigms for SOCs or heterogeneous
chip multiprocessors. Users are required to write complex assembly language and/or
C programs for SOCs. It’s beneficial to incorporate high-level standardization like
OpenMP to improve program effectiveness, and reduce the burden for programmers
as well. For parallel chips like Software Scalable System on Chip (3SoC) from Cradle,
parallelism is achieved among different types of processors; each processor may have
different instruction sets or programming methods. Thus, developing a standard par-
allel programming methodology is necessary and challenging for this new architec-
ture.

Cradle’s 3SoC is a shared-address space multi-processor SOC with programmable
I/O for interfacing to external devices. It consists of multiple processors hierarchically
connected by two levels of buses. A cluster of processors called a Quad is connected

A Practical OpenMP Compiler for System on Chips 55

by a local bus and shares local memory. Each Quad consists of four RISC-like proc-
essors called Processor Elements (PEs), eight DSP-like processors called Digital Sig-
nal Engines (DSEs), and one memory Transfer Engine (MTE) with four Memory
Transfer Controllers (MTCs). The MTCs are essentially DMA engines for back-
ground data movement. A high-speed global bus connects several Quads. The most
important feature for parallel programming is that 3SoC provides 32 semaphore
hardware registers to do synchronization between different processors (PEs or DSEs)
within each Quad and additional 64 global semaphores [3].

Fig. 1. 3SOC Block Diagram

In this paper, we describe the design and implementation of our preliminary
OpenMP compiler/translator for 3SoC, with detailed focus on special extensions to
OpenMP to take advantage of new features of this parallel chip architecture. These
features are commonplace among SOCs; techniques used here may be targeted for
other SOCs as well. Giants like Intel, Sun and IBM have addressed their own plans
for SOCs and it’s believed that CMP will dominate the market in the next few years.
We give detailed explanation of each extension and how it should be designed in
OpenMP compiler.

In the next section we briefly introduce the parallel programs on 3SoC, targeting
different processors: PEs or DSEs, respectively. In section 3 we present the design of
our OpenMP compiler/translator with special focus on synchronization, scheduling,
data attributes, and memory allocation. This is followed in section 4 with a discussion
on our extensions to OpenMP. Section 5 outlines the implementation aspects of a
practical OpenMP compiler for SOCs followed by a performance evaluation in sec-
tion 6. Conclusion is given in section 7.

M
S
P

M
S
P

M
S
P

M
S
P

MEMORY C
L

O
C

K
S

M
S
P

M
S
P

M
S
P

M
S
P

MEMORY D
R

A
M

C

O
N

T
R

O
L

DRAM

Global Bus

PROG I/O PROG I/O

P
R

O
G

 I
/O

P

R
O

G
 I
/O

P

R
O

G
 I
/O

PROG I/O PROG I/O PROG I/O PROG I/O

P
R

O
G

 I/O

P
R

O
G

 I/O

NVMEM

M
S
P

M
S
P

M
S
P

MEMORY

M
S
P

M
S
P

M
S
P

M
S
P

MEMORY

M
S
P

PE DSE

MEM

Multi Stream Processor
750 MIPS/GFLOPS

Shared
Prog
Mem

Shared
Data
Mem

Shared
DMA

DSE

MEM

I/
O

 B
u

s

Feng Liu and Vipin Chaudhary56

2. Parallel Programs on 3SoC

In this section, we briefly describe the approach to program 3SoC. Our OpenMP
translator will attempt to create such parallel programs.

2.1 Programming Different Parallel Processors

A 3SOC chip has one or more Quads, with each Quad consisting of different parallel
processors: four PEs, eight DSEs, and one Memory Transfer Engine (MTE). In addi-
tion, PEs share 32KB of instruction cache and Quads share 64KB of data memory,
32KB of which can be optionally configured as cache. Thirty-two semaphore registers
within each quad provide the synchronization mechanism between processors. Figure
2 shows a Quad block diagram. Note that the Media Stream Processor (MSP) is a
logical unit consisting of one PE and two DSEs. We will now have a look at how to
program parallel processors using PEs or DSEs.

Fig. 2. Quad block diagram

2.2 Programming Using PEs

PE has a RISC-like instruction set consisting of both integer and IEEE floating point
instructions. In 3SoC architecture, there are a number of PEs which can be viewed as
several “threads” compared with normal shared memory architecture. Each processor
has its own private memory stack, similar to “thread” context. At the same time, each
processor is accessing the same blocks of shared local memory inside Quad, or
SDRAM outside Quad. These memories are all shared. In a typical 3SoC program,
PE0 is responsible for initializing other processors like PEs or DSEs, so that PE0 acts
as the “master” thread while other processors act as “child” threads. Then PE0 will
transfer parameters and allocate data movement among different processors. It will
load MTE firmware and enable all MTCs. Through data allocation PE0 tells each
processor to execute its own portion of tasks in parallel. PE0 will also execute the re-
gion itself as the master thread of the team. Synchronization and scheduling must be
inserted properly. At the end of each parallel region, PE0 will wait for other proces-
sors to finish and collect required data from individual processor.

PE

DSE

MEM

DSE

MEM

PE

DSE

MEM

DSE

MEM

PE

DSE

MEM

DSE

MEM

PE

DSE

MEM

DSE

MEM

PROGRAM
MEM/

CACHE

DATA
MEM/

CACHE

INTERFACE
GLOBAL BUS

Arbiter

MSP

MTE

A Practical OpenMP Compiler for System on Chips 57

PEs are programmed using standard ANSI C. The 3SoC chip is supplied with
GNU-based optimizing C-compilers, assemblers, linkers, debuggers, and performance
accurate simulators (refer to 3SoC programmer’s guide [4]). To incorporate several
PEs to work in a parallel program, the approach is similar to conventional parallel
programming [6].

We present the concept of translating an OpenMP program to a 3SoC parallel pro-
gram using several PEs. The #pragma omp parallel defines a parallel region whereas
the directive #pragma omp single specifies that only one thread executes this scope.
Correspondently, in the 3SoC main program, each PE is associated with its ID,
my_peid. The parallelism is started by PE0 (my_peid==0), and only PE0 allocates
and initializes all other processors. Once started, all PEs will execute function() in
parallel. Within its own function context, each PE will execute its portion of tasks by
associated processor ID. At the end of each parallel region, all PEs reach an implicit
barrier where PE0 waits and collects data from other PEs. Finally, PE0 terminates
other PEs and releases resources to the system.

int main() {
 ..
 #pragma omp parallel
 {
 #pragma omp single
 {
 printf(“hello world!\n”);
 }
 }
 ..
}

void function() {
 ..
 my_quadid=_QUAD_INDEX;
 my_peid=(my_quadid*4)+_PE_INDEX;
 //identify each processor by its ID
 ..
 if(my_peid==2)
 {
 printf(“hello world!\n”);
 }
 //only one processor execute this
 <communication and synchronization for this parallel region>
 <implicit barrier>
}

int main() {
 ..
 if(my_peid==0)
 {
 <allocate and initialize number of processors>
 <start all other processors>
 }
 ..
 function();
 // all processors run this parallel region
 <terminate all processors>
}

Fig. 3. Translation of a simple OpenMP program (left) to 3SoC parallel region (right)

2.3 Programming Using DSEs

DSE is a DSP-like processor which uses a different programming methodology.
DSEs are programmed using C-like assembly language (“CLASM”) combined with
standard ANSI C. DSEs are the primary processing units within 3SoC chip. Compil-
ers, assemblers, and tools are supplied for DSE.

Writing OpenMP program for DSE requires a completely different approach. The
controlling PE for a given DSE has to load the DSE code into the DSE instruction
memory. Then PE initializes the DSE DPDMs (Dual Ports Data Memory) with de-
sired variables and starts the DSE. The PE either waits for the DSE to finish by poll-

Feng Liu and Vipin Chaudhary58

ing, or can continue its work and get interrupted when the DSE has finished its task.
A number of DSE library calls are invoked. See Fig. 4.

First, the PE initializes the DSE library call via dse_lib_init(&LocalState). Then
the PE does some Quad I/O check and data allocation such as assigning initial values
for the matrix multiplication. In the next for-loop, the PE allocates a number of DSEs
and loads the DSE code into the DSE instruction memory by dse_instruction_load().
This is done by allocating within one Quad first, dse_id[I]=dse_alloc(0), if failed, it
will load from other Quads. Afterwards, the PE loads the DPDM’s onto the allocated
DSEs, dse_loadregisters(dse_id). Each DSE starts to execute the parallel region from
the 0th instruction, via dse_start(dse_id[i],0). PE is responsible for waiting for DSEs
to complete computation and terminating all resources.

void main() {
..
int dse_id[NUM_DSE];
dse_lib_init(&LocalState);

 pe_in_io_quad_check();
 ..

<Data allocation>
 ..

// load the MTE firmware and enable all MTCs
_MTE_load_default_mte_code(0x3E);

for(i = 0; i < NUM_DSE; i++) {
// allocate a DSE in this Quad
dse_id[i] = dse_alloc(0);

if(dse_id[i] < 0) {
 // allocate DSE from any Quad
 dse_id[i] = dse_alloc_any_quad(0);
 if(dse_id[i] < 0) {

<error condition>
 }

}
// load the instructions on the allocated DSEs
dse_instruction_load(dse_id[i], (char *)&dse_function, (char

*)&dse_function_complete, 0);
}
// Load the Dpdm's on the allocated DSEs
DSE_loadregisters(dse_id);

for(i = 0; i < NUM_DSE; i++) {
// Start all DSEs from the 0th instruction
dse_start(dse_id[i], 0);

}

for(i = 0; i < NUM_DSE; i++) {
// Wait for the DSE's to complete and free DSEs
dse_wait(dse_id[i]);

}
<other functions>
..
dse_lib_terminate();
..

}

Fig. 4. Sample 3SoC parallel program using multiple DSEs

3. Design of OpenMP Compiler/Translator

To target the OpenMP compiler for 3SoC, we have to cope with the conceptual differ-
ences from standard OpenMP programs. OpenMP treats the parallelism at the granu-
larity of parallel regions, and each function may have one or more independent paral-
lel regions; while 3SoC treats the parallelism at the level of function, where each

A Practical OpenMP Compiler for System on Chips 59

private data structure is defined within one function. We also have to treat the data
scope attributes between processors like “Firstprivate”, “Reduction” along with ap-
propriate synchronization and scheduling.

3.1 Synchronization

Hardware semaphores are the most important features that distinguish normal chip
multiprocessors from “parallel” chips. Developers can use hardware semaphores to
guard critical sections or to synchronize multiple processors. On 3SoC platform, each
Quad has 32 local and 64 global semaphore registers that are allocated either statically
or dynamically. For parallel applications on 3SoC, the semaphore library (Semlib)
procedures are invoked for allocating global semaphore or for locking and unlocking.

Equipped with this feature, users can implement two major synchronization pat-
terns.
1. By associating one hardware semaphore for locking and unlocking, user can define

a critical construct which is mutually exclusive for all processors.
2. By combining one semaphore along with global shared variables, OpenMP barrier

construct can be achieved across all processors. Sample barrier implementation is
as follows:
semaphore_lock(Sem1.p);
done_pe++; //shared variable
semaphore_unlock(Sem1.p);
while(done_pe<(NOS)); //total # of parallel processors
_pe_delay(1);

For OpenMP compiler, barrier implementation is important. There are a number of
implicit barriers existing at the end of each OpenMP parallel region or work-sharing
construct. Therefore, hardware semaphores allocation and de-allocation becomes a
crucial factor. We take two steps to implement this. First step is to allocate all sema-
phores into local shared memory as “_SL” to improve data locality, i.e. “static sema-
phore_info_t SemA _SL”. (Type of variables like “_SL” is discussed in Section 3.3).
Secondly we allocate semaphores dynamically at run-time. This provides more flexi-
bility than static approach with respect to the limited number of semaphores in each
chip. Each semaphore is initialized and allocated at the beginning of the parallel re-
gion; while after use, it’s de-allocated and returned to the system for next available
assignment. This is done by system calls at run-time [4].

3.2 Scheduling and Computation Division

In OpenMP programs, the computation needs to be divided among a team of threads.
The most important OpenMP construct is the work-sharing construct, i.e., for-
construct. The parallelism is started by the OpenMP directive #pragma omp parallel.
Any statement defined within this parallel directive will be executed by each thread
of the team. For the work sharing constructs, all statements defined within will be di-

Feng Liu and Vipin Chaudhary60

vided among threads. Each thread will execute its own share, like for-construct, which
is a small portion of loop iterations.

A common translation method for parallel regions employs a micro-tasking
scheme, like OdinMP [5]. Execution of the program starts with a master thread,
which during initialization creates a number of spinner threads that sleep until they
are needed. The actual task is defined in other threads that are waiting to be called by
the spinner. When a parallel construct is encountered, the master thread wakes up the
spinner and informs it of the actual task thread to be executed. The spinner then calls
the task thread to switch to specific code section and execute. We follow this scheme
but take different approach. For CMP, each “thread” is a processor, which has its
own processing power and doesn’t wait for resources from other processors. The
number of “threads” is the actual number of processors instead of a team of virtual
threads. It’s not practical to create two “threads”, one for spinning, and another for
actual execution. In our implementation, we assign each parallel region in the pro-
gram with a unique identifying function, like func_1(). The code inside the parallel
region is moved from its original place and replaced by a function statement, where
its associated region calls this function and processors with correct IDs execute se-
lected statements in parallel.

Scheduling is an important aspect of the compiler. Conceptually there are three ap-
proaches to distribute workload, known as: cyclic, block, and master-slave methods.
Cyclic and block methods use static approach while master-slave method distributes
dynamically. To implement common OpenMP work-sharing constructs like for-loop,
we apply different methods.

First, we try to use the static approach. The OpenMP compiler will analyze and
extract the for loop header to find the index, loop initial, loop boundary and the in-
crement, then distributes the workload into small slices. Each processor will be as-
signed a small portion of loop iterations based on algorithms like cyclic or block allo-
cation. It is the responsibility of the programmer to ensure that the loop iterations are
independent. Secondly, we deploy dynamic scheduling. For Master-slave method, it
needs one or two master threads which are responsible for distributing workload and
several slave threads which fetch their own portions from the master thread dynami-
cally. The master thread will be created at the beginning of parallel region and assign
workload to slave threads in request-grant manner. In our implementation for CMP,
we didn’t create a master thread due to limited number of processors and potential
waste of resources. Instead, we use a global shared variable which is accessible to all
processors. The total amount of work is evenly divided into small slices; each time a
processor obtains one slice by accessing and modifying the shared variable. With the
growing value of this shared variable, workload is distributed dynamically at runtime.
A semaphore, which guarantees that only one processor can modify a variable at any
given time, protects this shared variable.

We implement both dynamic and static scheduling on 3SoC. User can choose one
of the two scheduling methods through OpenMP compiler parameter during compila-
tion. This provides more flexibility to do performance evaluation for different appli-
cations. Among the above two approaches, static allocation shows better performance
on average. The reason is that 3SOC is a CMP environment where each “thread” is a
processing unit. By contacting the master thread or accessing the shared variable a

A Practical OpenMP Compiler for System on Chips 61

dynamic approach involves more synchronizations that interrupt the processors more
frequently. Sample OpenMP code using static scheduling is shown in Fig. 5.

#pragma omp parallel shared(matA) private(k,j)
{
 for(k=0;k<SIZE;k++)
 {
 …
 #pragma omp for private(i)
 for(i=k+1;i<SIZE;i++)
 for(j=k+1;j<SIZE;j++)

 matA[i][j]=matA[i][j]-matA[i][k]*matA[k][j];
 }
} /* end of parallel construct */

 {
 for(k=0;k<SIZE;k++) {

…
{
 int count_ums=0,mymin,mymax;
 count_ums=((SIZE) - (k+1))/PES;

 mymin=my_peid*count_ums + (k+1);
 if(my_peid==(PES)-1)
 mymax=SIZE;
 else
 mymax=mymin+count_ums-1;

 for(i=k+1;i<SIZE;i++)
 if(i>=mymin && i<=mymax)
 {
 for(j=k+1;j<SIZE;j++)
 matA[i][j]=matA[i][j]-matA[i][k]*matA[k][j];
 }

 //barrier using hardware semaphore
 semaphore_lock(Sem2.p);
 done_pe2++;
 semaphore_unlock(Sem2.p);
 while(done_pe2<(PES));
 _pe_delay(1);
 if(my_peid==0)
 done_pe2=0;
}

 }
 …
} /* end of parallel construct */

Fig. 5. Sample OpenMP code (LU decomposition) using static allocation

3.3 Data Attributes and Memory Allocation

In OpenMP, there are a number of clauses to define data attributes. Two major groups
of variables exist: shared or private data. By default, all variables visible in a parallel
region are shared among the threads. OpenMP provides several directives to change
default behavior, such as variables defined in “FIRSTPRIVATE”, “PRIVATE”, and
“REDUCTION”. For OpenMP compiler, some private variables need initialization
and combination before or after parallel construct, like “FIRSTPRIVATE” and
“REDUCTION”. Access to these data needs to be synchronized.

On 3SOC platform, there are two levels of shared memory: local memory within
Quad and shared DRAM outside Quad. The local data memory has a limited size of
64KB. Accordingly, there are four types of declarations for variables in 3SOC, de-
fined as:

ß “_SD” - Shared DRAM, shared by all PEs.
ß “_SL” - Shared Local memory of a Quad and shared by all PEs within Quad
ß “_PD” - Private DRAM, allocated to one PE
ß “_PL” - Private Local memory, allocated in local memory to one PE

By default, if none of these are declared, the variable is considered _PD in 3SOC.
The sample OpenMP code below illustrates data attributes:
1. int v1, s1[10];
2. void func() {
3. int v2, v3, v4;

Feng Liu and Vipin Chaudhary62

4. #pragma omp parallel shared(v1,v2)
 firstprivate(v3) reduction(+: v4)
5. {…}
6. }

If variables v1 and v2 are declared as shared, it should be defined in the global
shared region. v1 is already in global shared memory, no special action needs to be
taken, the only thing is to re-declare it as _SD(shared DRAM) or _SL(shared local).
v2 is within the lexical context of func() which is a private stack area. This private
stack is not accessible to other processors if it’s not moved from func() to global
shared memory during compilation. “FIRSTPRIVATE” is a special private clause that
needs to be initialized before use. A global variable (v3_glb) needs to be defined and
copied to the private variable (v3) before the execution of parallel construct.
“REDUCTION” is another clause which needs global synchronization and initializa-
tion. A global variable is also defined in shared region and each local copy (_PL) is
initialized according to reduction operation. At the end of parallel region, modifica-
tion from each processor is reflected to the global variable.

For embedded systems, memory allocation is a crucial factor for performance be-
cause the local data memory is connected to a high-speed local bus. For standard
OpenMP programs, data declaration in OpenMP should be treated differently for
memory allocation in 3SoC. This is a challenging task since the local memory has
limited size for all CMP or equivalent DSP processors. It’s not applicable to define all
shared and private data structure into local memory first. We must do memory alloca-
tion dynamically in order to produce better performance.

We design to do memory allocation using “request-and-grant” model during com-
pilation. At compilation, compiler will retrieve all memory allocation requests from
each parallel region agreed on by some algorithm or policy-based methods. Then
complier will assign different memory to different variable. For example, based on
the size of data structure or frequency of referencing in the region, it will grant mem-
ory to different data structure. We also provide extensions to OpenMP to use the spe-
cial hardware feature of CMP to allocate memory at runtime. (See 4.2.1 and 4.2.2)

4. Extensions to OpenMP

In a Chip Multiprocessor environment, there are several unique hardware features
which are specially designed to streamline the data transfer, memory allocations, etc.
Such features are important to improve the performance for parallel programming on
CMP. In order to incorporate special hardware features for CMP, we extend OpenMP
directives for this new parallel architecture.

4.1 OpenMP Extensions for DSE Processors

To deal with the heterogeneity of different processors within CMP, we try to incorpo-
rate DSEs into our OpenMP compiler. Unlike PE, DSE uses different programming

A Practical OpenMP Compiler for System on Chips 63

methodology which combines C and C-like Assembling Language (CLASM). We
extend OpenMP with a set of DSE directives based on 3SOC platform.

1. #pragma omp parallel USING_DSE(parameters)
This is the main parallel region for DSEs.

2. #pragma omp DSE_DATA_ALLOC
This is within DSE parallel region and used to define data allocation function.

3. #pragma omp DSE_LOADCOMREG
Define data registers to be transferred to DSE

4. #pragma omp DSE_LOADDIFFREG(i)
Define DSE data register with different value.

5. #pragma omp DSE_OTHER_FUNC
Other user defined functions

The main parallel region is defined as #pragma omp parallel USING_DSE (pa-
rameters). When the OpenMP compiler encounters this parallel region, it will switch
to the corresponding DSE portion. The four parameters declared here are: number of
DSEs, number of Registers, starting DPDM number, and data register array, such as
(8, 6, 0, dse_mem). “Number of DSEs” tells the compiler how many DSEs are re-
quired for parallel computation. Number of DSE data registers involved is defined in
“number of Registers”. There is an array where the PE stores the data that has to be
transferred into the data registers of the DSE. The PE initializes the array and calls a
MTE function to transfer the data into the DSE data registers. This array is defined in
“data register array.” In this example, it is dse_mem. The “starting DPDM number” is
also required when loading data registers.

void main() {
 //other OpenMP parallel region
 #pragma omp parallel
 {...}
 …
 //OpenMP parallel region for multiple DSEs
 #pragma omp parallel USING_DSE(8,6,0,dse_mem)

{
 #pragma omp DSE_DATA_ALLOC
 {

 <initialization functions>
 }
 #pragma omp DSE_LOADCOMREG
 {

 <define data registers to be transferred to DSE>
 }
 #pragma omp DSE_LOADDIFFREG(i)
 {

 <define DSE data registers with different value>
 }
 #pragma omp DSE_OTHER_FUNC
 {

 <other user defined functions>
 }

 //main program loaded and started by PE
 #pragma omp DSE_MAIN
 {

 <order of executing main code>
 }
}

}

Fig. 6. Sample OpenMP program using DSE extensions

Feng Liu and Vipin Chaudhary64

 Instead of writing 3SoC parallel program using multiple DSEs in Fig. 4, user can
write equivalent OpenMP program using DSE extensions shown in Fig. 6. For our
OpenMP compiler, the code generation is guided by the parameters defined in “par-
allel USING_DSE” construct. The compiler will generate initialization and environ-
ment setup like dse_lib_init(&LocalState),dse_allo(0), DSE startup and wait call
dse_start(), dse_wait(), and termination library call dse_lib_terminate(). So users will
not do any explicit DSE controls, like startup DSE dse_start(). The DSE parallel re-
gion can also co-exist with standard OpenMP parallel regions that will be converted
to parallel regions using multiple PEs.

The benefit of using OpenMP extensions is that it helps to do high-level abstrac-
tion of parallel programs, and allows the compiler to insert initialization code and data
environment setup when necessary. Users are not required to focus on how to declare
system data structures for DSE, and how PE actually controls multiple DSEs by com-
plicated system calls. This will hide DSE implementation details from the program-
mer and greatly improve the code efficiency for parallel applications. Performance
evaluation between different numbers of DSEs based on our OpenMP compiler will
be given in section 6.

4.2 OpenMP Extensions for Optimization on SOCs

For SOCs or other embedded systems, memory allocation is critical to the overall per-
formance of parallel applications. Due to the limited size of on-chip caches or memo-
ries, techniques have to be developed to improve the overall performance of SOCs.
[7, 8].

4.2.1 Using MTE Transfer Engine.
Given the availability of local memory, programs will achieve better performance in
local memory than in DRAM. But data locality is not guaranteed due to small on-chip
caches or memories. One approach is to allocate data in DRAM first, then move data
from DRAM to local memory at run-time. Thus, all the computation is done in local
memory instead of slow DRAM. In 3SOC, a user can invoke one PE to move data
between the local memory and DRAM at run-time.

3SOC also provides a better solution for data transfer using MTE. MTE processor
is a specially designed memory transfer engine that runs in parallel with all other
processors. It transfers data between local data memory and DRAM in the back-
ground. We also incorporate MTE extensions to our OpenMP compiler.

1. #pragma omp MTE_INIT(buffer size, data structure, data slice)
MTE_INIT initializes a local buffer for designated data structure.

2. #pragma omp MTE_MOVE(count, direction)
MTE_MOVE will perform actual data movement by MTE engine.

MTE_INIT initializes a local buffer for data structure with specified buffer size.
MTE_MOVE will perform actual data movement by MTE engine. Data size of equal-
ing count*slice will be moved with respect to the direction (from local to DRAM or
DRAM to local). Within a parallel region, a user can control data movement between

A Practical OpenMP Compiler for System on Chips 65

local memory and SDRAM before or after the computation. Accordingly, the MTE
firmware needs to be loaded and initiated by PE0 at the beginning of the program. A
number of MTE library calls will be generated and inserted by the OpenMP compiler
automatically during compilation.

With the help of these extension, user can write OpenMP parallel program which
controls actual data movement dynamically at run-time. The results show significant
performance speedup using the MTE to do data transfers, especially when the size of
target data structure is large. Performance evaluation of using the MTE versus using
the PE to do memory transfer is given in section 6.

5. Implementation

In this section, we will discuss our implementation of the OpenMP com-
piler/translator for 3SoC. However, this paper is not focused on implementation de-
tails. To implement an OpenMP compiler for 3SOC, there are four major steps.

1. Parallel regions: Each parallel region in the OpenMP program will be assigned a
unique identifying function number. The code inside the parallel region is moved
from its original place into a new function context. The parallel construct code will
be replaced by code of PE0’s allocating multiple PEs or DSEs, setting up environ-
ment, starting all processors, assigning workload to each processor, and waiting for
all other processors to finish.

2. Data range: Through analysis of all the data attributes in the OpenMP data envi-
ronment clause, i.e., “SHARED”, “PRIVATE”, “FIRSTPRIVATE”,
”THREADPRIVATE”, “REDUCTION”, compiler determines the data range for
separate functions and assign memory allocation like “_SL”, or “_SD” in 3SOC.
Related global variable replication such as “REDUCTION” is also declared and
implemented. Similar approach has been taken in Section 3.3.

3. Work sharing constructs: These are the most important constructs for OpenMP,
referred as for-loop directive, sections directive and single directive. Based on the
number of processors declared at the beginning of the 3SOC program, each proces-
sor will be assigned its portion of work distinguished by processor ID. During run-
time, each processor will execute its own slice of work within designated func-
tions. For example, for the “sections” construct, each sub-section defined in
#pragma omp section will be assigned a distinct processor ID, and run in parallel
by different processors.

4. Synchronization: There are a number of explicit or implicit synchronization
points for OpenMP constructs, i.e., critical, or parallel construct. Correspondingly,
these constructs are treated by allocating a number of hardware semaphores in
3SOC. Allocation is achieved statically or dynamically.

The first version of our compiler can take standard OpenMP programs. With our
extension, user can also write OpenMP programs for advanced features of CMP, like
using multiple DSEs.

Feng Liu and Vipin Chaudhary66

6. Performance Evaluation

Our performance evaluation is based on 3SOC architecture; the execution environ-
ment is the 3SOC cycle accurate simulator, Inspector (version 3.2.042) and the 3SOC
processor. Although we have verified the programs on the real hardware, we present
results on the simulator as it provides detailed profiling information. We present re-
sults of our preliminary evaluation.

To evaluate our OpenMP compiler for 3SOC, we take parallel applications written
in OpenMP and compare the performance on multiple processors under different op-
timization techniques: without optimization, using data locality (matrices in local
memory), using the MTE for data transfer, and using the PE for data transfer. We also
show the compiler overhead by comparing the result with hand-written code in 3SOC.

Figure 7 shows the results of matrix multiplication using multiple PEs. The
speedup is against sequential code running on single processor (one PE). Figure 8 is
the result for LU decomposition using multiple PEs against one PE. By analysis of
both charts, we conclude the following:

1. Local memory vs DRAM: As expected, memory access latencies have significant
effect on performance. When the size of the data structure (matrix size) increases,
speedup by allocation of data in local memory is obvious. For 64*64 matrix LU
decomposition, the speedup is 4.12 in local memory vs 3.33 in DRAM.

2. Using the MTE vs data in DRAM only: As discussed in Section 5, we can deploy
the MTE data transfer engine to move data from DRAM to local memory at run-
time, or we can leave the data in DRAM only and never transferred to local during
execution. For small size matrices below 32*32, the MTE transfer has no benefit;
in fact, it downgrades the performance in both examples. The reason is that the
MTE environment setup and library calls need extra cycles. For larger-size matri-
ces, it shows speedup compared to data in DRAM only. For 64*64 matrix multipli-
cation, the speedup is 4.7 vs 3.9. Actually 64*64 using MTE engine is only a 3.2%
degrade compared to storing data entirely in the local memory. Therefore, moving
data using MTE will greatly improve performance for large data structure.

3. Using the MTE vs using the PE: We observed scalable speedup by using the
MTE over the PE to transfer memory. The extra cycles used in MTE movement do
not grow much as the matrix size increases. For large data set movements, the
MTE will achieve better performance than the PE.

4. Using OpenMP compiler vs hand-written code: The overhead of using the
OpenMP compiler is addressed here. Since the compiler uses a fixed method to
distribute computation, combined with extra code inserted to the program, it is not
as good as manual parallel programming. In addition, some algorithms used in par-
allel programming cannot be represented in OpenMP. The overhead for OpenMP
compiler is application dependent. Here we only compare the overhead of the same
algorithm deployed by both the OpenMP compiler and hand-written code. It shows
overhead is within 5% for both examples.

Figure 9 shows the result of matrix multiplication using multiple DSEs. The matrix
size is 128*128.

A Practical OpenMP Compiler for System on Chips 67

1. Scalable speedup using different number of DSEs: 4 DSEs achieve 3.9 speedup
over 1 DSE for the same program, and 32 DSEs obtain 24.5 speedup over 1 DSE.
It shows that 3SOC architecture is suitable for large intensive computation over
multiple processors on one chip and performance is scalable.

0

1

2

3

4

5

4 8 1 6 3 2 4 8 6 4

Size of Matrix

S
p

ee
d

u
p Local Memory

SDRAM

Opt using MTE

Opt using PE

handwritten

Fig. 7. Matrix Multiplication using four PEs

0

1

2

3

4

5

4 8 1 6 3 2 4 8 6 4

Size of Matrix

S
p

ee
d

u
p

Local Memory
SDRAM
Opt using MTE
Opt using PE
handwr i t ten

Fig. 8. LU decomposition using four PEs

0

5

1 0

1 5

2 0

2 5

3 0

1 2 4 8 1 6 3 2

Number of DSEs

Fig.9. Matrix Multiplication using DSEs

Feng Liu and Vipin Chaudhary68

7. Conclusion

In this paper, we present a practical OpenMP compiler for System on Chips, espe-
cially targeting 3SOC. We also provide extensions to OpenMP to incorporate special
architectural features. The OpenMP compiler hides the implementation details from
the programmer, thus improving the overall efficiency of parallel programming for
System on Chips architecture or embedded systems. Results show that these exten-
sions are indispensable for performance improvement of OpenMP programs on 3SoC,
and such compilers would reduce the burden for programming SOCs. We plan to
evaluate the translator/compiler on other large DSP applications and the new OpenMP
benchmarks [9].

Acknowledgement

We thank the reviewers for their contributive comments on a draft of this paper. We
also acknowledge the support of the Institute for Manufacturing Research at Wayne
State University.

References

[1] OpenMP Architecture Review Board, OpenMP C and C++ Application Program Interface,
Version 2.0, March, 2002. http://www.openmp.org

[2] OpenMP Architecture Review Board, OpenMP: An Industry-Standard API for Shared-
Memory Programming. IEEE Computational Science & Engineering, Vol. 5, No. 1, Janu-
ary/March 1998, http://www.openmp.org

[3] 3SOC Documentation – 3SOC 2003 Hardware Architecture, Cradle Technologies, Inc.
March. 2002

[4] 3SOC Programmer’s Guide, Cradle Technologies, Inc., Mar. 2002, http://www.cradle.com
[5] Christian Brunschen, Mats Brorsson, OdinMP/CCp – A portable implementation of
 OpenMP for C, Lund Universtiy, Sweden, 1999
[6] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and R. Menon. Parallel Pro-

gramming in OpenMP. Morgan Kaufmann Publishers, 2001
[7] Chong-Liang Ooi, Seon Wook Kim, and Il Park. Multiplex: Unifying conventional and

speculative thread-level parallelism on a chip multiprocessor, Proceedings of the 15th in-
ternational conference on Supercomputing June 2001

[8] Non-Uniform Control Structures for C/C++ Explicit Parallelism, Joe Throop, Kuck & As-
sociates, USA Poster Session at ISCOPE'98

[9] SPEC OMP Benchmark Suite, http://www.specbench.org/hpg/omp2001

Evaluation of OpenMP for the Cyclops

Multithreaded Architecture

George Almasi2, Eduard Ayguadé1, C lin Ca³caval2, José Castaños2,
Jesús Labarta1, Francisco Martínez1, Xavier Martorell1, and José Moreira2

1 CEPBA-IBM Research Institute, UPC - Barcelona, Spain
{eduard,jesus,fmartin,xavim}@ac.upc.es

2 IBM Thomas J. Watson Research Center - Yorktown Heights, NY
{gheorghe,cascaval,castanos,moreira}@us.ibm.com

Abstract. Multithreaded architectures have the potential of tolerating
large memory and functional unit latencies and increase resource uti-
lization. The Blue Gene/Cyclops architecture, being developed at the
IBM T. J. Watson Research Center, is one such systems that o�ers
massive intra-chip parallelism. Although the BG/C architecture was ini-
tially designed to execute speci�c applications, we believe that it can
be e�ectively used on a broad range of parallel numerical applications.
Programming such applications for this unconventional design requires
a signi�cant porting e�ort when using the basic built-in mechanisms for
thread management and synchronization. In this paper, we describe the
implementation of an OpenMP environment for parallelizing applica-
tions, currently under development at the CEPBA-IBM Research Insti-
tute, targeting BG/C. The environment is evaluated with a set of simple
numerical kernels and a subset of the NAS OpenMP benchmarks. We
identify issues that were not initially considered in the design of the
BG/C architecture to support a programming model such as OpenMP.
We also evaluate features currently o�ered by the BG/C architecture
that should be considered in the implementation of an e�cient OpenMP
layer for massive intra-chip parallel architectures.

1 Introduction and Motivation

Multithreaded architectures are a promising trend for the design of future high-
performance microprocessor cores. Their ability to tolerate large memory and
functional unit latencies and to increase resource utilization put them in the right
position to achieve a high number of instructions per cycle (IPC). Tera MTA [28]
and SMT [34] (an example of which is Intel Hyperthreading technology [6]) have
followed this approach. Another trend is the integration of several microprocessor
cores in the same chip, such as in the IBM Power4 [31]. Each processor has its
own resources and shares the access to higher levels in the memory hierarchy
such as o�-chip main memory.

Multiprocessors systems-on-a-chip based on the replication of multithreaded
cores o�er a complexity-conscious alternative to future chip designs. The Blue

M.J. Voss (Ed.): WOMPAT 2003, LNCS 2716, pp. 69�83, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

70 George Almasi et al.

Gene/Cyclops (BG/C) chip [9], which is the core of a new family of multi-
threaded architectures developed by IBM Research, consists of a large number
of simple thread units simultaneously executing independent streams of instruc-
tions. Each thread behaves like a simple, single-issue, in order processor. Groups
of threads share �oating-point units and caches. All threads share a single ad-
dress space implemented with an embedded DRAM memory in the same chip,
resulting in a �at memory hierarchy with high bandwidth and low latency.

Making these new parallel architectures truly usable requires portable and
easy-to-understand programming models that allow the exploitation of paral-
lelism to applications written in standard high�level languages. Pthreads-like
approaches are always possible but require a large programming e�ort. The user
has to face the complexity of managing the parallelism at application level, man-
ually handling thread creation, work distribution, allocation of variables and
synchronization. The built-in parallel programming model provided by BG/C
falls in this category. OpenMP [20] has emerged as the standard for shared-
memory parallel programming. OpenMP applications are simple to program,
portable across a range of shared-memory parallel platforms, and achieve near
optimal parallel performance. The goal of this paper is to prove that OpenMP is
a valid programming model for a machine that supports �ne�grain multithread-
ing, such as BG/C, and thus provide the user with a simple programming model
for a complex machine.

We have ported the NthLib user-level threads library [19] to Cyclops in order
to develop an experimental research platform, and used the Linux version of the
NanosCompiler[10] to generate code. The current version does not consider some
speci�c hardware features o�ered by the architecture. We will discuss about this
limitation in Section 6, where we propose changes that will allow OpenMP to
better exploit processor resources.

This paper is organized as follows: Section 2 describes the main characteris-
tics of the BG/C architecture family and in particular, the con�guration used in
this paper. Section 3 describes the implementation of the OpenMP layer based
on the NanosCompiler and NthLib. Section 4 describes the set of microbench-
marks and a subset of the NAS BT benchmarks used to obtain the experimental
results presented in Section 5. The later section also shows the feasibility of
programming OpenMP applications for BG/C. Section 6 discusses the explicit
support for OpenMP that would be required in the architecture and the issues
that should be considered to tune the implementation of the OpenMP layer.
Finally, Section 7 outlines related work and Section 8 concludes the paper and
outlines major directions in our future work.

2 The Blue Gene/Cyclops Architecture

The main characteristic of the BG/C design is the integration of embedded
DRAM, processing logic and communications hardware on the same piece of sil-
icon. The proximity of memory and processors results in a �at memory hierarchy
which overcomes the von Neumann bottleneck (processor performance improves

Evaluation of OpenMP for the Cyclops Multithreaded Architecture 71

faster than the capacity of memory to serve it) observed in conventional designs.
Instead of hiding latencies through out-of-order or speculative execution, BG/C
nodes tolerate latencies through massive parallelism. The solution adopted by
BG/C is to use multiple threads in a single node so that, if a thread stalls for
a memory reference, other threads can make progress. As a result each thread
unit is simpler and expensive resources, such as FPUs and caches, are shared
between di�erent threads.

The organization of the BG/C chip is shown in Figure 1. At the base of the
BG/C hierarchy are thread units. BG/C is a multithreaded design where thread
units are simple computing processors that issue and execute instructions in
program order. Each thread can issue an instruction at every cycle if resources
are available and there are no dependences with previous instructions. Each
thread unit consists of a register �le (64 32-bit single precision registers, that
can be paired for double precision values), a program counter, a �xed-point ALU,
and an instruction sequencer.

DRAM (8x512KB)

DRAM (8x512KB)

Thread Unit

Thread Unit

Thread Unit
FP

U
D

−
C

ac
he

Communications Off−chip Memory

I−
C

ac
he

I−
C

ac
he

I−
C

ac
he

I−
C

ac
he

I−
C

ac
he

I−
C

ac
he

I−
C

ac
he

I−
C

ac
he

I−
C

ac
he

I−
C

ac
he

I−
C

ac
he

I−
C

ac
he

I−
C

ac
he

I−
C

ac
he

I−
C

ac
he

I−
C

ac
he

TG

TG

TG

TGTG

TG

TG

TG TG

TG

TG

TG

TG

TG

TG

TG

TG

TG

TG

TG TG

TG

TG

TG

TG

TG

TG

TG TG

TG

TG

TG

Thread Group

Fig. 1. Block diagram for a prototype of the BG/C architecture

Groups of threads units share an FPU and a data cache. Threads can dispatch
a �oating point addition and a �oating point multiplication at every cycle. The
base architecture in 0.18µm CMOS technology and 32 FPUs achieves a peak
performance of 1GFlops per FPU at a clock cycle of 500MHz, for a total chip
performance of 32GFlops.

Each of the 32 16KB data caches (one per thread group) has 64-byte lines
and is 8-way set associative. By default, all data caches behave as a global,
coherent cache. The data caches are shared among all threads in the chip. Thus,

72 George Almasi et al.

a thread can access data in the cache of another thread group with lower latency
than going to memory. Instruction caches are 32KB, 8-way set-associative with
64-byte line size. In the base architecture, one instruction cache is shared by 2
thread groups. Unlike the data caches, the instruction caches are private to the
threads in the thread groups. In addition, to improve instruction fetching, each
thread unit contains a Prefetch Instruction Bu�er (PIB) of 32 instructions.

The reference design considered in this paper has 16 banks of on-chip memory
shared between thread units. Each bank is 512KB for a total of 8MB of em-
bedded memory. The banks provide a contiguous address space to the threads.
The latency to any bank is uniform. Addresses are interleaved to provide higher
memory bandwidth. The unit of access is a 32-byte block, and threads accessing
two consecutive blocks in the same bank will see a lower latency in burst trans-
fer mode. The peak bandwidth of the embedded memory system is 40GB/s (64
bytes every 12 cycles in each of the 16 banks).

In addition to the default all-shared cache behavior, the architecture supports
an entire spectrum of access schemes through interest groups [5], from no sharing
at all to caches shared at di�erent levels. Any memory location can be placed
in any cache under software control. The same physical address can be mapped
to di�erent caches depending on the logical address. An important use of this
�exible cache organization is to exploit locality and shared read-only data. For
example, data frequently accessed by a thread, such as stack data or constants,
can be cached in the local cache by using the appropriate interest group. The
hardware does not implement any coherence mechanism to deal with multiple
copies of a memory line in di�erent data caches.

Four global inter-thread hardware barriers are provided through a special
purpose register (SPR). These barriers are implemented as a wired OR for all
or a user de�ned subset of the threads on the chip.

The BG/C chip also provides six input and six output links. These links
allow a chip to be directly connected in a three dimensional topology (mesh or
torus). The links are 16-bit wide and operate at 500MHz, giving a maximum
I/O bandwidth of 12GB/s. In addition, a seventh link can be used to connect to
a host computer. These links can be used to build larger systems without addi-
tional hardware. Another port permits the access to external (o�-chip) memory.
However, these latter characteristics are not the focus of this paper.

BG/C executables (kernel, libraries, applications) are currently being gener-
ated with a cross-compiler based on the GNU toolkit, re-targeted for the BG/C
instruction set architecture. This cross-compiler supports C, C++, and FOR-
TRAN 77.

The performance results shown in Section 5 are generated by an architec-
turally accurate simulator which executes instructions from the BG/C instruc-
tion set, modeling resource contention between instructions, and thus estimat-
ing the number of cycles executed per instruction. The con�guration parameters
used for the simulations in this paper are listed in Table 1.

In addition, each chip runs a resident system kernel, which executes with
supervisor privileges. The kernel supports single user, single program, multi-

Evaluation of OpenMP for the Cyclops Multithreaded Architecture 73

threaded applications within each chip. The kernel exposes a single-address
space shared by all threads. Due to the small address space and large num-
ber of hardware threads available, no resource virtualization is performed in
software: virtual addresses map directly to physical addresses (no paging) and
software threads map directly to hardware threads. The kernel does not support
preemption (except in debugging mode), scheduling or thread priorities. Every
software thread is preallocated with a �xed size stack per thread (selected at
boot time), resulting in fast thread creation and reuse.

Table 1. Design parameters for the reference BG/C architecture. In (a) we show
the number of cycles for execution and latency of the main instruction types.
Execution is the number of cycles the functional unit is busy; latency is the
additional delay until the results of the operation are available

(a) instructions

Instruction type Execution Latency

Branches 2 0
Integer multiplication 1 5
Integer divide 33 0
Floating point add, mult. and conv. 1 5
Floating point divide (double prec.) 30 0
Floating point square root (double prec.) 56 0
Floating point multiply-and-add 1 9

All other operations (except memory ops.) 1 0

(b) components

Component # of units Params/unit

Threads 1-256 single issue, in-order, 500MHz
FPUs 32 1 add, 1 multiply
D-cache 32 16KB, 8-way assoc., 64-byte lines
I-cache 16 32KB, 8-way assoc., 64-byte lines
Memory 16 512KB

3 Towards OpenMP for BG/C

OpenMP for BG/C is based on the NanosCompiler and the NthLib compo-
nents. The OpenMP NanosCompiler is a source-to-source translator for For-
tran77 based on Parafrase-2 [23]. NthLib is a runtime library designed to pro-
vide an e�cient support to the OpenMP execution model on shared-memory
multiprocessors. Fine grain parallel tasks are implemented as e�ciently as other
thread packages: the application creates work descriptors and supplies them to
the participating threads [18]. A mechanism to spawn coarse grained parallel
tasks, called nanothreads [19] is also available. This mechanism is more expen-
sive but allows the exploitation of multiple levels of parallelism.

74 George Almasi et al.

Kernel Threads

Hardware

User Threads

Local queue

queue
Global

!$omp parallel do

 do i = 1...

 enddo

Fig. 2. Software architecture of OpenMP on BG/C

Figure 2 presents the software architecture used for supporting OpenMP.
Kernel-level threads are the processor abstraction in our environment. User-
level threads are supported on top of the kernel-level threads, and they represent
the abstraction for work. Kernel-level threads are created when the application
starts and are kept alive during the entire execution of the application. User-level
threads are spawned as needed to create parallel regions � each thread executing
a share of the whole work. Assigning the task to a thread is implemented by
queuing the nanothread or work descriptor in one of the per-processor queues or
in the global queue. The per-processor queues allows us to exploit locality; the
global queue can be used for load balancing reasons, but it is not used for the
experiments presented in this paper.

The implementation of NthLib for BG/C currently uses few speci�c system
services and architectural features. Its only requirements are a processor alloca-
tion mechanism, control over stack placement and memory management, and a
set of atomic memory operations. The thread creation mechanism provided by
the BG/C system library is the bg_svc_thread_create_speci�c call. This primi-
tive creates a kernel�level thread to run on a speci�c hardware thread. This way,
the kernel�level threads may be mapped to speci�c processors. Other service calls
similar to pthreads are used for thread management, like bg_svc_thread_join.
Stack management was implemented giving �xed-size stacks to threads on cre-
ation, thanks to the ability of the thread creation service to use a designated
stack as the thread stack. The implementation assumes the default all-shared
cache organization inside the chip.

4 Benchmark Description

In order to evaluate the performance of our OpenMP implementation for BG/C,
we have used a set of microbenchmarks and a subset of the NAS benchmarks, ver-
sion 2.3. The purpose of the microbenchmarks is to compare the performance of

Evaluation of OpenMP for the Cyclops Multithreaded Architecture 75

the OpenMP parallelization and the performance of the hand-optimized versions
to execute on BG/C. The NAS benchmarks show that our OpenMP implemen-
tation scales to handle large, realistic applications.

4.1 Micro-Benchmarks

Throughout our evaluation we have used microbenchmarks to study speci�c
properties of the architecture. In this paper, we present results for two scienti�c
kernels: dense matrix multiplication and sparse matrix-vector product. Their
simplicity allows the validation of results by direct study of the assembly listings,
which increases our con�dence in the correctness of the experiments.

Three versions for each kernel have been coded: Pthreads, OpenMP and
Pthreads without optimizations (wco). In the Pthreads versions the program
contains code to fork and join parallel threads. In addition, each thread executes
code to determine the portion of work that has to execute and synchronizes with
other threads by means of barriers. The OpenMP version simply contains the
parallel and work-sharing directives necessary to express the same parallelization
strategy (or the closest one, if not possible). The compiler takes care of generating
the code for distributing the work and synchronizing across the threads.

MM. The matrix multiplication kernel, MM, computes AB = C with Am×p,
Bp×n and Cm×n, where m = 192, n = 192 and p = 100 using the simple three-
nested loops algorithm (high school matrix multiply). The data set results in a
storage requirement of about 0.59 MB. That size essentially �ts in the global
D-cache.

The pthread-based implementation of MM distributes the matrix C evenly
among t = r × s threads, resulting in each thread owning a rectangular section
of C. Each thread computes only the portion of C it owns. The OpenMP imple-
mentation of MM distributes the work evenly among the columns of C: one-level
STATIC block distribution of the iterations in the loop that traverse the columns
of the result matrix. MM requires no synchronization between threads.

SPARSE, the multiplication of a sparse matrix by a vector, is the main kernel
of many iterative linear solvers. Our implementation represents the sparse ma-
trix S using row-indexed sparse storage [27,24]. This scheme stores the diagonal
elements and the non-zero elements in a vector of values val. The columns of
the non-zero elements are stored in an integer vector idx.

The inner loop of the sparse-matrix vector product Sx = y

for (k=idx[i]; d < idx[i+1]; k++)

y[i] += val[k] * x[idx[k]]

requires three memory loads for every non-zero element k. The location of the
dependent loads for the indirect access to x is particularly di�cult to predict
and the latency is di�cult to hide. For that reason most sparse-matrix vector
codes su�er from poor performance.

76 George Almasi et al.

In both implementations (Pthreads and OpenMP), the rows of the matrix
S and the solution vector y are partitioned between threads. This method does
not require thread synchronization. A �ll parameter f controls the sparsity of
the matrix: one of every f elements in each row i is non zero, starting at column
i mod f . Thus, the vector x is traversed in sequential order.

Threads multiply one or two rows of the matrix at the same time, and in
the manual implementation the inner loop is unrolled 8 times. The test problem
Sx = y with matrix size 1024 × 1024 and �ll factor f = 4 requires 3.03 MB of
main memory.

4.2 NAS Benchmarks

We have also evaluated our BlueGene/Cyclops OpenMP implementation with
a subset of the NAS benchmarks which are a representative set of computing
intensive applications. We have used the OpenMP Fortran77 benchmarks in NAS
PBN [12], version 2.3.

We have simulated fully both CLASS S and CLASS W benchmarks, although
the sets are not the same because of memory capacity problems. The programs
simulated from CLASS S (the smallest class) are MG, FT, SP, CG, and LU.
Although they are small in data sizes and number of iterations, the complexity
of the application is the same, enabling a complete evaluation of the OpenMP
compilation environment in a reasonable amount of simulation time. The pro-
grams simulated in CLASS W are MG, BT, SP, CG, and LU. Their description
can be found in [3][7].

5 Experimental Results

In this section, we show the results of our simulations. All the examples are
naively implemented with no hand-coded manual optimizations for scalar per-
formance (loop unrolling, blocking, ...). We brie�y make some comments about
how they impact performance and the reader is referred to [2]. That report eval-
uates speci�c features of the BG/C architecture using applications �ne-tuned to
execute at maximal performance.

For the micro-benchmarks, we plot performance results in MFLOPs when
considering the parallelism fork and join overheads and when just considering
the useful work executed in parallel (plot labeled wco). For the NAS subset we
plot the speedup relative to the sequential version.

5.1 Micro-Benchmarks

Figures 3 and 4 show that the performance obtained by the OpenMP version
of these benchmarks is similar to that of the hand-coded pthreads versions (in
some cases, even better). They tend to scale at least as well as the hand-coded
Pthreads versions.

Evaluation of OpenMP for the Cyclops Multithreaded Architecture 77

There is an anomaly worth highlighting, though, in MM. The OpenMP plot
shows that the performance improvement stalls at 96 threads. This is due to the
di�erent work distribution schemes used in the Pthreads and OpenMP versions.
The Pthreads versions simultaneously distributes work from two of the loops in
the nest where the matrix multiply is done. The OpenMP version just distributes
work from one of the loops. Since the parallelized loop executes 192 iterations,
using more that 96 threads results in a highly unbalanced assignment of iterations
to threads (two iterations are assigned to some of them and one to the rest).
Linearizing the loop or using two levels of parallelism would produce a balanced
distribution of work, thus achieving the same performance.

By contrast, overheads are the problem for the degradation of performance
in SPARSE � the code that distributes the work among threads is executed once
in the Pthreads version, but multiple times in the OpenMP version.

0 20 40 60 80 100 120
0

1000

2000

3000

4000

5000

6000

M
Fl

op
s

pthreads naive
OpenMP
pthreads wco

Fig. 3. MM performance

0 20 40 60 80 100 120
of threads

0

500

1000

1500

2000

2500

3000

pthreads naive
OpenMP
pthreads wco

Fig. 4. SPARSE performance

1 2 4 8 16 32 64 128
of threads

4

8

12

16

20

24

28

32

sp
ee

du
p

mg
ft
sp
cg
lu

Fig. 5. NAS CLASS S scalability

4 8 12 16
of threads

0

5

10

15

sp
ee

du
p

mg
bt
sp
cg
lu

Fig. 6. NAS CLASS W scalability

78 George Almasi et al.

5.2 NAS Benchmarks

Figure 5 shows the scalability of a subset of the CLASS S NAS benchmarks in
BG/C. CLASS S has been selected to show how the architecture performs with
small data sets. Figure 6 shows the scalability of some CLASS W benchmarks.
The reason for missing some of the benchmarks is the incipient state of the
OpenMP environment, the limited hardware memory size, and limitations in
the simulator when running applications requiring a large memory size and a
large number of threads.

The performance of most of the CLASS S benchmarks improves up to 16
processors. In this case, the scalability shown for CLASS S is better than the
scalability obtained in other shared memory architectures, making us believe
that further work in this direction will yield the expected results.

The �rst experiments done with CLASS W reveal that scalability improves
as the data set grows. We believe that this is promising and shows that BG/C
should be able to support large OpenMP applications.

6 Improving OpenMP Support for BG/C

As mentioned in Section 3, the NthLib library has been ported to BG/C without
considering speci�c architectural features of the target machine. Some propos-
als to enhance the support to the OpenMP programming model in BG/C are
described in this section.

� Local versus global work descriptors. In the current implementation
of NthLib for BG/C, the master thread generates a work descriptor for
each thread participating in the parallel execution, and supplies it to its
per-thread local queue. This allows assignment of work in a very �exible
way. However, in OpenMP this �exibility is not necessary, so that a single
global work descriptor could be created and supplied to all per�thread local
queues. This would reduce creation overheads, especially when the number of
threads is large.

� Take advantage of interest groups in data caches. In the current
implementation, all caches are shared. It would be possible to use other
cache sharing possibilities in order to privatize variables. For example, when
multiple levels of parallelism are exploited, groups of threads can be de�ned
(OpenMP extensions supported by the NanosCompiler). In this case, threads
in the same group share data that is privatized among groups.

� Using hardware barriers. BG/C o�ers an e�cient implementation for
barriers. However, this support is not su�cient in NthLib because a thread
needs to look for work on the queues while waiting on a barrier to be open.
We plan to solve this problem using split barriers (o�ering for example bar-

rier_enter and barrier_leave primitives). In this way, a thread could execute
useful work while waiting on a barrier. In addition, we can devise a tree-like
scheme, in which di�erent threads that map to the same physical thread use
di�erent hardware barriers from the 4 available. This approach trades the

Evaluation of OpenMP for the Cyclops Multithreaded Architecture 79

number of global barriers available for a larger number of threads being able
to synchronize.

� Fine grain synchronization. Locks could be implemented using hardware
locks. These locks could stop the thread (or make it spin on an speci�c pur-
pose register instead of in local cache) while waiting for the unlocking thread.
In [35], it has been proposed to introduce two new instructions (acquire and
release), as well as a locking hardware structure (lock_box). These locks
could have di�erent implementations for the threads inside the same Thread
Group and for threads in di�erent Thread Groups. This contrasts with the
current BG/C implementation, that is a via the test_and_set atomic opera-
tion provided by the ISA. This could also help to reduce power consumption
because resources used by sleeping threads could be turned o�.

� Eliminating the idle loop. When a thread is waiting in the idle loop,
it is wasting resources without a real need (for instance, cache bandwidth
or energy). In a normal multiprocessor system, the idle loop spins in the
local cache, thus wasting no resources at all; however, in BG/C the data
cache is shared among threads so the spinning consumes a portion of its
total bandwidth. A possibility would be to include hardware mechanisms to
e�ciently implement the idle loop similar to the one mentioned above to
implement hardware locks. This would mean to stop the activity of a thread
while waiting in the idle loop. The activity would be resumed as soon as
work is queued in its per�thread local or global queues.

� Eliminating user-level threads. We can eliminate the user-level threads
which causes many overheads, and implement thread creation directly via
bg_svc_thread_create_speci�c calls. This would solve the barrier problem
� we can use hardware barriers. This would also eliminate the idle loop.
Although it has been proven that this is not viable in current multiprocessor
systems, it should be studied for multithreaded systems as the BG/C with
very low thread creation overhead. An hybrid implementation could allow
choosing among the �exibility of user-level threads or the better performance
of no scheduling levels. In this way, OpenMP applications that use a small
number of threads (less than or equal to the number of hardware threads in
a chip) could map the software threads to the physical threads, thus avoiding
the overhead of context switches.

7 Related Work

Architectures that integrate processors and memories on the same chip are
called Processor-In-Memory (PIM) or Intelligent Memory architectures. They
have been spurred by technological advances that enable the integration of com-
pute logic and memory on a single chip. These architectures deliver higher per-
formance by reducing the latency and increasing the bandwidth of processor-
memory communication. Examples of such architectures are EXECUBE [15],
IRAM [22], Shamrock [14], Imagine [25], FlexRAM [13,32], DIVA [11], Active
Pages [21], Gilgamesh [38], and MAJC [33]. The PIM chip is used either as a

80 George Almasi et al.

coprocessor (Imagine, FlexRAM), or as the main engine in the machine (IRAM,
MAJC, Shamrock), or as a cell in a larger system (MIT RAW [1,36], EXECUBE
and BG/C). Another classi�cation could be based on the number and type of
the processors: FlexRAM and Imagine include many (more than 32) relatively
simple processors, while EXECUBE, IRAM, MAJC, Piranha [4] and Shamrock
include only a few (4-8). BG/C goes beyond what has been proposed, using
hundreds of processors.

Simultaneous multithreading exploits both instruction-level and thread-
level parallelism by issuing instructions from di�erent threads in the same cycle.
It was shown to be a more e�ective approach to improve resource utilization than
superscalar execution. Results presented in [8,34] support our work by showing
that there is not enough instruction-level parallelism in a single thread of exe-
cution, therefore it is more e�cient to execute multiple threads concurrently.

The Tera MTA [28,29] is another example of a modern architecture that
tolerates latencies through massive parallelism. In the case of Tera, 128 thread
contexts share the execution hardware. This contrasts with BG/C, in which
each thread has its own execution hardware. Both architectures can tolerate
long latencies.

As far as we know, this is the �rst attempt to port an OpenMP runtime sys-
tem to a massive parallel multithreaded system on�chip. The porting is based on
the experience gained over the years on implementing such an environment on
top of other execution environments, including small SMPs and large cc-NUMA.
Vendors also provide �ne-tuned implementations for their target machines, such
as SGI IRIX MP[30] library or the IBM run-time library for AIX. For example,
the SGI MP library provides a complete execution environment for each appli-
cation, supporting thread creation, management, synchronization and NUMA
features, such as memory placement. The library is aware of the machine load,
trying to adjust the parallelism which is exploiting to the available resources. A
number of projects also try to extend the use of OpenMP to clusters with DSM
(Distributed Shared Memory) support. The long latencies experienced when ac-
cessing remote data and the memory granularity at the page level impose new
constraints in these implementations [17,26].

The Nanos execution environment, which is the source for the two compo-
nents used to implement OpenMP on top of BG/C, focus on adaptability at
di�erent levels, the e�ective exploitation of nested parallelism and the speci�ca-
tion of precedence relations among computations that form pipelines. All these
aspects form a set of extensions to OpenMP whose impact must be investigated
in BG/C.

A number of studies have been recently published in which di�erent compiler
optimizations are evaluated for multithreaded architectures. For example, [16]
relaxes and modi�es some of the requirements on code scheduling and data access
used by current compilers.

As stated before, the BG/C architecture is focused on the execution of a
single multithreaded application within each chip. Other architecture proposals
such as α�Coral [37] provides for mostly hardware managed simultaneous mul-

Evaluation of OpenMP for the Cyclops Multithreaded Architecture 81

tiprogramming and multithreading environment. The Nanos environment also
o�ers workload management at the software level with the CPUmanager com-
ponent, specially designed for malleable OpenMP applications.

8 Conclusions

The Blue Gene/Cyclops architecture provides an excellent platform for studying
programming environments for multithreaded architectures. Writing and port-
ing applications for the BG/C architecture is not a simple process [2]. The very
large number of threads (one or two orders of magnitude larger than similar ar-
chitectures), the complexity of the cache organization, and the sharing of caches
and �oating point units are not yet easily modeled statically by compilers. The
Pthreads execution model used until now for BG/C closely matches the hard-
ware but adds another level of complexity to the process of writing software for
BG/C.

In order to simplify this task, this paper introduces the implementation of an
OpenMP environment for on�chip massive parallel architectures. This OpenMP
environment together with the simulation environment for BG/C allows the
exploration of a large number of SMT con�gurations with low programming
e�ort. This permits us to better understand what are the trade-o�s between
multithreading characteristics and which properties are worth integrating in our
implementation of the NthLib library.

This paper also shows that more tuning of our library is still required. With
simple hand-optimized kernels, BG/C has demonstrated that its architecture is
able to perform a very large percentage of the peak �oating point performance [2]
o�ered by the architecture. The results shown in previous sections showed that
OpenMP applications can behave on par with Pthreads programs. Most of the
optimizations used in [2], such as loop unrolling and register tiling, are orthogo-
nal to the programming environment and will apply well to our OpenMP bench-
marks. Nevertheless, there is also room for improvement in the case of large
applications, such as the NAS benchmarks, as shown.

References

1. Anant Agarwal. Raw computation. Scienti�c American, August 1999.
2. George Almási, C lin Ca³caval, José G. Castaños, Monty Denneau, Derek Lieber,

José E. Moreira, and Jr. Henry S. Warren. Dissecting Cyclops: A detailed analysis
of a multithreaded architecture. InMEDEA Workshop on On-Chip Multiprocessor:
Processor Architecture and Memory Hierarchy related Issues, September 2002.

3. D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, A. Woo, and Maurice
Yarrow. The NAS parallel benchmarks 2.0. Technical Report Technical Report
NAS-95-020, NASA Ames Research Center, December 1995.

4. L. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer, B. Sano,
S. Smith, R. Stets, and B. Verghese. Piranha: A scalable architecture based on
single-chip multiprocessing. In 27th Annual International Symposium on Computer
Architecture, pages 282�293, June 2000.

82 George Almasi et al.

5. C lin Ca³caval, José Castaños, Luis Ceze, Monty Denneau, Manish Gupta, Derek
Lieber, José E. Moreira, Karin Strauss, and Henry S. Warren, Jr. Evaluation
of a multithreaded architecture for cellular computing. In Proceedings of the 8th
International Symposium of High Performance Computer Architecture, February
2002.

6. Intel Corporation. Intel hyperthreading technology.
http://www.intel.com/info/hyperthreading. 2003.

7. D.Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi,
S. Fineberg, R. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakr-
ishnan, and S. Weeratunga. The NAS parallel benchmarks. Technical Report
Technical Report RNR-94-007, NASA Ames Research Center, March 1994.

8. Susan Eggers, Joel Emer, Henry Levy, Jack Lo, Rebecca Stamm, and Dean Tullsen.
Simultaneous multithreading: A platform for next-generation processors. IEEE
Micro, pages 12�18, September/October 1997.

9. Frances Allen et al. Blue gene: A vision for protein science using a peta�op super-
computer. IBM Systems Journal, 40(2):310�328, 2001.

10. M. Gonzalez, E. Ayguadé, X. Martorell, J. Labarta, N. Navarro, and J. Oliver.
NanosCompiler: Supporting �exible multilevel parallelism in OpenMP. Concur-
rency: Practice and Experience, 12(9), August 2000.

11. M. W. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame, J. Draper, J. LaCross,
J. Brockman, W. Athas, A. Srivasava, V. Freech, J. Shin, and J. Park. Map-
ping irregular applications to DIVA, a PIM-based data-intensive architecture. In
Proceedings of SC99, November 1999.

12. H. Jin, M. Frumkin, and J. Yan. The OpenMP implementation of the NAS parallel
benchmarks and its performance. Technical Report Technical Report NAS-99-011,
NASA Ames Research Center, October 1999.

13. Yi Kang, Michael Huang, Seung-Moon Yoo, Zhenzho Ge, Diana Keen, Vinh Lam,
Prattap Pattnaik, and Josep Torrellas. FlexRAM: Toward an advanced intelli-
gent memory system. In International Conference on Computer Design (ICCD),
October 1999.

14. P. Kogge, S. Bass, J. Brockman, D. Chen, and E. Sha. Pursuing a peta�op: Point
designs for 100 TF computers using PIM technologies. In Frontiers of Massively
Parallel Computation Symposium, 1996.

15. Peter M. Kogge. The EXECUBE approach to massively parallel processing. In
Intl. Conf. on Parallel Processing, August 1994.

16. Jack L. Lo, Susan J. Eggers, Henry M. Levy, Sujay S. Parekh, and Dean M. Tullsen.
Tuning compiler optimizations for simultaneous multithreading. In International
Symposium on Microarchitecture, pages 114�124, 1997.

17. H. Lu, Y. C. Hu, and W. Zwaenepoel. OpenMP on network of workstations. In
Proc. of Supercomputing'98, 1998.

18. X. Martorell, E. Ayguadé, J.I. Navarro, J. Corbalán, M. González, and J. Labarta.
Thread fork/join techniques for multi-level parallelism exploitation in NUMA mul-
tiprocessors. In Proceedings of the 13th Int. Conference on Supercomputing ICS'99,
June 1999.

19. X. Martorell, J. Labarta, J.I. Navarro, and E. Ayguadé. A library implementation
of the nano-threads programming model. In Proceedings of Euro-Par'96, August
1996.

20. OpenMP Organization. OpenMP Fortran application interface, v. 2.0.
http://www.openmp.org, June 2000.

Evaluation of OpenMP for the Cyclops Multithreaded Architecture 83

21. Mark Oskin, Frederic T. Chong, and Timothy Sherwood. Active Pages: A com-
putation model for intelligent memory. In International Symposium on Computer
Architecture, pages 192�203, 1998.

22. David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm, Kimberly
Keeton, Christoforos Kozyrakis, Randi Thomas, and Katherine Yelick. A case for
intelligent RAM: IRAM. In Proceedings of IEEE Micro, April 1997.

23. Constantine D. Polychronopoulos, Milind B. Girkar, Mohammed Resa Haghighat,
Chia Ling Lee, Bruce P. Leung, and Dale A. Schouten. Parafrase-2: An environment
for parallelizing, partitioning, synchronizing and scheduling programs on multipro-
cessors. In 1989 International Conference on Parallel Processing, volume II, pages
39�48, St. Charles, Ill., 1989.

24. William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.
Numerical recipes in C. In Cambridge University Press, 1992.

25. S. Rixner, W.J. Dally, U.J. Kapasi, B. Khailany, A. Lopez-Lagunas, P.R. Mattson,
and J.D. Owens. A bandwidth-e�cient architecture for media processing. In 31st
International Symposium on Microarchitecture, November 1998.

26. M. Sato, S. Satoh, K. Kusano, and Y. Tanaka. Design of OpenMP compiler for an
smp cluster, 1999.

27. Scienti�c Computing Associates, Inc. PCGPACK user's guide.
28. A. Snavely, L. Carter, J. Boisseau, A. Majumdar, K. S. Gatlin, N. Mitchel, J. Feo,

and B. Koblenz. Multiprocessor performance on the Tera MTA. In Proceedings
Supercomputing '98, Orlando, Florida, Nov. 7-13 1998.

29. A. Snavely, G. Johnson, and J. Genetti. Data intensive volume visualization on
the Tera MTA and Cray T3E. In Proceedings of the High Performance Computing
Symposium - HPC '99, pages 59�64, 1999.

30. Silicon Graphics Computer Systems. Origin2000 and Onyx2 performance tuning
and optimization guide. Technical Report Doc. num. 007-3430-002, 1998.

31. J. M. Tendler, J. S. Dodson, Jr. J. S. Fields, H. Le, and B. Sinharoy. POWER4
system microarchitecture. IBM Journal of Research and Development, 46(1):5�26,
2002.

32. Josep Torrellas, Liuxi Yang, and Anthony-Trung Nguyen. Toward a cost-e�ective
DSM organization that exploits processor-memory integration. In Sixth Interna-
tional Symposium on High-Performance Computer Architecture, January 2000.

33. M. Tremblay. MAJC: Microprocessor architecture for Java computing. In Hot
Chips, August 1999.

34. Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous multithread-
ing: Maximizing on-chip parallelism. In Proceedings of the 22nd Annual Interna-
tional Symposium on Computer Architecture, pages 392�403, June 1995.

35. Dean M. Tullsen, Jack L. Lo, Susan J. Eggers, and Henry M. Levy. Supporting �ne-
grained synchronization on a simultaneous multithreading processor. In HPCA,
pages 54�58, 1999.

36. Elliot Waingold, Michael Taylor, Devabhaktuni Srikrishna, Vivek Sarkar, Walter
Lee, Victor Lee, Jang Kim, Matthew Frank, Peter Finch, Rajeev Barua, Jonathan
Babb, Saman Amarasinghe, and Anant Agarwal. Baring it all to software: Raw
machines. IEEE Computer, pages 86�93, September 1997.

37. M. Yankelevsky and C. D. Polychronopoulos. α-Coral: A multigrain, multithread-
ing processor architecture. In Proceedings of International Conference on Super-
computing'01, 2001.

38. H. P. Zima and T. Sterling. The Gilgamesh processor-in-memory architecture and
its execution model. InWorkshop on Compilers for Parallel Computers, June 2001.

Busy-Wait Barrier Synchronization Using
Distributed Counters with Local Sensor

Guansong Zhang, Francisco Mart́ınez�, Arie Tal, and Bob Blainey

IBM Toronto Lab,Toronto
ON, L6G 1C7, Canada

Abstract. Barrier synchronization is an important and performance
critical primitive in many parallel programming models, including the
popular OpenMP model. In this paper, we compare the performance of
several software implementations of barrier synchronization and intro-
duce a new implementation, distributed counters with local sensor, which
considerably reduces overhead on POWER3 and POWER4 SMP sys-
tems. Through experiments with the EPCC OpenMP benchmark, we
demonstrate a 79% reduction in overhead on a 32-way POWER4 system
and an 87% reduction in overhead on a 16-way POWER3 system when
comparing with a fetch-and-add implementation. Since these improve-
ments are primarily attributed to reduced L2 and L3 cache misses, we
expect the relative performance of our implementation to increase with
the number of processors in an SMP and as memory latencies lengthen
relative to cache latencies.

Keywords: Barrier, synchronization, multiprocessor, distributed counter.

1 Introduction

A barrier is a synchronization primitive used in parallel programming languages.
The barrier point is a program position at which each thread of execution en-
ters in parallel and waits to proceed until all threads have reached the same
point. Figure 1 (a) illustrates a barrier synchronization of the execution of four
threads. Barriers are necessary in many parallel programs to ensure data in-
tegrity between phases of a program which are to be executed using multiple
threads.

Barriers are used in both shared and distributed memory programming mod-
els [1] [2] [3]. We restrict our attention in this paper to software barrier implemen-
tations for cache-coherent shared memory or symmetric multiprocessor (SMP)
systems. Software barrier implementation for SMP systems can generally be done
using hardware synchronization support such as fetch-and-add or test-and-set,
by using busy-wait polling techniques or by using some combination of the two.

In the OpenMP shared memory parallel language specifications[4][5] , bar-
rier synchronization plays a significant role. Parallel regions as well as all of
� Ph.D. candidate, research student visiting from the Technical University of Catalonia

(UPC), Barcelona, Spain.

M.J. Voss (Ed.): WOMPAT 2003, LNCS 2716, pp. 84–98, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Busy-Wait Barrier Synchronization 85

(b)(a)

Fig. 1. Barriers

the defined work-sharing constructs are terminated by an implicit barrier syn-
chronization (which may, in some cases, be avoided using a NOWAIT clause).
OpenMP also defines an explicit barrier directive defined to be used whenever
necessary.

In this paper, we will study different ways of implementing busy-wait barrier
synchronization on a multiprocessor system with shared memory, typically for
parallel programming with OpenMP. We use the EPCC micro-benchmarks[6] to
measure performance overhead of the different barrier implementations discussed
here. All of the test data is based on the use of an explicit barrier, though the
results can be applied equally well to implied barriers.

In section 2, we describe the POWER4-based system on which we performed
our experiments and the source of some of the costs implicit in barrier synchro-
nization. In section 3, we describe several implementations of busy-wait synchro-
nization and finally describe our new approach, distributed counters with local
sensor. In section 4, we show the results of timing and hardware performance
monitoring experiments using the various barrier implementations. Finally, in
section 5, we summarize our findings and describe future work.

2 Overhead of a Barrier Synchronization

There are many ways of implementing a barrier synchronization. In this paper,
we focus on the so-called centralized barrier, simply because in a globally ad-
dressed memory system with wide bandwidth among node processors, such as
a POWER4, the centralized barrier will make the coding much easier, and less
error prone1.

Several ways to implement this kind of barrier were suggested in [7] and re-
examined on a ccNUMA system in [8]. Basically, a shared variable is updated
as each thread arrives at the barrier point. The thread will leave the position if
testing finds out that all the threads have arrived. To understand the overhead of
1 When there is a large number of processor nodes connected by a interconnection

network with a specific topology, centralized barrier may not be preferable. While
the barrier in Figure 1 (b) will be more interesting, where locality is emphasized.

86 Guansong Zhang et al.

the whole process, we first have a brief introduction on the hardware architecture
used for testing, and our test environment.

2.1 POWER4 SMP Architecture and Software

The basic building block for a POWER4 SMP system can be found in [9]. It is
a multi-chip module (MCM) with four POWER4 chips forming an 8-way SMP,
as shown in Figure 2. Multiple MCMs can then be interconnected to form 16-,
24-, and 32-way SMPs.

Bus

L3 L3 L3 L3

Memory Memory Memory Memory

Shared L2 Shared L2Shared L2 Shared L2

Core Core Core Core Core Core Core Core

Uni−directional

Fig. 2. POWER4 MCM structure

The logical interconnection of four POWER4 chips is point-to-point, with
uni-directional buses connecting each pair of chips to form an 8-way SMP with
an all-to-all interconnection topology. The fabric controller on each chip monitors
(for example snoops) all buses and writes to its own bus, arbitrating between
the L2 cache, I/O controller, and the L3 controller for the bus. Requests for
data from an L3 cache are snooped by each fabric controller to determine if it
has the data being requested in its L2 cache (in a suitable state), or in its L3
cache, or in the memory attached to its L3 cache. If any one of these is true,
then that controller returns the requested data to the requesting chip on its bus.
The fabric controller that generated the request then sees the response on that
bus and accepts the data.

Up to four MCMs can be interconnected by extending each bus from each
module to its neighboring module in one direction. Inter-module buses run at half
the processor frequency and are 8-bytes wide. The inter-MCM topology is that
of a ring in which requests and data move from one module to another module
in one direction. As with the single MCM configuration, each chip always sends
requests, commands and data on its own bus but snoops all buses for requests
or commands from other MCMs.

The underlying software system is the SMP runtime library supporting the
OpenMP standard. It is not a research system but production level software

Busy-Wait Barrier Synchronization 87

available in the IBM r© XL Fortran and VisualAge C++ r© products. The run-
time system implements schedule-based barrier synchronization as well as a fall-
back for the busy-wait method.

2.2 Testing Benchmark

We use unmodified EPCCmicro-benchmarks to test the performance of a barrier
synchronization. As introduced in [10], the overhead here is considered as the
difference between the parallel execution time and the ideal time, given by perfect
scaling of the sequential program.

The parallel execution time is taken from the following code segment,

dl = delaylength

do k=0,outerreps

start = getclock()

!$OMP PARALLEL PRIVATE(J)

do j=1,innerreps

call delay(dl)

!$OMP BARRIER

end do

!$OMP END PARALLEL

time(k) = (getclock() - start) *

& 1.0e6 / dble (innerreps)

end do

While the sequential reference time is measured through this code,

dl = delaylength

do k=0,outerreps

start = getclock()

do j=1,innerreps

call delay(dl)

end do

time(k) = (getclock() - start)*

& 1.0e6 / dble (innerreps)

end do

In the test program, the value of outerreps is set to 50, which is the default
in the EPCC micro-benchmarks. The array variable time is used to compute the
mean and standard deviation of the 50 measurements. Since we can exclusively
access the machine, only the mean value is considered here.

2.3 Barrier Overhead on an SMP System

The two main reasons for the overhead of a barrier synchronization are memory
contention and traffic. We define contention as the effect produced by many
threads accessing simultaneously the same data, and traffic as the amount of
data per time unit moving through the bus.

88 Guansong Zhang et al.

Nevertheless, contention and traffic are not independent as some accesses
to memory increase both (so, contention in one memory position is likely to
increase traffic). Studying memory behavior through hardware counters can show
us an approximation to both the contention and traffic that a concrete barrier
implementation puts on the system.

In order to reduce the complexity of the analysis, we separate the barriers
into phases:

– Signaling: Time to enter the barrier and notifying that we are in
– Leaving: Time to realize that the synchronization is over and we can leave
the barrier

This classification can be useful because some implementations focus on reducing
the impact of the first while others focus on the second.

3 Design of Different Barriers

In this section we summarize different designs for barrier implementation and
their characteristics. Based on the discussion presented in the previous section,
we try to reduce the overhead of a barrier by decreasing the contention for a
shared memory location and reducing the volume of data transmitted on the
network. We start with a simple barrier implementation using Fetch-and-Add.

3.1 Barrier with Fetch-and-Add

In this case, a global counter is allocated in the shared memory of a parallel
system. Before a barrier starts, the counter will be set to the number of threads
participating in the parallel region. As the threads come to the barrier point,
each one will decrease the counter with an atomic fetch-and-add operation and
then spin on checking the counter value until the result is zero.

This implementation is quite similar to the barrier implementation intro-
duced in [11]. The difference is that instead of doing scheduling, a busy-wait
method is enforced by letting each thread constantly read the shared counter.
The whole process is shown in Figure 3.

In the diagram, we use square blocks to represent our data structure, and
arrowed lines with comments to represent actions that a thread may apply to
the structure, in this case, the shared memory counter.

On a POWER4 system, the fetch-and-add operation is implemented using
a lwarx (load and reserve) and stwcx (store conditional) instruction pair. As
shown in the following assembly code, the two instructions work together to
conditionally store a word to an indexed memory position.

static inline int fetch_and_add (volatile int *mem, int val)

{

int tmp, result;

asm volatile("\n\

0: lwarx %0,0,%2 \n\

Busy-Wait Barrier Synchronization 89

. . .

Counter

. . . Leave

Decrease Decrease

Leave

Spin until 0Spin until 0

Fig. 3. Barrier implemented with fetch-and-add

add%I3 %1,%0,%3 \n\

stwcx. %1,0,%2 \n\

bne- 0b \n\

" : "=&b"(result), "=&r"(tmp) : "r" (mem), "Ir\

"(val) : "cr0", "memory");

return result;

}

The first instruction will create a reservation for use by the second instruc-
tion. The store can only be successful when the reserved bit is set. If not, the
program will repeat the process. In this way, the procedure prevents two threads
from updating the counter at the same time.

The advantage of this implementation is obvious. It has direct hardware
support and is quite simple in terms of coding. It does not cost much memory
either.

As we will find out, the performance of this design is acceptable only for
a parallel system with a small number of processors, for example, less than
eight nodes. We will see that as the number of processors increases, the memory
contention increases sharply.

3.2 Distributed Counter

Since the fetch-and-add design has a high contention cost as the number of
processors increases, we would like to coordinate threads using multiple memory
locations to reduce contention.

As a result, we produced a new implementation we call a distributed counter
shown in Figure 4. Instead of allocating one counter in the shared memory, we
allocate multiple counters as a byte array. The size of the array is equal to the
number of threads in the barrier operation and the value of each element in the
counter is initialized to one.

90 Guansong Zhang et al.

. . .

. . .

. . .
Dist counter

Leave

Decrease Decrease

Leave

Spin until all 0Spin until all 0

Fig. 4. Barrier implemented with distributed counter

Similarly to the fetch-and-add barrier design, each thread arriving at the
barrier point will decrease the counter. However, unlike the fetch-and-add design,
they will decrease only their own element of the counter. In this way, there is no
need for the fetch-and-add function because simultaneous decrementing of the
counter cannot happen.

In the spinning phase, each thread reads all the elements of the distributed
counter array to make sure that all of the threads have decremented their own
elements, thus arrived at the barrier point.

The idea of using different memory locations was also discussed in [12]. One
difference here is that in their implementation the array element is increased by
each thread continuously to mark the “milestones” of the synchronization.

From the test data shown later, we can see that this barrier design outper-
forms the fetch-and-add design and requires only a modest increase in memory
(proportional to number of threads). With a 32-processor POWER4 system, we
did not incur severe memory cost. As in the fetch-and-add design, we can assign
multiple counters for multiple barriers, simplify the implementation.

3.3 Distributed Counter with Padding

One problem with the distributed counter design as described in the previous
section is that false sharing can happen between elements of the counter array
which reside on the same cache line. The result is that contention happens in the
memory system even though counter storage is not strictly shared. False sharing
can be eliminated by allocating the counter such that no two counter elements
reside on the same cache line as shown in Figure 5.

For each thread, the operation sequence is exactly the same as the distributed
counter design. The only thing different in the design is the distributed counter
itself. The data structure is padded corresponding to the size of a cache line (128
bytes in a POWER4 system).

Busy-Wait Barrier Synchronization 91

Padded counter

. . .

. . .

. . .

Leave

��
��
��
��

Decrease

��
��
��
��

Spin until all 0Spin until all 0

Decrease

Leave

Fig. 5. Barrier implemented with padded distributed counter

In section 4, we will see that this further reduces the time needed by a
barrier operation. The drawback of this scheme is that the memory impact will
be amplified by the unused padding space. Among the 128 byte cache line, only
one byte is used.

We solve this problem by setting up two counter arrays in each parallel region
and allow all of the barriers in the same parallel region to share these two counter
sets. This will reduce the memory consumption, while taking full advantage of
a padded distributed counter.

To reuse the same data structure, we need to reinitialize the counter elements
back to one after a synchronization. In case the program encounters multiple
barriers in a small period of time, like the EPCC test. We need make sure that
when we reinitialize the counter for the second barrier, we do not contaminate
the previous one.

Suppose we have a very fast and a very slow thread, when the fast thread is
free and encounters another barrier right away, it needs to reinitialize the counter
before it can decrease the counter as designed. If this is the same counter as the
one used in the previous barrier, the slow thread may still spin on checking
whether all of the counter elements are zero. If the bit is reinitialized to one, the
slow thread will not leave the first barrier nicely.

By having two counters, the threads can always initialize the alternative
counter while leaving the current one, knowing that no threads are spinning on
checking that one. Otherwise the current counter elements can not be all zero.

We can further reduce the memory cost by merging the two arrays into one
position by using different bytes available in a cache line. If two barriers are not
too close to each other, this won’t affect the overall performance, but will halve
the memory cost.

92 Guansong Zhang et al.

3.4 Combined with Local Sensor

Another interesting design was exploited in [7] and [8]. In comparison to the
fetch-and-add barrier, the difference is that the authors did not let the threads
spin on checking the hot accessed counter, but instead used a separate local
sensor.

A bit is allocated in the shared memory local to each thread, and initialized
to one before a barrier starts. Each thread, after decreasing the counter with a
fetch-and-add operation, spins on checking the local bit. The last thread, the one
that decreases the counter to zero, will set all the sensor bits to zero, signaling
the spinning threads that they are free to leave. Thus, the counter is read many
fewer times in the latter part of the barrier synchronization.

We implemented this barrier in our test environment and the performance
data is available in the next section.

Finally, we can combine this idea with what we have in previous designs to
create a new barrier scheme.

. . .

. . .

. . .

set all to 1
Dist counter

Local sensor . . .
Leave

Check local

Decrease
Decrease

��
��
��
��

Leave

Set all 0

Spin until 0 set to 1
��
��
��
��

��
��
��
��

��
��
��
��

Spin until all 0,

Fig. 6. Combined barrier with distributed counter and local sensor

In Figure 6, we have both a padded distributed counter and a local sensor.
The local sensor is the same as the distributed counter, implemented as an array
of cache lines.

Before a barrier starts, all the elements of the counter array will be set to
one, as will the local sensor counter array. We let one thread in the group, for
instance the master thread, act as if it is the last thread. It will decrease its own
element of the distributed counter array and then spin to check whether all of
the counter elements are zero. The rest of the threads will decrease their own
counter elements and then spin on checking their own local sensors.

When the designated thread finds the counter elements are all zero, it will
set all the counter elements back to one and then zero all of the elements in the

Busy-Wait Barrier Synchronization 93

local sensor array. Finally, when all of the threads leave the barrier after their
local sensor is zeroed, they reset their local sensor back to one.

Algorithm 1 describes this more formally2.

Algorithm 1: Barrier with distributed counter and local sensor
Data : Distributed counter with each element as one
Data : Local sensor with each element as one

begin
Decrease my own distributed counter element;
if I am the master thread then

repeat
foreach element in distributed counter do check if it is zero

until all distributed counter elements are zero;
foreach element in distributed counter do

set it back to one
end
foreach element in local sensor do

set it to zero
end

else
repeat

check my local sensor element

until it is zero;

end
Set my own local sensor element back to one;

end

We would like to avoid allocating two cache line arrays for every barrier. In
our test code, we use the same idea to reduce memory cost as we did for padded
distributed array by letting all the barriers in a parallel region share the same
pair of counter and sensor.

Unlike the previous situation, we do not need two groups of counter here.
The reason is that the last thread resets the counter values before any thread
leaves the barrier, and each thread will reset its own sensor right after it is free.

In the combined barrier case, even if the fast thread is already spinning on
checking its sensor for the second barrier, its counter element value will not affect
the slow thread. This is so because, by the time the fast thread can decrease its
counter element, the slowest thread must have passed the phase of resetting all
the counter elements. The counter reset operation is done by the last thread
(the slowest one) before it frees the remaining threads from the first barrier. In
the worst case, the slowest thread will still be spinning on its sensor for the first
barrier when the fast thread is spinning on its sensor for the second barrier.

2 Note that we did not emphasize the data structure here, they can be either a padded
one or not, or even share the same cache line as we discussed previously.

94 Guansong Zhang et al.

In order to save memory, we could also merge the counter and the sensor
into the same cache line using a different byte position. However, this would
increase the barrier overhead (largely nullifying the benefit of the local sensors)
as the counter and the sensor will be accessed at the same time in the same
synchronization.

4 Performance Data and Analysis

We measured the EPCC benchmark using various barrier designs to show the
differences in performance overhead.

Figure 7 shows the barrier overhead for each kind of implementations on a
32-way POWER4 system with varying numbers of threads. We used different la-
bels to tag different designs. FetchAndAdd is for the first and the simplest barrier
design. DistCounter is used for the barrier with distributed counter. DistCoun-
terPad is used for the barrier with padded distributed counter. LocalSensor is
for the barrier using local sensor. And the last one, Combined represents our
new barrier scheme, the barrier with distributed counter combined with local
sensor.

4

8

12

16

20

24

28

32

36

40

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

T
im

e(
us

)

Processor number

Barrier overhead

FetchAndAdd
DistCounter

DistCounterPad
LocalSensor

Combined

Fig. 7. POWER4 barrier overhead

To further understand the behavior of these barrier designs, we repeated the
tests on a 16-way 375MHz POWER3 system. Figure 8 shows the overheads on
POWER3.

Busy-Wait Barrier Synchronization 95

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

2 4 6 8 10 12 14 16

T
im

e(
us

)

Processor number

Barrier overhead

FetchAndAdd
DistCounter

DistCounterPad
LocalSensor

Combined

Fig. 8. POWER3 barrier overhead

Although POWER4 and POWER3 have different memory architectures[13],
one can see that there is little difference in the relative overhead for different
barrier designs. Of course, we could not compare the scalability of the designs
beyond 16 threads on the POWER3 system so a completely equitable comparison
was not possible.

From the figures we can see that the scalability of the overhead is not ex-
actly the same, even considering the difference of the clock speed of the proces-
sors — recall that the POWER4 system we used is 1.1GHz and the POWER3
is 375MHz. The memory system in POWER4 system certainly gives it extra
advantage.

To be able to compare the different implementations, we examine the per-
formance counters on the more interesting POWER4 system, using pmcount
program available on AIX 5.1. The program will print out the values of the
different performance counters on each processor, when monitoring a given exe-
cution program.

First we do a simple measurement for the fetch-and-add barrier, using the
exact same setting as we measure overhead previously. We check the perfor-
mance counter for store conditional instruction to see the relationship between
contention and the number of processors involved in a barrier operation. Figure
9 shows the average number of pass and fail for the store conditional instructions
on each processor.

As one can see, while the number of pass remained almost the same(in theory,
it should be identical since we have the same number of barrier for different

96 Guansong Zhang et al.

100

300

500

700

900

1100

1300

1500

1700

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

C
ou

nt
er

 v
al

ue

Processor number

Performance counter

PASS
FAIL

Fig. 9. Store conditional instruction pass and fail

number of processors, we consider it is measurement error here), the number of
fail increased sharply as more processors are added. That explains why we can
not have a scalable performance for fetch-and-add barrier.

Similarly, we can get the performance counter for cache misses, representing
data traffic. An interesting case here is L2 miss for distributed counter.

For a POWER4 system, an L2 miss may be served by L2 from another L2
in the same MCM, L2 in a different MCM, L3 in the same MCM and L3 in
a different MCM. We put them all together as L2 misses. Figure 10 pictures
average L2 misses on different processors for barrier with distributed counter
and padded distributed counter.

To our surprise, there are more cache misses in the barrier with padded
counter, even though it cost less time. We are not sure what exactly caused this,
but we suspect that the cache coherent algorithm used in hardware cause extra
contention when different processors accessing the same cache line, which out
weighs the traffic overhead caused by L2 misses.

5 Summary and Future Work

Barrier synchronization is a well-studied topic, and an important one in parallel
programming. In this paper, we studied the performance characteristics of sev-
eral alternative implementations of barrier synchronization on modern, complex
shared memory multiprocessors.

Busy-Wait Barrier Synchronization 97

1000

2000

3000

4000

5000

6000

7000

8000

9000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

C
ou

nt
er

 v
al

ue
 (

in
 th

ou
sa

nd
)

Processor number

Performance counter

DistCounter
DistCounterPad

Fig. 10. L2 misses

We have implemented several different barrier schemes and measured their
performance on the shared memory POWER3 system and the distributed shared
memory POWER4 system. We analyzed barrier performance data through tim-
ing and hardware performance counters. In the future, we wish to study the
impact of different barrier implementations on other shared memory platforms
particularly looking at issues of non-uniform memory access and scalability.

Through the introduction of the distributed counters with local sensor im-
plementation, we have demonstrated a dramatic 79% reduction in overhead on
a 32-way POWER4 system when comparing to a fetch-and-add implementation
and a 33% improvement on the same system over the next best technique, dis-
tributed counters with padding. While these experiments were done using the
explicit barrier test in EPCC microbenchmarks, we get similar improvements
in the performance of the implied barriers terminating work-sharing constructs
and parallel regions. The availability of a low overhead barrier also provides more
freedom to the compiler to automatically introduce parallelism in serial code.

Acknowledgments

Roch Archambault (from the IBM Toronto Lab) had useful discussions with
us; Raul Silvera and Shimin Cui (from the IBM Toronto Lab) gave us valuable
technical assistance during the integration of the new barrier scheme to the
existing SMP runtime frame work.

98 Guansong Zhang et al.

Trademarks and Copyright

r©IBM and VisualAge are registered trademarks of International Business Ma-
chines Corporation in the United States, other countries or both. Other company,
product, or service names may be trademarks or service marks of others.
c©Copyright International Business Machines Corporation, 2003. All rights re-
served.

References

1. Message Passing Interface Forum. MPI: A message-passing interface standard,
1994.

2. V.S. Sunderam. PVM: A framework for parallel distributed computing. Concur-
rency, Practice and Experience, 2(4):315–339, December 1990.

3. Arvind Krishnamurthy and Katherine A. Yelick. Optimizing parallel programs
with explicit synchronization. In SIGPLAN Conference on Programming Language
Design and Implementation, pages 196–204, 1995.

4. OpenMP Architecture Review Board. OpenMP specification FORTRAN version
2.0, 2000. http://www.openmp.org.

5. OpenMP Architecture Review Board. OpenMP specification C/C++ version 2.0,
2002. http://www.openmp.org.

6. Edinburgh Parallel Computing Center. OpenMP microbenchmarks, 1999.
http://www.epcc.ed.ac.uk/research/openmpbench.

7. John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable synchro-
nization on shared-memory multiprocessors. ACM Trans. on Computer Systems,
9(1):21–65, February 1991.

8. Dimitrios S. Nikolopoulos and Theodore S. Papatheodorou. A quantitative ar-
chitectural evaluation of synchronization algorithms and disciplines on ccNUMA
systems: The case of the SGI Origin2000. June 1999.

9. Steve Behling et al. The POWER4 processor introduction and tuning guide. Tech-
nical Report SG24-7041-00, International Technical Support Organization, Novem-
ber 2001. ISBN 0738423556.

10. J. M. Bull. Measuring synchronization and scheduling overheads in OpenMP. In
First European Workshop on OpenMP, October 1999.

11. IBM Technical Disclosure Bulletin. Barrier Synchronization Using Fetch-and-Add
and Broadcast. 34(8):33–34, 1992.

12. Rainer Kreuzburg. Method of synchronization, 2001. United States Patent, No.
US 6,330,619.

13. Stefan Andersson et al. RS/6000 scientific and technical computing: POWER3 in-
troduction and tuning guide. Technical Report SG24-5155-00, International Tech-
nical Support Organization, October 1998.

An OpenMP Implementation of Parallel FFT

and Its Performance on IA-64 Processors

Daisuke Takahashi, Mitsuhisa Sato, and Taisuke Boku

Institute of Information Sciences and Electronics, University of Tsukuba
1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
{daisuke,msato,taisuke}@is.tsukuba.ac.jp

Abstract. In this paper, we propose an OpenMP implementation of a
recursive algorithm for parallel fast Fourier transform (FFT) on shared-
memory parallel computers. A recursive three-step FFT algorithm im-
proves performance by effectively utilizing the cache memory. Perfor-
mance results of one-dimensional FFTs on the DELL PowerEdge 7150
and the hp workstation zx6000 are reported. We successfully achieved
performance of about 757MFLOPS on the DELL PowerEdge 7150 (Ita-
nium 800MHz, 4CPUs) and about 871MFLOPS on the hp workstation
zx6000 (Itanium2 1GHz, 2CPUs) for 224-point FFT.

1 Introduction

OpenMP has emerged as the standard for shared-memory parallel programming.
The OpenMP Application Program Interface (API) provides programmers with
a simple way to develop parallel applications for shared-memory parallel com-
puters.

The fast Fourier transform (FFT) [1] is one of the most widely used algo-
rithms in science and engineering. Parallel FFT algorithms on shared-memory
parallel computers have been well studied [2,3,4,5,6].

Many FFT algorithms work well when data sets fit into a cache. When a
problem exceeds the cache size, however, the performance of these FFT algo-
rithms decreases dramatically. One goal for large FFTs is to minimize the num-
ber of cache misses. A recursive algorithm is very good at improving the use of
the cache. Thus, some previously proposed FFT algorithms [7,8] use a recursive
approach.

In this paper, we propose an OpenMP implementation of a recursive al-
gorithm for computing large one-dimensional FFTs on shared-memory parallel
computers. We have implemented a recursive three-step FFT on IA-64 pro-
cessors, the DELL PowerEdge 7150 (Itanium 800MHz, 4CPUs) and the hp
workstation zx6000 (Itanium2 1GHz, 2CPUs), and in this paper we report the
performance results.

Section 2 describes a recursive three-step FFT algorithm. Section 3 describes
the in-cache FFT algorithm used for problems that fit into a data cache, and
parallelization. Section 4 gives performance results. In section 5, we provide some
concluding remarks.

M.J. Voss (Ed.): WOMPAT 2003, LNCS 2716, pp. 99–108, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

100 Daisuke Takahashi et al.

RECURSIVE SUBROUTINE RECURSIVE FFT(A,W,U,N)

DOUBLE COMPLEX A(*),W(*),U(*)

IF (N .LE. CACHESIZE) THEN

CALL IN CACHE FFT(A,W,U,N)

RETURN

END IF

! Step 1 (n1 simultaneous n2-point multirow FFTs with

! twiddle factor multiplication)

DO I=1,N/2

W(I)=A(I)+A(I+N/2)

W(I+N/2)=(A(I)-A(I+N/2))*U(I)

END DO

! Step 2 (n2 individual n1-point multicolumn FFTs)

DO J=1,2

CALL RECURSIVE FFT(W((J-1)*(N/2)+1),A,U(N/2+1),N/2)

END DO

! Step 3 (Transpose)

DO I=1,N/2

A(2*I-1)=W(I)

A(2*I)=W(I+N/2)

END DO

RETURN

END

Fig. 1. A recursive three-Step FFT algorithm (n1 = n/2 and n2 = 2)

2 A Recursive Three-Step FFT Algorithm

The discrete Fourier transform (DFT) is given by

yk =
n−1∑

j=0

xjω
jk
n , 0 ≤ k ≤ n − 1, (1)

where ωn = e−2πi/n and i =
√−1.

If n has factors n1 and n2 (n = n1 × n2), then the indices j and k can be
expressed as:

j = j1 + j2n1, k = k2 + k1n2. (2)

We can define x and y as two-dimensional arrays (in Fortran notation):

xj = x(j1, j2), 0 ≤ j1 ≤ n1 − 1, 0 ≤ j2 ≤ n2 − 1, (3)
yk = y(k2, k1), 0 ≤ k1 ≤ n1 − 1, 0 ≤ k2 ≤ n2 − 1. (4)

Substituting the indices j and k in equation (1) with those in equation (2),
and using the relation of n = n1 × n2, we can derive the following equation:

y(k2, k1) =
n1−1∑

j1=0

n2−1∑

j2=0

x(j1, j2)ωj2k2
n2

ωj1k2
n1n2

ωj1k1
n1

. (5)

An OpenMP Implementation of Parallel FFT 101

SUBROUTINE PARALLEL FFT(A,W,U,N)

DOUBLE COMPLEX A(*),W(*),U(*)

IF (N .LE. CACHESIZE) THEN

CALL IN CACHE FFT(A,W,U,N)

RETURN

END IF

!$OMP PARALLEL

!$OMP DO

DO I=1,N/2

W(I)=A(I)+A(I+N/2)

W(I+N/2)=(A(I)-A(I+N/2))*U(I)

END DO

!$OMP DO

DO J=1,2

CALL RECURSIVE FFT(W((J-1)*(N/2)+1),

+ A((J-1)*(N/2)+1,U(N/2+1),N/2)

END DO

!$OMP DO

DO I=1,N/2

A(2*I-1)=W(I)

A(2*I)=W(I+N/2)

END DO

!$OMP END PARALLEL

RETURN

END

Fig. 2. An OpenMP implementation of a recursive three-Step FFT algorithm

This derivation leads to a following three-step FFT algorithm:

Step 1: n1 simultaneous n2-point multirow FFTs with
twiddle factor multiplication

x1(j1, k2) =
n2−1∑

j2=0

x(j1, j2)ωj2k2
n2

ωj1k2
n1n2

.

Step 2: n2 individual n1-point multicolumn FFTs

x2(k1, k2) =
n1−1∑

j1=0

x1(j1, k2)ωj1k1
n1

.

Step 3: Transpose
y(k2, k1) = x2(k1, k2).

The distinctive features of the three-step FFT algorithm can be summarized as:

102 Daisuke Takahashi et al.

Table 1. Specification of machines

Platform DELL PowerEdge 7150 hp workstation zx6000

Number of CPUs 4 2

CPU Type Itanium 800MHz Itanium2 1GHz

L1 Cache
I-Cache: 16KB
D-Cache∗: 16KB
Associativity: 4-way

I-Cache: 16KB
D-Cache∗: 16KB
Associativity: 4-way

L2 Cache
96KB Unified
Associativity: 6-way

256KB Unified
Associativity: 8-way

L3 Cache
4MB Unified
Associativity: 4-way

3MB Unified
Associativity: 12-way

Main Memory 32GB 1GB

OS Linux 2.4.9-18smp Linux 2.4.18-e.12smp

* The L1 D-Cache only caches data for the integer unit, not the floating-point unit.

– One multirow FFT and one multicolumn FFT are performed in steps 1 and
2, respectively.

– A matrix transposition takes place just once in step 3.

For each n1-point multicolumn FFT in step 2 can be performed recursively.
We will call it a recursive three-step FFT algorithm. Fig. 1 gives the pseudo-code
for the recursive three-step FFT algorithm where n1 = n/2 and n2 = 2.

Here the arrays A and W are the input/output array and work array, respec-
tively. The twiddle factors ωj1k2

n1n2
in step 1 are stored in array U. We can use the

padding technique [9] for each recursive step.

3 In-Cache FFT Algorithm and Parallelization

The Stockham autosort algorithm [10] works well until the problem size exceeds
the on-chip cache size. When the problem exceeds on-chip cache size, the recur-
sive three-step FFT algorithm should be used.

We use the radix-2, 4 and 8 Stockham autosort algorithm for in-cache FFT.
The higher radices are more efficient in terms of both memory and floating-point
operations. A high ratio of floating-point instructions to memory operations is
particularly important in a cache-based processor. In view of the high ratio
of floating-point instructions to memory operations, the radix-8 FFT is more
advantageous than the radix-4 FFT. A power-of-two point FFT (except for 2-
point FFT) can be performed by a combination of radix-8 and radix-4 steps
containing at most two radix-4 steps. That is, the power-of-two FFTs can be
performed as a length n = 2p = 4q8r (p ≥ 2, 0 ≤ q ≤ 2, r ≥ 0).

We parallelized the recursive three-step FFT by using OpenMP directives.
Many existing OpenMP systems do not sufficiently implement nested paral-
lelism [11]. Since the recursive three-step FFT has enough outermost paral-
lelism, it is not necessary to use the nested parallelism. An OpenMP imple-
mentation of the recursive three-step FFT algorithm is shown in Fig. 2. The

An OpenMP Implementation of Parallel FFT 103

Table 2. Performance of the recursive three-step FFT on the DELL PowerEdge
7150 (Itanium 800MHz, 4CPUs)

n
1 CPU 2 CPUs 4 CPUs

Time MFLOPS Time MFLOPS Time MFLOPS

212 0.00024 1039.63 0.00018 1350.97 0.00021 1157.54
213 0.00063 844.70 0.00044 1217.10 0.00042 1256.12
214 0.00131 875.25 0.00089 1288.95 0.00084 1372.04
215 0.00295 831.82 0.00190 1291.72 0.00172 1425.32
216 0.00810 647.08 0.00445 1178.72 0.00358 1462.89
217 0.02425 459.50 0.01235 901.97 0.00784 1421.90
218 0.05670 416.09 0.03348 704.73 0.02216 1064.87
219 0.12988 383.48 0.08044 619.15 0.06076 819.73
220 0.28271 370.90 0.17786 589.56 0.13086 801.30
221 0.62305 353.43 0.38794 567.62 0.27026 814.76
222 1.40723 327.86 0.88281 522.62 0.56689 813.86
223 3.08887 312.31 1.94727 495.41 1.17676 819.79
224 6.56055 306.87 4.17871 481.79 2.66016 756.82

parallelized subroutine PARALLEL FFT() shown in Fig. 2 calls the recursive sub-
routine RECURSIVE FFT() shown in Fig. 1.

Although the range of DO J=1,2 loop shown in Fig. 2 is two, the loop length
can be extended to n2 ≥ 2 shown in equation (5). Since we use the radix-8 FFT
algorithm for the OpenMP implementation of the recursive three-step FFT, the
range of J is 8.

Each directive of OpenMP may cause an overhead. In order to reduce fork/
join overhead, three parallel regions can be fused shown in Fig. 2. Thus, the
parallelized subroutine PARALLEL FFT() has only one PARALLEL directive.

4 Performance Results

To evaluate the proposed recursive three-step FFT, we compared its perfor-
mance against that of both the FFT library of FFTW (version 2.1.3) [8] and
the ZFFT1D routine of Intel Math Kernel Library (MKL) on IA-64 processors.
We averaged the elapsed times obtained from 10 executions of complex forward
FFTs where input and output are in normal order. The FFTs were performed on
double-precision complex data, and the table for twiddle factors was prepared
in advance.

All routines were written in Fortran 90. The specifications for the two IA-64
platforms used are shown in Table 1.

4.1 Performance Results on the DELL PowerEdge 7150

The compiler used on the Intel Fortran Itanium Compiler (version 7.0) on the
DELL PowerEdge 7150. For the recursive three-step FFT, the compiler options

104 Daisuke Takahashi et al.

Table 3. Performance of the FFTW on the DELL PowerEdge 7150 (Itanium
800MHz, 4CPUs)

n
1 CPU 2 CPUs 4 CPUs

Time MFLOPS Time MFLOPS Time MFLOPS

212 0.00024 1022.08 0.00045 548.07 0.00085 290.73
213 0.00069 767.53 0.00070 764.54 0.00093 574.75
214 0.00143 802.80 0.00126 911.47 0.00126 906.80
215 0.00348 706.94 0.00256 961.14 0.00205 1198.58
216 0.01152 455.07 0.00592 885.01 0.00422 1243.05
217 0.03438 324.05 0.01773 628.33 0.01082 1029.79
218 0.08081 291.95 0.04226 558.29 0.02482 950.51
219 0.16774 296.94 0.09047 550.57 0.05295 940.66
220 0.35264 297.35 0.19213 545.77 0.11206 935.69
221 0.80010 275.22 0.41954 524.87 0.24711 891.10
222 1.67996 274.63 0.95553 482.84 0.56100 822.41
223 3.95373 243.99 2.19172 440.15 1.43824 670.74
224 10.20131 197.35 4.21222 477.96 3.80907 528.55

Table 4. Performance of the Intel MKL on the DELL PowerEdge 7150 (Itanium
800MHz, 4CPUs)

n
1 CPU 2 CPUs 4 CPUs

Time MFLOPS Time MFLOPS Time MFLOPS

212 0.00022 1104.81 0.00024 1031.31 0.00028 869.13
213 0.00051 1048.54 0.00043 1233.23 0.00437 1217.10
214 0.00116 984.92 0.00842 1362.71 0.00768 1493.90
215 0.00237 1034.93 0.00206 1195.26 0.00159 1546.81
216 0.00529 990.19 0.00436 1201.39 0.00317 1655.89
217 0.01494 745.81 0.01059 1052.08 0.00688 1618.95
218 0.06174 382.15 0.02834 832.63 0.01877 1257.06
219 0.15503 321.28 0.08777 567.49 0.06027 826.37
220 0.33276 315.11 0.31836 329.37 0.27710 378.41
221 0.71387 308.46 0.78223 281.51 0.70068 314.27
222 1.48926 309.80 1.67383 275.64 1.48438 310.82
223 3.16602 304.70 3.51270 274.63 2.92090 330.27
224 6.61328 304.43 7.34668 274.04 7.02344 286.65

used were specified as, “-O3 -tpp1 -openmp”. These options instruct the com-
piler to enable optimizations (“-O2”) plus more aggressive optimizations, to op-
timize for Itanium processor (“-tpp1”) and to enable the compiler to generate
multi-threaded code based on the OpenMP directives (“-openmp”), respectively.
For the FFTW and Intel MKL, the compiler options used were specified as, “-O3
-tpp1”.

Tables 2, 3 and 4 compare the recursive three-step FFT, the FFTW and
the ZFFT1D routine of Intel MKL in terms of their run times and MFLOPS.

An OpenMP Implementation of Parallel FFT 105

Table 5. Performance of the recursive three-step FFT on the hp workstation
zx6000 (Itanium2 1GHz, 2CPUs)

n
1 CPU 2 CPUs

Time MFLOPS Time MFLOPS

212 0.00012 2120.97 0.00012 2122.06
213 0.00027 1955.68 0.00027 1957.39
214 0.00062 1857.28 0.00062 1850.14
215 0.00129 1910.29 0.00128 1920.25
216 0.00303 1729.88 0.00302 1738.63
217 0.00951 1171.04 0.00491 2271.06
218 0.02370 995.61 0.01631 1446.39
219 0.05173 962.88 0.04034 1234.56
220 0.11658 899.47 0.08728 1201.39
221 0.24866 885.56 0.18909 1164.55
222 0.53857 856.66 0.42285 1091.10
223 1.28320 751.78 0.99658 968.00
224 2.87305 700.74 2.31055 871.34

The column headed by n shows the number of points of FFTs. The next six
columns contain the average elapsed time in seconds and the average execution
performance in MFLOPS. The MFLOPS values are each based on 5n log2 n for
a transform of size n = 2m.

The recursive three-step FFT is faster than the FFTW except for 219 ≤ n ≤
222, 4CPUs. On the other hand, for 214 ≤ n ≤ 219, 4CPUs the recursive three-
step FFT is slower than the MKL, whereas for n ≥ 220, 4 CPUs the recursive
three-step FFT is faster than the MKL. For each Itanium processor, power-
of-two Stockham FFTs up to size 211 points (Fortran complex*16) fit into the
96KB L2 on-chip cache, and FFTs up to size 216 points fit into the 4MB L3 off-
chip cache. The associativity of L3 cache of Itanium processor is 4-way, and the
cache-miss ratio is high for a larger problem size on the radix-8 FFT algorithm of
the recursive three-step FFT. This is the reason why for 214 ≤ n ≤ 219, 4CPUs
the recursive three-step FFT is slower than the MKL.

The speedup of the recursive three-step FFT is better than that of both the
FFTW and MKL for a smaller problem size. These results clearly indicate that
the OpenMP implementation of the recursive three-step FFT has low fork/join
overhead.

4.2 Performance Results on the hp Workstation zx6000

The compiler used on the Intel Fortran Itanium Compiler (version 7.0) on the hp
workstation zx6000. For the recursive three-step FFT, the compiler options used
were specified as, “-O3 -tpp2 -openmp”. These options instruct the compiler to
enable optimizations (“-O2”) plus more aggressive optimizations, to optimize
for Itanium2 processor (“-tpp2”) and to enable the compiler to generate multi-
threaded code based on the OpenMP directives (“-openmp”), respectively. For

106 Daisuke Takahashi et al.

Table 6. Performance of the FFTW on the hp workstation zx6000 (Itanium2
1GHz, 2CPUs)

n
1 CPU 2 CPUs

Time MFLOPS Time MFLOPS

212 0.00011 2299.86 0.00028 882.93
213 0.00024 2207.81 0.00036 1484.61
214 0.00060 1906.05 0.00061 1874.89
215 0.00153 1610.49 0.00105 2336.47
216 0.00337 1555.03 0.00218 2409.17
217 0.01325 840.66 0.00815 1367.36
218 0.03711 635.71 0.02431 970.61
219 0.07607 654.72 0.04931 1010.09
220 0.16225 646.26 0.10083 1039.90
221 0.34453 639.14 0.22209 991.48
222 0.70362 655.71 0.45596 1011.87
223 1.58306 609.38 0.95822 1006.75
224 3.16589 635.92 1.90456 1057.08

Table 7. Performance of the Intel MKL on the hp workstation zx6000 (Itanium2
1GHz, 2CPUs)

n
1 CPU 2 CPUs

Time MFLOPS Time MFLOPS

212 0.00016 1529.37 0.00013 1872.47
213 0.00033 1626.64 0.00024 2181.04
214 0.00073 1561.81 0.00051 2247.83
215 0.00171 1439.65 0.00102 2415.16
216 0.00384 1364.84 0.00227 2313.79
217 0.00790 1410.91 0.00493 2258.76
218 0.02856 825.96 0.01402 1683.38
219 0.08160 610.35 0.04141 1202.72
220 0.17932 584.75 0.20886 502.04
221 0.39111 563.01 0.50195 438.69
222 0.82227 561.10 1.02148 451.67
223 1.83887 524.61 2.38086 405.19
224 3.80566 529.02 5.11914 393.28

the FFTW and Intel MKL, the compiler options used were specified as, “-O3
-tpp2”.

Tables 5, 6 and 7 compare the recursive three-step FFT, the FFTW and
the ZFFT1D routine of Intel MKL in terms of their run times and MFLOPS.
The column headed by n shows the number of points of FFTs. The next four
columns contain the average elapsed time in seconds and the average execution
performance in MFLOPS. The MFLOPS values are each based on 5n log2 n for
a transform of size n = 2m.

An OpenMP Implementation of Parallel FFT 107

The recursive three-step FFT is faster than the FFTW except for 214 ≤ n ≤
216 and 223 ≤ n ≤ 224, 2CPUs. On the other hand, for 213 ≤ n ≤ 216 and
n = 218, 2 CPUs the recursive three-step FFT is slower than the MKL, whereas
for n ≥ 219, 2 CPUs the recursive three-step FFT is faster than the MKL. For
each Itanium2 processor, power-of-two Stockham FFTs up to size 216 points
which fit into the 3MB L3 on-chip cache, are not parallelized. This is the main
reason why for 213 ≤ n ≤ 216, 2CPUs the recursive three-step FFT is slower
than the MKL.

The performance of the recursive three-step FFT remains at a high level even
for a larger problem size, owing to both recursive approach and padding. These
results clearly indicate that for larger problem sizes the recursive three-step FFT
is superior to the MKL.

We note that with the DELL PowerEdge 7150 as well as with the hp work-
station zx6000, about 757MFLOPS and about 871MFLOPS, respectively, were
realized with size n = 224 in the proposed recursive three-step FFT, as shown
in Tables 2 and 5.

5 Conclusion

In this paper, we proposed the OpenMP implementation of a recursive algorithm
for parallel FFT on shared-memory parallel computers. We show the paralleliza-
tion of a recursive algorithm by using OpenMP directives. The performance of
the recursive three-step FFT remains at a high level even for a larger problem
size, owing to both recursive approach and padding. Furthermore, the speedup
of the recursive three-step FFT is better than that of both the FFTW and MKL
for a smaller problem size.

These results demonstrate that the proposed recursive three-step FFT uti-
lizes cache memory effectively, and it has low fork/join overhead. We successfully
achieved performance of about 757MFLOPS on the DELL PowerEdge 7150 (Ita-
nium 800MHz, 4CPUs) and about 871MFLOPS on the hp workstation zx6000
(Itanium2 1GHz, 2CPUs).

Acknowledgments

We wish to thank Dr. Y. Ishikawa at the University of Tokyo for using of the
hp workstation zx6000. This work was partially supported by the Grant-in-Aid
for Scientific Research (A) (No. 14208026) of Japan Society for the Promotion
of Science and the Grant-in-Aid for Young Scientists (B) (No. 14780185) of the
Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

1. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex
Fourier series. Math. Comput. 19 (1965) 297–301

2. Swarztrauber, P.N.: Multiprocessor FFTs. Parallel Computing 5 (1987) 197–210

108 Daisuke Takahashi et al.

3. Bailey, D.H.: FFTs in external or hierarchical memory. The Journal of Supercom-
puting 4 (1990) 23–35

4. Van Loan, C.: Computational Frameworks for the Fast Fourier Transform. SIAM
Press, Philadelphia, PA (1992)

5. Wadleigh, K.R.: High performance FFT algorithms for cache-coherent multipro-
cessors. The International Journal of High Performance Computing Applications
13 (1999) 163–171

6. Takahashi, D.: A blocking algorithm for parallel 1-D FFT on shared-memory
parallel computers. In: Proc. 6th International Conference on Applied Parallel
Computing (PARA 2002). Volume 2367 of Lecture Notes in Computer Science.,
Springer-Verlag (2002) 380–389

7. Hegland, M.: A self-sorting in-place fast Fourier transform algorithm suitable for
vector and parallel processing. Numerische Mathematik 68 (1994) 507–547

8. Frigo, M., Johnson, S.G.: FFTW: An adaptive software architecture for the FFT.
In: Proc. 1998 IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP98). (1998) 1381–1384

9. Panda, P.R., Nakamura, H., Dutt, N.D., Nicolau, A.: Augmenting loop tiling with
data alignment for improved cache performance. IEEE Transactions on Computers
48 (1999) 142–149

10. Swarztrauber, P.N.: FFT algorithms for vector computers. Parallel Computing 1
(1984) 45–63

11. Tanaka, Y., Taura, K., Sato, M., Yonezawa, A.: Performance evaluation of OpenMP
applications with nested parallelism. In: Proc. 5th Workshop on Languages, Com-
pilers, and Run-Time Systems for Scalable Computers (LCR 2000). Volume 1915
of Lecture Notes in Computer Science., Springer-Verlag (2000) 100–112

OpenMP and Compilation Issue
in Embedded Applications�

Jaegeun Oh1, Seon Wook Kim1, and Chulwoo Kim2

1 Advanced Computer Systems Laboratory
2 Integrated System and Processor Laboratory

Department of Electronics and Computer Engineering
Korea University, Seoul, Korea
http://acsl.korea.ac.kr

{worms97,seon,ckim}@korea.ac.kr

Abstract. Currently embedded systems become more and more im-
portant and widely applied to everywhere around us, such as a mobile
phone, a PDA, an HDTV, and so on. In this paper, we applied OpenMP
to non-traditional benchmarks, i.e. embedded applications in order to
examine the applicability of OpenMP in this area. We parallelized em-
bedded benchmarks, called EEMBC, consisting of 5 categories and to-
tal 34 applications, and measure their performance in detail. From ex-
periment, we could find 90 parallel sections in 17 applications, but we
achieved speedup only in four applications. Since embedded applications
consists of a chunk of small loops, we could not get speedup due to
large parallelization overheads such as thread management and instruc-
tion overheads. Also we show that the OpenMP-inserted parallel code
size is much larger than a serial version due to multithreaded libraries,
which is critical to embedded systems because of their limited size of
memory systems. We discuss an identified critical, but a trivial problem
in the current OpenMP specification when we applied OpenMP to these
applications.

1 Introduction

Over the past years, computer engineers and researchers have concentrated on
accelerating scientific applications on high performance workstations and large-
scale systems.

For this purpose, they have introduced various kinds of architectures [1,2],
compilers [3,4] and parallel programming models and their APIs [5,6]. One of the
efforts to provide easy programming to users on shared memory multiprocessors
systems is OpenMP [5]. Currently OpenMP is a popularly used and standard
API in many areas, but more in scientific applications.

The current focus in computing has shifted very fast from scientific engi-
neering to multimedia, i.e. from high performance workstations to embedded
systems, since multimedia applications become more and more important and
� This work is supported by a Korea University Grant.

M.J. Voss (Ed.): WOMPAT 2003, LNCS 2716, pp. 109–121, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

110 Jaegeun Oh et al.

broadly used than classical compute-bound scientific applications. The embed-
ded applications are compute-bounded in general, but they are different from
scientific applications. For example, the embedded applications consists of small
workload in loops and functions, and their executable code size is very small due
to a limited size of memory on embedded systems. Also it is well known that
embedded applications intrinsically have data-level parallelism (DLP) instead of
instruction-level parallelism (ILP) and/or thread-level parallelism (TLP).

In this study, we applied OpenMP API [5] to non-traditional application in
this area, i.e. embedded multimedia benchmarks [7] for the following studies:

– Is OpenMP applicable to improve performance in embedded systems? We
measured and analyzed in detail the performance of OpenMP-parallelized
embedded benchmarks. Since embedded applications consist of a chunk of
small loops, we could achieve speedup only in a few applications due to high
parallelization overhead. More critically a compiled code size of an OpenMP-
inserted parallel version is much higher than a serial, which may restrict
to use OpenMP in embedded systems due to their limited size of memory
systems.

– Is there any issue in OpenMP APIs when parallelizing embedded applica-
tions? We discuss a trivial, but a critical issue in OpenMP for directives.
According to OpenMP specification, an induction variable in for statement
should be declared as a signed integer. But, in most of our tested applica-
tions an induction variable is declared as an unsigned integer type. Even
though a user’s or a compiler’s redeclaration of the variable is easy, we need
to improve OpenMP specification for completeness.

– What are minimal functionalities of a parallelizing compiler to find paral-
lel regions in these applications written in C? The embedded benchmarks
are compute-intensive. But due to a simple pointer arithmetic, parallelizing
compilers fail to parallelize them automatically.

This paper is organized as follows. In Section 2, we present an our tested
multimedia benchmark, EEMBC. In Section 3 we show detailed performance in
OpenMP parallelized codes. In Section 4 we discuss OpenMP specification issue
which prevents a parallelizing compiler from automatically identifying parallel
sections. Finally we make conclusion in Section 5.

2 EEMBC

For our study, we used a set of multimedia benchmarks, called EEMBC (EDN
Embedded Microprocessor Benchmark Consortium) [7]. These codes have been
developed to evaluate microprocessors, especially for embedded applications.
Their codes were first released on April 2000, and now about 45 world lead-
ing semiconductors, intellectual property, and compiler companies are actively
participating in this consortium. The benchmarks are categorized into five classes
and their included algorithms as following:

– Consumer (digital cameras, set-top-boxes, and PDAs): RGB to CMYK/YIQ
Conversion, high-pass gray-scale filter, JPEG (de)compression.

OpenMP and Compilation Issue in Embedded Applications 111

– Telecommunications (modem, ADSL, wireless): autocorrelation, convolution
encoder, bit allocation, FFT, Viterbi decoder.

– Networking (network): Dijkstra’s shortest-path, packet flow, and route
lookup.

– Office automation (office machinery): Bezier curve calculation, dithering,
image rotation.

– Automotive & Industrial (industrial controllers and auto applications): table
lookup & interpolation, tooth to spark, angle to time conversion, pulse-width
modulation, remote data request, road speed calculation, (in)finite impulse
response filter, bit manipulation, basic arithmetic, pointer chasing, matrix
arithmetic, cache buster, inverse DCT, FFT.

The main metric in this benchmark is execution throughput (iterations/sec-
ond). Additionally, static code and data sizes are reported, since embedded pro-
grams typically allocate all the necessary buffer space in a static manner to avoid
the overhead of dynamic memory management.

For performance measurement, there are two execution modes for measure-
ment, an out-of-the-box mode and an optimized mode. The out-of-the-box mode
does not allow any non-compiler’s optimization. But in the optimized mode,
any modification is allowed except for changing the underlying algorithm of the
benchmark. For our study, we used the out-of-the-box mode. We applied only
two simple parallelization techniques, and induction variable substitution [8] and
a privatization [9] for code parallelization.

However, EEMBC benchmarks are not complete applications. We cannot
evaluate system-level components and it does not include energy and power
consumption. Also, the repeated large number of iterations may ignore the cost
of accessing main memory.

3 Parallelization of EEMBC Benchmarks Using OpenMP

In this section, we discuss the detailed performance in all categories of EEMBC.
Each application in EEMBC benchmarks consists of three parts: data prepara-
tion (data-in from input devices), an algorithm itself, and data post-processing
(pass results onto output devices). We exclude pre and post data processing parts
from time measurement, since they include only data accesses from/to external
devices (we also report performance of an algorithm itself to EEMBC).

3.1 Experiment Methodology

For experiment, we used Intel Compiler 7.0 on an Intel/Xeon 2.0GHz two pro-
cessor machine using Redhat 8.0 with -O2 -openmp. We measure the following
performance metrics for our performance analysis:

– Wemeasure a total and region-by-region execution time of serial codes, which
do not include any OpenMP APIs. We derive the ratio of parallel regions to
total execution and also ideal speedup by using Amdahl’s Law.

112 Jaegeun Oh et al.

– We measure a total and region-by-region execution time of the following two
versions of parallel codes using 1 and 2 processors.
• An unoptimized code: We insert OpenMP APIs in all identified parallel
regions.

• An optimized code: We used Intel OpenMP profiler (-openmp profile)
to collect OpenMP performance data such as parallel time, load imbal-
ance, thread management overhead, and so on. We compare region-by-
region performance from parallel code execution using 1 and 2 processors,
and then we serialize an OpenMP-inserted region whose performance is
degraded on 2 processors.

– We also measure sizes of text, data, and bss sections in compiled serial and
OpenMP parallel codes.

3.2 Performance in OpenMP-Parallelized Codes

Overall. EEMBC benchmarks include 34 applications in 5 categories, as de-
scribed in Section 2. We could find 90 parallel regions in 17 applications, but
could achieve speedup only in 4 applications using 2 processors, RGB high-pass
grayscale filter and RGB to YIQ conversion in Consumer, and autocor-
relation in Telecommunication, and Bezier cure interpolation in Office.
Since our studied applications consist of many small loops, unoptimized parallel
versions incur high parallelization overhead such as load imbalance and instruc-
tion overhead.

Also, text size of the optimized OpenMP parallelized codes is twice larger
than that of serial codes in most applications due to multithreaded libraries.
It should be noted that an executable code size of an embedded application
itself is very small. Therefore, when we parallelize codes and build executables
with multithreaded libraries, the library code size becomes a major factor to
determine a total code size. And data and bss sizes in parallel codes are ten
times larger than those in serial ones in some applications. The executable code
size increment is critical to embedded systems because they have only a few
kilobytes of memory systems.

Consumer. Table 1 shows the basic property of five applications in Consumer
benchmark. The execution time per iteration is less than one milli second in three
applications. The executable code sizes of a parallel version is twice larger than
a serial in rgbcmy, rgbhpg, and rgbyiq. But, in cjpeg and djpeg including
several parallel regions in unoptimized codes, there is a little executable code
size increment. It implies that a compiler’s code conversion from an OpenMP
API into a subroutine-based form does not increase executable code sizes. In
other three applications, the executable code sizes are increased by twice even
though they have a few parallel loops. We think that this is due to multithreaded
libraries.

Table 2 shows execution time and speedup in three different schedulings,
static, guided, and dynamic. There are high parallelism (an ideal speedup is
close to 2) in rgbcmy, rgbhpg, and rgbyiq. Two applications, rgbcmy and rgbhpg

OpenMP and Compilation Issue in Embedded Applications 113

Table 1. Basic property of Consumer benchmark. The text, data and bss represent

text, data and bss section sizes of an executable serial code. In a parallel column,

text, data and bss imply the ratio of increment of an executable parallel code respect

to a serial. cjpeg is JPEG compression, djpeg is JPEG decompression, rgbcmy is RGB

to YIQ conversion, rgbyiq is RGB to YIQ, and rgbhpg is RGB high-pass grayscale

filter

Serial Number Serial Parallel(%)
Application execution of (Kb) Unoptimized Optimized

time (sec) iteration text data bss text data bss text data bss

cjpeg 8.53 1000 46 238 518 121↑ 5↑ 12↑ 116↑ 5↑ 12↑
djpeg 6.13 1000 54 31 773 107↑ 40↑ 8↑ 100↑ 36↑ 8↑
rgbcmy 0.9 1000 20 230 6 276↑ 5↑ 1095↑ 276↑ 5↑ 1095↑
rgbhpg 0.12 100 20 80 6 276↑ 14↑ 1095↑ 272↑ 14↑ 1095↑
rgbyiq 0.18 100 20 230 6 275↑ 5↑ 1095↑ 275↑ 5↑ 1095↑

suffer from high instruction overhead1. When we used two processors in an un-
optimized code, we can improve speedup only in two applications, rgbhpg and
rgbyiq. For performance optimization, we removed OpenMP directives in paral-
lel regions having poor performance. We could get speedup in two applications,
rgbhpg and rgbyiq.

Table 2. Execution time and speedup of Consumer benchmark. The ratio of

a parallel section implies the ratio of execution time in parallel regions to total ex-

ecution. The ideal speedup is derived by Amdahl’s Law. The static, guided and

dynamic schedulings are used in an OpenMP for directive. # represents the number
of OpenMP parallel regions

Ratio of Ideal Unoptimized Optimized speedup
Application parallel speedup speedup static guided dynamic

section(%) (P=2) # 1P 2P # 1P 2P 1P 2P 1P 2P

cjpeg 48.42 1.32 7 0.87 0.29 0 1 1 1 1 1 1

djpeg 12.72 1.07 9 0.89 0.65 0 1 1 1 1 1 1

rgbcmy 92.22 1.85 1 0.49 0.86 1 0.49 0.872 0.50 0.93 0.5 0.07

rgbhpg 100 2 3 0.70 1.2 1 0.70 1.5 0.70 1.33 0.70 1.33
rgbyiq 88.89 1.8 1 0.95 1.63 1 0.94 1.63 0.95 1.64 0.95 0.15

There are two reasons in low speedup. One is an instruction overhead in
parallel code, as we mentioned above. The other is a load imbalance. For example,
an unoptimized parallel version of cjpeg incurs high load imbalance by 63% of
total parallel time on thread 0 and 33% on thread 1. Similarly djpeg includes
59% on thread 0 and 20% load imbalance on thread 1. As shown in Table 2, we

1 We assume that the thread management overhead in 1 processor run is negligible.

114 Jaegeun Oh et al.

could not improve the performance even though we applied different scheduling
techniques. The speedup is lowest in dynamic scheduling. We conclude that small
parallel regions incur high load imbalance because a child thread finishes his task
as soon as a master thread assigns a new task to his team. Also we think that
the small speedup gap on different scheduling is a noise, since the execution time
per iteration is so small.

Telecommunication. Tables 3 and 4 show the results from our experiment in
the Telecommunication benchmark. Telecommunication benchmark consists
of five applications that use different data set (It is distinguished by “ ” in the
table). The execution time per iteration is small in all applications. When we
build an executable code with multithreaded libraries, the code size is increased
by more than twice. A bss section size in a parallel code is blown up, which is
about 11 times larger than a serial.

As shown in Table 4 we found a few parallel regions in autcor, fft, and
viterb. But we could achieve a speedup only in autocor, which is a little far
below an ideal speedup 2. The optimized parallel version of autocor incurs
high load imbalance due to tiny parallel regions. The speedup does not change
depending on schedulings. The unoptimized parallel version of viterb incurs

Table 3. Basic property of Telecommunication benchmark. The text, data and

bss represent text, data and bss section sizes of an executable serial code. In a parallel

column, text, data and bss imply the ratio of increment of an executable parallel code

respect to a serial. autcor00data is autocorrelation, conven00data is convolution

encoder, fbital00data is bit allocation, and fft00data is FFT

Serial Number Serial Parallel(%)
Application execution of (Kb) Unoptimized Optimized

time (sec) iteration text data bss text data bss text data bss

autcor00data 1 0.01 5000 21 5 5 263↑ 211↑ 1120↑ 259↑ 207↑ 1120↑
autcor00data 2 0.29 5000 21 7 5 263↑ 153↑ 1120↑ 263↑ 153↑ 1120↑
autcor00data 3 0.27 5000 21 7 5 263↑ 173↑ 1120↑ 263↑ 173↑ 1120↑
conven00data 1 0.17 5000 21 7 5 257↑ 162↑ 1120↑ 257↑ 162↑ 1120↑
conven00data 2 0.13 5000 21 7 5 257↑ 162↑ 1120↑ 257↑ 162↑ 1120↑
conven00data 3 0.11 5000 21 7 5 257↑ 162↑ 1120↑ 257↑ 162↑ 1120↑
fbital00data 2 0.64 5000 21 7 5 258↑ 150↑ 1120↑ 258↑ 150↑ 1120↑
fbital00data 3 0.05 5000 21 7 5 255↑ 171↑ 1120↑ 255↑ 171↑ 1120↑
fbital00data 6 0.34 5000 21 7 5 258↑ 162↑ 1120↑ 258↑ 162↑ 1120↑
fft00data 1 0.02 1000 21 12 5 252↑ 98↑ 1121↑ 249↑ 96↑ 1120↑
fft00data 2 0.02 1000 21 12 5 252↑ 98↑ 1121↑ 249↑ 96↑ 1120↑
fft00data 3 0.02 1000 21 9 5 252↑ 121↑ 1121↑ 249↑ 119↑ 1120↑

viterb00data 1 0.34 3000 23 6 5 235↑ 190↑ 1177↑ 230↑ 185↑ 1177↑
viterb00data 2 0.31 3000 23 6 8 235↑ 190↑ 715↑ 230↑ 185↑ 715↑
viterb00data 3 0.3 3000 23 6 8 235↑ 190↑ 715↑ 230↑ 185↑ 715↑
viterb00data 4 0.21 3000 23 6 9 235↑ 190↑ 713↑ 230↑ 185↑ 713↑

OpenMP and Compilation Issue in Embedded Applications 115

Table 4. Execution time and speedup of Telecommunication benchmark. The

ratio of a parallel section implies the ratio of execution time in parallel regions to total

execution. The ideal speedup is derived by Amdahl’s Law. The static, guided and

dynamic schedulings are used in an OpenMP for directive. # represents the number

of OpenMP parallel regions

Ratio of Ideal Unoptimized Optimized speedup
Application parallel speedup speedup static guided dynamic

section(%) (P=2) # 1P 2P # 1P 2P 1P 2P 1P 2P

autcor00data 1 0 1 1 1 0.11 0 1 1 1 1 1 1

autcor00data 2 100 2 1 0.97 1.32 1 0.97 1.53 0.97 1.52 0.97 1.45

autcor00data 3 100 2 1 1 1.56 1 1 1.54 0.97 1.47 0.97 1.33
conven00data 1 0 1 0 1 1 0 1 1 1 1 1 1

conven00data 2 0 1 0 1 1 0 1 1 1 1 1 1

conven00data 3 0 1 0 1 1 0 1 1 1 1 1 1
fbital00data 2 0 1 0 1 1 0 1 1 1 1 1 1

fbital00data 3 0 1 0 1 1 0 1 1 1 1 1 1

fbital00data 6 0 1 0 1 1 0 1 1 1 1 1 1

fft00data 1 0 1 1 1 0.5 0 1 1 1 1 1 1
fft00data 2 50 1.33 1 1 0.67 0 1 1 1 1 1 1

fft00data 3 50 1.33 1 1 0.5 0 1 1 1 1 1 1

viterb00data 1 57.87 1.41 2 0.75 0.11 0 1 1 1 1 1 1

viterb00data 2 56.57 1.39 2 0.76 0.1 0 1 1 1 1 1 1
viterb00data 3 59.1 1.42 2 0.75 0.11 0 1 1 1 1 1 1

viterb00data 4 55.75 1.39 2 0.75 0.1 0 1 1 1 1 1 1

high instruction overhead, and its performance is severely degraded in parallel
execution.

Networking. Table 5 shows the basic property of applications in this cate-
gory. In Networking benchmark, we could not find any parallel region in all
applications, as shown in Table 6. But when we build executable codes with
multithreaded libraries, the code size increases by about twice.

Figure 1 shows a typical example of applications in this category. Most appli-
cations uses a linked list as a basic data structure, which is processed sequentially.

Office Automation. In Office automation category, as shown in Table 8,
we could find parallel regions in four applications out of five, bezier01fixed,
bezier01float, rotate and text. bezier01fixed and bezier01float are the
same algorithm, and only difference is a processed data type. The application
bezier01float incurs the largest instruction overhead among the applications
in this category. We could achieve speedup only in bezier01fixed.

The compiler’s code conversion from OpenMP API to a subroutine-based
form does not contribute an increment of an executable code size, as shown in

116 Jaegeun Oh et al.

Table 5. Basic property of Networking benchmark. The text, data and bss repre-

sent text, data and bss section sizes of an executable serial code. In a parallel column,

text, data and bss imply the ratio of increment of an executable parallel code respect

to a serial. ospf is Dijkstra’s shortest-path algorithm, pktflow is packet flow

and routelookup is route Lookup

Serial Number Serial Parallel(%)
Application execution of (Kb) Unoptimized Optimized

time (sec) iteration text data bss text data bss text data bss

ospf 0.01 400 24 6 5 223↑ 191↑ 1114↑ 223↑ 191↑ 1114↑
pktflowb512k 0.01 100 21 10 5 254↑ 114↑ 1107↑ 254↑ 114↑ 1107↑
pktflowb1m 0.01 100 21 10 5 254↑ 114↑ 1107↑ 254↑ 114↑ 1107↑
pktflowb2m 0.01 100 21 10 5 254↑ 114↑ 1107↑ 254↑ 114↑ 1107↑
pktflowb4m 0.04 100 21 10 5 254↑ 114↑ 1107↑ 254↑ 114↑ 1107↑
routelookup 0.02 100 22 14 6 243↑ 81↑ 1071↑ 243↑ 81↑ 1071↑

Table 6. Execution time and speedup of Network benchmark. The ratio of a

parallel section implies the ratio of execution time in parallel regions to total execution.

The ideal speedup is derived by Amdahl’s Law. The static, guided and dynamic

schedulings are used in an OpenMP for directive. # represents the number of OpenMP

parallel regions

Ratio of Ideal Unoptimized Optimized speedup
Application parallel speedup speedup static guided dynamic

section(%) (P=2) # 1P 2P # 1P 2P 1P 2P 1P 2P

ospf 0 1 0 1 1 0 1 1 1 1 1 1
pktflowb512k 0 1 0 1 1 0 1 1 1 1 1 1

pitiful1m 0 1 0 1 1 0 1 1 1 1 1 1

pktflowb2m 0 1 0 1 1 0 1 1 1 1 1 1

pktflowb4m 0 1 0 1 1 0 1 1 1 1 1 1
routelookup 0 1 0 1 1 0 1 1 1 1 1 1

Table 7. The executable code size of parallel versions is increased because of
multithreaded libraries.

Automotive and Industrial. In Automotive & Industrial benchmark, we
could find parallel regions in five applications, aifftr, aifirf, bitmnp, idctrn
and matrix out of 16 application, and it is shown in Table 10. The property of
this category is that execution time is very short, as shown in Table 9. Also the
applications include many tiny parallel regions. For example, we could find 28
parallel regions in idctrn, but we could not find effective parallel regions due to
their short execution time. And all parallelized applications introduce high load
imbalance. An executable code size of parallel versions is increased because of
multithreaded libraries.

OpenMP and Compilation Issue in Embedded Applications 117

prev_node = NULL;
curr_node = (*front);
for (; ;) {

if (tnode->dist > curr_node->dist) {
if (curr_node->next != NULL) {

prev_node = curr_node; /* remember previous node */
curr_node = curr_node->next; /* go to the next node */

}
else {

......
curr_node->next = tnode;
tnode->next = NULL;
break;

}
}
else {

......
if(prev_node != NULL) {

/* link into the middle, or end of the list */
tnode->next = curr_node;
prev_node->next = tnode;
break;

}
......

}
}

Fig. 1. A typical code pattern in Networking benchmark. Data are sequentially
processed, and we could not find any parallel region in this category

Table 7. Basic property of Office automation benchmark. The text, data and

bss represent text, data and bss section sizes of an executable serial code. In a par-

allel column, text, data and bss imply the ratio of increment of an executable par-

allel code respect to a serial. bezier01fixed and bezier01float are Bezier curve

interpolation in fixed point and float point. dither is Floyd-Stein grayscale

dithering and text is text parsing and rotate is bitmap rotation

Serial Number Serial Parallel(%)
Application execution of (Kb) Unoptimized Optimized

time (sec) iteration text data bss text data bss text data bss

bezier01fixed 0.66 1000 20 24 5 274↑ 48↑ 1114↑ 274↑ 48↑ 1114↑
bezier01float 0.3 1000 20 43 5 271↑ 27↑ 1114↑ 267↑ 26↑ 1114↑

dither 1.58 1000 20 69 5 271↑ 16↑ 1114↑ 271↑ 16↑ 1114↑
rotate 0.33 1000 21 18 18 260↑ 64↑ 337↑ 260↑ 64↑ 337↑
text 0.61 1000 21 23 45 256↑ 50↑ 134↑ 252↑ 49↑ 134↑

4 Compilation Issue

In this section, we discuss restrictions in OpenMP APIs and present useful tech-
niques found when manually parallelizing embedded applications. Figure 2 shows
the typical code patterns in our tested applications. Inside for loop, an induc-
tion variable (col) is declared as an unsigned integer, and data are sequentially
accessed by a post-increment pointer arithmetic.

118 Jaegeun Oh et al.

Table 8. Execution time and speedup of Office automation benchmark. The

ratio of a parallel section implies the ratio of execution time in parallel regions to total

execution. The ideal speedup is derived by Amdahl’s Law. The static, guided and

dynamic schedulings are used in an OpenMP for directive. # represents the number

of OpenMP parallel regions

Ratio of Ideal Unoptimized Optimized speedup
Application parallel speedup speedup static guided dynamic

section(%) (P=2) # 1P 2P # 1P 2P 1P 2P 1P 2P

bezier01fixed 100 2 1 0.92 1.74 1 0.92 1.74 0.92 1.69 0.92 1.38

bezier01float 100 2 1 0.77 0.59 0 1 1 1 1 1 1

dither 0 1 0 1 1 0 1 1 1 1 1 1
rotate 100 2 1 0.83 0.93 1 0.84 0.93 0.84 0.72 0.84 0.49

text 0 1 1 1 1 0 1 1 1 1 1 1

Table 9. Basic property of Automotive & Industrial benchmark. The text,

data and bss represent text, data and bss section sizes of an executable serial code.

In a parallel column, text, data and bss imply the ratio of increment of an exe-

cutable parallel code respect to a serial. a2time is Angle-To-Time conversion, aifftr

is Fast Fourier Transform, aifirf is Finite impulse response filter, aiifft

is aiifft is Inverse Fast Fourier Transform, basefp is Basic floating-point,

bitmnp is Bit manipulation, cacheb is Cache buster, canrdr is Response to remote

request, idctrn is Inverse Discrete Cosine Transform, iirflt is Low-Pass Filter

and DSP functions, matrix is matrix math, pntrch is pointer chasing, puwmod

is pulse-width modulation, rspeed is road speed calculation, tblook is table

lookup and ttsprk is Tooth-To-Spark

Serial Number Serial Parallel(%)
Application execution of (Kb) Unoptimized Optimized

time (sec) iteration text data bss text data bss text data bss

a2time 0.02 50000 22 7 6 242↑ 158↑ 1102 ↑ 242↑ 158↑ 1102↑
aifftr 0.07 200 23 21 32 243↑ 55↑ 192↑ 231↑ 52↑ 192↑
aifirf 0.01 10000 21 10 5 259↑ 118↑ 1121↑ 251↑ 115↑ 1120↑
aiifft 0.08 200 23 21 32 236↑ 52↑ 192↑ 236↑ 52↑ 192↑
basefp 0.01 10000 21 21 6 257↑ 53↑ 1060↑ 257↑ 53↑ 1060↑
bitmnp 0.06 3000 23 6 7 234↑ 178↑ 873↑ 228↑ 173↑ 873↑
cacheb 0.01 100000 22 6 6 248↑ 189↑ 1071↑ 248↑ 189↑ 1071↑
canrdr 0.01 200000 22 11 5 242↑ 102↑ 1120↑ 242↑ 102↑ 1120↑
idctrn 0.01 1500 25 13 7 244↑ 92↑ 851↑ 218↑ 83↑ 850↑
iirflt 0.02 10000 24 10 5 223↑ 117↑ 1107↑ 223↑ 117↑ 1107↑
matrix 0.01 110 26 32 6 223↑ 39↑ 1090↑ 204↑ 35↑ 1089↑
pntrch 0.01 2500 21 10 5 255↑ 107↑ 1107↑ 255↑ 107↑ 1107↑
puwmod 0.01 100000 22 15 6 246↑ 77↑ 1101↑ 246↑ 77↑ 1101↑
rspeed 0.01 100000 20 7 5 264↑ 158↑ 1114↑ 264↑ 158↑ 1114↑
tblook 0.01 100 21 17 5 252↑ 65↑ 1114↑ 252↑ 65↑ 1114↑
ttsprk 0.02 10000 25 54 6 217↑ 21↑ 1048↑ 217↑ 21↑ 1048↑

OpenMP and Compilation Issue in Embedded Applications 119

Table 10. Execution time and speedup of Automotive & Industrial bench-
mark. The ratio of a parallel section implies the ratio of execution time in parallel

regions to total execution. The ideal speedup is derived by Amdahl’s Law. The static,

guided and dynamic schedulings are used in an OpenMP for directive. # represents

the number of OpenMP parallel regions

Ratio of Ideal Unoptimized Optimized speedup
Application parallel speedup speedup static guided dynamic

section(%) (P=2) # 1P 2P # 1P 2P 1P 2P 1P 2P

a2time 0 1 0 1 1 0 1 1 1 1 1 1

aifftr 14.28 1.07 10 0.875 0.64 0 1 1 1 1 1 1

aifirf 77.78 1.63 6 0.9 0.21 0 1 1 1 1 1 1
aiifft 0 1 0 1 1 0 1 1 1 1 1 1

basefp 0 1 0 1 1 0 1 1 1 1 1 1

bitmnp 100 2 3 0.86 0.3 0 1 1 1 1 1 1
cacheb 0 1 0 1 1 0 1 1 1 1 1 1

canrdr 0 1 0 1 1 0 1 1 1 1 1 1

idctrn 66.67 1.5 28 0.67 0.125 0 1 1 1 1 1 1

iirflt 0 1 0 1 1 0 1 1 1 1 1 1
matrix 100 2 15 0.5 0.08 0 1 1 1 1 1 1

pntrch 0 1 0 1 1 0 1 1 1 1 1 1

purmod 0 1 0 1 1 0 1 1 1 1 1 1

rspeed 0 1 0 1 1 0 1 1 1 1 1 1
tblook 0 1 0 1 1 0 1 1 1 1 1 1

ttsprk 0 1 0 1 1 0 1 1 1 1 1 1

JDIMENSION col;
/* copy these pointers into registers if possible */
......
inptr0 = input_buf[0][in_row_group_ctr];
......
outptr = output_buf[0];
/* Loop for each par of output pixels */

#pragma omp parallel for private(toutptr,cb,cr,......)
for (col = 0 ; col < cinfo->output_width >> 1 ; col++){

/* Do the chroma part of the calculation */
cb = GETJSAMPLE(*inptr1++);
......
/* Fetch 2 Y values and emit 2 pixels */
......
outptr[RGB_RED] = range_limit[y + card];
......
outptr += RGB_PIXELSIZE;
......

}

Fig. 2. Sample codes from EEMBC benchmarks. The code shows typical patterns
in our studied embedded applications. An induction variable is declared as an unsigned
integer, and data are sequentially accessed by a post-increment pointer arithmetic

120 Jaegeun Oh et al.

JDIMENSION col;
/* copy these pointers into registers if possible */
......
outptr = output_buf[0];
/* Loop for each par of output pixels */

#pragma omp parallel for private(toutptr,cb,cr,......)
for (col = 0 ; col < cinfo->output_width >> 1 ; col++){

toutptr = outptr * RGB_PIXELSIZE * col;
/* Do the chroma part of the calculation */
cb = GETJSAMPLE(*(inptr1+col));
......
/* Fetch 2 Y values and emit 2 pixels */
......
toutptr[RGB_RED] = rangle_limit[y + card];
......

}

Fig. 3. A parallel version of Figure 2 by an induction variable substitution and
a privatization

OpenMP Specification. According to OpenMP C/C++ 2.0 specification [10],
the for directive places restriction on the structure of the corresponding for loop
that must have canonical shape. Also, inside for loop, an induction variable
should be a signed integer.

We found from EEMBC benchmarks that most induction variables in for
loops are declared as an unsigned integer type, and one of the examples is shown
in Figure 2. It is popular that in embedded applications unsigned integers are
used instead of signed because of data characteristics. When we tested with Intel
Compiler 7.0, the compiler generates errors because of this OpenMP rule and
fails to generate parallel codes from manually inserted OpenMP codes.

We could parallelize many loops when redeclaring an induction variable as
a signed integer instead of an unsigned with execution validation. Even though
a compiler’s or a user’s redeclaration is trivial for parallelization, we need to
improve the OpenMP specification for completeness.

Parallelizing Compilers. The EEMBC benchmarks are compute-intensive
codes, and includes many small parallel loops. When we applied a parallelizing
compiler (Intel Compiler 7.0) to identify parallel sections, it failed to find them
due to a simple pointer arithmetic, i.e, a post increment (inptr1++ in Figure 2).
It is well known that related dependences can be eliminated by an induction
variable substitution [8]. Similarly, a dependence on a variable outptr can be
broken by the same technique and a privatization [9]. The result code is shown
in Figure 3.

There are still many existing technical challenges in compiler’s automatic
parallelization of C applications [3,4]. Since embedded applications do not in-
clude complex pointer manipulation, the applications can be parallelized using
the currently available these minimal techniques by automatic parallelizing com-
pilers.

OpenMP and Compilation Issue in Embedded Applications 121

5 Conclusion

In this paper, we applied OpenMP API to non-traditional benchmarks, i.e.
embedded applications. From experiment, we discussed three important issues.
First, we found that embedded applications have limited thread-level parallelism
in execution due to tiny parallel regions, and we showed that the executable codes
sizes of OpenMP-inserted parallel applications is much larger than a serial due
to multithreaded libraries. The executable code size is critical to embedded sys-
tems because of their limited size of memory systems. Second, we discussed a
simple, but a critical OpenMP API issue in for directive, which can be easily
found in the embedded applications. We need to improve OpenMP specifications
for completeness. Finally, we showed that an induction variable substitution and
a privatization can be applied to a pointer arithmetic to remove dependences in
many places of embedded codes.

References

1. Silicon Graphics Inc., http://www.sgi.com/origin/2000/index.html. Origin
2000.

2. Sun Microsystems Inc., Mountain View, CA,
http://www.sun.com/servers/enterprise/e4000/index.html. Sun Enterprise
4000.

3. William Blume, Ramon Doallo, Rudolf Eigenmann, John Grout, Jay Hoeflinger,
Thomas Lawrence, Jaejin Lee, David Padua, Yunheung Paek, Bill Pottenger,
Lawrence Rauchwerger, and Peng Tu. Parallel programming with Polaris. IEEE
Computer, pages 78–82, December 1996.

4. M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao,
E. Bugnion, and M. S. Lam. Maximizing multiprocessor performance with the
SUIF compiler. IEEE Computer, pages 84–89, December 1996.

5. OpenMP Forum, http://www.openmp.org/. OpenMP: A Proposed Industry Stan-
dard API for Shared Memory Programming, October 1997.

6. MPI Documents. http://www.mpi-forum.org/docs/docs.html.
7. EEMBC (EDN Embedded Microprocessor Benchmark Consortium).

http://www.eembc.org/.
8. William M. Pottenger. Induction variable substitution and reduction recognition

in the polaris parallelizing compiler. Technical Report UIUCDCS-R-98-2072, 1998.
9. Peng Tu and David A. Padua. Automatic array privatization. In Compiler Opti-

mizations for Scalable Parallel Systems Languages, pages 247–284, 2001.
10. OpenMP Architecture Board, http://www.openmp.org/. OpenMP C and C++

Application Program Interface 2.0, March 2002.

Parallelizing Parallel Rollout Algorithm for
Solving Markov Decision Processes

Seon Wook Kim1 and Hyeong Soo Chang2

1 Advanced Computer Systems Laboratory
Department of Electronics and Computer Engineering

Korea University, Seoul, Korea
seon@korea.ac.kr

2 Department of Computer Science and Engineering
Sogang University, Seoul, Korea

hschang@sogang.ac.kr

Abstract. Parallel rollout is a formal method of combining multiple
heuristic policies available to a sequential decision maker in the frame-
work of Markov Decision Processes (MDPs). The method improves the
performances of all of the heuristic policies adapting to the different
stochastic system trajectories. From an inherent multi-level parallelism
in the method, in this paper we propose a parallelized version of paral-
lel rollout algorithm, and evaluate its performance on a multi-class task
scheduling problem by using OpenMP and MPI programming model.
We analyze and compare the performance in two versions of parallelized
codes, e.g., OpenMP and MPI on several execution environment. We
show that the performance using OpenMP API is higher than MPI due
to lower overhead in data synchronization across processors.

1 Introduction

The model of Markov Decision Processes (MDPs), a.k.a. stochastic dynamic
programming, is widely used for solving sequential decision making problems
that arise in various areas such as telecommunication networks, financial engi-
neering, statistical physics, and etc. The decision maker perceives the world or
the environment he belongs to at each decision time where the world changes
probabilistically. Based on his description of the world or information of the per-
ception or state, he makes a decision to react to the environment and obtains a
certain reward/cost associated with his decision and the state of the world. How
the world changes for the next decision of the decision maker depends on which
decision has been made at which state by the decision maker now. The goal of
the decision maker is simply to maximize/minimize the expected (discounted)
rewards/costs sum over stochastic changes of the world over infinite horizon. Un-
fortunately, a stochastic control optimization problem formulated by an MDP
experiences the curse of dimensionality, making it very impractical to apply the
well-known exact algorithms, e.g., value iteration and policy iteration [1], to
solve the MDP. There are numerous approximation-based schemes to get away

M.J. Voss (Ed.): WOMPAT 2003, LNCS 2716, pp. 122–136, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Parallelizing Parallel Rollout Algorithm 123

with the dimensionality problem via various techniques, e.g., structural analysis,
aggregation, sampling, feature extraction, learning, etc. (see, e.g., [2,1,3,4]).

The recently proposed algorithm called “parallel rollout” by the author et
al. [5] breaks the curse of dimensionality in the other perspective. For this ap-
proach it is assumed that multiple heuristic policies are available to a decision
maker such that for certain cases (stochastic changes of the world he perceives),
a particular heuristic is “good” and for certain cases, another policy is good,
and so forth. It is natural that the decision maker in this case wishes to combine
these heuristics to make one policy out of those such that the policy adapts to the
different cases automatically. Parallel rollout is a formal method of generating a
policy given a set of heuristic policies and improves the performances of all of
the heuristic policies. Furthermore, it can be implemented by Monte-Carlo simu-
lation making the sampling complexity depend on the sampling horizon linearly
rather than exponentially and independent of the state space size. Therefore, it
is a good candidate method for solving MDPs in on-line sense in the context of
“planning.” As the name of parallel rollout signifies, parallel rollout contains an
inherent parallelism that can be parallelized and implemented via multiple pro-
cessors. Specifically, each action’s utility measure is evaluated in parallel and for
each action, the performance measure of each heuristic policy starting from the
particular next (sampled) state from the current state is computed in parallel
and this step is evaluated in parallel over a set of the (sampled) next states.

In this paper, first, we parallelize the (simulation-based) parallel rollout algo-
rithm and evaluate its performance in terms of the speedup over the serial ver-
sion of the parallel rollout algorithm on a multi-class task scheduling problem.
Second, we use OpenMP and MPI parallel programming models to parallelize
parallel rollout algorithm, and compare their performance. The performance in
the OpenMP code is higher than the MPI code on the shared-memory system.
We discuss the performance issues in these models with an example quoted from
the proposed algorithm. Third, from the experiment, even if the parallel rollout
algorithm has three levels of inherent parallelism and would get the ideal speedup
in theory, we find that it incurs a high load imbalance and a synchronization
overhead like in [4]. Also, there is no speedup on a network-based cluster due to
synchronization overhead which dominates total execution time.

This paper is organized as follows. In Section 2, we formally describe what
is an MDP for infinite horizon discounted cost criterion and we present parallel
rollout. In Section 3, we study the parallelism that parallel rollout contains, and
provide a pseudo-code for the parallelized version. We evaluate the serial and two
versions of parallelized parallel rollout algorithms and show that the parallelized
algorithm speeds up the computation time in Sections 4 and 5 on a multi-class
task scheduling problem. We conclude this paper in Section 6.

124 Seon Wook Kim and Hyeong Soo Chang

2 Background

2.1 Markov Decision Processes

We briefly provide the formal model of Markov decision processes. For a sub-
stantial discussion, see [1]. An MDP M is 4-tuple (X,A, P,C), where X is a set
of states in the system (the information that is available to a decision maker for
the world he perceives) and A(x) is the set of admissible actions at state x ∈ X .
P is a state transition function that describes how the system evolves over time
such that it is a mapping from X × A to a distribution over X . We denote a
probability that a state x ∈ X makes a transition to another state y ∈ X by
taking an action a ∈ A at x as P (y|x, a). C is a cost function that maps X ×A
to a non-negative real number. The state transition function P induces the next
state function f : X × A × [0, 1] → X such that for a state x and an action
a ∈ A(x) taken at x and a random number generated from [0,1], the function f
maps the particular next state with respect to x, a and the random number.

We define a policy or decision rule π be a mapping from X to A, and
let Π be the set of all possible policies, and define the value of following a
policy π ∈ Π as V π(x) = E [

∑∞
t=0 γ

tC(Xt, π(Xt))|X0 = x] , 0 < γ < 1, x ∈
X, where the expectation is taken over all possible random system paths and
which is a performance measure of the policy π, Define the optimal value at
x ∈ X as V ∗(x) = minπ∈Π V

π(x), x ∈ X. The goal is to find an optimal
policy π ∈ Π that achieves V ∗(x) for each x ∈ X . The discount factor is
used to represent the degree of the emphasis on the immediate future per-
formance. As the value of γ gets closer to 0, we emphasize the immediate
future performance much more than the distant future performance and as
the value of γ gets closer to 1, we emphasize the distance future performance
equally to the immediate future. It is well known that ∀ x ∈ X , V ∗(x) =
mina∈A(x)

{
C(x, a) + γ

∑
y∈X P (y|x, a)V ∗(y)

}
and V ∗(x), x ∈ X is unique and

a policy π∗ defined as π∗(x) ∈ argmina∈A(x)

{
C(x, a) + γ

∑
y∈X P (y|x, a)V ∗(y)

}
,

, x ∈ X is an optimal policy [1].
As we mentioned before, there exists the two well-known algorithms to com-

pute π∗ or the optimal value function V ∗, called value iteration and policy itera-
tion [1]. However, applying the exact methods for solving MDPs is very difficult
if the state and/or the action space are large because the time-complexities of
the methods depend on the sizes of the state and the action spaces [6], which
is true for many interesting problems, including our example multi-class task
scheduling problem.

2.2 Parallel Rollout

Consider the case where a decision maker has a nonempty set Λ ⊆ Π of avail-
able heuristic policies. It is naturally expected that he wishes to combine such
heuristic policies dynamically generating a combined policy. In particular, if
each policy is near-optimal for different system trajectories, the combined pol-
icy should adapt to the different system trajectories (stochastically), that is, it

Parallelizing Parallel Rollout Algorithm 125

should adaptively select one of the heuristic policies and improve the perfor-
mances of all of the heuristic policies if each heuristic policy alone used by the
decision maker.

Formally, the parallel rollout policy πpr is defined such that for each x ∈ X ,

πpr(x) ∈ argmin
a∈A(x)


C(x, a) + γ

∑
y∈X

P (y|x, a)min
π∈Λ

V π(y)


 (1)

It turns out that the policy πpr improves all of the policies in Λ and adapts to the
different system trajectories. See [5] for intuitive arguments and a formal proof.
We refer the equation inside argmin as the utility of taking an action a ∈ A(x)
at x if it is evaluated with x and a.

When computing πpr in practice, at each decision time at the current state,
the decision maker uses an on-line simulation to predict the futures (via gen-
erating random numbers) and uses the information of the futures to evaluate
each action’s utility with respect to Equation (1). At each decision time, at
the current state, the decision maker applies the simulation to obtain an action
that achieves the minimum of Equation (1) and takes the action. In this man-
ner, we apply the parallel rollout policy in the context of “planning,” rather
than invoking the parallel rollout policy computed in off-line manner. For the
simulation-based implementation of parallel rollout defined as above, we use
the same random number sequence method, which is well-known concept in the
simulation literature [7]. Note that we only need to know the best action that
achieves the minimum in Equation (1) but not the true utility values of each
action a ∈ A(x) for x ∈ X to obtain the minimum, if our main interest is in
obtaining a decision rule or a plan for the decision making process. Therefore, we
use the same random number sequence method across the candidate actions to
try to preserve only the relative ranking of the action utilities. It has been shown
that this method also reduces the variances of the utility estimates obtained by
the simulation across the candidate actions [8].

3 Parallelization of Parallel Rollout

Recall that V π, π ∈ Π , is just the expected sum of costs obtained by the decision
maker following the policy π. As we mentioned before, this can be estimated
by a sample mean over a selected finite sampling-horizon by generating many
random trajectories of the system or random number (in [0,1]) sequences of the
length equal to the given sampling horizon, and then apply π to each generated
trajectory, obtaining the cumulative (discounted) costs, and take an average of
them. Because each policy in Λ can be evaluated independently, we can use the
same set of random number sequences over these different policies in Λ, making
a parallel implementation possible over the policies in Λ. Therefore, the term
minπ∈Λ V

π(y) in the above equation can be evaluated in a coordinated manner
once V π is computed in parallel over the policies in Λ. We can easily see that if
the number of processors is equal to |Λ|, the overall computation will be speeded

126 Seon Wook Kim and Hyeong Soo Chang

up by |Λ|. The minimization step requires a coordination over the computed
value from each policy. After each processor finishes computing his part on the
V π-estimate, the coordinator needs to compute the minimal value among the
computed V π-estimates.

A possible next state from the current state x is determined stochastically
with the state transition function P . We need to take an average of the values
minπ∈Λ V

π(y) over all possible next states y ∈ X with respect to the distri-
bution given by P . We again estimate this with a sample mean by generating
a set of random numbers in [0,1] and the set of randomly sampled next states
is commonly used for each different action. In other words, for each sampled
next state y, we need to obtain minπ∈Λ V

π(y) and the random trajectories we
generated to estimate minπ∈Λ V

π(y) for a particular state y will be used again
for another sampled next state y′. This provides another parallelism in parallel
rollout. We can distribute the computation of the minimal value of the V π esti-
mates in Λ at each randomly sampled next state into multiple processors. If the
number of processors is equal to the number of randomly sampled next states,
the overall computation will be speeded up by the number of the sampled next
states WN . Finally, the random number sets generated to estimate a particular
action’s utility will be used for other actions. That is, each action will use the
same random number sets. Therefore, we can distribute the tasks into multiple
processors such that each processor computes an action’s utility.

Overall, parallel rollout contains three-level parallelism. In theory, the com-
putational complexity will be reduced by factor of |Λ| ·WN · |A| by parallelizing
parallel rollout. We present a pseudo-code for the parallelized parallel rollout
policy with the same random number sequence method in Figure 1. When we
parallelize the outermost parallel loop, e.g, over the action space, it should be
noted that synchronization across actions (e.g. processors) is required at the end
of the algorithm to identify an action with the highest utility. Also the best
action needs to be broadcast to all processors. It incurs high synchronization
overhead across MPI processes. This will be discussed in Section 5 in detail.

4 Evaluation on Multi-class Scheduling

To evaluate the parallelized parallel rollout policy, we consider the problem of
scheduling randomly arriving tasks into a single server. We remark that the
scheduling problem and the simulation set up for the problem is similar to the
one in [5]. For the self-containedness, we describe the scheduling problem briefly.

Each task belongs to a predetermined finite set of classes 1, · · · ,m and each
class is associated with a real number weight such that a cost of the class weight
is incurred if the server does not serve a task in the class before its deadline.
Every task takes one-unit time to serve. Tasks arrive into the queue within
each time interval, and the server makes decisions at the boundary of each time
step. Here we make further simplifying assumptions. We assume that at most
one task can be generated per class per unit time and each class has the same
deadline and there are no inter-dependencies between the tasks. Even under all

Parallelizing Parallel Rollout Algorithm 127

PARALLELIZED PARALLEL ROLLOUT:
Inputs:
H, W ; /* sampling horizon and width for V π -estimate */
WN ; /* sampling width for the next states sampling */
x; /* current state */
C(), f(); /* cost and next state functions for the MDP */
double r[W][H] /* sampled random number sequences, init each entry randomly in [0,1] */
double Next[WN] /* sampled random numbers for the next states, init each entry randomly in [0,1] */
state x[H]; /* a vector of states for temporarily storing a state trajectory */
double EstimateQ[]; /* cumulative estimate of the utility for action u, init to zero */
double EstimateV[]; /* for each policy, the estimated value on current random trajectory */

DO PARALLEL for each action u in A(x)
DO PARALLEL for each I = 1 to WN

x[1] = f(x, u, Next[I]);
for i = 1 to W do

DO PARALLEL for each π in Λ
EstimateV[π][I]=0;
for t = 1 to H do

u[t] = π(x[t]); EstimateV[π][I] += γtC(x[t], u[t]); x[t + 1] = f(x[t], u[t], r[i][t]);
endfor

ENDDO PARALLEL
minV[I] = minπ∈Λ (EstimateV[π][I]/W); EstimateQ[u] += minV[I];
endfor

ENDDO PARALLEL
EstimateQ[u] = C(x,u) + EstimateQ[u] / WN ;

ENDDO PARALLEL
take action arg minu∈A(x)EstimateQ[u];

Fig. 1. Pseudo-code for parallelized parallel rollout using common random num-
bers. There are three-levels of parallelism in an action, a sampling width, and a
policy, marked as DO PARALLEL

these simplifying assumptions, this on-line task scheduling has no known optimal
policy for the weighted loss for a long finite time interval or infinite time interval.

When the server decides to process a particular task, there is always a bad
future traffic that makes his current decision wrong. This is more particularly
evident when the traffic is highly bursty. If we expect a heavy burst of important
classes, the server better gives up serving relatively unimportant tasks even if
the server can preserve the “throughput optimality” (maximizing the unweighted
number of tasks served) to gain higher weighted throughput. That is, for this type
of traffic pattern, serving simply the important class tasks as many as possible
may well be a good policy. Static Priority (SP) is a policy where it serves the
most important pending task, with breaking ties between the same class tasks
by FIFO, making SP a near-optimal policy for those system paths. On the other
hand, the server better serves unimportant tasks in an opposite situation. That
is, if the average number of tasks generated over the unit time is small or the
load of the queue is small (less than 1), serving the tasks to maximize just
unweighted throughput is near-optimal. Current Minloss [9] (CM) is a policy
whose performance is no worse than throughput optimal Earliest Deadline First
(EDF) for any finite arrival sequence, where EDF serves the task to be expired
soonest, with breaking a tie by serving the more important task. Thus, how well
the decision has been made at each decision time depends on how likely such
unfavorable/favorable traffic is to arrive at the queue in the future and a decision
maker wishes to combine SP and CM into one scheduling policy such that the

128 Seon Wook Kim and Hyeong Soo Chang

policy selects between CM and SP automatically adapting to the stochastic
future arrivals of the tasks. Note that the decision maker does not need to add
EDF because CM is no worse than EDF.

4.1 MDP Formulation

In this subsection, we model the scheduling problem as an MDP. The traffic for
each class i is modeled by Markov Modulated Bernoulli Process (MMBP) [10]
where an MMBP is associated with a Markov chain where each state in a finite
set Si of the Markov chain is associated with a probability of generating a task
at each time. Each class traffic generation starts at a particular state in Si. After
generating a task with a positive probability associated with the initial state,
the state makes a transition to another state in the MMBP and generates a task
with a probability associated with the new state and this process is repeated.

The state spaceX of this problem is X = Θ1×· · ·×Θm×{0, 1}m×d, where Θi

is the probability distribution over the MMBP states in Si for the class i (this
distribution is updated from the task arrival information at each time by the
Bayes update rule) and the last factor is a set of vectors where a vector represents
current pending tasks in the buffer Bn at time n: if there exists a task T whose
laxity (remaining time for the deadline to be expired) is ln(T), then the entry
of the vector indexed with K(T) and ln(T) is 1, where ln(T) ∈ {0, ..., d} and it
signifies the remaining time until its deadline is expired and K(T) ∈ {1, · · · ,m}
is the class of the task T . The set of actions is A = {1, · · · ,m}, where action
a = i means that we serve the task with the smallest laxity in class i. We let
the deadline of a particular task T be d(T) and the task selected by a given
scheduling policy π for a given buffer B as π(B). The dynamics of the buffer
over time is expressed as Bt+1 = Bt−{T ∈ Bt : d(T) = t or T = πt(Bt)}∪Ωt+1,
where Ωt+1 is the set of tasks that have arrived to the server at time t+ 1.

The new buffer Bt+1 at time t+ 1 is stochastically described by the random
arrivals in Ωt+1 during the time interval (t, t + 1), where the random arrivals
are generated by the given MMBPs. Therefore, the state transition function P
is defined in the obvious manner representing underlying stochastic transitions
in each of the class MMBPs, and the change in the buffer by adding new tasks
in Ωt+1 generated by MMBPs as well as the expiry of unserved tasks and the
removal of the task served by the action selected. The cost function C is defined
such that C(x, a) is the sum of the costs from lost tasks, i.e., the unserved tasks
with the deadline of zero. For this MDP, we wish to find a scheduling policy that
minimizes the expected weighted costs of unserved tasks over infinite horizon
with a discount factor.

Parallelizing Parallel Rollout Algorithm 129

5 Simulation

5.1 Problem Setup

For the scheduling domain, it is unnatural to consider a discount factor much
less than one for the performance measure of a scheduling policy because the
performance in the distant future is equally important as in the immediate fu-
ture. Therefore, we need to set the discount factor very close to one if we truly
care about the technicalities. However, letting the discount factor one do not
lose any practicality. For this reason, we used the discount factor of one through
the simulation studies.

As with many problem domains (e.g., random propositional satisfiability
problem), randomly selected problems from this scheduling domain are typi-
cally too easy. In scheduling, this problem manifests itself in the form of arrival
patterns that are easily scheduled for virtually no loss (e.g., by EDF), and arrival
patterns that are apparently impossible to schedule without heavy weighted loss
(in both cases, it is typical that just blindly serving the highest class available in
the buffer, e.g., by SP, performs as well as possible). Difficult scheduling prob-
lems are typified by arrival patterns that are close to being schedulable with no
weighted loss, but that must experience some substantial weighted loss. We have
conducted experiments by selecting MMBP models for the arrival distributions
at random from a guided ad-hoc but reasonable single distribution over MMBPs.

All of the scheduling problems we consider involve several number of classes
(8, 16, 32, 64, and 128) of tasks and we set the weights of the classes such
that class i has a weight of wi−1. By decreasing the parameter w in [0,1], we
emphasize the disparity in importance between classes, making the scheduling
problem more class-sensitive and by increasing the parameter w closer to 1, the
relative importances between the classes get smaller. Note that for w ≈ 1, CM
must work near-optimal as CM maximizes the number of served tasks for any
finite arrival sequences and for w ≈ 0, SP is near-optimal as SP selects the tasks
based on the priority only.

We select an MMBP model for each class, chosen from the same distribution.
We selected the MMBP state space of size 3 arbitrarily and deliberately arrange
the states in a directed cycle to ensure that there is interesting dynamic structure.
Similarly, we select the self transition probability for each state uniformly in the
interval [0.9, 1.0] and the arrival generation probability at each state is selected
such that one state is “low traffic” (uniform in [0, 0.01]), one state is “medium
traffic” (uniform in [0.2, 0.5]), and one state is “high traffic” (in [0.7, 1.0]).
Finally, after randomly selecting the MMBPs for each of classes in a selected
group from the distribution, we normalize the arrival generation probabilities
for each class so that arrivals are (roughly) equally likely in high-cost, medium-
cost, and low-cost and to make a randomly generated traffic from the MMBPs
have overall arrivals at about one task per time unit to create a scheduling
problem that is suitably saturated to be difficult. Even though we designed the
scheduling problem domain in this way, note that a very broad range of arrival
pattern MMBPs can be generated.

130 Seon Wook Kim and Hyeong Soo Chang

We selected two scheduling policies as the heuristic policies for the parallel
rollout policy. As we discussed before, depending on the stochastic future traffic
patterns, SP or CM is near-optimal. For this reason, we combine the two policies
via parallel rollout. For the results that show the improvements of parallel rollout
over SP, CM, and EDF, please refer [5]. But, due to irregular execution time of
these two heuristic policies, the parallel rollout algorithm suffers from high load
imbalance between processes/threads, and this issue will be discussed in the next
subsection.

5.2 Measurement

For the simulation study of parallel rollout, we parallelized parallel rollout over
only the action space by using either OpenMP or MPI, but not together in
one simulation because of our limited experiment environment. That is, the
computation of the utility measure of taking each action is distributed among
the multiple processors. We believe that this setup is enough to convey the
reader that parallelized parallel rollout improves the computational time over
serial parallel rollout. We evaluated the serial parallel rollout policy with the
parallelized parallel rollout policy with respect to five different traffics generated
from five randomly selected traffic model parameter set.

For OpenMP experiment, we used two shared-memory machines: a SUN En-
terprise 4000 having six 250MHz UltraSPARC processor and an Intel Xeon dual
processor systems. On the SUN machine, we used SUN Forte 6.2 OpenMP com-
piler on Solaris 5.8, and -xO3 -xtarget=ultra2 -xcache=16/32/1:1024/64/1
for code compilation. On the Intel machine, we used Intel C/C++ 7.0 compiler
with -O3 optimization on Redhat 7.1 Linux. For MPI experiment, we used the
same SUN Enterprise as OpenMP experiment with shared-memory version of
MPICH 1.2.4. Also, we evaluated our code on a 4 node cluster connected with
Ethernet, and each has AMD 1GHz Athlon, 256MB main memory, Redhat Linux
7.1, and MPICH 1.2.3 libraries.

Table 1 shows ideal speedup of our experimental problem on our two experi-
mental machines. The ideal speedup is driven by Amdahl’s Law to use serial and
parallel sections’ execution time on a single processor system. The table shows
that the parallelized algorithm has high-level parallelism and the ideal speedup
on SUN Enterprise is a little higher than an Intel Xeon system. The serial sec-
tions of the code include many file read operations. We think that Solaris system
has more efficient and fast methods to deal with these operations than Linux.

Parallelization Using OpenMP. In order to exploit parallelism over the
action space in OpenMP, we used variable renaming and array expansion tech-
niques from the serial version of the code.

Table 2 shows the speedup of parallelized parallel rollout algorithm using
OpenMP on SUN Enterprise and Intel Xeon systems in five different classes.
The speedup is defined as the ratio of execution time in a serial parallel rollout
to that in its parallel version. The achieved maximum speedup on the SUN

Parallelizing Parallel Rollout Algorithm 131

Table 1. Ideal speedup of our problem on different classes and processors. The
ideal speedup is driven by Amdahl’s Law to use execution time of serial and
parallel regions on a single processor system. The proposed algorithm has high-
level parallelism

Number of Sun Enterprise Intel Xeon
classes 1 Proc 2 Procs 3 Procs 4 Procs 5 Procs 6 Procs 1 Proc 2 Procs

8 1.00 1.80 2.45 3.00 3.46 3.85 1.00 1.51

16 1.00 1.88 2.66 3.35 3.97 4.53 1.00 1.65

32 1.00 1.79 2.44 2.97 3.43 3.81 1.00 1.42

64 1.00 1.92 2.76 3.54 4.26 4.94 1.00 1.73

128 1.00 1.92 2.78 3.57 4.31 5.00 1.00 1.79

system is 3.47 using six processors, which is far below an ideal speedup. On the
Intel system, we achieved a maximum speedup 2.18 using two processors which
is higher than an ideal speedup. Overall, the speedup is linearly proportional to
the number of processors except for 8 and 32 classes.

Table 2. Speedup of parallelized parallel rollout using OpenMP parallel pro-
gramming on SUN Enterprise and Intel Xeon systems. The speedup is linearly
proportional to the number of processors. We achieved ideal speedup in some
cases

Number of Sun Enterprise Intel Xeon
classes 1 Proc 2 Procs 3 Procs 4 Procs 5 Procs 6 Procs 1 Proc 2 Procs

8 1.33 2.00 2.00 2.40 2.40 2.40 1.01 1.23

16 0.94 1.57 1.94 2.36 2.54 2.75 1.13 1.65

32 1.08 1.30 1.53 1.53 1.63 1.63 0.97 1.15

64 1.20 1.88 2.42 3.00 3.22 3.47 1.18 1.84

128 0.91 1.38 1.89 2.30 2.61 2.98 1.29 2.18

There are two findings to explain the performance gap between ideal and
achieved speedup, especially in 8 and 32 classes. One of the findings is a load
imbalance in our algorithm. In order to get data in Table 2, we used dynamic
scheduling in an OpenMP parallelized loop. Table 3 shows the speedup when we
used static scheduling. We see the performance difference between two schedul-
ings, and the performance of static scheduling is worse than dynamic. Also,
Table 4 shows the load imbalance between two threads on Intel Xeon processors,
which is the ratio of load imbalance to the total execution in parallel regions.
We used Intel compiler’s OpenMP performance profiler (-openmp profile) to
collect the data. On average the load imbalance is about 20% of the parallel ex-
ecution time, and it becomes worse at 8 and 32 classes. As we mentioned earlier,
we selected two scheduling policies, SP and CM for the parallel rollout policy.

132 Seon Wook Kim and Hyeong Soo Chang

These two heuristics’ execution times are irregular depending on the number of
classes, and which incurs large load imbalance. We predict that this problem
becomes worse on the SUN system due to the overhead to support large number
of threads. As a result, the achieved speedup on the SUN system is far below
the ideal speedup.

Table 3. Speedup of statically scheduled parallelized parallel rollout using
OpenMP parallel programming on SUN Enterprise and Intel Xeon systems. The
speedup is lower than in Table 2

Number of Sun Enterprise Intel Xeon
classes 1 Proc 2 Procs 3 Procs 4 Procs 5 Procs 6 Procs 1 Proc 2 Procs

8 1.33 1.50 1.71 2.00 2.00 2.00 1.07 1.14

16 0.94 1.38 1.50 1.83 1.74 1.94 1.17 1.49

32 1.04 1.25 1.39 1.39 1.47 1.47 0.93 0.96

64 1.20 1.64 2.03 2.13 2.36 2.61 1.20 1.60

128 0.91 1.34 1.65 1.93 1.96 2.06 1.37 1.91

Table 4. Load imbalance (%) between threads on Intel Xeon dual processors
using OpenMP. The load imbalance is defined as a ratio of load imbalance to the total
execution in parallel regions

Number of Intel Xeon
classes Thread 0 Thread 1

8 25.70 35.91

16 19.57 18.92

32 49.60 34.57

64 10.39 25.71

128 10.15 17.34

Another reason for the performance gap is explained by data synchronization
between serial and parallel regions, which introduces higher cache coherence
overhead on a large shared-memory multiprocessor system, e.g., the SUN system.
For example, in Figure 2, Vminavg is updated on child threads (in a parallel
region), and it is read by a master thread in a serial region. Similarly, Qstate
is updated on a master thread, and it is read by child threads. On the Intel
Xeon system, this overhead seems to be negligible because the system has only
2 processors.

Parallelization Using MPI. Table 5 shows the speedup of the parallelized
code using MPI APIs on the SUN Enterprise and the cluster systems. The

Parallelizing Parallel Rollout Algorithm 133

// parallel rollout
#pragma omp parallel for private(pinum,policyeval,prio,slot,......) schedule(dynamic,1)

for(class = 1; class <= MAX_CLASS; class++) {
......
for(i = 1; i <= MAX_CLASS; i++)

...... = Qstate[i];
......
Vminavg[class] +=

}

// find the best action
maxQ = -99;
for(class = 1; class <= MAX_CLASS; class++) {

if(feasible[class] != -1) {
Qvalue[class] = + Vminavg[class];
if(Qvalue[class] >= maxQ) {

whichclass = class; maxQ = Qvalue[class];
}

}
}
Qstate[whichclass] =

Fig. 2. Serial and OpenMP codes to identify the best action. The hardware
provides fast data synchronization of variable Vminavg between processors across
the first and the second loops, and Qstate between a serial and a parallel regions.
The second loop is not parallelized due to its small execution time

achieved speedup in MPI is less than that in OpenMP on the SUN Enterprise
system, and there is no speedup on the cluster. The performance gap between
in OpenMP and MPI codes is discussed next.

Table 5. Speedup of parallelized parallel rollout using MPI parallel program-
ming on SUN Enterprise and 4-node AMD cluster systems. The speedup on
SUN is proportionally linear to the number of processors. But we failed to get
speedup on the cluster system

Number of Sun Enterprise AMD cluster
classes 1 Proc 2 Procs 3 Procs 4 Procs 5 Procs 6 Procs 1 Proc 2 Procs 4 Procs

8 1.29 1.68 1.85 1.95 1.88 2.20 0.95 0.73 0.05

16 1.00 1.52 1.92 2.01 2.19 2.53 1.02 0.76 0.07

32 1.28 1.46 1.69 1.69 1.78 1.77 1.08 0.77 0.07

64 1.28 1.90 2.20 2.50 2.54 2.75 0.97 0.81 0.24

128 1.01 1.65 2.07 1.91 2.59 2.68 0.98 0.84 0.44

Comparison between OpenMP and MPI. As we mentioned earlier, the
parallel algorithm needs synchronization to find the best action. The OpenMP
codes are constructed as shown in Figure 2.

On the shared-memory multiprocessor system, OpenMP does not need ex-
plicit data synchronization across processors. The hardware cache-coherence pro-

134 Seon Wook Kim and Hyeong Soo Chang

tocol takes care of dependences between processors, i.e. between a serial and a
parallel regions. The array elements Vminavg are gathered by a master thread
and the master thread finds the best action. Similarly dependence on Qstate is
resolved by the protocol at high speed. Since the data synchronization is done
by hardware, its overhead is small compared with MPI methods.

In MPI, process-local best action is calculated per process. Then all local best
actions are reduced by all processes to find a global best action. All processes
need the best action to update variable Qstate, which is read inside the parallel
loop in the parallel rollout, as shown in Figure 3. This MPI Allreduce collective
operation is spread over all execution, and incurs high overhead due to slow syn-
chronization. This is shown in Figure 4 using a VAMPIR [11] MPI performance
analysis tool. In the figure, the lines between processes show the collective com-
munication between processes (all of them are MPI Allreduce operations), and
dark gray in process lines represents MPI execution overhead.

// parallel rollout
for(class = mypid; class <= MAX_CLASS; class+=rank) {

......
for(i = 1; i <= MAX_CLASS; i++)

...... = Qstate[i];
......
Vminavg[class] +=

}

// find the best action
maxQ = -99;
for(class = mypid; class <= MAX_CLASS; class+=rank) {

if(feasible[class] != -1) {
Qvalue[class] = + Vminavg[class];
if(Qvalue[class] >= maxQ) {

whichclass = class; maxQ = Qvalue[class];
}

}
}
in.value = maxQ; in.class = whichclass;
MPI_Allreduce(&in, &out, 1, MPI_DOUBLE_INT, MPI_MAXLOC, MPI_COMM_WORLD);
whichclass = out.class;
Qstate[whichclass] =

Fig. 3. MPI version to identify the best action. MPI needs explicit collective
operation to synchronize local best action

The sent and received total bytes in the collected operation per each simu-
lation between processes is only 1K. But MPI execution, MPI Allreduce, domi-
nates overall execution, as shown in Table 6. Larger number of participant nodes
incurs higher overhead, and finally dominates the total execution time. The syn-
chronization overhead can be reduced on the SUN Enterprise experiment through
the shared-memory execution model. Also the load imbalance between processes
due to the used heuristic policies affects MPI operations. In 32 classes of Ta-
ble 6, the MPI overhead in 2 processor run is higher than 4 because of uneven
workload distribution.

Parallelizing Parallel Rollout Algorithm 135

Fig. 4. Timeline display in 128 classes using 4 processes on the Ethernet con-
nected cluster. In a legend, MPI (dark gray) means spent-time in MPI execu-
tion, and Application means execution excluding MPI operations. The lines
between processes represent MPI communication between processes, which is
MPI Allreduce collective operation

Table 6. MPI overhead (%) on the cluster, which is the ratio (%) of MPI
execution time to the total execution time. MPI operation dominates overall
execution

Number of AMD cluster
classes 1 Proc 2 Procs 4 Procs

8 0.04 52.84 88.20

16 0.02 41.68 93.26

32 0.00 66.40 63.20

64 0.00 29.43 79.34

128 0.00 28.31 62.49

6 Conclusion

In this paper, we proposed a parallel algorithm of parallel rollout, which is a
formal method of combining multiple heuristic policies available to a sequen-
tial decision maker for solving problems formulated in the framework of Markov
Decision Processes (MDPs). We used OpenMP and MPI parallel programming
to parallelize the algorithm, and evaluated their performances on several ma-
chine configurations for a multiclass scheduling problem. Overall, the speedup is
proportionally linear to the number of processors on the shared-memory multi-

136 Seon Wook Kim and Hyeong Soo Chang

processor systems both in OpenMP and in MPI codes. The performance using
OpenMP is higher than MPI due to lower data synchronization overhead across
processors. We failed to get speedup on the network-based cluster system.

The parallel rollout algorithm has the three levels of inherent parallelism.
But it needs a synchronization at the final phase to identify the best action or
the action with the highest utility. In MPI the synchronization needs a MPI
collective operation across all processes, and we found that it incurs a high
overhead of the synchronization and the selected heuristic policies introduce a
load imbalance over the action space. Note that even though the synchronization
overhead is unavoidable, the load imbalance problem is problem specific. This
high load imbalance results in high synchronization MPI operations.

To the best of our knowledge, the present work is the first parallelization
and evaluation of on-line simulation-based solution scheme for solving MDPs,
rather than off-line computation. Even though the parallelized parallel rollout
cannot avoid a certain synchronization overhead, the overhead is independent
of structural properties in problems themselves formulated by MDPs. Because
of the inherent parallelism of parallel rollout, the parallel rollout does not cause
complicated parallel implementation issues that arise in the previous works men-
tioned in the introduction of the present paper, especially in the perspective of
the speed up of the parallel implementation.

References

1. M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley, New York, 1994.

2. D. P. Bertsekas and J. N. Tsitsiklis. Neuro dynamic programming. Athena Scien-
tific, 1996.

3. R. Sutton and A. Barto. Reinforcement Learning. MIT Press, 2000.
4. A. Printista, M. Errecalde, and C. Montoya. A parallel implementation of Q-

learning based on communication with cache. Journal of Computer Science and
Technology, 1(6), 2002.

5. H. S. Chang, R. Givan, and E. K. P. Chong. Parallel rollout for on-line solution of
partially observable markov decision processes. Discrete Event Dynamic Systems
(Revised), 2002.

6. M. Littman, T. Dean, and L. Kaelbling. On the complexity of solving markov deci-
sion problems. In Proc. 11th Annual Conf. on Uncertainty in Artificial Intelligence,
pages 394–402, 1995.

7. A. M. Law and W. D. Kelton. Simulation Modeling and Analysis, 3rd Ed. McGraw-
Hill, New York, 2000.

8. D. P. Bertsekas. Differential training of rollout policies. In Proc. 35th Allerton
Conf. on Comm., Control, and Computing, 1997.

9. R. Givan, E. K. P. Chong, and H. S. Chang. Scheduling multiclass packet streams
to minimize weighted loss. Queueing Systems, 41:241–270, 2002.

10. W. Fischer and K. Meier-Hellstern. The markov-modulated poisson process
(mmpp) cookbook. Performance Evaluation, 18:149–171, 1992.

11. Wolfgang E. Nagel, Alfred Arnold, Michael Weber, and Hans-Christian Hoppe.
VAMPIR: Visualization and analysis of MPI resources. Supercomputer, (1):69–80,
January 1996.

M.J. Voss (Ed.): WOMPAT 2003, LNCS 2716, pp. 137–146, 2003.
© Springer–Verlag Berlin Heidelberg 2003

DMPL: An OpenMP DLL Debugging Interface

James Cownie1, John DelSignore, Jr.1, Bronis R. de Supinski2, and Karen Warren2

1 Etnus, LLC, 24 Prime Parkway, Natick, Massachusetts 01760
{ jcownie , jdelsign }@etnus.com

http://www.etnus.com/Products/TotalView/index.html
2 Lawrence Livermore National Laboratory, P.O. Box 808, L-560

Livermore, California 94551-0808*
{ bronis , kwarren }@llnl.gov

http://www.llnl.gov/icc/lc/DEG/TV.html

Abstract. OpenMP is a widely adopted standard for threading directives
across compiler implementations. The standard is very successful since
it provides application writers with a simple, portable programming
model for introducing shared memory parallelism into their codes. How-
ever, the standards do not address key issues for supporting that pro-
gramming model in development tools such as debuggers. In this paper,
we present DMPL, an OpenMP debugger interface that can be imple-
mented as a dynamically loaded library. DMPL is currently being con-
sidered by the OpenMP Tools Committee as a mechanism to bridge the
development tool gap in the OpenMP standard.

1 Introduction

OpenMP is a widely used parallel programming model for shared-memory multiproc-
essor (SMP) architectures [1], [2]. The OpenMP organization initially focused on
language design and run-time support. This focus has been successful - OpenMP now
provides relative ease in writing codes that efficiently utilize SMP architectures.

While the initial focus has been successful, key areas for usability still need to be
addressed. In particular, accurate information needed for debugging and analyzing per-
formance of OpenMP applications can be difficult to obtain. Even when the informa-
tion is provided, it is very difficult to present the information consistently with the
semantics of the OpenMP programming model.

Recently, the OpenMP organization created a Tools Committee to address some of
these difficulties. That committee is considering the POMP interface [3] as a standard
method to instrument OpenMP applications and to gather performance data. However,

* This work was partially performed under the auspices of the U.S. Department of Energy by

University of California LLN Laboratory under contract W-7405-Eng-48. UCRL-JC-
151670.

James Cownie et al.138

the POMP interface does not address problems that arise when one attempts to debug
an OpenMP code. In this document we propose DMPL (pronounced “dimple”), an
interface for OpenMP debugger support that can be implemented as a dynamically
loaded library (DLL). We propose that each compiler vendor implement this library
and provide it along with the OpenMP run-time library. Debuggers would then dy-
namically load this library to obtain the information needed for users to debug
OpenMP codes.

The rest of this paper first explores key background issues for debugging OpenMP
application codes. We then discuss why a DLL-based OpenMP debugger interface is
the right solution. Next, we present an initial proposal for the definition of DMPL.
We conclude with a discussion of why it is inappropriate to add the required debugger
support to a performance instrumentation API and remaining open issues for OpenMP
debugger support.

2 Background

2 . 1 Multiple Compilers, User Levels

Debugging features required for OpenMP codes are similar to those required for sequen-
tial code. Users want to work with the "source-level" code and to plant breakpoints
within OpenMP regions. They want to step and otherwise control execution in those
regions and to examine variables within them. However, the underlying threading
provided by the OpenMP compiler and run-time complicates these goals. Should the
debugger present outlined routines that the compiler creates so that OpenMP regions
can be executed by multiple threads? Does the user expect the same view for shared,
private, and thread private variables?

Some users understand how the OpenMP directives accomplish the desired parallel-
ism; other users don’t care about such details. Ideally, the debugger presents a serial
code to the latter users while supporting a more detailed view that sophisticated users
may desire. More realistically and practically, the debugger allows the user to see
thread private variables and manipulate the threads individually. Regardless, a portable
debugger must understand the output from various compilers (e.g., HP/Compaq, IBM,
Intel-Guide, SGI and Sun) and present it to the user in a way that avoids involving the
user in the underlying transformations.

2 . 2 Compiler Transformations

The OpenMP language specifications allow a variety of implementations. Portable
debuggers must directly solve some possible implementation differences. However, a
standard interface can assist the debugger in hiding many implementation details.

Depending on the compiler, the user's code may first be preprocessed and the result-
ing code actually compiled. The debugger deals with the preprocessed code. Since the
user wants to debug the original code, the preprocessor must insert line number direc-

DMPL: An OpenMP DLL Debugging Interface 139

tives. The debugger must interpret the directives. Although line number directives are
already standardized, some OpenMP implementations that use preprocessing have not
always included them.

The compiler uses threads to achieve the necessary parallelism. Various threading
packages can be used: pthreads, sproc, and other proprietary threading packages. The
debugger user must be able to asynchronously control these threads. This goal means
that the underlying thread package must include support to synchronize thread execu-
tion, to single step threads in lockstep and for thread-specific breakpoints. Although
the debugger must handle the underlying thread package, OpenMP implementers can
help ensure that the package includes needed support for asynchronous thread control.

To achieve the desired parallelism, the compiler constructs outlined routines that
the master thread calls and the worker threads execute. There may be multiple outlined
routines for a single worksharing construct. Calls to the outlined routines become part
of the stack traces. The stack frames from the routines become part of the calling stack
frame. Ultimately, what looks like straight-line code to the user isn’t. The debugger
needs a standard method to recognize outlined routines and to associate them with
worksharing constructs. Similarly, the debugger needs a standard mechanism to iden-
tify run-time library routines, for which the names vary for every compiler. Given
these mechanisms, the debugger can then eliminate the calls from stack frames and
support the appearance of straight-line code, if the user desires it.

Each compiler mangles the source code names differently when it makes up names
for the outlined routines and their variables. The debugger must demangle a mangled
name in order to present the user with a recognizable name. Further, the debugger may
need to determine language meaning for the mangled name, such as whether a variable
is shared or private. The debugger also must use the proper addressing mode for the
variable, which can vary substantially between compilers, particularly for thread pri-
vate data. The OpenMP implementation must provide the debugger with a standard
mechanism for name demangling and this related information.

3 DMPL Objective

We propose DMPL, a dynamically loaded library interface that provides the debugger
with information needed to support OpenMP applications. The TotalView parallel
debugger [4] already uses this paradigm for debugging pthreads, MPI message queues
[5], and UPC [6]. Similarly to run-time libraries, OpenMP compiler vendors would
provide a DMPL library. The debugger, which already contains information about the
run-time parallel environment, will load the DLL.

This paper defines the DMPL interface, which separates the OpenMP implementa-
tion from the debugger. This interface must provide a debugger with all the informa-
tion that it needs to present the user with a view of his code both in terms of the
original source and with additional thread details. The routines supplied by the vendor
in the DLL can be linked dynamically in the debugger allowing callbacks to the de-
bugger. The DLL is an OpenMP implementation-specific product and its implementa-
tion details are left to the OpenMP implementer.

James Cownie et al.140

4 DMPL Interface

The proposed DLL is a two-way interface between the debugger and the DLL itself.
When the debugger needs to display the value or address of a thread private object, it
will make a call to a DLL function to extract the absolute address of the object. The
DLL itself will make calls to the debugger to access information about the target
process or thread. The DLL must not use global data internally because the debugger
may be debugging independent processes simultaneously. Instead, it must associate
data between calls with the specific object.

4 . 1 DMPL Types

DMPL includes several defined types in order to pass target architectural information
to the debugger and to simplify interface function definitions. Other types provide
function return codes, language values and codes for demangling information.

typedef struct {
int short_size;
int int_size;
int long_size;
int long_long_size;
int pointer_size; /* sizeof (void *) */

} DMPL_target_type_sizes_t;
typedef unsigned long long DMPL_taddr_t;
typedef long long DMPL_tword_t;

typedef struct _DMPL_process_t DMPL_process_t;
typedef struct _DMPL_thread_t DMPL_thread_t;
typedef struct _DMPL_type_t DMPL_type_t;

Fig. 1. Types for DMPL target architectural information

Figure 1 shows that target architectural information includes the sizes of pointers
and integer types and address values. Since DMPL_taddr_t is an unsigned long
long, it allows for addresses on any architecture. Specifically, a 32-bit debugger should
be able to debug a 64-bit target process.

Figure 1 also includes opaque types for process, thread and type information. The
debugger and the DLL will each determine what process/thread information it needs.
The opaque types, which will be cast to concrete types in the debugger, preserve types
across the DMPL interface. We use these undefined structures instead of void pointers
in order to provide more compile-time checking at the cost of explicit casts in the
library and support code.

DMPL: An OpenMP DLL Debugging Interface 141

Enum { Explanation
DMPL_ok=0, Success
DMPL_tls_unallocated No space allocated
DMPL_name_too_long, Buffer too small
DMPL_name_changed, Name wasn't demangled
DMPL_first_user_code = 100

};
Allow more pre-defines

Fig. 2. DMPL result codes

enum {
DMPL_lang_unknown = 0,
DMPL_lang_c = 'c',
DMPL_lang_cplus = 'C',
DMPL_lang_f77 = 'f',
DMPL_lang_f9x = 'F'

};

Fig. 3. DMPL language codes

We have included three enumerated types in DMPL. In order to avoid potential is-
sues with different compilers implementing enumerated types as different sized ob-
jects, we actually use int when they are used as a result or parameter type. Most
DMPL functions return one of the result codes listed in Fig. 2 Although both the
DLL and the debugger will use values starting with DMPL_first_user_code,
calling context will eliminate any confusion.
Figure 3 shows the DMPL language values, which support providing the debugger
with language-specific information from the OpenMP run-time library. The DLL uses
DMPL demangling codes that are listed in Fig. 4 to communicate scoping informa-
tion to the debugger. DMPL_varinfo_needs_dereference should be ‘or-ed’
into the appropriate scoping code in order to indicate that dereferencing is necessary to
access the variable.

4 . 2 DMPL Functions

In order to access the information needed for OpenMP codes, the debugger loads the
DMPL DLL. The debugger then calls the DMPL function DMPL_initialize,
which performs steps necessary to initialize the DLL, including instantiation of a
DMPL callback table that supports communication between the DLL and the debug-
ger. The rest of this section describes DMPL functions and function types, beginning
with the DMPL callback table.

James Cownie et al.142

enum {
DMPL_varinfo_needs_dereference = 0x8000,
DMPL_varinfo_none = 0,
DMPL_varinfo_private,
DMPL_varinfo_shared,
DMPL_varinfo_firstprivate,
DMPL_varinfo_lastprivate,
DMPL_varinfo_firstlastprivate,
DMPL_varinfo_reduction,
DMPL_varinfo_threadprivate,
DMPL_varinfo_threadshared,
DMPL_varinfo_copyin

};

Fig. 4. DMPL demangling codes

4 . 2 . 1 DMPL Callback Table
In order to provide the information needed by the debugger, the DLL must make calls
to the debugger. This architecture supports a clean interface between the DLL and the
debugger, avoiding the use of global data. The DLL uses functions contained in the
DMPL callback table, as defined in Fig. 5. The function types used to define the call-
back table are shown in Fig. 6. The primary callback functions communicate process,
thread and type information between the DLL and the debugger.

typedef struct {
DMPL_put_process_info_ft DMPL_put_process_info_fp;
DMPL_get_process_info_ft DMPL_get_process_info_fp;
DMPL_put_thread_info_ft DMPL_put_thread_info_fp;
DMPL_get_thread_info_ft DMPL_get_thread_info_fp;
DMPL_get_process_ft DMPL_get_process_fp;
DMPL_get_type_sizes_ft DMPL_get_type_sizes_fp;
DMPL_find_symbol_ft DMPL_find_symbol_fp;
DMPL_find_type_ft DMPL_find_type_fp;
DMPL_get_data_ft DMPL_get_data_fp;
DMPL_get_pthread_key_ft DMPL_get_pthread_key_fp;
DMPL_target_to_host_ft DMPL_target_to_host_fp;
DMPL_malloc_ft DMPL_malloc_fp;
DMPL_free_ft DMPL_free_fp;
DMPL_error_string_ft DMPL_error_string_fp;
DMPL_prints_ft DMPL_prints_fp;

} DMPL_callbacks_t;

Fig. 5. DMPL callback table definition

The DLL must be able to identify the thread or process associated with debugger
calls. A call to DMPL_put_process_info_fp stores process information in the
debugger while DMPL_get_process_info_fp retrieves the previously stored
process information. The functions DMPL_put_thread_info_fp and
DMPL_get_thread_info_fp provide similar functionality for threads. To pro-

DMPL: An OpenMP DLL Debugging Interface 143

vide access to process-wide information, the function DMPL_get_process_fp
returns the process within which a thread resides.

Several callback functions combine to provide the needed mechanisms to commu-
nicate type and data information between the DLL and the debugger. The DLL uses
DMPL_get_type_sizes_fp to get fundamental type sizes for a specific process.
DMPL_find_symbol_fp provides a mechanism to look up a symbol in a process.
Given a type name, the DLL can retrieve the associated information in the process
with DMPL_find_type_fp. Data can be read from an address within a specific
thread by using DMPL_get_data_fp while the value of a pthread key can be read
by using the function DMPL_get_pthread_key_fp. Data can be converted into
the host format with DMPL_target_to_host_fp.

typedef void (*DMPL_put_process_info_ft)
(DMPL_process_t *, DMPL_process_info_t *);

typedef DMPL_process_info_t * (*DMPL_get_process_info_ft);
typedef void (*DMPL_put_thread_info_ft)

(DMPL_thread_t *, DMPL_thread_info_t *);
typedef DMPL_thread_info_t * (*DMPL_get_thread_info_ft)

(DMPL_thread_t *);
typedef DMPL_process_t * (*DMPL_get_process_ft)

(DMPL_thread_t *);
typedef int (*DMPL_get_type_sizes_ft)

(DMPL_process_t *, DMPL_target_type_sizes_t *);
typedef int (*DMPL_find_symbol_ft)

(DMPL_process_t *, const char *, DMPL_taddr_t *);
typedef DMPL_type_t * (*DMPL_find_type_ft)

(DMPL_process_t *, const char *, int);
typedef int (*DMPL_get_data_ft)

(DMPL_thread_t *, DMPL_taddr_t, void *, int);
typedef int (*DMPL_get_pthread_key_ft)

(DMPL_thread_t *, DMPL_tword_t, DMPL_taddr_t *);
typedef void (*DMPL_target_to_host_ft)

(DMPL_thread_t *, const void *, void *, int);
typedef int (*DMPL_sizeof_ft) (DMPL_type_t *);
typedef int (*DMPL_field_offset_ft)

(DMPL_type_t *, const char *);
typedef void * (*DMPL_malloc_ft) (size_t);
typedef void (*DMPL_free_ft) (void *);
typedef const char * (*DMPL_error_string_ft) (int);
typedef void (*DMPL_prints_ft) (const char *);

Fig. 6. DMPL callback function type definitions

The debugger uses two function types extensively to implement the type and data
callback functions. A function of type DMPL_sizeof_ft determines the size of a
specific type. For structs and similar types, the DLL can find the field offset pointer
of a member name of the type with a DMPL_get_field_offset_ft function.

James Cownie et al.144

The remaining callback functions provide important utility operations to the DLL.
The DLL can allocate and free debugger memory with DMPL_malloc_fp and
DMPL_free_fp. The DLL should not call malloc and free directly. The DLL can
determine the error string associated with an error code by calling
DMPL_error_string_fp. DMPL_prints_fp allows the DLL to print any
messages. The DLL should not print messages directly.

4 . 2 . 2 DMPL Debugger Functions
The debugger accesses several functions in the DMPL interface. To display the value
or address of the thread variable, the debugger will make calls to the DLL to get the
absolute address of the object. The DLL also provides initialization, version informa-
tion and the abilities to release process and thread information and to convert an error
code to a string. The rest of this section describes the functions for debugger use,
which are defined in Fig. 7.

extern int DMPL_initialize (const DMPL_callbacks_t *);
extern const DMPL_rtl_names *DMPL_get_rtl_names (int);
extern int DMPL_demangle_name (const char * mangled_name,

int * res_len, char * demangled_name,
int buf_len, int * flags, int * decl_line);

extern int DMPL_get_tls_address
(DMPL_thread_t *, DMPL_taddr_t, DMPL_taddr_t *);

extern int DMPL_destroy_thread_info (DMPL_thread_info_t *);
extern int DMPL_destroy_process_info (DMPL_process_info_t *);
extern const char *DMPL_version_string (void);
extern int DMPL_version_compatibility (void);
extern const char *DMPL_error_string (int);

Fig. 7. DMPL functions accessed by the debugger

The debugger calls DMPL_get_rtl_names in order to obtain the names of the
run time library names invoked by a given OpenMP construct. The parameter of this
function is a DMPL language code; as described previously, the parameter is passed as
an int to avoid size conflicts. The return value is a pointer to a struct of two func-
tions:

typedef struct {
 const char *main_task_dispatcher;
 const char *microtask_invoker;
} DMPL_rtl_names;

The main_task_dispatcher function is the outlined routine called by the main task
to invoke the OpenMP parallel region or worksharing construct, which we refer to as
a microtask. The second function invokes the actual microtask.

The DMPL interface provides the debugger with scoping functions to demangle
mangled names and to locate the actual storage used for thread private variables. The
res_len parameter of the DMPL_demangle_name function allows the debugger
to allocate more space for the result if it is too long for the initial deman-

DMPL: An OpenMP DLL Debugging Interface 145

gled_name buffer. Thread private data can be implemented in various ways: thread
local storage system facilities, virtual-address-map page aliasing, and pthread key
specific data. Thus, we provide DMPL_get_tls_address to obtain the actual
address of a thread private object in this thread, given its apparent address in the proc-
ess or thread.

The remaining functions in the DMPL interface that are used by the debugger pro-
vide important utility functions. The debugger releases any process or thread informa-
tion associated by the DLL with a process (or thread) by calling
DMPL_destroy_process_info (or DMPL_destroy_thread_info). The
debugger ensures that the DLL provides the expected interface through the two
versioning functions DMPL_version_string and DMPL_version_com-
patibility. Finally, DMPL_error_string converts error codes to strings for
the debugger.

5 Discussion

Although standards exist for OpenMP directives, there is currently no standard for the
information that compilers or other tools require to present information consistently
with the OpenMP programming model. Since compilers implement OpenMP direc-
tives differently, we propose that DMPL be adopted as a standard interface for provid-
ing debuggers and similar tools that information.

The POMP interface has already been proposed for providing information to per-
formance tools. A legitimate question is whether performance tools and debuggers
could be properly served by a unified information interface. However, the interfaces
work in fundamentally different ways - the performance interface works within the
application while the debugger interface is external. Compiler, run-time library and
tool implementers have agreed during meetings of the OpenMP Tools Committee that
they prefer two interfaces. The compiler writers and run-time system implementers
have committed to providing two interfaces if the committee adopts them.

Even though the access mechanisms are sufficiently different to justify two standard
information interfaces, there is significant intersection of the information needed for
them. For example, DMPL includes functions to demangle names. Name demangling
is also useful to performance tools. For this reason, we anticipate a set of low-level
information standards or vendor supplied tools, such as a name demangler.

DMPL is a basic interface for the OpenMP debugging DLL. Implementations of
this library with slightly different naming conventions are already available from IBM
and Intel for its Guide compilers. OpenMP debugging on those platforms with current
versions of TotalView demonstrates that DMPL provides significant support for the
OpenMP programming model [4]. However, DMPL is an evolving interface and we
recognize that additional functions and types may be needed. The Tools Committee
will iterate on this specification and will eventually adopt a DLL-based debugger inter-
face standard.

James Cownie et al.146

References

1. OpenMP Architecture Review Board: OpenMP Fortran Application Program Interface,
Version 2.0. OpenMP Architecture Review Board (2000)

2. OpenMP Architecture Review Board: OpenMP C and C++ Application Program Interface,
Version 2.0. OpenMP Architecture Review Board (2002)

3. Mohr, B., Malony, A.D., Hoppe, H.C., Schlimbach, F., Haab, G., Hoefflinger, J., Shah,
S.: A Performance Monitoring Interface for OpenMP. In Proceedings of the Fourth Euro-
pean Workshop on OpenMP (EWOMP 2002). Rome (2002)

4. Etnus LLC: TotalView Reference Guide, Version 6.0. Etnus LLC (2002)
5. Cownie, J., Gropp, W.: A Standard Interface for Debugger Access to Message Queue

Information in MPI. Sixth European PVM/MPI Users' Group Meeting. (1999)
6. Carlson, W.W., Draper, J.M., Culler, D.E., Yelick, K., Brooks, E., Warren, K.: Introduc-

tion to UPC and Language Specification. Technical Report CCS-TR-99-157, Institute
for Defense Analysis, Center for Computer Sciences, Bowie, Maryland (1999)

Is the Schedule Clause Really Necessary

in OpenMP?

Eduard Ayguadé1, Bob Blainey2, Alejandro Duran1, Jesús Labarta1,
Francisco Mart́ınez1, Xavier Martorell1, and Raúl Silvera2

1 CEPBA-IBM Research Institute
Departament d’Arquitectura de Computadors

Universitat Politècnica de Catalunya
Jordi Girona, 1-3, Barcelona, Spain

{eduard,aduran,jesus,fmartin,xavim}@ac.upc.es
2 IBM Toronto Lab, 8200 Warden Ave

Markham, ON, L6G 1C7, Canada
{blainey,rauls}@ca.ibm.com

Abstract. Choosing the appropriate assignment of loop iterations to
threads is one of the most important decisions that need to be taken
when parallelizing Loops, the main source of parallelism in numerical ap-
plications. This is not an easy task, even for expert programmers, and it
can potentially take a large amount of time. OpenMP offers the schedule
clause, with a set of predefined iteration scheduling strategies, to specify
how (and when) this assignment of iterations to threads is done. In some
cases, the best schedule depends on architectural characteristics of the
target architecture, data input, ... making the code less portable. Even
worse, the best schedule can change along execution time depending on
dynamic changes in the behavior of the loop or changes in the resources
available in the system. Also, for certain types of imbalanced loops, the
schedulers already proposed in the literature are not able to extract the
maximum parallelism because they do not appropriately trade–off load
balancing and data locality. This paper proposes a new scheduling strat-
egy, that derives at run time the best scheduling policy for each parallel
loop in the program, based on information gathered at runtime by the
library itself.

1 Introduction

Parallel loops are the most important source of parallelism in numerical ap-
plications. OpenMP, the standard shared–memory programming model, allows
the exploitation of loop–level parallelism thorough the DO work–sharing and
PARALLEL DO constructs. Iterations are the work units that are distributed among
threads as indicated in the SCHEDULE clause: STATIC, DYNAMIC and GUIDED (all
of them with or without the specification of a chunk size). While in a STATIC
schedule the assignment of iterations to threads is defined before the computa-
tion in the loop starts, both DYNAMIC and GUIDED do the assignment dynamically
as the work is being executed. In DYNAMIC threads get uniform chunks while in

M.J. Voss (Ed.): WOMPAT 2003, LNCS 2716, pp. 147–159, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

148 Eduard Ayguadé et al.

GUIDED chunks are progressively reduced in size in order to reduce scheduling
overheads at the beginning of the loop and Cavour load balancing at the end.

Deciding the appropriate scheduling of iterations to threads may not be an
easy task for the programmer, specially when it depends on dynamic issues, such
as input data, or when memory behavior is highly dependent on the schedule
applied. Load unbalancing or high cache miss ratios, respectively, are usually
symptoms of inappropriate iteration assignments. In OpenMP, the program-
mer can play with the predefined schedules mentioned above or embed its own
scheduling strategy in the application code if none of them is appropriate. The
chunk size (or number of contiguous iterations assigned to a thread) is a param-
eter that needs to be appropriately set in order to avoid non–friendly memory
assignments of iterations and/or excessive run-time overheads in the process of
getting work. Even worse, the decisions may depend on parameters of the tar-
get architecture (going against performance portability, one of the key issues in
OpenMP).

The standard offers the possibility of specifying that the loop needs to be
serialized if a certain condition is met (IF clause in OpenMP). Some OpenMP
runtime systems can also decide to serialize the execution if certain conditions
(e.g. loop bounds, number of threads, ...) are met.

In order to decide a schedule strategy, some simple rules of thumb are usually
applied: STATIC for those loops with good balance among iterations; unbalanced
loops should use an interleaved schedule (STATIC with chunk) or some sort of
dynamic schedule (DYNAMIC or GUIDED). However, the use of dynamic schedules
usually incurs high scheduling overheads and its non-predictive behavior tends
to degrade data locality (non–reuse of data across loops or multiples instances
of the same loop). Although these rules work for a large number of simple cases,
they are far from complete and can lead to poor decisions. Other schedules need
to be built by the user, embedding code and data structures to implement them.

In this paper we will present a proposal to remove such burden from the pro-
grammer by letting the runtime decide which is the most appropriate schedule
for a given loop. In the next section we motivate the work by using a simple
unbalanced and applying different schedules. In section 3 we present the generic
framework of our work. In section 4 we describe our current prototype implemen-
tation. In section 5 we show the results obtained with some benchmarks. Finally
in section ?? concludes the paper and shows future directions of research.

2 Motivation and Related Work

In order to motivate the proposal presented in this paper, we will consider a
synthetic loop in which the cost of each iteration is cost(i) = k/i, k being a
parameter that depends on the number of iterations of the loop. This distributes
almost all the weight of the loop to the first iterations (the first 1% of the iteration
space accounts for 50% of the cost of the loop). During the execution, each thread
accesses a matrix indexed with its thread identifier. Therefore, the loop only has

Is the Schedule Clause Really Necessary in OpenMP? 149

temporal locality. The loop has been executed 500 times on a 4-way IBM Power4
system. Figure 1 shows the results obtained for different schedules.

In this loop, using a STATIC schedule leads to a highly unbalanced execution,
with a speedup of 1.64 with respect to the execution with one thread. Although
the use of a STATIC schedule with a chunk size of one increases the speedup to
1.97, it still does not achieve good balance. For example, if k = 10000, the work of
the first thread is 1.6 times the work of the fourth. Therefore, this is an example
in which it seems appropriate to use either a DYNAMIC or GUIDED schedule. Using
a DYNAMIC schedule we get a speedup of 1.82 due to the high scheduling overheads
and degradation of temporal locality. A GUIDED schedule, which usually tends to
reduce these scheduling overheads, is decreasing the speedup to 1.63; this is due
to the fact that some threads get excessively large chunks at the beginning that
are not well balanced with the remaining ones.

Probably, the best schedule would be ad–hoc trying to reduce scheduling
overheads, optimize load balancing, avoid false sharing or a combination of these
issues that compensate them. However, in other cases it may be even impossible
for the the programmer to calculate this ”ideal schedule” because it depends on
variables only available at runtime (architecture, input data, interaction between
loops or processes, . . .).

Other schedules, similar in nature to GUIDED, have been proposed in the
literature, such as trapezoid scheduling [1], factoring [2], and tapering [3]. These
schedules are variations of the previous ones and are tailored for certain load
unbalance patterns. Some other schedules try to take in account the geometric
form of the iteration space. For example folding is a variation of STATIC in
which iterations i and N − i are assigned to the same thread, N being the total
number of iterations. For the previous synthetic example, this schedule is unable
to improve the behavior achieving a speedup of 1.77. A study of the most suited
schedule for different loops, grouped by their iteration execution time variance
is presented in [4].

Speedup

0 1 2 3 4

Static

Static,1

Dynamic

Guided

Folding

Affinity

Adjust

Fig. 1. Speedup for different schedules on a 4-way IBM Power4

150 Eduard Ayguadé et al.

Other proposals try to achieve load balancing by applying work stealing.
They usually assign iterations to threads in a STATIC–like manner; in Affinity
Scheduling (AS) [5] threads steal chunks of work from other processors as soon
as they finish with the initially assigned work. This work stealing adds a dynamic
part to the work assignment that does not Cavour memory behavior. Affinity
Scheduling is available in the IBM OpenMP runtime system as a non–standard
feature that can be specified in the OMP RUNTIME environment variable. In our
synthetic example, affinity scheduling achieves the highest speedup of all the
available schedules (2.07). Dynamically partitioned affinity scheduling (DPAS)
[6] learns from work stealing in order to derive a new STATIC-like schedule, to
be used in subsequent instances of the loop, in which each thread has a different
chunk size. Other proposals such as Feedback Guided Dynamic Schedule (FGDS)
[7] and Feedback Guided Load Balancing [8] avoid the dynamic part by simply
measuring the amount of unbalance (without applying work stealing) and derives
a similar STATIC schedule. In [9] a different approach is used where a processor
is reserved to compute partial schedules based on the load of each processor that
are placed on the processors work queues.

The main objective of this paper is to advance one step further in the use
of dynamically derived schedules and show how they can optimize the behavior
of real applications. We propose a general framework oriented towards having
a self–tuned OpenMP runtime system and show an implementation on a real
commercial system. The runtime is able to characterize the execution of a loop
and learn from past executions in the same run in order to gradually enhance
the assignment of iterations to threads. The objective is to relieve the user from
the task of deciding the best schedule for each loop and ideally lead to better
performance. For instance, in the same synthetic example described above, our
proposed framework achieves an speedup of 3.53. The scheduling is achieved in a
completely transparent way with no additional specification from the program-
mer in the source code.

3 Dynamic Derivation of Loop Schedules

In order to decide the most suited schedule, the runtime needs to collect infor-
mation that characterizes the behavior of the loop. Although the compiler could
provide static information derived from the analysis of the source code (or even
could be provided by the user as hints), such as the initial schedule for the loop
or the identifiers of other loops with similar memory access and/or workload
patterns, most of the information can only be gathered at runtime. Our main
goal is to show that this information gathering, loop characterization and op-
timization can be done at runtime with minimal (or no) information from the
user and/or compiler and with reasonable (or even negligible) overhead.

At runtime, the information that can be dynamically observed and collected
includes: size and bounds of the iteration space, variation in the cost of the iter-
ations, memory access patterns and conflicts in the access to memory containers
(cache lines or pages), etc. In the process of observing these metrics, granularity

Is the Schedule Clause Really Necessary in OpenMP? 151

is an important issue to consider: Overall per–thread execution time versus exe-
cution time for iteration (or groups of iterations), overall per–thread cache miss
ratio (or page fault ratio) versus detailed correspondence between cache misses
(page faults) and loop iterations, . . . The accuracy level (granularity) may not
be constant during the execution of the program and vary according to the char-
acterization process itself. The first time a loop is executed, or after detecting
a high perturbation in its current characterization, the runtime could switch to
fine–grain measurement status. Once the runtime detects a stable characteriza-
tion, it could switch to a coarser–grain mode of operation, in order to minimize
unnecessary overheads.

When no information is available for a loop (e.g it is the first time the loop is
executed), the runtime could start with a predefined schedule (or even the one
suggested by the programmer) and try to characterize the loop doing fine-grain
measurements. Another possibility could be to adopt the characterization for a
another loop (for which a characterization has been done) and make fine-grain
measurements. This characterization reuse may be important in order to reduce
the time required to reach a stable characterization state. Reuse hints could
also be provided by the programmer or the compiler (e.g. providing information
about affine loops). It could even be possible that the runtime discovers affinity
relationships between loops (i.e. loops whose characterization is the same or
changes in the same way) that are executed inside an iterative sequential loop.

Our belief is that the use of work-stealing strategies during the character-
ization process should be avoided in order to prevent perturbations with the
characterization process itself. For example, work stealing adds a dynamic part
to the assignment of iterations that may worsen memory locality and increase
memory latencies both for the stealing and stolen threads. However, in some
cases this extra overhead may be compensated with load balancing, thus re-
ducing the overall time to reach a (new) efficient schedule for the loop. Loops
that are executed only once could also have a better behavior if work stealing is
applied.

Based on the available characterization, and in order to decide the best suited
assignment of iterations to threads, the runtime should try to:

– Preserve spatial locality, by assigning contiguous chunks of iterations to the
same thread whenever possible. This will optimize the access to memory
containers (cache lines or pages) and reduce the likelihood of false sharing.

– Preserve temporal locality, by reusing the same schedule in subsequent exe-
cution instances of the same loop (or an affine one). This will Cavour data
reuse.

– Balance loops, so that all threads get the same amount of work; this does
not imply the same amount of iterations.

Once the scheduling is decided, the characterization process continues in
order to detect further opportunities for refinement. As mentioned before, and
since this information gathering could have a significant impact on performance,
the runtime should be able to switch to the most appropriate granularity level,
depending on the status of the characterization itself.

152 Eduard Ayguadé et al.

Up to this point, we have not addressed possible interferences between the
schedules applied to different loops. The use of different iteration assignments in
different loops may degrade memory locality and be counter–productive. To this
end, the characterization process could consider sequences of loops and derive
decisions that optimize the behavior of the sequences and not the individual
loops.

4 Current Implementation

In this section, we describe the current prototype for the self–tuning OpenMP
runtime system that has been implemented in the XL IBM Runtime. In the
description we consider both the characterization and the decision processes. In
this prototype implementation, mainly load balancing issues are addressed.

The runtime identifies each parallel loop instance with a tuple {L, IS}. The
first component (L) of this tuple identifies the loop in the program (using the
pointer to the routine generated by the compiler that encapsulates the loop). The
second component (IS) identifies different instances of the same loop (using the
iteration space of the loop: iteration limits). Whenever possible, the information
derived by the runtime for a tuple {Li, ISj} will be re-used to initially charac-
terize other tuples {Li, ISk} that correspond to the same loop. All tuples that
correspond to the same loop Li summarize the past behavior for that loop.

For each tuple {L, IS} the following information is recorded:

– The pointer to the routine that identifies the loop.
– The iteration space description.
– The {L,IS} balancing information.
– The last subchunk information gathered by the runtime for the tuple (See
below).

– The relation of weights between iterations. In the current implementation
only two patterns are handled: constant weight, when all iteration have the
same weight, and unknown. Others patterns could be recognized if their
properties are useful for scheduling.

– The last schedule applied to the tuple.

The balance information is composed of:

– A state that indicates the actual knowledge of the balance of the {loop/iteration
space}.The possible states and their meaning are summarized in table 1.

– The number of consecutive executions that this balance state has been main-
tained.

– The actual definition of balanceness for the tuple, i.e the percent of unbalance
allowed. This definition varies among time. When there is no knowledge
about balance the limit is 10% of imbalance. Later on, as there is more
confidence the limit is increased first to 20% and later to 25%. The increment
of our definition of balance enables to elude minimal perturbations of the
system.

Is the Schedule Clause Really Necessary in OpenMP? 153

Table 1. Possible balance states

State Meaning

Unknown No balance information is known yet.

Unbalanced Runtime found that it is unable to balance the tuple.

Balanced Runtime found a schedule that balanced the tuple.

Highly balanced Runtime feels really confident that the schedule applied

will be balanced.

The transitions of the balance state are shown in figure 2. If no information
is inherited from other states, the first balance information is the Unknown
state. When a balanced execution is done a transition to the Balanced state is
done. After N unsuccessful executions the Unbalanced state is achieved. While
in this state a balanced execution, normally due to a change in behavior, takes
a transition to the Balanced state. While in the Balanced state any imbalanced
execution reverts to the Unknown state. N balanced executions in the Balance
state increases the confidence on the decision and goes to the Highly Balanced
state. An unbalanced execution in this last state reverts to the Balanced state.
Note that when there is confidence in the balance of the loop there have to
be two consecutive unbalanced executions in the last N to revert from Highly
Balanced to Unknown. This gives some tolerance to perturbations while being
able to adapt to changes in the behavior. The actual value for N is 10 times.

When a {loop/iteration space} is executed for the first time a new state is
allocated for it. If it is also the first execution of the loop the state is initialized
to an Unknown balance state and a hypothesis that the iterations weights are
constant is tried. If other iteration spaces were executed for the same loop be-
fore, the initialization is inherited from the most similar iteration space. In other
words, the balance information, the iteration information and a modified ver-
sion of the schedule applied to the other iteration space (adding or subtracting
iterations) are copied.

Unbalanced

Unknown Balanced Highly
Balanced

Unbalanced
execution

Balanced
execution

Balanced
execution

N Unbalanced
executions

Unbalanced
execution

N Balanced
executions

Fig. 2. Balance information transitions

154 Eduard Ayguadé et al.

Every time the loop starts the execution in a given iteration space, the sched-
ule to be used (and its parameters) are decided. This decision is based on the
current state of the tuple. Currently, one of two the following schedules can be
chosen:

– OpenMP STATIC.
– Non–uniform STATIC. This schedule is very similar to the previous one. Each
thread is also assigned a chunk of contiguous iterations that are determined
prior to the loop execution. However, chunks assigned to threads may be of
different size. When the size of each chunk is properly chosen a very good
load balance is achieved. Temporal and spatial localities are achieved as
in the STATIC case because of the assignment of contiguous iterations and
schedule reuse.

The scheduling decision is summarized in table 2. When something is known
about the balance of the loop, either that loop is balanced or that it is un-
balanceable, the last schedule applied is reused. In case the loop is considered
balanced this schedule will be the the one that achieved the balance. In case the
loop is considered unbalanceable the schedule will be the best schedule found
which will be used there on. When nothing is known about the balance of the
loop, either because a proper schedule that balances it has not been found yet or
because it hasn’t reached the threshold to give up, the schedule used is static if
the iterations were found to be constant, otherwise an non-uniform static sched-
ule is used with the assignment of iterations for each thread calculated based on
previous gathered measurements.

Table 2. Schedule decision function

Balance state Iteration cost Schedule

Unknown Constant Static

Unknown Non-constant Non-uniform Static

Other * Reuse previous

The assignment of iterations for each thread when the non-uniform static
schedule is used works as follows. First, the weight each thread should have is
calculated dividing the total time by the number of threads. Afterwards, sub-
chunks are assigned sequentially to the first thread. When the sum of the sub-
chunks is greater that the estimated weight per thread, the last subchunk is
broken assuming all iterations in the subchunk have the same weight, and the
number iterations of the first thread is adjusted in consequence. The remaining
iterations of the last subchunk are left to be assigned to other threads. Next, we
start assigning iterations to the second thread, and so on. If we arrive to the last
thread there are still some iterations left are assigned to the last thread.

Also when going to execute the loop, the granularity of measuring has to
be decided. Two granularities are supported: subchunk (fine granularity) and

Is the Schedule Clause Really Necessary in OpenMP? 155

thread (coarse granularity). When subchunk granularity is used, to avoid ex-
cessive overhead of measuring every single iteration, groups of iterations called
subchunks are measured. The number of these subchunks is variable for each
thread and depends of the number of iterations that have been assigned. When
thread granularity is chosen, the measures are done for the overall iterations
of each thread (so there is only one subchunk per thread). The measures right
now include only execution times. The decision of choosing between the two
granularities is taken based on the balance state of the loop as shown in table 3.

Table 3. Time measures granularity decision function

Balance state Granularity used

Unknown Fine measuring

Other Coarse measuring

After the execution of the loop a new state has to be generated. It is cal-
culated using the actual state and the measures taken from the execution. If
the execution time of each thread does not deviate from the average more than
the actual definition of balance the execution is considered balanced, otherwise
the execution was unbalanced. With this information a transition in the balance
state automaton is done. Also, based on the taken measures, if the mean itera-
tion weight per thread does not deviate from a certain threshold the iterations
are considered to be constant, otherwise iteration weights are calculated from
subchunk information. Finally, current schedule decision are saved as the last
schedule applied. If this schedule also resulted in the best schedule applied so
far it is saved as the best schedule used.

With this runtime environment, loops that would require the use of STATIC,
DYNAMIC, GUIDED or even other schedules not available in OpenMP (such as
folding) can be efficiently executed, as shown in the evaluation section.

5 Evaluation

In order to evaluate the proposed schedule, we have used some programs from
the SPEComp suite [10] (swim, ammp, gafort, apsi, wupwise, and art), class A
NAS OpenMP benchmarks [11] (bt, ft, cg, sp, and mg), and a computational
kernel that calculates the Legendre polynomial. They are OpenMP versions that
make use of the SCHEDULE clause.

When a parallel do loop does not specify an schedule (using the SCHEDULE
clause) it defaults to a special value: RUNTIME. This value means that the actual
schedule to be used can be specified in the environment variable In order to
specify a schedule not specified in the standard, we use OMP RUNTIME. If this
variable is not specified the schedule used is implementation dependent, thought
typically is STATIC. Two different kind of tests have been run: the first run

156 Eduard Ayguadé et al.

bt.A cg.A ft.A sp.A mg.A

s
p
e
e
d
u
p

0

1

2

3

4

5

default adjust

(a) 4 processors

bt.A cg.A ft.A sp.A mg.A

s
p
e
e
d
u
p

0

2

4

6

8

default adjust

(b) 8 processors

bt.A cg.A ft.A sp.A mg.A

s
p

e
e

d
u

p

0

4

8

12

16

default adjust

(c) 16 processors

Fig. 3. Speedups for the NAS benchmarks

with the schedules originally set in the benchmark, and OMP RUNTIME defined as
STATIC. In the second test, we eliminated the SCHEDULE clauses of all parallel
loops and set the OMP RUNTIME environment variable to ADJUST, specifying that
the schedule described in Section 4 should be applied.

The benchmarks were run in a p690 32-way Power4 [12] machine at 1.1
Ghz with 128 Gb of RAM. We used the IBM’s XLF compiler with the -O3
-qipa=noobject -qsmp=omp flags, and the operating system was AIX 5.1 .

Programs bt, ft, cg, sp, mg, swim, apsi, and wupwise use STATIC schedules.
The programs ammp, gafort and art use GUIDED schedules. The Legendre kernel
has two triangular loops that are programmed with a ”folding” schedule embed-
ded in the application code. In mg, is interesting to note that the iteration space
changes from one execution to another.

Figure 3 shows the results for the NAS benchmarks, on the x-axis are the
benchmarks and on the y-axis is the speedup achieved for the default schedule
and for the adjust runtime. It can be seen that the results obtained from both
methods are almost equivalent (the difference is always below 5%). This is due
the NAS benchmarks have loops very balanced with good locality by default
and there is little room for improvement here. The important thing is that our
mechanism is able to decide also a STATIC schedule for this type of loops, that
are quite common, with a negligible overhead in reaching that decision.

Is the Schedule Clause Really Necessary in OpenMP? 157

swim ammp gafort apsi wupwise art

s
p
e
e
d
u
p

0

1

2

3

4

default adjust

(a) 4 processors

swim ammp gafort apsi wupwise art

s
p
e
e
d
u
p

0

2

4

6

8

default adjust

(b) 8 processors

swim ammp gafort apsi wupwise art

s
p
e
e
d
u
p

0

4

8

12

16

default adjust

(c) 16 processors

Fig. 4. Speedups for the SPEComp benchmarks

Figure 4 shows the results for the SPEComp benchmarks. Notice that the
ones that use STATIC schedules achieve the same performance with differences
below 3%. Of the programs that use GUIDED schedules, ammp is really improved
by our method (27% with 4 processors, 22% with 16 processors). The reason for
this is that the non–uniform static schedule derived by the runtime has much
better locality, because iterations are executed contiguously and the schedule
is reused, than the original schedule. The improvement of gafort is negligible
(below 4%). As gafort makes random vector accesses thus we do not obtain the
locality gains seen in ammp. The art benchmark is the worse case our method
can find, as the main code is a loop executed just one time, and we cannot make
use of the knowledge obtained in that first execution. As we see, our method
needs loops that are executed iteratively. To solve this cases a schedule that is
more flexible to imbalanced codes than STATIC should be used the first time
(such as the Affinity schedule), but right now the original code performs a 20%
better that our proposal.

In figure 5 are the results for the Legendre kernel results. In addition to the
default folding schedule and adjust, the best OpenMP schedules found (dynamic,
16 for 4 processors and static, 4 for 8 and 16 processors) are also shown. Note that
one user that decided to use as schedule dynamic,16 after some basic analysis
in a minor configuration would be fooled if later he would run it in a high end

158 Eduard Ayguadé et al.

legendre

s
p
e
e
d
u
p

0

1

2

3

4

5

dynamic,16 static,4 folding adjust

(a) 4 processors

legendre

s
p
e
e
d
u
p

0

2

4

6

8

10

dynamic,16 static,4 folding adjust

(b) 8 processors

legendre

s
p
e
e
d
u
p

0

4

8

12

16

dynamic,16 static,4 folding adjust

(c) 16 processors

Fig. 5. Speedups for the Legendre kernel

production system. In any case, our proposal is able to find a non–uniform static
schedule that performs as well as the ”hardwired” folding schedule (differences
are below 5%) and much better than any OpenMP schedule (from 16% to 41%
better).

Acknowledgments

Authors want to thank Julita Corbalan for her insightful comments. This work
has been supported by the IBM CAS program, the POP European Future
Emerging Technologies project under contract IST-2001-33071 and by the Span-
ish Ministry of Science and Education under contract TIC2001-0995-C02-01.

References

1. T.H. Tzen and L.M. Ni. Trapezoid self-scheduling scheme for parallel computers.
IEEE Trans. on Parallel and Distributed Systems, 4(1):87–98, 1993.

2. E. Schonberg, S.F. Hummel, and L.E. Flynn. Factoring: A practical and robust
method for scheduling parallel loops. Communications of the ACM, 35(8):90–101,
1992.

Is the Schedule Clause Really Necessary in OpenMP? 159

3. S. Lucco. A dynamic scheduling method for irregular parallel programs. In Pro-
ceedings of ACM SIGPLAN’92 Conference on Programming Language Desing and
Implementation, pages 220–211, 1992.

4. Kelvin K. Yule and David J. Lilja. Categorizing parallel loops based on iteration
execution time variances. Technical Report HPPC-94-13, University of Minnesota,
1994.

5. E. P. Markatos and T. J. LeBlanc. Using processor affinity in loop scheduling on
shared-memory multiprocessors. Technical Report TR410, 1992.

6. S. Subramaniam and D.L. Eager. Affinity scheduling of unbalanced workloads. In
SuperComputer’94 Conference Proceedings, 1994.

7. J. Mark Bull. Feedback guided dynamic loop scheduling: Algorithms and experi-
ments. In European Conference on Parallel Processing, pages 377–382, 1998.

8. Francis H. Dang and Lawrence Rauchwerger. Speculative parallelization of par-
tially parallel loops. In Languages, Compilers, and Run-Time Systems for Scalable
Computers, pages 285–299, 2000.

9. Babak Hamidzadeh and David J. Lilja. Self-adjusting scheduling: An on-line opti-
mization technique for locality management and load balancing. In International
Conference on Parallel Processing, pages 39–46, 1994.

10. Vishal Aslot, Max Domeika, Rudolf Eigenmann, Greg Gaertner, Wesley B. Jones,
and Bodo Parady. SPEComp: A new benchmark suite for measuring parallel com-
puter performance. Lecture Notes in Computer Science, 2104, 2001.

11. D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, D. Dagum,
R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon,
V. Venkatakrishnan, and S. K. Weeratunga. The NAS Parallel Benchmarks. The
International Journal of Supercomputer Applications, 5(3):63–73, Fall 1991.

12. Steve Behling et al. The POWER4 processor introduction and tuning guide. Tech-
nical Report SG24-7041-00, International Technical Support Organization, Novem-
ber 2001. ISBN 0738423556.

Extended Overhead Analysis for OpenMP
Performance Tuning

Chen Yongjian, Wang Dingxing, and Zheng Weimin

Institute of HPC, Tsinghua University, China
chenyj99@mails.tsinghua.edu.cn

{dxwang,zwm-dcs}@tsinghua.edu.cn

Abstract. Overhead analysis was developed as a performance tuning
approach for parallel programming and were adopted by several perfor-
mance analysis systems for OpenMP programs. In this paper, an ex-
tended overhead analysis scheme based on layered model is proposed for
OpenMP programming, to further enhance the capability of overhead
analysis and thus make the OpenMP performance tuning easier. An ex-
ample case called ILP/TLP overlap is studied in detail to show the idea
of layered overhead model, and a new way to organize the overhead hi-
erarchically is also presented based on the layered overhead model.

1 Introduction

OpenMP was designed to be easy to use for parallelization. However, to obtain
high performance, the programmer still needs knowledge about both the ap-
plication and the underlying system, which imposes too many obstacles in the
way to effective parallel programming using OpenMP. In order to address such
problem, the performance tuning assistant tools special for OpenMP, should be
more powerful to make OpenMP programming even easier.

Overhead analysis is just another approach for performance tuning. Gener-
ally, overhead is defined and broken down in the following way:

Tp =
Ts

p
+

∑

i

Oi ⇒ Oi = T i
p − T i

s

p
(1)

or in a more familiar Amdahl’s law view:

S =
Ts

Tp
=

p

1 +

∑
i

Oi

Ts

=
p

1 +
∑
i

Or
i

(2)

Tp and Ts are parallel time and the best sequential time of the program
respectively, and p is the processor number. Oi is the overhead of category ”i”.
In (2), Or

i is called relative overhead of category ”i”.
To approach the ideal speedup, overhead analysis assists the programmer to

eliminates these overheads according to the priority of the relative overheads.
The rationale behind is that, if we can break down the overhead into detailed

M.J. Voss (Ed.): WOMPAT 2003, LNCS 2716, pp. 160–169, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Extended Overhead Analysis for OpenMP Performance Tuning 161

enough categories, so that each overhead class is just corresponding to one iden-
tified cause, then by measuring the overhead, we can directly trace back to their
causes and thus reduce or even eliminate performance overhead in a recipe way.
Since OpenMP is rather easy, it is possible to enumerate most of the overheads
in OpenMP programs for typical OpenMP constructs. In fact, the OpenMP con-
structs used in practical programs fall into several basic sets, and to these typical
constructs, not too much parameters can be adjusted for performance reason.

For the usage of overhead analysis, we take the philosophy that performance
tuning system should provide tools to help programmers to understand the per-
formance and answer performance questions, and the programmers decide the
others([11]). As stated in [4], the performance tuning process is essentially an
optimization problem, so the most hopeful benefits of overhead analysis is to
reduce the search effort to find the optimal implementation. A possible use case
of overhead analysis is that it can identify performance anomalies, and relate
these anomalies back to predefined causes and improvement suggestions. Here
we use the phrase ”performance anomaly” to represent those ”unexpected per-
formance”.

In this paper, we use a layered model for overhead analysis, and an example
case called TLP (Thread Level Parallelism) and ILP (Instruction Level Paral-
lelism) overlap in OpenMP programs is discussed to demonstrate the idea, and
show that how this layered model can help programmers to locate and under-
stand the performance at OpenMP language level. And then we extend current
overhead analysis for OpenMP programs by introducing a new category of over-
head and reorganizing the overhead classifications, to apply the layered model
and to allow more direct tuning.

The rest of the paper is organized in the following way: related work on
overhead analysis is presented in section 2. A layered model for overhead analysis
is discussed in section 3, and to illustrate the idea, a case study using an example
called ILP/TLP overlap is presented in section 4. In section 5, an extended
overhead analysis based on the layered model is given out. Conclusions and
future works come as section 6, while acknowledgment and bibliography come
as the last parts.

2 Related Work on Overhead Analysis

Use of overhead as performance metrics is not new([13]). The definition of over-
head in this paper is raised in [6], and it’s a natural extension to the conventional
cost metrics by making distinction between raw performance and non-achieved
performance.

[6] further suggested using overhead classification and measurement as a
framework to describe the behavior of parallel programs. A hierarchical classifi-
cation of overhead is developed because such organization are flexible to provide
overhead information in different detail level and more suitable for refinement
style performance tuning. Other classification schemes are proposed in [9] and
[8], with only slight differences.

162 Chen Yongjian et al.

Tools based on overhead analysis have been developed in past five years, in-
clude Ovaltine([9]) and SCALEA([8]). In the latter, the measurement and anal-
ysis is on user defined regions rather than functions or routines, which helps to
isolate the performance anomalies and is natural to OpenMP programs since
most OpenMP constructs have region scopes. Since OpenMP is intended to be
used in an incremental way, which means that, the parallelization often involves
only local changes, and in this way, constructs in OpenMP programs can be
mapped to corresponding constructs in the sequential version. This forms the
base of region based overhead analysis.

As an early effort towards overhead analysis, [10] used lost cycle analysis
to build up analytical performance models based on measured overhead, and
intended to use it to predict performance. It’s possible to model the impact of
some OpenMP construct parameters on the performance, e.g., the schedule type
and chunksize of schedule, but in general, such a model may be too complex to
be built up.

Overhead Analysis is powerful in that it not only provides the programmer
a way to get insight about the performance characteristics, but also provides
a clearer clue about why the programs behave badly by identifying overhead
components. However, there are still many difficulties for it.

Overhead analysis tries to quantify all the non-achieved performance for par-
allel programs. Often, performance lost may be caused by low level issues rather
than OpenMP level, and moreover, Overhead Analysis still doesn’t imply a di-
rect way to further tune the programs in some cases, since the overheads of
some high level structures in the OpenMP programs may span across multiples
categories. The problem is that it doesn’t directly point back to the original
reason.

3 Overhead Analysis: A Layered Model

OpenMP is a high level language, and generally, OpenMP applications are im-
plemented by several abstract layers, as depicted in Figure 1.

In such a model, each low abstract layer implements a higher abstract layer
and the implementation details of lower level abstract layers are hidden by the
higher abstract layer. Overheads can be viewed as inefficiencies in the imple-
mentation, and these inefficiencies can be injected into the code at any of these
abstract layers, and the performance of programs written in high level is de-
termined by the implementation efficiency of each lower level abstract layer.
Several works have been done to evaluate the efficiencies of special abstract lay-
ers. For example, special benchmarks ([5] and [14]) were developed to measure
the efficiency of OpenMP implementation abstract layer.

In this layered model, overhead at a specific abstract layer can be inherent
inefficiency, such as those caused by non-optimal implementations, or inefficien-
cies induced by high level reasons. We call these high level reasons the original
overhead sources, and reasons at low level are called direct overhead sources(or
derived overhead sources). For inherent inefficiency, there are not many ways to

Extended Overhead Analysis for OpenMP Performance Tuning 163

OpenM P programs

M ulti-threaded
program s OpenM P RTL

Static Instruction
stream

Dynamic Instruction
stream

OpenM P
language
level

OpenM P
implementation

level

Execution level

Language
implementation

level

Thread Level parallelism
specified here

Instruction Level
parallelism specified here

OpenM P programs

M ulti-threaded
program s OpenM P RTL

Static Instruction
stream

Dynamic Instruction
stream

OpenM P
language
level

OpenM P
implementation

level

Execution level

Language
implementation

level

Thread Level parallelism
specified here

Instruction Level
parallelism specified here

Fig. 1. The abstract layers to implement OpenMP API

attacked them at high levels. Reducing or eliminating the induced inefficiency
by removing the overhead source is the target of overhead analysis.

In the performance tuning process, the system tends to collect performance
data at lower levels and the programmer are supposed to modify the programs at
higher levels. And to explain the overhead at some specific abstract layers to the
programmer, knowledge about these layers is also required for the programmer,
and again to fulfill this requirement is too much for average programmers. What
needed is to find a way to interpret low level overheads, and associate the direct
overhead sources with their original overhead sources(This is called mapping of
low-level cost and high-level structure in [12]). The programmer needs to view
the performance problems at the programming level, other than something that
he can not control.

Most of current performance tuning approaches don’t applies to this multi-
layer model, and performance metrics from different abstract levels are present
all at once to programmers for their choice. To simplify the tuning process, the
details about lower levels should be hidden away from the programmer as much
as possible while only a high level summary should be presented.

In the next section, we use an example, called TLP and ILP overlap to
illustrate this idea.

4 Case Study: TLP and ILP Overlap

The OpenMP program presented in Code 1 causes big performance trouble when
executing on a 4 Itanium2 CPU SMP Linux box comparing with its sequential
execution.

164 Chen Yongjian et al.

Code 1: pi.f to calculate π

program compute_pi
integer n, i
double precision w, x, sum, pi, f, a
f(a) = 4.d0 / (1.d0 + a * a)
n = 100000000
w = 1.0d0/n
sum = 0.0d0

!$OMP PARALLEL DO private(x) schedule(STATIC,1) reduction(+: sum)
do i = 1, n

x = w * (i - 0.5d0)
sum = sum + f(x)

enddo
!$OMP END PARALLEL DO

pi = w * sum
print *, ’computed pi = ’, pi

Refinement methods can be used to isolate the performance bottleneck, and
locate it to the parallel-do loop construct in above code. Table 1 presents execu-
tion level performance metrics such as the execution cycle count of the parallel-do
loop, and overheads are derived from these metrics.

Table 1. Execution cycle count of compute pi. The data were collected using
pfmon2.0 ([1]). And for comparison, different compilation options are used to
produce a sequential version, an OpenMP version with SWP enabled and an
OpenMP version with SWP disabled. Data are presented with a postfix: ”b”
means ”billion” and ”m” means ”million”. CPU CYCLES, INST DISPERSED,
IA64 INST RETIRED, NOPS RETIRED and DISP STALLED are PMU event
code name ([2]), stand for total CPU cycles, dispersed instruction number, re-
tired instruction number, retired NOP instruction number and stalled CPU cy-
cles respectively. DISP STALLED count is presented to show that the load is
even distributed and synchronization overhead is small. The machine used to pro-
duce the result is a 4–Itanium2 SMP box, running Linux with kernel 2.4.19smp,
and the code is compiled using ORC1.1 (Open Research Compiler, [3]) with
OpenMP enabled, running above Intel’s GUIDE OpenMP runtime library

w/SWP enabled w/SWP disabled
sequential

CPU0 CPU1 CPU2 CPU3 CPU0 CPU1 CPU2 CPU3
CPU CYCLE 0.78b 2.85b 2.85b 2.85b 2.85b 1.85b 1.85b 1.85b 1.85b

INST DISPERSED 4.77b 15.5b 15.5b 15.5b 15.5b 2.25b 2.25b 2.25b 2.25b
IA64 INST RETIRED 4.68b 10.2b 10.2b 10.2b 10.2b 2.23b 2.23b 2.23b 2.23b
false predicated inst. 0.09b 5.3b 5.3b 5.3b 5.3b 0.02b 0.02b 0.02b 0.02b

NOPS RETIRED 2.73b 8.8b 8.8b 8.8b 8.8b 1.18b 1.18b 1.18b 1.18b
DISP STALLED 0.06m 75.2m 75.6m 75.5m 75.6m 1.09b 1.09b 1.09b 1.09b

Extended Overhead Analysis for OpenMP Performance Tuning 165

The relative overhead is 3.4, rather bigger than what is expected. Current
overhead analysis schemes have problem to explain this overhead. Because the
retired instruction number increased by a factor of over 8 (mostly NOP oper-
ations in this example), in Bull’s ([6]) classification, this overhead should be
conceptually identified as ”additional computation”, and other overheads are to
be identified as ”unidentified overhead”. Using the method described in ([7]) to
quantify ”additional computation”, by comparing assembly codes, can’t answer-
ing why the retired instruction numbers differ so much. Even when this overhead
can be obtained by using region profiling and excluding the runtime library cost,
the programmer still have no idea about what causes this overhead. This case
well exhibits the difficulties current overhead analysis faced.

A top-down query process based on the layered model can help to understand
what happens. Since at the OpenMP language abstract layer, nothing can be
found out to explain the overhead directly, we must look down to lower abstract
layers. At the OpenMP implementation abstract layer, the OpenMP compiler
will process the parallel do loop and produce code like the following(C style).

Code 2. Possible OpenMP compiler generated code for the loop in Example 1.

_rtl_static_init(1,100000000,1,1, /*lower,upper,stride,chunksize*/
¤t_lower, ¤t_upper, ¤t_stride);

while (current_lower<=100000000)
{

if (current_upper>100000000) current_upper = 100000000;
for (local_i=current_lower; local_i<=current_upper; local_i++)
{

/* do loop content, will be pipelined by SWP */
}
current_lower += current_stride;
current_upper += current_stride;

}

But knowledge at this level still can not explain the overhead measured at
execution level. While OpenMP implementation level profiling can provide in-
formation about the schedule overhead, it can only tell that the main overhead
lies in the while loop.

The direct overhead source lies at the language implementation level. At the
language implementation layer, the inner most loop in Code 2 will be Software-
pipelined by the compiler to pursuit ILP, and at the execution layer, when chunk
size set to 1, the software-pipelined loop doesn’t bring expected performance
since the loop only runs for one iteration (tripcount=1). The SWP needs more
iterations to get full profit.

This suggests that back to the OpenMP language level, the schedule chunk-
size is the original overhead source. Figure 2 depicts the cycle counts of the above
program with the chunk size varying from 1 to 256 by power 2. The result shows,

166 Chen Yongjian et al.

with chunk size set to 128, the performance lost against best case (using static
even schedule) is about 10% (0.22b vs. 0.2b).

0 50 100 150 200 250 300

0

2

4

6

8

10

P
M
U
 c
o
u
n
t(
b
ill
io
n
)

n (static schedule chunk size)

 Instruction Retired
 CPU Cycle
 Nops Retired

Fig. 2. Execution cycle count decrease when using larger chunk size for schedule

To associate the direct overhead source at language implementation level
with the original overhead source at OpenMP language level, we can answer
the performance questions at OpenMP language level instead of presenting the
direct overhead reason at low level. This example also shows that when the
thread task granularity is too small, ILP profits will be eliminated, and in the
case of OpenMP, we call this overlap between ILP and TLP since OpenMP is
generally used to explore parallelism at loop level.

5 A New Overhead Classification Scheme

For OpenMP programmer, three basic issues in OpenMP programming are par-
allelism identification, parallel task distribution/scheduling and synchronization.
Thus OpenMP directives can be naturally grouped, and the classification of over-
heads in previous work can be reorganized to associate with them. The idea can
be illustrated in Figure 3.

The overhead are broken down according to OpenMP construct elements in
a non-intersectant way, and the mapping between OpenMP construct elements
and low level overhead is one-to-many. The overhead measurement process is
directed by high level instructions and performance explanations are summaries
from lower abstract layers up to OpenMP language layer.

The classification is still in a hierarchical way (also note that the following
classification is only to demonstrate the idea and many sub-categories are not

Extended Overhead Analysis for OpenMP Performance Tuning 167

OpenM P
language
level

OpenM P
implementation

level

Execution level

Language
implementation

level

Parallelism
identification

Task
assignment/
scheduling

synchronization Unexplained
overhead

OpenM P
language
level

OpenM P
implementation

level

Execution level

Language
implementation

level

Parallelism
identification

Task
assignment/
scheduling

synchronization Unexplained
overhead

Fig. 3. Extended Overhead classification based on layered model

listed). All the overheads are defined for regions in the programs. Note that we
distinguish static regions in source code with dynamic regions in the execution.

5.1 Parallelism Identification

Parallel Region construct and Work-Sharing constructs (and Combined Parallel
Work–Sharing constructs, and associated data environment constructs) fall into
this group, but not include the SCHEDULE subclause. They identify and enable
the parallelism of code regions, but don’t specify exact tasks executed by threads.
Two categories of Overhead are in this group.

– Fork–join threads, initialization and combining cost of Reduction, firstpri-
vate, lastprivate, and threadprivate associated overhead

– Implicit synchronization associated with these constructs
– Some sub-categories of data movement caused by program transformation
– Loss of Parallelism

• Unparallelized code region
• Replicated code region
• Partial parallelized code region, and ordered clause

We take the concept of [9] that the parallelism should be checked in Runtime
regions rather than in static code region because multiple static code regions
may run in parallel (e.g., the effect of NOWAIT subclause). Runtime regions
always consist of one or more static code regions.

Overheads in this group suggest that more parallelism is needed, either by
specifying NOWAIT or identifying new Work-Sharing constructs.

168 Chen Yongjian et al.

5.2 Parallel Task Assignment/Scheduling

Any task assignment and schedule directives/subclauses falls into this group. For
OpenMP, it mainly includes SCHEDULE clause. This kind of constructs specify
the tasks executed by each thread, and it brings many effects on the execution
behavior.

Overheads produced by this group include:

– Scheduling
– Some sub-categories of data movement, caused by schedule
– Load imbalance caused by schedule
– Impact on ILP

Note that data-movement overhead is also presented in this group.
Overheads in this group suggest that an better schedule scheme may exist.

5.3 Synchronization Clause

This includes all the synchronization clauses.
It contains the synchronization overhead.

– Synchronization overhead
• locks
• barriers
• atomic operations

This classification is mainly a reorganization of previous identified overheads,
and a few more categories are added. But the benefits is obvious in that it
provides the programmer a way to tuning their OpenMP programs in a ”recipe”
style. For the example discussed above, the overhead produced is categorized
into scheduling class and thus related with the schedule scheme. In this way, the
overhead analysis can remind the programmer that there are something wrong
with the schedule parameters, and that’s just the original overhead source.

6 Conclusion and Future Work

A layered model can help us understand the problem of overhead analysis clearer
and organize the overhead classification in a better way. And the example, the
TLP and ILP overlap in OpenMP programs, not only raises a new category of
overhead, but also provides us a case to study how to explain performance using
the layered model. The layered model and the case study shows that an extension
to current overhead classification is needed to help the OpenMP programmer to
do performance tuning in a more direct way. This may further simplifies the
work for OpenMP performance tuning and we also hope that the work can be
used by parallel compilers to generate more efficient OpenMP code.

The work is based on our previous work of enabling the OpenMP processing
ability for ORC. A new project of adding OpenMP profiling support to ORC
using perflib is ongoing, as a base to support the Overhead Analysis described
above.

Extended Overhead Analysis for OpenMP Performance Tuning 169

Acknowledgment

The work is supported by Intel’s research funding, and partly supported by HP’s
gelato project. And at here, the advices given by reviewers should be sincerely
acknowledged.

References

1. Performance monitor for IA64.
http://www.hpl.hp.com/research/linux/perfmon/

2. Intel Inc.: Intel Itanium 2 Processor Reference Manual for Software Development
and Optimization (June 2002)

3. Open Research Compiler. http://ipf-orc.sourceforge.net.
4. G. D. Riley, J. M. Bull, J. R. Gurd: Performance Improvement Through Overhead

Analysis: A Case Study in Molecular Dynamics. In Proc. of 11th Supercomputing
(July 1997) 36–43

5. J. M. Bull: Measuring Synchronisation and Scheduling Overheads in OpenMP. In
Proc. of First European Workshop on OpenMP(EWOMP1999) (September 1999)
99–105.

6. J. M. Bull: A hierarchical classification of overheads in parallel programs. In Proc.
of First IFIP TC10 International Workshop on Software Engineering for Parallel
and Distributed Systems (March 1996) 208–219

7. M. K. Bane, G. D. Riley: Automatic Overheads Profiler for OpenMP Codes. In
Proc. of the Second European Workshop on OpenMP (EWOMP2000)(September
2000)

8. Hong-Linh Truong, Thomas Fahringer: SCALEA: A Performance Analysis Tool
for Distributed and Parallel Programs. In Proc. of the 8th International EuroPar
Conf. (August 2002)

9. M. K. Bane: Extended Overhead Analysis for OpenMP. In Proc. of the 8th Inter-
national EuroPar Conf. (August 2002)

10. M. E. Crovella, T. J. LeBlanc: Parallel Performance Prediction Using Lost Cycles
Analysis. In Proc. of 8th Supercomputing (1994) 600–610

11. J. K. Hollingsworth: Finding Bottlenecks in Large Scale Parallel Programs. Doctor
Thesis, Department of Computer Science, University of Wisconsin-Madison. (1994)

12. R. B. Irvin: Mechanisms for Mapping High-Level Parallel Performance Data. In
Proc. of the ICPP Workshop on Challenges for Parallel Processing. (August 1996)

13. J. Kohn, W. Williams: ATExpert. Journal of Parallel and Distributed Computing,
Vol. 18 (1993) 205–222.

14. Matthias Müller: Some simple OpenMP optimization techniques. In the Workshop
on OpenMP Applications and Tools (WOMPAT 2001) (July 2001)

Supporting Realistic OpenMP Applications on a

Commodity Cluster of Workstations

Seung Jai Min, Ayon Basumallik, and Rudolf Eigenmann�

School of Electrical and Computer Engineering
Purdue University, West Lafayette, IN 47907-1285

http://www.ece.purdue.edu/ParaMount

{smin,basumall,eigenman}@ecn.purdue.edu

Abstract. In this paper, we present techniques for translating and op-
timizing realistic OpenMP applications on distributed systems. The goal
of our project is to quantify the degree to which OpenMP can be ex-
tended to distributed systems and to develop supporting compiler tech-
niques. Our present compiler techniques translate OpenMP programs
into a form suitable for execution on a Software DSM system. We have
implemented a compiler that performs this basic translation, and we
have proposed optimization techniques that improve the baseline perfor-
mance of OpenMP applications on distributed computer systems. Our
results show that, while kernel benchmarks can show high efficiency for
OpenMP programs on distributed systems, full applications need careful
consideration of shared data access patterns. A naive translation (similar
to the basic translation done by OpenMP compilers for SMPs) leads to
acceptable performance in very few applications. We propose optimiza-
tions such as computation repartitioning, page-aware optimizations, and
access privatization that result in average 70% performance improvement
on the SPEC OMPM2001 benchmark applications.

Keywords: OpenMP Applications, Software Distributed Shared Mem-
ory, benchmarks, performance characteristics, optimizations.

1 Introduction

OpenMP [1] has established itself as an important method and language exten-
sion for programming shared-memory parallel computers. While OpenMP has
clear advantages on shared-memory platforms, message passing is today still the
most widely-used programming paradigm for distributed-memory computers. In
this paper, we explore the suitability of OpenMP for distributed systems as well.

� This material is based upon work supported in part by the National Science Foun-
dation under Grant No. 9703180, 9975275, 9986020, and 9974976. Any opinions,
findings, and conclusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the National Science Foun-
dation.

M.J. Voss (Ed.): WOMPAT 2003, LNCS 2716, pp. 170–179, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Supporting Realistic OpenMP Applications 171

Our basic approach is to use a Software DSM (Distributed Shared Memory) sys-
tem, which provides the view of a shared address space on top of a distributed-
memory architecture. To this end, we have implemented a compiler that trans-
forms OpenMP programs into Treadmarks Software DSM programs [2]. This
paper makes the following specific contributions.

– We describe our compiler infrastructure that can translate OpenMP appli-
cations into Software DSM programs.

– We measure the baseline performance of the application-level SPEC
OMPM2001 benchmarks on a distributed memory system, and we analyze
the performance behavior.

– We present optimization techniques that enhance the baseline performance
of real OpenMP applications on distributed memory system.

Our work is closely related to the following projects. In [3], the authors im-
plemented OpenMP on a network of shared memory multiprocessors and showed
their performance using a subset of the SPLASH-2 and NAS benchmark suites,
without the help of compiler optimization. In [4], compiler optimizations have
been introduced for OpenMP programs on Software DSM. Several recent papers
have proposed language extensions. For example, in [5–7], the authors describe
data distribution directives similar to the ones designed for High-Performance
Fortran (HPF) [8].

From these related efforts, we found that, while results from small kernel
programs have shown promising performance, little information on the behavior
of realistic OpenMP applications on Software DSM systems is available. In this
paper, we show how application-level benchmarks performs on Software DSM
and propose optimization techniques to improve the speedups. Also, the opti-
mization techniques that we are presenting in this paper use standard OpenMP
as input and do not rely on the user’s data distribution input.

The paper is organized as follows. Section 2 will present basic compiler tech-
niques for translating OpenMP into Software DSM programs. Section 3 will
discuss the performance behavior of such programs. Section 4 will present ad-
vanced optimizations. In Section 5, we will quantitatively evaluate our proposed
techniques, followed by conclusions in Section 6.

2 Translating OpenMP Applications into Software DSM
Programs

In the transition from shared-memory to distributed systems, the major chal-
lenge is that each participating node now has its own private address space,
which is not visible to other nodes. This difference in address spaces affects the
OpenMP translation. In case of SMPs, implementing OpenMP shared variables
is straightforward, because all variables are accessible by all threads. By contrast,
in Software DSM systems, all variables are private by default, and shared data
has to be explicitly allocated as such. This creates a challenge for the translation
of most OpenMP programs, where variables are shared by default. To address

172 Seung Jai Min et al.

SPEC OMP2001M Baseline Performance

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

wupwise swim mgrid applu equake art

S
pe

ed
up

1 Processor 2 Processor 4 Processor 8 Processor

Fig. 1. Baseline performance of four Fortran 77 and two C benchmarks from the SPEC
OMPM2001 benchmark suite on 1, 2, 4, and 8 machines

this challenge, we have developed a compiler infrastructure that performs the
following translations. First, our compiler converts the OpenMP application into
a micro-tasking form [9]. Second, it converts OpenMP shared data into the form
necessary for Software DSM systems. Also, OpenMP shared data may include
subroutine-local variables, which reside on the process stack. Stacks on one node
are not visible to other Software DSM nodes. We have developed a compiler
algorithm that identifies shared variables, using inter-procedural analysis, and
changes their declaration to an explicit allocation in shared space.

3 Performance Evaluation of Real Application
Benchmarks

In previous work [10], we measured the performance of kernel programs to es-
timate an upper bound for the performance of OpenMP applications on our
system. We also used micro-benchmarks to quantify the performance of specific
OpenMP constructs. In this section, we describe and discuss the measurements
carried out on the baseline performance of real-application benchmarks on our

Supporting Realistic OpenMP Applications 173

cluster. The SPEC OMPM2001 suite of benchmarks [11] consists of realistic
OpenMP C and Fortran applications.

To summarize our measurements, we note that a naive transformation of
realistic OpenMP applications for Software DSM execution does not give us
the desired performance. The baseline performance is illustrated in Figure 1.
We translated four SPEC OMPM2001 Fortran programs (WUPWISE, SWIM,
MGRID, APPLU) using our compiler and two SPEC OMPM2001 C (ART,
EQUAKE) programs by hand. We evaluated the performance on a commod-
ity cluster consisting of PentiumII/Linux nodes, connected via standard Ether-
net networks. These benchmark programs are known to exhibit good speedups
on shared memory systems [11]. However, their performance on Software DSM
systems shows different behavior. For Fortran applications, WUPWISE, and
MGRID exhibit speedups, whereas the performance of SWIM and APPLU de-
grades significantly, as the number of processors increases. Evidently, porting
well-performing shared-memory programs to Software DSM does not necessarily
lead to uniformly good efficiency. A large part of this performance degradation
is due to the fact that real-application benchmarks have complex memory access
patterns, which causes expensive shared memory activity on Software DSM. In
Section 4, we will analyze the causes for performance degradation further and
propose optimization techniques for OpenMP programs on Software DSM sys-
tems.

4 Advanced Optimizations

The baseline translation of SPEC OMPM2001 programs, described in Section 3,
shows that converting shared-memory programs to Software DSM programs re-
quires optimization. Software DSM implementations have shown acceptable per-
formance on kernel programs [2]. However, kernels differ from realistic shared
memory applications in two essential ways: (1) in terms of shared data access
patterns and (2) in terms of the size of the shared data space.

A realistic application typically consists of several algorithms that access the
shared data in different ways. These access patterns may result in increased
message traffic in the underlying Software DSM layer, which is expensive from a
performance viewpoint. Kernel programs do not exhibit the complex access pat-
terns of full-sized applications and thus do not bring out these additional costs.
Secondly, as the size of shared data is increased, we observed that the coherence
and update traffic increased significantly. Typical realistic shared memory ap-
plications, such as the SPEC OMPM2001 applications, may have data sets that
are in the order of gigabyte.

To address the above issues, we have implemented optimizations that fall
into three categories.

– Computation repartitioning for locality enhancement
– Page aware optimization techniques
– Shared data space reduction through privatization

174 Seung Jai Min et al.

4.1 Computation Repartitioning

!$OMP PARALLEL DO
 DO k=2, nz-1
 DO i=ist, iend
 DO j=jst, jend
 DO m=1, 5
 rsd(m,i,j,k)=...
 ...
 ENDDO
 ENDDO
 ENDDO
 ENDDO
 ...
!$OMP END PARALLEL DO

!$OMP PARALLEL DO
 DO j=jst, jend
 DO i=ist, iend
 DO k=2, nz-1
 DO m=1, 5
 rtmp(m,k)=rsd(m,i,j,k)-...
 ...
 ENDDO
 ENDDO
 ENDDO
 ENDDO
 ...
!$OMP END PARALLEL DO

!$OMP PARALLEL
 DO k=2, nz-1
 DO i=ist, iend
!$OMP DO
 DO j=jst, jend
 DO m=1, 5
 rsd(m,i,j,k)=...
 ...
 ENDDO
 ENDDO
!$OMP ENDDO
 ENDDO
 ENDDO
 ...
!$OMP END PARALLEL DO

!$OMP PARALLEL DO
 DO j=jst, jend
 DO i=ist, iend
 DO k=2, nz-1
 DO m=1, 5
 rtmp(m,k)=rsd(m,i,j,k)-...
 ...
 ENDDO
 ENDDO
 ENDDO
 ENDDO
 ...
!$OMP END PARALLEL

(a) original code (b) after computation repartitioning

Fig. 2. Computation repartitioning: Subroutine RHS from APPLU

Page-based Software DSM systems implement consistency by exchanging in-
formation at the page level. Between synchronization points, the participating
nodes exchange information about which nodes wrote into each page. A node
that writes to a page in shared memory thus becomes the temporary owner
of that particular page. A page could have multiple temporary owners if there
are multiple nodes writing to the same page between synchronization points.
The way this ownership changes during the program may significantly affect the
execution time for the application.

For example, the main loop in APPLU contains seven parallel DO-loops. All
these parallel DO-loops access a shared array rsd(m,i,j,k). Five of these seven
parallel DO-loops partition array rsd using the outer most index k. One loop does
block partitioning, using both i and j indices and the other partitions using the j
index. Thus, the main loop of APPLU has four access pattern changes per every
loop iteration. Figure 2 illustrates the change in access patterns between two
of these loops. This access pattern change will incur a large number of remote
node requests in the second parallel loop. To avoid inefficient access patterns,
the program needs to be selective about which nodes touch which portions of the

Supporting Realistic OpenMP Applications 175

data. For example, the code may have a consistent access pattern across loops,
if the inner j-loop is partitioned instead of the outermost k-loop in the first loop
nest. Figure 2 (b) shows the resulting code after computation repartitioning.

This optimization requires the compiler’s ability to detect further parallelism
in the loop nest. We used the Polaris parallelizing compiler for this purpose [12].
However, not all loop nests allow this optimization because some inner loops
cannot be parallelized. We applied various techniques, such as adding redun-
dant computation, to enable computation repartitioning throughout the whole
program.

4.2 Page Aware Optimizations

!$OMP PARALLEL DO
 DO 200 J=1,N
 DO 200 I=1,M
 UNEW(I+1,J) = ...
 VNEW(I,J+1) = ...
 PNEW(I,J) = ...
 200 CONTINUE
!$OMP END PARALLEL DO

 DO 210 J=1, N
 UNEW(1,J) = UNEW(M+1,J)
 VNEW(M+1,J+1) = VNEW(1,J+1)
 PNEW(M+1,J) = PNEW(1,J)
 210 CONTINUE

!$OMP PARALLEL DO
 DO 200 J=1,N
 DO 200 I=1,M
 UNEW(I+1,J) = ...
 VNEW(I,J+1) = ...
 PNEW(I,J) = ...
 200 CONTINUE
!$OMP END PARALLEL DO

!$OMP PARALLEL DO
 DO 210 J=1, N
 UNEW(1,J) = UNEW(M+1,J)
 VNEW(M+1,J+1) = VNEW(1,J+1)
 PNEW(M+1,J) = PNEW(1,J)
 210 CONTINUE
!$OMP END PARALLEL DO

(a)original code (b)after page aware optimization

Fig. 3. Page aware optimization: Subroutine CALC2 from SWIM

Page-aware optimizations use the knowledge that the Software DSM main-
tains coherence at the page granularity. We will describe two types of page-aware
optimizations. First, we transform a shared array by padding, so that array par-
titioning across nodes places the partitions at page boundaries. For example,
consider an array U(m,i,j,k) of size U(5,61,61,60). The array type is double pre-
cision (size of a double precision number is 8 bytes in our system). If the compiler
partitions this array U using the index j in the parallel region, then padding the
first and the second dimension of U will produce U(8,64,61,60). After padding,
the size of the shared array U increases slightly. However, the boundaries of
partitioned array chunks are now aligned with the page boundaries. This opti-
mization reduces false sharing around the boundaries of partitioned shared data
chunks.

The second page-aware optimization deals with the page shape. In a column-
major language such as Fortran, a process that writes a column in a two dimen-
sional array will touch much fewer pages than a process that writes a row. As

176 Seung Jai Min et al.

an example, let A be a 2-D array of size 1024x1024 and its elements are 4 bytes
integers. If the size of the page in Software DSM is 4 KB, then each column of
A can be mapped to a page. Thus, there are 1024 pages occupying correspond-
ing 1024 columns in A. If a node writes a column in A, then only one page is
affected. On the other hand, writing a single row in A touches all the pages
owned by all the participating nodes. This scenario is illustrated in Figure 3. In
this figure, there is an OpenMP parallel loop followed by a serial loop. In the
parallel loop, each node writes to its partitioned blocks of the shared arrays and
thus temporarily owns the pages in its partition. Then the master node copies a
single row to another row for each shared array in the serial loop and in effect,
touches all the pages for these shared arrays. Subsequently, when these shared
arrays are read by the child nodes, each child node has to request updates from
the master node. This incurs substantial overhead, which can be avoided if the
second loop is executed in parallel. In the original benchmark code, the second
loop is a serial loop, even though it can be parallelized. This is because paral-
lelizing a small loop is not always profitable in shared memory programming.
Thus, this optimization highlights a difference of optimization strategy between
shared and distributed memory environments.

4.3 Privatization Optimization

This optimization is aimed at reducing the size of the shared data space that
must be managed by the Software DSM system. Potentially, all variables that
are read and written within parallel regions are shared variables and must be
explicitly declared as such. However, we have found that a significant number of
such variables are ”read-only” within the parallel regions. Furthermore, we have
observed that, for certain shared arrays, different nodes read and write disjoint
parts of the array. We refer to these variables as single-owner data. In the context
of the OpenMP program, these are shared variables. However, in the context of a
Software DSM implementation, instances of both can be privatized with certain
precautions. The first benefit of privatization stems from the fact that access to
a private variable is typically faster than access to a shared variable, even if a
locally cached copy of the shared variable is available. This is because accesses
to shared variables need to trigger certain coherency and bookkeeping actions
within the Software DSM. The second important benefit of privatization is the
effect on eliminating false sharing. The overall coherency overhead is also reduced
because coherency has to be now maintained for a smaller shared data size.

5 Results

We applied the described optimizations by hand to several of the SPEC
OMPM2001 benchmarks and achieved marked performance improvements. Fig-
ure 4 shows the final performance obtained by the baseline translation and sub-
sequent optimizations. We present the speedups for four Fortran codes (WUP-
WISE, SWIM, MGRID, APPLU) and two C benchmarks (EQUAKE, ART).

Supporting Realistic OpenMP Applications 177

0

1

2

3

4

5

6

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

Baseline Performance Optimized Performance

wupwise swim mgrid artequakeapplu

Fig. 4. Performance of four Fortran 77 and two C benchmarks from the SPEC
OMPM2001 benchmark suite on 1, 2, 4, and 8 machines

In one of the Fortran codes, WUPWISE, the baseline translation already
had acceptable speedup, and so we did not apply further optimizations. For the
three other Fortran codes, SWIM, MGRID, and APPLU, we obtained significant
performance improvements with computation repartitioning and page-aware opti-
mizations. In SWIM, application of the page-aware optimization shown in figure 3
improved the performance dramatically. We slightly enhanced the performance
of MGRID by applying computation repartitioning. APPLU, which shows one
of the most complex access patterns among the Fortran applications, has been
optimized using both computation repartitioning and page-aware optimizations.
The baseline of APPLU performs better with two than with four processors. In
this application, the shared array rsd(m,i,j,k) is block partitioned using both i
and j indices so that rsd is partitioned according to the index j on two proces-
sors, and is further partitioned using the index i on four processors, and again
using the index j on eight processors and so on. Partitioning using the index i
results in multiple nodes writing to a single page and thus causes false sharing.
Therefore, whenever rsd is partitioned according to the inner index i, it suffers
a performance drop owing to the increased false sharing. Since the optimized
version for APPLU always partitions rsd using the index j, it not only avoids
this inconsistent speedup, but also shows much better overall performance.

For the C applications, ART showed improved performance after privatizing
several arrays that were not declared as private in the original code. In EQUAKE,
we derived benefit from making certain parallel loops dynamically scheduled,
though the original OpenMP directives specified static scheduling.

178 Seung Jai Min et al.

The average baseline speedup of six applications is 1.87 and the average opti-
mized performance is 3.17 on 8 processors. Thus, our proposed optimizations,
computation repartitioning, page-aware optimizations, and access privatization
result in average 70% performance improvement on our SPEC OMPM2001
benchmarks.

6 Conclusions

In this paper, we have described our experiences with the automatic translation
and further hand-optimization of realistic OpenMP applications on a commodity
cluster of workstations. We have demonstrated that, for these applications, the
OpenMP programming paradigm may be extended to distributed systems. We
have discussed issues arising in the automatic translation of OpenMP applica-
tions for Software DSM. We have then presented several program optimizations
for page-based Software DSM systems. In our performance studies, we have
found that a baseline compiler translation, similar to the one used for OpenMP
on SMP machines, yields speedups for some of the codes but unacceptable per-
formance for others. After applying the proposed optimizations - computation
repartitioning, page-aware optimizations, and access privatization - we observed
significant improvements in performance. In the next phase of our project, we
intend to use explicit message-passing in conjunction with Software DSM and
investigate the effects of our optimizations in this hybrid approach.

References

1. OpenMP Forum, “OpenMP: A Proposed Industry Standard API for Shared Mem-
ory Programming,” Tech. Rep., Oct. 1997.

2. S. Dwarkadas P. Keleher H. Lu R. Rajamony W. Yu C. Amza, A.L. Cox and
W. Zwaenepoel, “Treadmarks: Shared memory computing on networks of work-
stations,” IEEE Computer, vol. 29, no. 2, pp. 18–28, February 1996.

3. H. Lu, Y. C. Hu, and W. Zwaenepoel, “OpenMP on network of workstations,” in
Proc. of Supercomputing’98, 1998.

4. Mitsuhisa Sato, Motonari Hirano, Yoshio Tanaka, and Satoshi Sekiguchi, “Om-
niRPC: A Grid RPC Facility for Cluster and Global Computing in OpenMP,” in
Proc. of the Workshop on OpenMP Applications and Tools (WOMPAT2001), July
2001.

5. R. Crowell Z. Cvetanovic J. Harris C. Nelson J. Bircsak, P. Craig and C. Offner,
“Extending OpenMP for NUMA Machines,” in Proc. of the IEEE/ACM Super-
computing’2000: High Performance Networking and Computing Conference (SC
2000), November 2000.

6. V. Schuster and D. Miles, “Distributed OpenMP, Extensions to OpenMP for
SMP Clusters,” in Proc. of the Workshop on OpenMP Applications and Tools
(WOMPAT’2000), July 2000.

7. T.S. Abdelrahman and T.N. Wong, “Compiler support for data distribution on
NUMA multiprocessors,” Journal of Supercomputing, vol. 12, no. 4, pp. 349–371,
oct. 1998.

Supporting Realistic OpenMP Applications 179

8. High Performance Fortran Forum, “High Performance Fortran language specifica-
tion, version 1.0,” Tech. Rep. CRPC-TR92225, Houston, Tex., 1993.

9. M. Booth and K. Misegades, “Microtasking: A New Way to Harness Multiproces-
sors,” Cray Channels, pp. 24–27, 1986.

10. Ayon Basumallik, Seung-Jai Min, and Rudolf Eigenmann, “Towards OpenMP
execution on software distributed shared memory systems,” in Int’l Workshop on
OpenMP: Experiences and Implementations (WOMPEI’02). May 2002, Lecture
Notes in Computer Science, 2327, Springer Verlag.

11. Rudolf Eigenmann Greg Gaertner Wesley B. Jones Vishal Aslot, Max Domeika
and Bodo Parady, “SPEComp: A New Benchmark Suite for Measuring Parallel
Computer Performance,” in Proc. of WOMPAT 2001, Workshop on OpenMP
Applications and Tools, Lecture Notes in Computer Science, 2104, July 2001, pp.
1–10.

12. William Blume, Ramon Doallo, Rudolf Eigenmann, John Grout, Jay Hoeflinger,
Thomas Lawrence, Jaejin Lee, David Padua, Yunheung Paek, Bill Pottenger,
Lawrence Rauchwerger, and Peng Tu, “Parallel programming with Polaris,” IEEE
Computer, pp. 78–82, December 1996.

OpenMP Runtime Support for Clusters of

Multiprocessors

Panagiotis E. Hadjidoukas, Eleftherios D. Polychronopoulos,
and Theodore S. Papatheodorou

High Performance Information Systems Laboratory (HPCLAB)
Department of Computer Engineering and Informatics

University of Patras, Rio 26500, Patras, Greece
http://www.hpclab.ceid.upatras.gr

{peh,edp,tsp}@hpclab.ceid.upatras.gr

Abstract. This paper presents a prototype runtime system, providing
support at the backend of the NANOS OpenMP compiler, that enables
the execution of unmodified OpenMP Fortran programs on both SMPs
and clusters of multiprocessors, either through the hybrid programming
model (MPI+OpenMP) or directly on top of Software Distributed Shared
Memory (SDSM). The latter is feasible by adopting a share-everything
approach for the generated by the OpenMP compiler code, which corre-
sponds to the ”default shared” philosophy of OpenMP. Specifically, the
user-level thread stacks and the Fortran common blocks are allocated ex-
plicitly, though transparently to the programmer, in shared memory. The
management of the internal runtime system structures and of the fork-
join multilevel parallelism is based on explicit communication, exploiting
however the shared-memory hardware of the available SMP nodes when-
ever this is possible. The modular design of the runtime system allows the
integration of existing unmodified SDSM libraries, despite their design
for SPMD execution.

1 Introduction

The OpenMP Application Programming Interface [22] provides a simple and
portable model for programming a wide range of parallel applications on par-
allel platforms. Despite the several implementations of OpenMP on small-scale
SMP servers and scalable ccNUMA multiprocessors, only few of them have been
presented for clusters of multiprocessors [10,13,16,26]. These implementations,
though, target a specific SDSM library, focus on the optimizations to the SDSM
library/protocol and translate the OpenMP program into SPMD execution. Most
of them do not use native Fortran compilers at the back-end and differentiate the
output of the OpenMP compiler for shared and distributed memory machine.
Furthermore, these implementations do not support multilevel parallelism and
lack of sophisticated runtime systems that implements a two-level thread model
on both architectural platforms.

This paper presents a prototype runtime system, providing support at the
backend of the NANOS OpenMP compiler [1], that enables the execution of

M.J. Voss (Ed.): WOMPAT 2003, LNCS 2716, pp. 180–194, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

OpenMP Runtime Support for Clusters of Multiprocessors 181

unmodified OpenMP Fortran programs on both SMPs and clusters of multi-
processors, either through the hybrid (MPI+OpenMP) programming model [5]
or directly on top of Software Distributed Shared Memory. This is feasible by
adopting a share-everything approach for the generated by the OpenMP com-
piler code, which corresponds to the ”default shared” philosophy of OpenMP.
Specifically, the user-level thread stacks and the Fortran common blocks are al-
located explicitly, though transparently to the programmer, in shared memory.
The management of the internal runtime system structures and of the fork-join
multilevel parallelism is based on explicit communication, exploiting however
the shared-memory hardware of the available SMP nodes whenever this is pos-
sible. The runtime system supports OpenMP through the implementation of an
appropriate API rather than by targeting a specific DSM system. Its modular
design allows the integration of several SDSM libraries, despite their design for
SPMD execution. We focus on the functionality of our runtime system, taking
into account a portable and modularity design for both architectural platforms,
avoiding thus platform specific optimizations.

The rest of this paper is organized as follows: Section 2 outlines the general
design and architecture of the proposed runtime system. Section 3 presents our
general approach for supporting OpenMP execution on both shared memory
multiprocessors and clusters of SMPs. Experimental evaluation with OpenMP
programs on both shared and distributed memory machines is reported in Sec-
tion 4. Related work is presented in Section 5. We discuss our on-going research
in Section 6.

2 OpenMP Runtime Library

The proposed runtime library (RTL) implements the Nanothreads programming
model [24], a fork-join dependence-driven execution model that allows the effi-
cient exploitation of multiple levels of parallelism. The RTL exports the NANOS
API [21], which is targeted by the NanosCompiler, a parallelizing compiler that
captures the parallelism expressed by the user through OpenMP directives and
the parallelism automatically detected through a detailed analysis of data and
control dependences. The front-end of the NanosCompiler converts programs
written in Fortran77 that use OpenMP directives to equivalent programs with
calls to the RTL. As we demonstrate in this paper, the NanosCompiler can be
also used for mixed mode (MPI+OpenMP) programs. Optionally, for execution
on top of SDSM, the output code can be passed through a translator that ensures
the allocation of common blocks in shared virtual memory. The resulted code
is finally compiled by a native compiler and linked with the RTL, the thread
package, the SDSM and the communication library.

2.1 Design

Figure 1 illustrates the modular design of our runtime system. The underlying
thread package provides to the runtime system a well-defined interface for non-
preemptive user-level threads, originally described in [9].

182 Panagiotis E. Hadjidoukas et al.

NanosDSM API

OpenMP Runtime (NanosRTL)

Communication Library SDSM Library Threads package

Msg. Queues API

Fig. 1. Modular design

The SDSM library exports the NanosDSM API, which provides mechanisms
(e.g. remote kernel thread creation, memory allocation, synchronization) for a
fork-join parallel execution model, like OpenMP. If the underlying SDSM library
does not provide such functionality, which is the common case, the runtime
system implements internally this API on top of the SPMD execution model
of the SDSM library. Finally, the communication library exports the Message
Queues API [25], which is used by the runtime system for the management of its
internal structures. Optionally, this API can be provided by the SDSM library.

2.2 Architecture

Figure 2 illustrates the general architecture of our runtime system on a cluster
of multiprocessor nodes. On every node of the cluster, each DSM process con-
sists of one or more virtual processors, which are DSM kernel threads, and a
special server thread, the Listener, which is a network server that has access
to the internal structures of the library on the specific node (process), without
requiring access to the shared-data. The Listener is primarily responsible for
the dependencies and queue management and actually implements much of the
functionality that is required from the SDSM system (NanosDSM API). The
virtual processors execute the application code, which may result in invocations
of the SDSM protocol. Besides the intra-node queues, there are per-virtual pro-
cessor inter-node ready queues and per-node global queues. The latter simulate
a global distributed queue.

A significant design decision of our runtime system [8], which differs in the
initial version of NanosRTL [21,17] and most user-level thread libraries for shared
memory, is the adoption of a lazy stack allocation policy. In our case, the work
descriptor of the runtime system is separated from its execution vehicle, i.e. an
underlying user-level thread. This provides portability, low memory consumption
and less data movement. Specifically, the lazy allocation policy is clearly ben-
eficial since we avoid unnecessary invocations of the DSM protocol and thread
migrations, caused by the stealing of newly created descriptors. This policy also
minimizes the peak number of active stacks and leaves larger portions of the
shared address space for the application data. Furthermore, a recycling mecha-
nism is available for both the descriptors and the underlying threads.

OpenMP Runtime Support for Clusters of Multiprocessors 183

Intra- & Inter-node
Global Queue

0

V

L

L

0

V
N

Communication
Subsystem
for Explicit Messaging

DSM library
(consistency

protocol)

NODE #N

Intra- & Inter-node Local Queues

Listener of node #0

Virtual Processors (Local
Identifiers)

NODE #0

Fig. 2. General architecture

The architecture of queues enables the development of mechanisms that allow
good load balancing and exploitation of data locality. There are per-virtual pro-
cessor inter-node queues, while the global queue is distributed among all nodes
and consecutive insertions into it result in the cyclic distribution of the descrip-
tors among the available nodes. The insertion/stealing of a descriptor in/from
a remote queue that resides in the same node is performed through hardware
shared memory. Otherwise, the operations are performed with explicit messages
to the Listener of the remote node.

On clusters of multiprocessors, the coherence of this dependence-driven model
can be maintained exclusively through shared-memory, by updating the counter
of unresolved dependencies through shared memory. However, this would require
the allocation of the descriptors in shared virtual memory, necessary protec-
tion with distributed locks and would result in many invocations of the consis-
tency protocol. A more efficient solution is the combination of hardware shared-
memory with explicit messages: each descriptor is allocated in private memory
and associated with an owner node (creator). If a thread is finished on its owner
node, the dependencies of its successors will be updated directly through (hard-
ware) shared memory. Otherwise, its descriptor will return to the owner node
and any dependencies will be updated by the Listener.

2.3 Implementation Platforms

The underlying thread package provides very portable non-preemptive user-level
threads based on the POSIX setjmp-longjmp calls. We have successfully imple-

184 Panagiotis E. Hadjidoukas et al.

mented the NanosDSM API and managed to provide OpenMP support on top of
several existing software DSM page based systems: SVMLib [23] and Millipede
[6] are page-based user-level SDSM libraries that run on Windows NT/2000
platforms, support DSM kernel threads and sequential consistency. Although
only their binary release is available, we have managed to provide OpenMP
execution on top of them. JIAJIA [11] runs on Unix and supports scope consis-
tency, however it is not multithreaded. Finally Mome [14]runs on Unix, supports
kernel threads, sequential and weak consistency, and provides several advanced
features, like memory mapping, prefetching, and page manager migration. For
JIAJIA and Mome the utilization of SVM stacks required the execution of their
signal handlers on alternate signal stacks (sigaltstack).

Currently, the explicit communication in the runtime system can be based on
UDP, TCP or MPI (compilation option). The latter is very close to the proposed
Message Queues API, and its use is possible with the concurrent linking of
the SDSM and the MPI libraries and the automatic setup of the appropriate
environment variables.

3 OpenMP Execution

As aforementioned, the front-end of the NanosCompiler converts programs writ-
ten in Fortran77 that use OpenMP directives to equivalent programs with calls
to our runtime system. In order to be able to execute these shared-memory codes
on software DSM, we must follow a shared-everything approach. One option is to
have a SDSM library that provides full address space sharing, where everything,
even the application code, is implicitly shared according to the SDSM protocol.
On the other hand, existing SDSM libraries support private address spaces and
the shared data must be explicitly allocated. We follow the second approach and
we apply this level of sharing to the application data, which means the allocation
of the user-level thread stacks and common blocks in shared memory.

3.1 Sharing the User-Level Thread Stacks

Current SDSM systems require the arguments of a function that represents inter-
node parallelism to be either scalar values or pointers to DSM data. In order to
provide true shared-memory functionality on distributed-memory machines the
stacks of the user-level threads must be allocated in SVM. This sharing resolves
many issues that arise because Fortran passes function arguments by reference.

Sharing the stacks may introduce excessive complexity regarding the false
sharing of data and the interaction with relaxed consistency protocols. We be-
lieve that either the programmer should explicitly annotate shared data, or the
compiler should detect which variables have to be shared. Moreover, the OpenMP
programming model provides good hints concerning the privatization of data.

OpenMP Runtime Support for Clusters of Multiprocessors 185

3.2 Sharing the Common Blocks

A Fortran77 programmer uses common blocks to declare global data, which are
allocated in the heap. However, the language does not support directly explicit
allocation of data. Since most SDSM libraries require an explicit allocation of
shared data, common blocks of the output code of the NanosCompiler must be
allocated in shared virtual memory. Currently, in order to allocate explicitly,
though transparently, the common blocks of the OpenMP programs in shared
virtual memory we use the following methods:

– Pointer Statement: We have developed a source-to-source translator that
takes as input the NanosCompiler output code and associates a POINTER
with any variable in a common block, injecting also appropriate memory
allocation calls (ndsmf_malloc). Fortunately, most compilers support the
POINTER statement. This solution can be applied for stack-based variables.
Moreover, it provides automatic padding of variables. Complexity can be
introduced only if a common variable is used in array declarations.

– Memory Mapping: In this case, the common block of the program is
mapped in shared virtual memory, an operation that must be supported by
the underlying SDSM library. Similar to the previous case, a slight trans-
formation of the NanosCompiler output code is required: the appropriate
padding is applied and then a mapping routine (ndsmf_map_memory) is in-
jected. This approach can be also applied for mapping global variables of C
programs in shared virtual memory. Another advantage of this solution is
that it does not depend on the native compiler.

– Dynamic Allocation of Common Blocks: The Intel Fortran Compiler
[12] provides an optimal solution that allows the direct execution of the
NanosCompiler output code on cluster of SMPs, through its support for dy-
namic allocation of common blocks. On entry to each routine containing a
declaration of the dynamic common block, a check is made of whether space
for the common block has been allocated. If it is not yet allocated, space
is allocated at the check time. The user can supply a memory allocation
routine for the common blocks. Additionally, the compiler requires knowing
the names of the common blocks that will be dynamically allocated (e.g.
-Qdyncomm"data"). When a DSM process enters a subroutine that contains
a common block that has not been allocated, the allocation routine is auto-
matically invoked. The common block is allocated in shared virtual memory
and the name-address pair in stored globally. If the allocation routine is
called on another process for an already allocated common block, it simply
returns the address of this common block (Figure 3).

In the Treadmarks SDSM library, the global data of a Fortran77 program is
declared in a specifically named common block that is loaded in shared virtual
memory. Since shared variables must reside on the shared heap, the OpenMP
translator gathers all shared global variables in a structure, and allocates that
structure on the shared heap. In the Cashmere-2L SDSM system [27], a special

186 Panagiotis E. Hadjidoukas et al.

void _FTN_ALLOC (void **mem, unsigned long *size, char *name){

int pos;

ndsm_lock (cb_table[0].CBLock);

if (cb_is_allocated(name, &pos))

*mem = cb_table[pos].cb_address;

else {

ndsm_malloc(mem, *size);

cb_table[pos].cb_address = (unsigned long) *mem;

strcpy(cb_table[pos].cb_name, name);

}

ndsm_unlock(cb_table[0].CBLock);

}

Fig. 3. Memory allocation routine

script parses the object files for common blocks and creates a small assem-
bly file with definitions for each common block. These definitions ensure that
the common block addresses fall within any address range required by the un-
derlying protocol library. The main disadvantage of these solutions is that are
compiler/linker specific.

Figure 4 presents a fragment of code (original) as generated by the NanosCom-
piler for the EPCC OpenMP synchronization benchmark, and how it is trans-
formed according to the first two methods (POINTER statements and Memory
Mapping).

3.3 Relaxing the Protocol

The sequential-consistency SDSM protocol for both the user-level stacks and
the global shared data allows us to focus exclusively on the functionality of the
OpenMP runtime. In this section, we outline our preliminary effort to use a
relaxed consistency protocol in our OpenMP compilation environment. A thor-
ough study of the interaction between the runtime system and the consistency
protocol, as presented in [16], is beyond the scope of this paper.

Fortunately, OpenMP assumes a relaxed consistency protocol and determines
appropriate rules where the data of the application should be coherent on all pro-
cessors. This is performed either explicitly by the programmer using the flush
directive or implicitly with the OpenMP constructs that assume a memory bar-
rier. According to our approach, i.e. unmodified OpenMP directives for clusters
of SMPs, the mapping of the consistency protocol of OpenMP on an existing
SDSM protocol must be performed transparently, without requiring additional
user effort at the application level.

The current weak consistency protocol of Mome is based on the explicit syn-
chronization of shared memory (MomeSynchronizeRegion). Before entering and
after exiting a parallel region or a critical section we flush the shared data. At
the runtime system, an internal ndsm_flush operation enforces the synchroniza-
tion of the shared heap on all nodes. If weak consistency is used for the stacks,

OpenMP Runtime Support for Clusters of Multiprocessors 187

/* ORIGINAL CODE */
INTEGER nthreads

DOUBLE PRECISION time(0:50)

COMMON /data/ nthreads, time

/* POINTER STATEMENT */
INTEGER nthreads

DOUBLE PRECISION time(0:50)

COMMON /data/ pnthreads, ptime
POINTER (pnthreads,nthreads)
POINTER (ptime,time)
EXTERNAL ndsmf malloc

IF (pnthreads.eq.0) THEN
CALL ndsmf malloc(pnthreads, 4*1)

ENDIF
IF (ptime.eq.0) THEN
CALL ndsmf malloc(ptime, 8*51)

ENDIF

/* MEMORY MAPPING */
INTEGER nthreads

DOUBLE PRECISION time(0:50)

COMMON /data/ pad1, nthreads, time ,pad2
INTEGER pad1(2048),pad2(2048)
EXTERNAL ndsmf map memory

CALL ndsmf map memory(nthreads,pad2(1))

Fig. 4. Allocating common blocks in shared virtual memory

the flush operation is also performed for the currently active user-level stack. To
avoid deadlock, the synchronization primitive is called within a different user-
level thread with private stack.

On JIAJIA, which supports only scope consistency, every critical section
is protected with locks that control the coherence of the data. In this case,
the ndsm_flush function is called transparently only for parallel regions and
corresponds to jia_barrier calls on all nodes. Obviously, the barrier must be
called from a user-level thread with private stack.

4 Experimental Evaluation

In this section, we present initial experimental results of our OpenMP environ-
ment on both target architectural platforms. Our experiments were performed on
a quad-processor 200 MHz Pentium Pro system equipped with 512 MB of main
memory and on a network of 2 dual-processor 866 MHz Pentium III nodes, with

188 Panagiotis E. Hadjidoukas et al.

256 MB of main memory and interconnected with Fast Ethernet. The operating
system is Linux 2.4.19 and as native compilers, we have used the Intel C com-
piler for the runtime system and the Mome DSM library, and the Intel Fortran
compiler for the applications. The latter supports both the POINTER statement
and dynamic allocation of common blocks. For the experiments with the hybrid
programming model, we have used the thread-safe MPIPro 1.6.3 library [19].

The underlying thread package provides very portable non-preemptive user-
level threads based on the POSIX setjmp-longjmp calls. The communication
subsystem is based on TCP sockets, implementing thus the Listener thread as a
select-based server. Mome allows multiple instances of a DSM application on the
same node. This feature enable us to perform experiments on the SMP machine,
emulating a cluster of 4 uniprocessor nodes or 2 dual-processor nodes, that share
however the network interface (loopback) and the main memory of the machine.
In all experiments we have used the sequential consistency protocol of the SDSM
library, unless otherwise specified.

4.1 Hardware Shared Memory

Figure 5 illustrates the overhead of our runtime system for the basic OpenMP
synchronization constructs (PARALLEL, DO, PARALLEL DO, BARRIER
and REDUCTION) on the SMP machine. The observed measurements exhibit
similar behavior with those reported in [4]. However, on a single processor the
overhead is relatively high because the current version of the NanosCompiler
generates threaded code even for a single processor. It is important to mention
that currently we have focused on the functionality of our runtime system, tar-

0

10

20

30

40

50

1 2 3 4

Processors

O
ve

rh
ea

d
(µ

s)

PAR

DO

PDO

BAR

RED

Fig. 5. OpenMP overheads on hardware shared memory

OpenMP Runtime Support for Clusters of Multiprocessors 189

0

1

2

3

4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

BT CG EP FT LU MG SP

Application / Processors

S
pe

ed
up

Fig. 6. Speedups on hardware shared memory

geting a portable, modular and general design for both shared and distributed
memory machines and thus avoiding platform-specific optimizations.

Figure 6 depicts the measured speedups for the NAS Parallel Benchmarks
suite (Class W) [15], parallelized with the OpenMP programming model. Our

0

1

2

3

4

5

6

1 2 3 4 4

1x1 2x1 3x1 2x2 4x1

Processors
Processes x Threads

O
ve

rh
ea

d
(m

s)

PAR

DO

PDO

BAR

RED

Fig. 7. OpenMP overheads on SDSM (SMP machine)

190 Panagiotis E. Hadjidoukas et al.

portable POSIX runtime system performs similarly or even better than our pre-
vious machine-dependent and highly optimized library running the NAS bench-
marks on the same hardware [2]. The execution times of the applications on a
single processor were: BT:101.34, CG:16.56, EP:113.08, FT:9.68, LU:360.53,
MG:12.79 and SP:282.72 (in seconds).

4.2 Distributed Memory - SMP Machine

On SDSM, the measured OpenMP overheads (Figure 7) are in the order of mil-
liseconds and agree with the numbers reported in [16] and [3]. Finally, Figure 8
depicts the measured speedups of three applications on top of our OpenMP com-
pilation environment. Each column corresponds to the configuration (Processes
x Threads) presented in Figure 7. The first application is the hybrid fine-grained
implementation of NAS FT. The rest are the OpenMP version of NAS EP and
the MD application from the official site of OpenMP [22], both executed on top
of Mome. NAS EP is embarrassingly parallel and thus does not depends on the
underlying SDSM protocol. Although MD scales linearly on shared memory, it
fails to scale efficiently on SDSM, mainly due to its memory access patterns and
the overhead introduced by the implicit movement of data. The degradation
in performance is significantly higher when a sequential consistency protocol is
used. For this reason, we use the weak memory consistency model of Mome for
this application. The execution times on a single processor were: FT-MIX:17.56,
EP:113.08 and MD:959.00 (in seconds).

0

1

2

3

4

1 2 3 4 4 1 2 3 4 4 1 2 3 4 4

FT-MIX EP MD

Application/Processors

S
pe

ed
up

Fig. 8. Speedups on SDSM (SMP machine)

OpenMP Runtime Support for Clusters of Multiprocessors 191

0

2

4

6

8

10

12

14

16

1 2 2 2 3 4 4

1x1(1) 1x2(1) 2x1(1) 2x1(2) 3x1(2) 2x2(2) 4x1(2)

Processors
Processes x Threads (Nodes)

O
ve

rh
ea

d
(m

s)

PAR

DO

PDO

BAR

RED

Fig. 9. OpenMP overheads on SDSM (SMP cluster)

4.3 Distributed Memory - Cluster of SMPs

The results presented in Figures 9 and 10 are very similar to the corresponding
results on the SMP machine, with main differences the more efficient hardware
configuration of the nodes and the higher latency of the interconnection net-
work. The number of processes can differ from the number of nodes because two
instances of the same application can be executed on the same node. The execu-
tion times on a single processor were: FT-MIX:4.42, EP:25.20 and MD:218.61
(in seconds).

5 Related Work

The first system that implements OpenMP on a network on SMPs is presented
in [10], implemented via a translator that converts OpenMP directives to ap-
propriate calls to a multithreaded version of the TreadMarks SDSM system.
Thread’s stack is kept in private memory and any potential shared variables
are moved in shared heap by the translator, which allocates and frees explicit
the necessary storage at the entry and the exit points of a parallel region. In
[26], authors present an OpenMP compiler for an SMP cluster. They extend the
OpenMP model for an SMP cluster by ”compiler-directed” software distributed
shared memory system. An OpenMP program is so well structured that it allows
the compiler to analyze extent of parallel region for the optimization of efficient
communication and synchronization. The OpenMP program is translated into
an SPMD execution model. An OpenMP compliant implementation on software
DSM is presented in [16]. This work uses the HLRC SDSM library, which does

192 Panagiotis E. Hadjidoukas et al.

0

1

2

3

4

1 2 2 2 3 4 4 1 2 2 2 3 4 4 1 2 2 2 3 4 4

FT-MIX EP MD

Application/Processors

S
pe

ed
up

Fig. 10. Speedups on SDSM (SMP cluster)

not support SMP nodes, and focuses on the optimization of the flush directive.
CableS [13] is an SDSM library that supports the POSIX threads API on clusters
of SMPs. They use a public domain OpenMP compiler (OdinMP) that translates
OpenMP C programs to pthreads programs for shared memory multiprocessors
and run the translated OpenMP program on their system without modifications
to the OpenMP source.

Our runtime system supports OpenMP through the implementation of an
appropriate API rather than by targeting a specific DSM system. We dot not
bind our work to a specific SDSM library and we do not differentiate the output
of the OpenMP compiler for shared memory and clusters of SMPs. Instead, a
sophisticated runtime system provides efficient execution of the same OpenMP
program (binary) on both architectural platforms.

6 Ongoing Work

Ongoing work includes further implementation improvements of the runtime
system, the study of policies for scheduling user-level threads on clusters of SMPs
and the evaluation of loop-scheduling policies. We also intend to study further
relaxed consistency models and their interaction with the OpenMP programming
model and the runtime system, w, and finally to implement the kernel interface
of the Nanothreads Programming Model on clusters of SMPs.

OpenMP Runtime Support for Clusters of Multiprocessors 193

Acknowledgments

We would like to thank our partners within the POP (Performance Portability
of OpenMP) project. This work was supported by the POP IST/FET project
(IST-2001-33071).

References

1. E. Ayguadé, J. Labarta, X. Martorell, N. Navarro, and J. Oliver, NanosCompiler:
A Research Platform for OpenMP Extensions, In Proceedings of the 1st European
Workshop on OpenMP, Lund (Sweden), October 1999.

2. V.K. Barekas, P.E. Hadjidoukas, E.D. Polychronopoulos, and T. S. Papatheodorou,
An OpenMP Implementation for Multiprogrammed SMPs, In Proceedings of the 3st
European Workshop on OpenMP, Barcelona, Spain, August 2001.

3. A. Basumallik, S.J. Min, and R. Eigenmann, Towards OpenMP Execution on Soft-
ware Distributed Shared Memory Systems, In Proceedings of the International
Workshop on OpenMP: Experiences and Implementations (WOMPEI’02), Lecture
Notes in Computer Science, #2327, Springer Verlag, May 2002.

4. J.M. Bull, Measuring Synchronization and Scheduling Overheads in OpenMP, In
Proceedings of the 1st European Workshop on OpenMP, Lund, Sweden, October
1999.

5. F. Cappello, O. Richard, and D. Etiemble, Investigating the performance of two
programming models for clusters of SMP PCs, In Proceedings of the 6th IEEE
Symposium On High-Performance Computer Architecture (HPCA-6), Toulouse,
France, January 2000.

6. R. Friedman, M. Goldin, A. Itzkovitz, and A. Schuster, Millipede: Easy Parallel
Programming in Available Distributed Environments, Journal of Software: Practice
and Experience, 27(8): 929–965, August 1997.

7. P.E. Hadjidoukas, E.D. Polychronopoulos, and T.S. Papatheodorou, Integrating
MPI and the Nanothreads Programming Model, In Proceedings of the 10th Eu-
romicro Workshop on Parallel, Distributed and Network-Based Processing (PDP
2002), Las Palmas, Spain, January 2002.

8. P.E. Hadjidoukas, E.D. Polychronopoulos, and T.S. Papatheodorou, Runtime Sup-
port for Multigrain and Multiparadigm parallelism, In Proceedings of the 10th In-
ternational Conference on High Performance Computing (HIPC’ 02), Bangalore,
India, December 2002.

9. P.E. Hadjidoukas, E.D. Polychronopoulos, and T.S. Papatheodorou, Implement-
ing the Nanothreads Programming Model on top of the POSIX Threads API, In
Proceedings of the 20th IASTED Applied Informatics International Conference,
Innsburg, Austria, February 2002.

10. C. Hu, H. Lu, A. Cox, and W. Zwaenepoel, OpenMP for Networks of SMPs, In
Proceedings of the Second Merged Symposium, IPPS/SPDP 99, 1999.

11. W.W. Hu, W.S. Shi, and Z.M. Tang, JIAJIA: An SVM System Based on A New
Cache Coherence Protocol, In Proceedings of the High Performance Computing
and Networking (HPCN’99), April 1999.

12. Intel Corporation, Intel Fortran Compiler, Available at:
http://developer.intel.com.

13. P. Jamieson, and A. Bilas, CableS: Thread Control and Memory System Extensions
for Shared Virtual Memory Clusters, In Proceedings of the Workshop on OpenMP
Applications and Tools. Purdue University, West Lafayette, Indiana. July 2001.

194 Panagiotis E. Hadjidoukas et al.

14. Y. Jegou, Controlling Distributed Shared Memory Consistency from High Level
Programming Languages, In Proceedings of Parallel and Distributed Processing,
IPDPS 2000 Workshops, pages 293-300, May 2000.

15. H. Jin, M. Frumkin, and J. Yan, The OpenMP Implementation of NAS Paral-
lel Benchmarks and its Performance, Technical Report NAS-99-011, NASA Ames
Research Center, October 1999.

16. S. Karlsson and M. Bronsson, A Fully Compliant OpenMP implementation on Soft-
ware Distributed Shared Memory, In Proceedings of the 10th International Con-
ference on High Performance Computing (HIPC’ 02), Bangalore, India, December
2002.

17. X. Martorell, J. Labarta, N. Navarro, and E. Ayguad’e, A Library Implementation
of the Nano-Threads Programming Model, In Proceedings of the 2nd Euro-Par
Conference, Lyon, pp. 644-649, August 1996.

18. Message Passing Interface Forum, MPI: A message-passing interface standard, In-
ternational Journal of Supercomputer Applications and High Performance Com-
puting, Volume 8, Number 3/4, 1994.

19. MPI Software Technology, Inc., http://www.mpi-softtech.com .
20. S.J. Min, S.W. Kim, M. Voss, S.I. Lee, and R. Eigenmann, Portable Compilers for

OpenMP, In Proceedings of WOMPAT 2001, Workshop on OpenMP Applications
and Tools, Lecture Notes in Computer Science, 2104, pages 11-19, July 2001.

21. NANOS ESPRIT Project No. 21097, http://research.ac.upc.es/nanos.
22. OpenMP Architecture Review Board, OpenMP Specifications, Available at:

http://www.openmp.org.
23. S.M. Paas, M. Dormanns, T. Bemmerl, K. Scholtyssik, and S. Lankes, Computing

on a Cluster of PCs: Project Overview and Early Experiences, In Proceedings of
the 1st Workshop on Cluster-Computing, TU Chemnitz-Zwickau, November 1997.

24. C.D. Polychronopoulos, Nano-Threads: Compiler Driven Multithreading, In Pro-
ceedings of the 4th International Workshop on Compilers for Parallel Computing
CPC’93, Delft (The Netherlands), December 1993.

25. POP (Performance Portability of OpenMP) IST/FET project (IST-2001-33071),
http://www.cepba.upc.es/pop.

26. M. Sato, S. Satoh, K. Kusano, and Y. Tanaka, Design of OpenMP compiler for an
SMP Cluster, In Proceedings of the 1st European Workshop on OpenMP, Lund
(Sweden), October 1999.

27. R. Stets, S. Dwarkadas, N. Hardavellas, G. Hunt, L. Kontothanassis, S.
Parthasarathy, and M. Scott, Cashmere-2L: Software Coherent Shared Memory on
a Clustered Remote-Write Network, In Proceedings of the 16th ACM Symposium
on Operating Systems Principles (SOSP-16). October 1997.

An Evaluation of MPI and OpenMP Paradigms

for Multi-Dimensional Data Remapping

Yun He and Chris H.Q. Ding

CRD Division, Lawrence Berkeley National Laboratory
Berkeley, CA 94720, USA

Abstract. We evaluate dynamic data remapping on cluster of SMP
architectures under OpenMP, MPI, and hybrid paradigms. Traditional
method of multi-dimensional array transpose needs an auxiliary array
of the same size and a copy back stage. We recently developed an in-
place method using vacancy tracking cycles. The vacancy tracking algo-
rithm outperforms the traditional 2-array method as demonstrated by
extensive comparisons. Performance of multi-threaded parallelism using
OpenMP are first tested with different scheduling methods and different
number of threads. Both methods are then parallelized using several par-
allel paradigms. At node level, pure OpenMP outperforms pure MPI by a
factor of 2.76 for vacancy tracking method. Across entire cluster of SMP
nodes, by carefully choosing thread numbers, the hybrid MPI/OpenMP
implementation outperforms pure MPI by a factor of 3.79 for traditional
method and 4.44 for vacancy tracking method, demonstrating the valid-
ity of the parallel paradigm of mixing MPI with OpenMP.

Keywords: Dynamical data remapping, multidimensional arrays, in-
dex reshuffle, vacancy tracking cycles, global exchange, MPI, OpenMP,
hybrid MPI/OpenMP, SMP cluster.

1 Introduction

Large scale highly parallel systems based on cluster of SMP architectures are
today’s dominant computing platforms. OpenMP has recently emerged as the
definitive standard for parallel programming at the SMP node level[1,2]. Using
MPI to handle communications between SMP nodes, the MPI/OpenMP hybrid
parallelization paradigm is the emerging trend for parallel programming on clus-
ter of SMP architectures[3,4,5,6,7].

Although the hybrid paradigm is elegant in conceptual and architectural
level, in practice, however, performance of many large scale applications indicate
otherwise (for example, NAS benchmarks[4], conjugate-gradient algorithms[5]
and particle simulations[7]). There are some positive experiences[3,6], but it is
often the case that existing applications using pure MPI paradigm over all pro-
cessors and ignoring the shared memory nature among the processors on the
single SMP node outperform the same application codes utilizing the hybrid
OpenMP with MPI paradigm.

M.J. Voss (Ed.): WOMPAT 2003, LNCS 2716, pp. 195–210, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

196 Yun He and Chris H.Q. Ding

In this paper, we provide an in-depth analysis on remapping problem do-
mains on cluster of SMP architectures under several OpenMP, MPI, and hybrid
paradigms.

Dynamically remapping problem domains are encountered frequently in many
scientific and engineering applications. Instead of fixing the problem decompo-
sition during entire computation, dynamically remapping the problem domains
to suit the specific needs at different stages of the computation can often sim-
plify computational tasks significantly, saving coding efforts and reducing total
problem solution time.

For example, the 3D fields of an atmosphere (or ocean) model are mapped
onto 8 processors, with horizontal dimensions split among the processors. In
spectral transform based models, such as the CCM atmospheric model[8] and
the shallow water equation[9], one often needs to dynamically remap between
the height-local domain decomposition and the longitude-local decomposition for
tasks of distinct nature. In grid-based atmosphere and ocean models, similar
remappings are needed for data input/output[10].

To transpose a multidimensional array A, say between 2nd and 3rd indices,
the conventional method uses an auxiliary array B of same size of A.

B[k1, k3, k2] ⇐ A[k1, k2, k3]. (1)

In many situations, B is copied back to memory locations of A (denoted as
A ⇐ B), and memory for B is freed. We will call this traditional method
as two-array reshuffle method, because of the need of the auxiliary array B.
Combining the B[k1, k3, k2] ⇐ A[k1, k2, k3] reshuffle phase and the copy-back
A ⇐ B phase, the net effect of the two-array reshuffle method can be written
symbolically as

A′[k1, k3, k2] ⇐ A[k1, k2, k3] (2)

Here A′ indicates that reshuffle results are stored at the same location as the
original array A.

Recently, a vacancy tracking algorithm for multidimensional array index
reshuffle is developed[11] that can perform the transpose in Eq.2 in-place, i.e.,
without requiring the auxiliary array B. This reduces the memory requirement
by half, therefore lifting a severe limitation on memory-bound problems.

Both the conventional two-array method and the new vacancy tracking al-
gorithm can be implemented on cluster of SMP architectures using OpenMP,
MPI, and hybrid MPI/OpenMP paradigms. We have investigated them system-
atically. Some preliminary results were presented at SC2002[12]. Here we per-
form more systematic studies on both sequential and distributed platforms for
both methods. Our main results are that (i) Vacancy tracking algorithm outper-
forms conventional two-array method in all situations. (ii) OpenMP parallelism
performs slightly better than MPI for the traditional two-array method but is
substantially faster than MPI parallelism for the vacancy tracking method on
a single SMP node. (iii) On up to 128 CPUs, the hybrid paradigm performs
about a factor of 4 faster than pure MPI paradigm for both methods. (iv) Con-
trary to some existing negative experience of developing hybrid programming

An Evaluation of MPI and OpenMP Paradigms 197

applications, our hybrid MPI/OpenMP implementation for the vacancy track-
ing algorithm outperforms pure MPI by a factor of 4.44.

2 Vacancy Tracking Algorithm

Array transpose can be viewed as a mapping from original memory locations
to new target memory locations. The key idea of this algorithm is to move
elements from old locations to new locations in a specific memory-saving order,
by carefully keeping track of the source and destination memory locations of each
array element. When an element is moved from its source to new location, the
source location is freed, i.e., a vacancy. This means another appropriate element
can be moved to this location without any intermediate buffer. Then the source
location of that particular element becomes a vacancy, and yet another element
is moved directly from its source to this destination. This is repeated several
times, and a closed loop of vacancy tracking cycles is formed.

Consider transposition of a 2D array A(3,2). Six elements of A(3,2) are la-
beled as A0,A1, A2, A3, A4, A5, and are stored in six consecutive memory lo-
cations L0, L1, L2, L3, L4, L5 (shown in the leftmost layout in Figure 1). The
transposition is accomplished by moving elements following the vacancy tracking
cycle

1 - 3 - 4 - 2 - 1

Move content in L1 to a temporary buffer, now L1 becomes the vacancy;
Move content in L3 to L1, now L3 becomes the vacancy; Move content in L4 to
L3; Move content in L2 to L4; Move content in buffer to L2. Note that contents
in L0 and L5 are not touched, because they are already in the correct locations.
Assume the buffer is a register in CPU, the total memory access is 4 memory
writes and 4 memory reads. In contrast, the conventional two-array transpose
algorithm will move all 6 elements to array B, and copy them back to A, with
a total of 12 reads and 12 writes. The vacancy tracking algorithm achieves the
optimal (minimum) number of memory access.

A1A0

A2
A3
A4
A5

A1
A0

A2
A3
A4
A5

A0

A2

A4
A5

A3

A0

A4
A2
A5

A3
A0

A2
A4

A5

A3
A0

A1
A4
A2
A5

A3

Fig. 1. Transposition for the array A(3,2). L1, L3, L4, L2 are successive vacancies

Vacancy tracking algorithm applies to many other index operations more
complex than two-index reshuffle. For example, the simultaneous transpose of
three indexes, the left-circular-shift,

A′[k2, k3, k1] ⇐ A[k1, k2, k3] (3)

198 Yun He and Chris H.Q. Ding

can be easily accomplished. For a 3D array A(4, 3, 2) with 24 elements, the three-
index left-shift reshuffle can be achieved by the following two cycles,

1 - 4 - 16 - 18 - 3 - 12 - 2 - 8 - 9 - 13 - 6 - 1

5 - 20 - 11 - 21 - 15 - 14 - 10 - 17 - 22 - 19 - 7 - 5

A simple algorithm to automatically generate the cycles for 2 indices trans-
pose is
! For 2D array A, viewed as A(N1,N2) at input and as A(N2,N1) at output.
! Starting with (i1,i2), find vacancy tracking cycle

ioffset_start = index_to_offset(N1,N2,i1,i2)
ioffset_next = -1
tmp = A(ioffset_start)
ioffset = ioffset_start (C.1)
do while(ioffset_next .NOT_EQUAL. ioffset_start)

call offset_to_index(ioffset,N2,N1,j1,j2) ! N1,N2 exchanged
ioffset_next = index_to_offset(N1,N2,j2,j1)! j1,j2 exchanged
if(ioffset .NOT_EQUAL. ioffset_next) then

A(ioffset) = A(ioffset_next)
ioffset = ioffset_next

end if
end_do_while
A(ioffset_next) = tmp

Here index to offset and offset to index are two simple routines that
converts two-dimensional index from/to one-dimensional offset. A slight modifi-
cation can handle 3 indices operations. The cycle information will be stored in a
table first in the actual implementation and the outer do loop (C.1) is performed
to move the data from actual memory locations.

We assess the effectiveness of the algorithm by comparing the timing re-
sults between the traditional 2-array method and the in-place vacancy tracking
method for the index reshuffling of a three-dimensional array A(N1, N2, N3) by
moving around the array elements in the block size of the first dimension as
shown in Eq.(2). The algorithm is implemented in F90, and tests are carried
out on a POWER3 IBM SP. We use compiler option -O5 for highest level of
optimization for both methods.

Figure 2 shows the ratio of timing between the two-array method (include
array copy back) and in-place algorithm for three array sizes. In-place algorithm
performs better for almost all the array sizes except for N ≤ 4. For large array
size, vacancy tracking algorithm achieves more than a factor of 3 speedup for
N3 = 8, 16, and 64.

The number of memory access and the access pattern could explain the
speedup. First, the in-place algorithm eliminates the copy back phase so it re-
duces memory access by half. Second, for a 2D array A(N1, N2), the number of
memory access required for the B[k2, k1] ⇐ A[k1, k2] reshuffle phase of a two-
array method is N1N2. But for the in-place method, the total lengths of all cycles
would be N1N2. The length-N cycle involves N-1 memory-to-memory copies, one
memory-to-tmp copy and one tmp-to-memory copy. Normally, access to the tmp
storage is a register or cache, and is much faster than the DRAM access. We
could safely count the number of a memory access for the length-N cycle as N.
Meanwhile, all the length-1 cycles means the memory locations are untouched,
thus saves the number of memory access. Third, on cache-based processor archi-
tectures, the memory access pattern is as important as the number of memory

An Evaluation of MPI and OpenMP Paradigms 199

access. Though memory access pattern for the in-place method seems more ran-
dom than traditional method, the number of bytes moved is often large for the
problems the method is targeted for. The gap is reduced and the memory access
in vacancy tracking algorithm is not irregular at scales relevant to cache perfor-
mance when the size of the move is larger than cache-line size, which is 128 bytes
(16 real*8 data elements). Also, the B[k1, k3, k2] ⇐ A[k1, k2, k3] reshuffle phase
of the two-array method has the same disadvantage of the in-place method: not
efficient memory access due to the large stride.

 1 2 4 8 16 32 64 128 256
0

0.5

1

1.5

2

2.5

3

3.5

4

N (Element Size)

T
im

e(
2−

A
rr

ay
)

/ T
im

e(
In

−
P

la
ce

)

Nx79x317, real*4
Nx79x317, real*8
Nx100x25, real*8
Nx512x128, real*8

Fig. 2. Timing for a local 3D array index reshuffle on IBM SP. Plotted are the
ratio of timing between the two-array method (include array copy back) and
in-place algorithm

3 Parallel Paradigms on Cluster SMP Architectures

3.1 Multi-threaded Parallelism

The traditional two-array method adopts a nested do loops to perform in-
dex reshuffles. The OpenMP parallelism could be added straightforwardly. The
pseudo code is as follows:

!$OMP PARALLEL DO DEFAULT (PRIVATE)
!$OMP& SHARED (N3, N2, A, B)
!$OMP& SCHEDULE (AFFINITY)

do i3 = 1, N3
do i2 = 1, N2

B(:,i2,i3) = A(:,i3,i2) (C.2)
end do
end do

!$OMP END PARALLEL DO

The vacancy tracking algorithm can also be easily parallelized using a multi-
threaded approach in a shared-memory multi-processor environment to speed
up data reshuffles, e.g., to re-organize a database on a SMP server. As men-
tioned in Ding[11], the vacancy tracking cycles are non-overlapping. If we assign
a thread to each vacancy tracking cycle, they can proceed independently and
simultaneously.

200 Yun He and Chris H.Q. Ding

The cycle generation code (C.1) runs first in the initialization phase be-
fore the actual data reshuffle, to determine the number of independent vacancy
tracking cycles and associated cycle lengths and starting locations. These cycle
information can be stored in a table, each cycle entry with a starting location
offset and cycle length. The starting offset uniquely determines the cycle, and
the cycle length determines the work-load.

The pseudo code for the OpenMP implementation for the main loop for each
vacancy tracking cycle is as follows:

!$OMP PARALLEL DO DEFAULT (PRIVATE)
!$OMP& SHARED (N_cycles, info_table, Array)
!$OMP& SCHEDULE (AFFINITY)

do k = 1, N_cycles
an inner loop of memory exchange for each cycle using info_table (C.3)

enddo
!$OMP END PARALLEL DO

Proper scheduling the independent cycles to threads are important. The
workload is based on the cycle lengths. So, it could be done either statically or
dynamically. In a static multi-thread implementation, with a given fixed number
of threads, an optimization is needed to assign nearly same work-load to each
thread. After this assignment, the data reshuffle can be carried out as a regular
multi-threaded job.

In a dynamic multi-thread implementation, the next available thread picks
up the next independent cycle from the cycle information table and completes
the cycle. How to choose the next independent cycle among the remaining cycles
in order to minimize the total runtime is a scheduling optimization. For example,
a simple and effective method is to choose the task with largest load among the
remaining tasks on the queue. Or, if the cycles are short, we could group cycles
into chunks so that each thread will pick up a chunk instead of an individual
cycle to minimize thread overhead.

3.2 Pure MPI Parallelism

Transposition of a global multi-dimensional array distributed on a distributed-
memory system is a remapping of processor subdomains. It involves local array
index reshuffles and global data exchanges. The goal is to remap 3D array on
processors such that data points along a particular dimension is entirely locally
available on the processor, and the data access along this dimension corresponds
to the fastest running storage index, just as in the usual array transpose.

Using MPI to communicate data between different processors is the best
paradigm for distributed memory architectures such as Cray T3E, where each
node has only a single processor. On cluster of SMP architectures, such as IBM
SP, each node has, say, 16 processors and they share a global memory space on
the node.

Running MPI between different processors on the same node is equivalent
to communicating messages using inter-process communication (IPC) between
different Unix processes under the control of a single operating system running
on the SMP node. Therefore, a simulation code compiled for 64 processors can

An Evaluation of MPI and OpenMP Paradigms 201

successfully run on 4 SMP nodes with 16 processors on each node, since the
OS automatically replaces MPI calls by IPC when the relevant inter-processor
communications are detected to be within a single SMP node. Communications
between processors residing on different SMP nodes will go on to the inter-node
communication networks. This “pure” MPI paradigm therefore has the desired
portability and flexibility.

Here we outline the algorithm for remapping a 3D array A(N1, N2, N3) re-
garding the 2nd and 3rd indices using pure MPI (see more details in [11]). For a
global multi-dimensional array, it involves local array transpose and global data
exchange. Use A(N1, N2, N3) as an example, to transpose it to be A(N1, N3, N2)
on P MPI processors, the steps are:

(G1) Do a local transpose on the local array A(N1, N2, N3/P) ⇒
A(N1, N3/P, N2)

(G2) Do a global all-to-all exchange of data blocks, each of sizeN1(N3/P)(N2/P)
(G3) Do a local transpose on the local array viewed as A(N1N3/P, N2/P, P) ⇒

A(N1N3/P, P, N2/P) viewed as A(N1, N3, N2/P).

Local in-place algorithm is used for steps (G1) and (G3). For step (G2) global
exchange, the following well known all-to-all communication pattern[9,13,14] is
used:

! All processors simultaneously do the following:
do q = 1, P - 1

send a message to destination processor destID (C.4)
receive a message from source processor srcID

end do

Here we adopt destID = srcID = (myID XOR q), where myID is the proces-
sor id, and XOR is the bit-wise exclusive OR operation. This is a pairwise sym-
metric exchange communication. As q loops through all processors, the destID
traverses over all other processors.

Communication time can be approximately calculated from a simple latency
+ message-size / bandwidth model. Assuming there are enough communication
channels, and no traffic congestion on the network, every processor will spend
the same time interval for the global exchange. Adding the local reshuffle time,
we have the total global remapping time TP on P processors:

TP = 2MN1N2N3/P + 2L(P − 1) + [2N1N3N2/BP][(P − 1)/P] (4)

where M is the average memory access time per element, L is the communication
latency including both hardware and software overheads, and B is the point-to-
point communication bandwidth.

3.3 Hybrid MPI/OpenMP Parallelism

The emerging programming trend on cluster of SMP is to use MPI between SMP
nodes and use multi-threaded OpenMP on the processors within a SMP node.
This matches most logically with the underlying system architecture.

202 Yun He and Chris H.Q. Ding

A variant of this hybrid parallelism is to create several MPI tasks (Unix
processes) on a SMP node and use multi-threaded OpenMP within each such
MPI task. For example, on 4 SMP nodes with 16 processors per node, one may
create a total of 8 MPI tasks; within each MPI task, one may create 8 threads
to match 8 CPUs per MPI task. Therefore, the pure MPI parallelism of Section
3.2 can be viewed as a special case of this hybrid paradigm, where one simply
creates 4×16=64 MPI tasks for each of the CPUs on the 4 SMP nodes.

For the remapping problem on cluster SMP architectures, the array is de-
composed into subarrays owned by each MPI task. Local transpose will be done
by each MPI task, with the choice of either the traditional two-array method
or vacancy tracking method. It is parallelized with the multiple threads created
by each MPI task. The total number of vacancy tracking cycles shared by the
threads are determined by the local array size. After that, global data exchange
is done among all the MPI tasks, and another local transpose as in (G.3) is
performed. The timing analysis can be approximated by

T = 2MN1N2N3/NCPU + 2L(NMPI − 1)
+[2N1N3N2/BNMPI][(NMPI − 1)/NMPI] (5)

where NCPU is the total number of CPUs in the system and NMPI is number
of MPI tasks created.

As the number of MPI tasks increases, the local array size is reduced and
so does local reshuffle time (first term in Eqs. 4 and 5). As importantly, as the
number of MPI tasks reduces from NCPU to the number of SMP nodes NSMP ,
the total communication volume decreases, and so does the communication time.
(Here we simply assume the communication rates between MPI tasks are the
same. In practice, communication between MPI tasks on the same SMP nodes are
faster than those between different SMP nodes.) Thus theoretically, we expect
the choice NMPI = NSMP is optimal.

A specific issue regarding the speedup on more threads is that vacancy track-
ing cycles are split among different threads; thus reduce the local reshuffle time
as well.

Given the same amount of resources (the total number of CPU), the more
MPI tasks we choose, the less available CPUs that OpenMP threads could use,
and vice versa. No OpenMP parallelism is added in the global exchange stage,
the local array size and the number of MPI tasks related to the network commu-
nication determine the time spent in this stage. To gain the best performance
from the above analysis, we need to utilize an optimal combination of MPI tasks
and OpenMP threads on cluster of SMP architectures.

4 Performance

4.1 Scheduling for OpenMP Parallelism

We tested different scheduling methods combined with different number of the
threads used on different array sizes within one IBM SP node. The algorithm

An Evaluation of MPI and OpenMP Paradigms 203

is implemented in F90 with OpenMP directives, and tests are carried out on
a 16-way IBM SP[15]. Notice, with OpenMP directives (use compiler option -
qsmp), optimization level specified as -O5 in compiler option will change the
loop structures so that the results are incorrect. We use level -O4 instead. The
tested schedules are:

– Static: Loops are divided into N threads partitions, each containing ceiling
(N iterations / N threads) iterations. Each thread is responsible for one par-
tition.

– Affinity: Loops are divided into N threads partitions, each containing ceil-
ing (N iterations / N threads) iterations. Then each partition is subdivided
into chunks containing n (if specified) or ceiling (N remain iterations in
partion/2) (if not specified) iterations. Each thread takes a chunk from its
partition first, if none left, then takes a chunk from another thread.

– Guided: Loops are divided into progressively smaller chunks until the min-
imum size of chunk (default 1) is reached. The first chunk contains ceil-
ing (N iterations / N threads) iterations. Subsequent chunk contains ceiling
(N remain iterations / N threads) iterations. Threads taking chunks on a
first-come-first-serve basis.

– Dynamic: Loops are divided into chunks containing n (if specified) or ceiling
(N iterations / N threads) (if not specified) iterations. We choose different
chunk sizes. Threads taking chunks on a first-come-first-serve basis.

For the traditional two-array method, the tested array size is 64×512×128.
Table 1 lists the timing results obtained from ensemble average of 100 test runs.
A star is marked for the fastest timing among all different number of threads.
Among all the schedules, static and affinity have very close timings and
are overall the fastest. reasonable speedup is gained for up to 16 threads with
these schedules. Although we could set up number of threads as many as we
like, there is no gain in performance beyond 16 threads on the 16-way IBM SP.
The overhead of threads creation often deteriorates the performance as shown
in columns for Nthreads = 32.

For the vacancy tracking method, the tested array sizes are: (i) 64×512×128,
Ncycles = 4114, cycle lengths = 16; (ii) 16×1024×256, Ncycles = 29140, cy-
cle lengths = 9, 3; (iii) 8×1000×500, Ncycles = 132, cycle lengths = 8890, 1778,
70, 14, 5; and (iv) 32×100×25, Ncycles = 42, cycle lengths = 168, 24, 21, 8, 3.

Tables 2 and 3 list the timing results obtained from ensemble average of 100
test runs. It is shown that with large number of cycles and small cycle lengths,
schedule affinity is among the best; and with small number of cycles and large
or uneven cycle lengths, dynamic schedule with small chunk size is preferred.
This holds true for almost all number of threads tested. Reasonable speedup
is reached with schedules guided and affinity for relative large arrays up to
16 threads used. There are limited speedup with some of the schedules, even
in some cases speed-down, especially for smaller arrays. It is due to the large
overhead associated with the creation of the threads, for example, array size
16×1024×256 with Dynamics,1 and Dynamics,2 schedules.

204 Yun He and Chris H.Q. Ding

Table 1. Timing for Array Size 64×512×128 with Different Schedules and Dif-
ferent Number of Threads Used within One IBM SP Node with Traditional
Two-Array Method (Time in seconds)

Schedule 64×512×128
32 thrd 16 thrd 8 thrd 4 thrd 2 thrd

Static 44.1* 28.7* 46.1* 90.4* 164.8

Affinity 48.1 27.8* 45.8* 90.6* 164.0

Guided 51.9 45.9 52.6 91.3* 160.8*

Dynamic,1 48.1 50.9 60.5 104.6 191.8
Dynamic,2 50.0 49.6 59.7 99.4 173.7
Dynamic,4 47.6 50.4 55.8 100.0 169.3
Dynamic,8 46.1 48.0 53.7 99.4 173.8
Dynamic,16 56.9 60.3 57.1 97.7 169.1
Dynamic,32 86.9 93.8 87.6 98.7 167.9
Dynamic,64 150.9 163.1 152.5 97.4 162.1
Dynamic,128 296.1 327.0 298.4 328.3 331.9
Dynamic,256 296.3 326.2 301.3 333.0 324.5

Table 2. Timing for Array Sizes 64×512×128 and 16×1024×512 with Different
Schedules and Different Number of Threads Used within One IBM SP Node
with Vacancy Tracking Method (Time in seconds)

Schedule 64×512×128 16×1024×256
32 thrd 16 thrd 8 thrd 4 thrd 2 thrd 32 thrd 16 thrd 8 thrd 4 thrd 2 thrd

Static 34.1 15.3 15.0 25.3 47.4 34.2* 17.8 24.9 42.4 83.6
Affinity 28.8* 10.8* 13.9* 24.7* 47.2* 34.2* 15.5* 23.0* 42.0* 83.1*
Guided 35.3 14.2 20.8 30.4 47.5 38.0 17.6 27.4 46.8 83.3
Dynamic,1 32.3 16.5 22.9 36.1 58.6 358.8 348.7 55.6 68.0 151.6
Dynamic,2 32.6 16.1 22.3 34.7 55.7 180.6 165.8 37.5 61.6 103.3
Dynamic,4 33.8 16.7 22.7 35.6 54.7 39.9 23.3 35.5 58.2 98.8
Dynamic,8 32.4 16.1 21.4 33.5 53.9 39.4 21.4 33.3 54.3 94.8
Dynamic,16 30.3 16.0 22.8 33.6 53.3 36.9 20.6 31.4 52.5 93.0
Dynamic,32 28.9 16.2 21.4 32.4 52.4 38.9 21.2 31.4 62.3 91.5
Dynamic,64 34.9 16.0 20.5 32.8 59.9 38.6 20.2 29.9 50.9 89.9
Dynamic,128 28.9 16.1 20.0 35.8 51.0 33.5 19.2 29.6 64.9 88.9
Dynamic,256 29.5 16.0 20.0 31.8 52.7 34.4 18.9 29.8 50.0 87.6
Dynamic,512 - - - - - 34.5 19.9 29.9 63.2 87.9
Dynamic,1024 - - - - - 35.3 19.6 30.7 49.0 87.2

4.2 Pure MPI and Pure OpenMP Parallelisms within One Node

Figure 3 shows the performance of the parallel implementation with different
number of threads (pure OpenMP) or processors (pure MPI) within one node
on 16-way SMP of IBM SP with each method, respectively. As tested in Ding[11],
vacancy tracking method performs better with real*8 than real*4 as compared
to two-array method. We use real*8 in this test for all MPI data types. The
array sizes are chosen to be fit in local memory of one processor.

Clearly, both parallelisms with both methods have quite good speedup, ex-
cept that the MPI performance with vacancy tracking method at 2 processors

An Evaluation of MPI and OpenMP Paradigms 205

Table 3. Timing for Array Sizes 8×1000×500 and 32×100×25 with Different
Schedules and Different Number of Threads Used within One IBM SP Node
with Vacancy Tracking Method (Time in seconds)

Schedule 8×1000×500 32×100×25
32 thrd 16 thrd 8 thrd 4 thrd 2 thrd 32 thrd 16 thrd 8 thrd 4 thrd 2 thrd

Static 57.9 58.8 93.3 158.3 261.5 18.7 2.84 1.49 1.34 1.10
Affinity 48.5 38.0 59.3 86.3 158.0 16.6 1.88 1.72 0.95 1.31
Guided 58.0 58.4 92.7 159.9 261.4 15.3* 3.99 1.71 1.93 1.08*
Dynamic,1 47.1* 32.7* 49.7* 84.0 147.2 19.3 0.81* 1.05* 0.94* 1.35
Dynamic,2 50.8 32.7* 51.9 82.5* 145.8 17.0 2.68 1.12 0.97 1.38
Dynamic,4 56.9 37.8 53.9 83.7 144.3 17.0 3.45 2.03 0.98 1.24
Dynamic,8 63.3 52.7 52.3 82.5* 144.1* 16.5 3.29 2.68 1.57 1.28
Dynamic,16 107.9 92.1 92.2 90.2 148.6 18.7 4.28 3.20 2.09 1.33
Dynamic,32 165.1 159.4 158.8 187.8 155.8 - - - - -

has a drop, which is due to the increased communication overhead compared to
the entire local remapping. The vacancy tracking method is about twice faster
than the two-array method. Both methods indicate a better OpenMP scaling
than MPI scaling. With two-array method, OpenMP is slightly faster than MPI.
With vacancy tracking method, OpenMP outperforms MPI substantially at all
times. With 16 threads, it is faster than MPI by a factor of 2.76 for array size
64×512×128 and by a factor of 1.99 for array size 16×1024×256. Thus it makes
sense to develop a hybrid MPI/OpenMP parallelism, however, experiences of
other researchers[3,7] indicate that a better performance is not guaranteed[3].

4.3 Pure MPI and Hybrid MPI/OpenMP Parallelisms Across
Nodes

Figure 4 shows the performance of the parallel implementation across several
nodes on IBM SP with each method, respectively. (timing with total CPUs =
16 is plotted for comparison) with array size 64×512×128 (results for array
size 16×1024×256 are very similar). We use schedule affinity for OpenMP
parallelism in both methods. The timing for both methods are very close while
the speedup values are about twice in the two-array method than those in the
vacancy tracking method. This is due to the ratio of sequential running time
for both methods used as base to calculate the speedups is about 2 to 1. The
closeness of total remapping timing in these methods is due to the fact thay the
majority (over 90%) of total timing is spent at the global exchange stage, which
is only parallelized by pure MPI.

The maximum number of threads we could efficiently use for one MPI task
per node is 16. Pure MPI [NETWORK.MPI=SHARED is already utilized] does
not scale above 16 processors. Using one MPI task per node with full 16 threads
at each node results even worse performance at 32 total CPUs, although close or
better performance than pure MPI are achieved at 64 and 128 total CPUs. The
dip at 32 CPUs for both pure MPI and hybrid MPI/OpenMP parallelisms could
be explained by the large across-node communication overhead for the global

206 Yun He and Chris H.Q. Ding

 1 2 4 8 16
0

50

100

150

200

250

300

350

400
two−array method

Number of Total CPUs

T
im

e
(m

se
c)

64x512x128, pure OpenMP

16x1024x256, pure OpenMP

64x512x128, pure MPI

16x1024x256, pure MPI

 1 2 4 8 16
0

2

4

6

8

10

12
two−array method

Number of Total CPUs

S
pe

ed
up

64x512x128, pure OpenMP

16x1024x256, pure OpenMP

64x512x128, pure MPI

16x1024x256, pure MPI

 1 2 4 8 16
0

20

40

60

80

100

120

140

160

180

200
vacancy tracking method

Number of Total CPUs

T
im

e
(m

se
c)

64x512x128, pure OpenMP

16x1024x256, pure OpenMP

64x512x128, pure MPI

16x1024x256, pure MPI

 1 2 4 8 16
0

2

4

6

8

10

12
vacancy tracking method

Number of Total CPUs

S
pe

ed
up

64x512x128, pure OpenMP

16x1024x256, pure OpenMP

64x512x128, pure MPI

16x1024x256, pure MPI

Fig. 3. Time and speedup for global array remapping on different number of
processors (pure MPI) or threads (pure OpenMP)

An Evaluation of MPI and OpenMP Paradigms 207

 16 32 64 128
0

20

40

60

80

100

120

140

160

180

200

220
two−array method

Number of Total CPUs

T
im

e
(m

se
c)

hybrid, N_threads=16

hybrid, N_threads=8

hybrid, N_threads=4

hybrid, N_threads=2

pure MPI

 16 32 64 128
0

5

10

15
two−array method

Number of Total CPUs

S
pe

ed
up

hybrid, N_threads=16

hybrid, N_threads=8

hybrid, N_threads=4

hybrid, N_threads=2

pure MPI

 16 32 64 128
0

20

40

60

80

100

120

140

160

180

200

220
vacancy tracking method

Number of Total CPUs

T
im

e
(m

se
c)

hybrid, N_threads=16

hybrid, N_threads=8

hybrid, N_threads=4

hybrid, N_threads=2

pure MPI

 16 32 64 128
0

1

2

3

4

5

6

7

8

9

10
vacancy tracking method

Number of Total CPUs

S
pe

ed
up

hybrid, N_threads=16

hybrid, N_threads=8

hybrid, N_threads=4

hybrid, N_threads=2

pure MPI

Fig. 4. Time and speedup for global array remapping with different combinations
of MPI tasks and OpenMP threads for array size 64×512×128

208 Yun He and Chris H.Q. Ding

exchange stage (last term in Eq.5) which accounts for more than 90% of total
remapping time.

Given total number of CPUs (NCPU), we could adjust the number of pro-
cessors to be used as MPI tasks (NMPI) and number of threads per MPI task
(Nthreads). An example of choices for NMPI and Nthreads with NCPU = 64 would
be:

N_CPU = N_MPI * N_threads

64 4 16

64 8 8

64 16 4

The communication overhead is reduced when MPI tasks within same node
utilize the in-node MPI network. The different subarray size each MPI task owns
also contributes to the timing difference. Although we use the same number of
total CPUs, the subarray sizes are determined by the number of MPI tasks;
thus the numbers of vacancy tracking cycles in the loop for different NMPI are
different. Since we only have OpenMP directives for the local reshuffles, we need
to find an optimal combination of MPI tasks and OpenMP threads to achieve
the overall best performance.

From our experiments, Nthreads = 4 gives an overall best performance among
all other number of threads. At 128 total CPUs, the hybrid MPI/OpenMP par-
allelism with Nthreads = 4 performs faster than with Nthreads = 16 by a factor of
1.37 (two-arraymethod) and 1.59 (vacancy tracking method), respectively; and it
performs faster than pure MPI parallelism by a factor of 3.79 (two-arraymethod)
and 4.44 (vacancy tracking method), respectively. Although it still does not have
better performance than with N threads = 16, the hybrid MPI/OpenMP par-
allelism scales up from 32 CPUs to 128 CPUs, compared to scales down with
pure MPI.

5 Conclusions

In this paper, we first assess the effectiveness of an in-place vacancy tracking
algorithm for multi-dimensional data remapping by comparing the timing results
with traditional 2-array methods. We tested with different array sizes on IBM
SP. The in-place method outperforms the traditional method for all the array
sizes when the data block to move is not too small. The speedup we gain for
a big array is 3.24. This could be explained by two factors: 1) the elimination
of the auxiliary array thus the copy back; 2) the memory access volume and
pattern.

The vacancy tracking algorithm is efficient and easy to parallelize with
OpenMP in a shared programming model. The independency of the vacancy
tracking cycles allows us to parallelize the in-place method using a multi-threaded
approach in a shared-memory processor environment to speed up data reshuffles.
The vacancy tracking cycles are non-overlapped so multiple threads can process
each tracking cycles simultaneously. We extensively tested the different thread

An Evaluation of MPI and OpenMP Paradigms 209

scheduling methods on 16-way IBM SP and found that schedule affinity opti-
mizes the performance for arrays with large number of cycles and small cycle
lengths, while dynamic schedule with small chunk size is preferred for arrays
with small number of cycles and large or uneven cycle lengths. Meanwhile, the
OpenMP parallelism could be used directly upon the nested loops of the mem-
ory copy for the traditional two-array method. The timing results show that
schedules static and affinity are among the best.

On distributed memory architectures, both methods could be parallelized
using pure MPI with the combination of local array transpose method and an
existing global exchange method. Based on the fact that pure OpenMP performs
faster and has better scaling than pure MPI on a single node of IBM SP, we
are encouraged to develop a hybrid MPI/OpenMP approach on cluster SMP
architectures for an efficient global data remapping algorithm.

We discussed the algorithms of the hybrid approach, advantages and dis-
advantages of choosing the number of MPI tasks and OpenMP threads if the
total number of nodes is given, and carried out systematic tests on IBM SP. For
both array sizes we tested, pure MPI does not scale beyond total 16 processors,
in fact, scales down from 32 processors to 128 processors. But by using hybrid
MPI/OpenMP approach, and by carefully choosing the number of threads per
MPI task, we gained about a factor of 4 speedup for both the two-array method
and the vacancy tracking method from pure MPI.

In a distributed memory model, the local transpose is only applied within
each MPI task and a standard all-to-all communication algorithm is used across
the nodes. Thus the OpenMP parallelization is more efficient than the MPI
parallelization within one SMP node. As expected, the hybrid OpenMP/MPI
parallel performance is in between.

Contrary to some existing negative experience in hybrid programming appli-
cations, this paper gives a positive aspect of developing hybrid MPI and OpenMP
parallel paradigms for real applications. The vacancy tracking algorithm it-
self also eliminates an important memory limitation for multi-dimensional data
remapping on sequential, distributed memory and cluster SMP computer archi-
tectures while improving performance significantly at same time.

Acknowledgment

This work is supported by Office of Computational and Technology Research,
Division of Mathematical, Information, and Computational Sciences, and Office
of Biological and Environmental Research, Climate Change Prediction Program,
of the U.S. Department of Energy under contract number DE-AC03-76SF00098.

References

1. OpenMP: Simple, Portable, Scalable SMP Programming. http://www.openmp.org
2. COMPunity - The Community for OpenMP Users. http://www.comunity.org
3. L. Smith and M. Bull, Development of hybrid mode MPI/OpenMP applications,

Scientific Programming, Vol. 9, No 2-3, 83–98, 2001.

210 Yun He and Chris H.Q. Ding

4. F. Cappello and D. Etiemble,“MPI versus MPI+OpenMP on IBM SP for the NAS
Benchmarks”, SC 2000, Dallas, Texas, Nov 4–10, 2000.

5. P. Lanucara and S. Rovida, “Conjugate-Gradient Algorithms: An MPI Open-MP
Implementation on Distributed Shared Memory Systems”. EWOMP 1999. Lund
University, Sweden, Sept.30–Oct.1, 1999.

6. A. Kneer, “Industrial Hybrid OpenMP/MPI CFD application for Practical Use in
Free-surface Flow Calculations”, WOMPAT 2000: Workshop on OpenMP Appli-
cations and Tools, San Diego, July 6–7, 2000.

7. D. S. Henty,“Performance of Hybrid Message-Passing and Shared-Memory Paral-
lelism for Discrete Element Modeling”, SC 2000, Dallas, Texas, Nov 4–10, 2000.

8. J. Drake, I. Foster, J. Michalakes, B. Toonen and P. Worley, “Design and perfor-
mance of a scalable parallel community climate model”, Parallel Computing, v.21,
pp.1571–1581, 1995.

9. I. T. Foster and P. H. Worley. “Parallel algorithms for the spectral transform
method,” SIAM J. Sci. Stat. Comput., v.18, pp. 806–837. 1997.

10. C. H.Q. Ding and Y. He, “Data Organization and I/O in a parallel ocean circula-
tion model”, Lawrence Berkeley National Lab Tech Report 43384. Proceedings of
Supercomputing’99, Nov 1999.

11. C. H.Q. Ding, “An Optimal Index Reshuffle Algorithm for Multidimensional Arrays
and Its Applications for Parallel Architectures”, IEEE Transactions on Parallel and
Distributed Systems, V.12, No.3, pp.306–315, 2001.

12. Y. He and C. H.Q. Ding, “MPI and OpenMP Paradiagms on Cluster of SMP Ar-
chitectures: the Vacancy Tracking Algorithm for Multi-Dimensional Array Trans-
pose”, SC2002, Baltimore, Maryland, Nov 15–19, 2002.

13. S. L. Johnsson and C.-T. Ho, “Matrix transposition on boolen n-cube configured
ensemble architectures”, SIAM J. Matrix Anal. Appl. v.9. pp.419–454, 1988.

14. S. H. Bokhari. “Complete Exchange on the Intel iPSC-860 hypercube”, Technical
Report 91-4, ICASE, 1991.

15. Using OpenMP on seaborg. http://hpcf.nersc.gov/computers/SP/openmp.html

Experiences Using OpenMP Based on Compiler
Directed Software DSM on a PC Cluster

Matthias Hess1, Gabriele Jost�2, Matthias Müller1, and Roland Rühle1

1 HLRS, Allmandring 30,70550 Stuttgart, Germany
2 NASA Ames Research Center, Moffett Field, CA 94035-1000, USA

Abstract. In this work we report on our experiences running OpenMP
programs on a commodity cluster of PCs running a software distributed
shared memory (DSM) system. We describe our test environment and
report on the performance of a subset of the NAS Parallel Benchmarks
that have been automatically parallelized for OpenMP. We compare the
performance of the OpenMP implementations with that of their message
passing counterparts and discuss performance differences.

1 Introduction

Computer architectures using clusters of PCs with commodity networking have
become a low cost alternative for high end scientific computing. Currently mes-
sage passing is the dominating programming model for such clusters. The de-
velopment of a parallel program based on message passing adds a new level of
complexity to the software engineering process since not only computation, but
also the explicit movement of data between the processes must be specified.

Shared memory parallel processors (SMP) provide a user friendlier program-
ming model. The use of globally addressable memory allows users to exploit
parallelism while avoiding the difficulties of explicit data distribution on parallel
machines. Parallelism is commonly achieved by multi-threading the execution
of loops. Compiler directives to support multi-threaded execution of loops are
supported on most shared memory parallel platforms. In addition, many com-
pilers provide an automatic parallelization feature taking all the burden of code
analysis off the user. Efficiency of compiler parallelized code is often limited,
since a thorough dependence analysis is not possible without user information.
Alternatively, there are parallelization support tools available which take the
tedious work of dependence analysis and generation of directives off the user but
allow user guidance for critical parts of the code. An example of such a tool is
CAPO [10].

While shared memory architectures provide a convenient programming model
for the user, a drawback is that they are expensive. During recent years there
have been considerable efforts to develop system software to support DSM (Dis-
tributed Shared Memory) programming which enables the user to employ the
convenient shared memory programming model on a network of processors,
� Employee of Computer Sciences Corporation.

M.J. Voss (Ed.): WOMPAT 2003, LNCS 2716, pp. 211–226, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

212 Matthias Hess et al.

thereby maintaining the ease of use as well as the low cost of hardware. Ex-
amples of such systems are TreadMarks [2] and SCASH [13]. These systems
allow the support of OpenMP parallelization on clusters of processors, thereby
removing the major impediment to their usage which is the high effort to de-
velop a message passing version from a sequential program. We have installed
publicly available DSM software on a commodity cluster of PCs and tested its
performance on a set of benchmark kernels. The paper seeks to address the issue
of evaluating the efficiency of DSM without explicit hardware support. The rest
of the paper is structured as follows: In section 2 we discuss the message passing
and the shared address space programming models. In section 3 we describe the
hardware platform and system software of our test environment. In section 4 we
describe our evaluation strategy and discuss the performance of the individual
benchmark kernels. In section 5 we discuss some of the problems we encountered.
In section 6 we briefly examine some related work and in section 7 we summarize
our conclusions and discuss future work.

2 Programming Models

Currently message passing and the use of shared address space are the two
leading parallel programming models.

2.1 Message Passing

Message passing is a well understood programming paradigm. The computa-
tional work and the associated data are distributed between a number of pro-
cesses. If a process needs to access data located in the memory of another process,
it has to be communicated via the exchange of messages. The data transfer re-
quires cooperative operations to be performed by each process, that is, every
send must have a matching receive. The regular message passing communica-
tion achieves two effects: communication of data from sender to receiver and
synchronization of sender with receiver.

MPI (Message Passing Interface) [12] is a widely accepted standard for writ-
ing message passing programs. It is a standard programming interface for the
construction of a portable, parallel application in Fortran or in C/C++, which
is commonly used when the application can be decomposed into a fixed number
of processes operating in a fixed topology (for example, a pipeline, grid, or tree).
MPI provides the user with a programming model where processes communi-
cate by calling library routines to send and receive messages. Pairs of processes
can perform point-to-point communication to exchange messages. For increased
convenience and performance a group of processes can also call collective com-
munication routines to implement global operations such as broadcasting values
or calculating global sums. Global synchronization can be implemented by calls
to barrier routines. Asynchronous communication is supported by providing calls
for probing and waiting for certain messages. In MPI-1 [12], all communication
operations require the sending as well as the receiving side to issue calls to the
message-passing library.

Experiences Using OpenMP 213

2.2 Shared Address Space

Parallel programming on a shared memory machine can take advantage of the
globally shared address space. Compilers for shared memory architectures usu-
ally support multi-threaded execution of a program. Loop level parallelism can
be exploited by using compiler directives such as those defined in the OpenMP
standard [14]. Multiple execution threads are automatically created for perform-
ing the work in parallel. Data transfer between threads is done by direct memory
references. OpenMP provides a fork/join execution model in which a program
begins execution as a single process or thread. This thread executes sequentially
until a PARALLEL construct is found. At this time, the thread creates a team
of threads and it becomes its master thread. All threads execute the statements
lexically enclosed by the parallel construct. Work-sharing constructs (DO, SEC-
TIONS and SINGLE) are provided to divide the execution of the enclosed code
region among the members of a team. All threads are independent and may
synchronize at the end of each work-sharing construct or at specific points ei-
ther implicitly or explicitly (specified by the BARRIER directive). Exclusive
execution mode is also possible through the definition of CRITICAL regions.

This approach provides a relatively easy way to develop parallel programs
but has disadvantages. It is often difficult to achieve scalability of the code for
a large number of processors due to a lack of data locality and possibly large
synchronization costs.

3 Hardware Platform and Software Description

Our test environment consists of a cluster of commodity PCs at the High Perfor-
mance Computing Center of the University of Stuttgart (HLRS). In the following
we give some details about hardware and system software.

3.1 Platform Description

We have used a cluster at HLRS consisting of 8 NEC 120Ed server nodes as the
test platform. The nodes are dual processor systems with two 1 GHz Pentium III
CPUs and 2 GB of main memory. Each node is equipped with a Myrinet 2000
NIC in a fast 64 bit / 66 MHz PCI slot. The nodes are based on the ServerSet III
HE chip set and have a good communication performance to the Myrinet cards.
The bandwidth from memory to the card is 409 MB/s for read operations and
480 MB/s for write operations. These data have been acquired with the program
’gm debug’ provided by Myricom. A collection of data for other motherboards
and chip sets can be found at [1]. For the current study we used only one CPU
per node.

In order to compare the performance of the DSM software with a true shared
memory system, we used a 16-way NEC Azusa. The NEC Azusa system is a
shared architecture system with IA-64 processors. Both systems, the distributed
memory cluster and the shared memory Azusa, were running Linux in its 2.4
version. This reduces effects due to different memory managements of different

214 Matthias Hess et al.

operating systems on the distributed and the shared memory architecture. The
performance impact of different memory management systems is discussed in [5].
We did not have a four or eight processor IA-32 system available for the tests.

3.2 SCore

The PC cluster used for our study is running SCore [13] software. SCore is a
parallel programming environment for workstations and PC clusters, developed
by the Real World Computing Partnership (RWCP). The project has now been
transferred to the PC Cluster Consortium [13]. Among other features, SCore
provides its own communication layer called PM [20,21]. It aims at providing a
uniform interface to different communication devices like Fast Ethernet, Gigabit
Ethernet or Myrinet.

SCore also supports different parallel programming paradigms like message
passing or shared memory. On the message passing side there is a MPI-implemen-
tation based on MPICH with an additional device specifically designed for the
PM layer. Shared memory is supported in two ways. The PM layer has a shared
memory device that is intended for SMP systems. It uses memory-mapped shared
segments for the communication between processes on a true shared memory
system. Additionally, the SCore architecture has a software distributed shared
memory system called SCASH [6], that we employed to obtain the results of the
tests we present in this paper.

3.3 SCASH

SCASH [6] is a page-based software distributed shared memory system. It is
implemented as a user-space runtime library which uses the PM layer for com-
municating pages between cluster nodes.

It employs an eager release consistency model to ensure the consistency of
shared memory on a per-page basis. This means that at memory synchroniza-
tion points only modified parts of memory are updated, which usually requires
exchange of data between nodes.

The home node of a page is the node that keeps the latest data of the page.
If other nodes change the data within a page it must be updated on the home
node. To reduce memory transfer, SCASH also provides the possibility to change
the home node of a page. It is possible to use two page consistency protocols,
an invalidate and an update protocol, which can be chosen dynamically.

To reduce memory transfer between nodes, the nodes use cached copies of
requested pages. Only on write operations to the memory can these copies be-
come inconsistent. The update protocol specifies that all copies of a particular
page be updated once one node changes its contents.

In the invalidate protocol, the home node of a page notifies all nodes which
share that page when a page has been altered and cached copies of that page on
other nodes become invalid.

Experiences Using OpenMP 215

3.4 Omni OpenMP

Omni OpenMP [13] is a collection of programs and libraries that enable OpenMP
for back-end compilers that do not support it natively. The front-end to these
compilers translates C or Fortran77 OpenMP source texts into multi-threaded
C with calls to a runtime library.

One of the main goals of Omni OpenMP is portability, so the translation pass
from an OpenMP program to the target code is written in JAVA. The target code
is – in turn – compiled by the back-end C compiler on the target platform. For
the tests presented here we used the GNU C Compiler as the back-end compiler.

The Omni compiler suite can be configured to use several different underlying
libraries. For the thread system Solaris Threads or pthreads are supported, but
there is also support for StackThreads [19] developed by Real World Computing
Project (RWCP). In addition to the support of threads there is support for
several shared memory implementations, like UNIX shmem. In our tests we
used the support for the SCASH distributed shared memory system which has
been described above.

The Omni OpenMP compiler suite is also available for IA-64. For tests on
the shared memory Azusa system (see 3.1) we used the Omni compiler, too,
again in order to minimize the influence of different software. This way we can
attribute certain observations to either the DSM system or the Omni OpenMP
compiler.

4 Case Studies

For our evaluation we selected a subset of the NAS Parallel Benchmarks [3].
They were designed to compare the performance of parallel computers for com-
putational fluid dynamics (CFD) applications. The full suite consists of five
benchmark kernels and three simulated CFD applications. We selected three of
the five benchmark kernels for our study.

4.1 Evaluation Strategy

To evaluate the performance of our test environment we compare the timings of
OpenMP implementations of the benchmark kernels to:

1. Timings of their message passing counterparts on the same system.
2. Timings obtained on a true shared memory system but with a similar oper-

ating system and therefore a comparable memory management system.

The comparison of OpenMP versus MPI will give us some means to determine
how well the DSM software handles memory coherency and synchronization. In
the MPI implementation access to remote data is achieved by calls to the mes-
sage passing library. The user has control over data locality and decides when
and how much data to communicate. This provides the opportunity to minimize

216 Matthias Hess et al.

communication during program execution. Another aspect of the message pass-
ing approach is that data communication and synchronization are integrated.
The send and receive operations not only exchange data, but also regulate the
progress of the processes. In the OpenMP implementation the location of the
data, the amount of data to be communicated, and the synchronization among
the threads depends on the DSM system and the compiler. As explained in sec-
tion 3, the DSM system detects the necessity of communicating data when a page
of memory is accessed that has been marked as updated by another process. We
will use the number of page requests as an indicator for the amount of commu-
nication in the DSM system. Even in the case where a hand-optimized message
passing implementation outperforms the DSM system, the ease of application
porting may compensate for a certain loss of performance.

The comparison of OpenMP on a cluster versus OpenMP on a shared memory
node gives us some estimate of the speedup that can be expected from the
OpenMP programming paradigm on a true shared memory architecture. Our
test platforms are described in section 3. We use the Omni compiler on both
platforms.

The benchmarks come in different classes determined by the problem size. We
ran only the small problems of class S,W, and A. We encountered some problems
with the larger sizes which will be discussed in section 5. Since our system is
small, consisting of only 8 nodes, it is hazardous to extrapolate the scalability
studies to larger systems. However, running the very small benchmark classes
allows us to gain some insight into how the computation to communication ratio
impacts the performance.

Since the ease of application porting is an important factor in favor of the
DSM system, we started out with a sequential version of our benchmark ker-
nels and used the automatic parallelization support tool CAPO [10] to insert
OpenMP directives, thereby minimizing the parallelization effort. CAPO was
developed at the NASA Ames Research Center. It takes as input a sequential
Fortran program. It then performs an extensive dependence analysis over state-
ments, loop iterations, and subroutine calls and generates Fortran code contain-
ing OpenMP directives. CAPO is based on the dependence analysis module of
the CAPTools [8] parallelization tool. Our starting point for the message passing
version of the benchmark kernels was the NPB2.3 [4] release of the NAS Parallel
benchmarks. For the OpenMP implementations we started with an optimized
serial implementation of the same benchmarks as described in [9]. The structure
of the serial code is kept very close to the message passing code. Only slight
modifications were applied to the kernels considered in our study and we will
describe them in the sections below. A good description about how to use CAPO
for the OpenMP parallelization of the benchmarks is given in [10],

4.2 The EP Benchmark Kernel

EP stands for embarrassingly parallel. The kernel generates pairs of Gaussian
random deviates according to a specific scheme. As the name suggests, the iter-
ations of the main loop can be executed in parallel. Tool based OpenMP par-

Experiences Using OpenMP 217

allelization of the kernel was possible without user interaction. Once the data
is distributed, the main loop which generates the Gaussian pairs and tallies the
counts does not require access to remote data except for several global sum
reductions. In the MPI implementation the global sum is achieved by calls to
mpi allreduce. The OpenMP implementation uses the OMP PARALLEL RE-
DUCTION directive. The MPI implementation shows a very low communication
overhead, which is less than 1 % even for the smallest benchmark class on 8 nodes.
If m denotes the log2 of the number of complex pairs of uniform (0, 1) random
numbers, then the problem size of the benchmark classes under consideration is:

Class S: m = 24
Class W: m = 25
Class A: m = 28

The OpenMP/DSM implementation shows a very low number of page re-
quests to the DSM system. As expected, the message passing as well as the
OpenMP/DSM implementation show an almost linear speedup for all bench-
mark classes. For 8 nodes the OpenMP/DSM performance ranges within 97 %
to 102% of that of MPI, depending on the benchmarks class. As an example we
show the speedup for class A in Fig. 1.

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

S
p

ee
d

u
p

processes / threads

OpenMP/DSM
MPI

Fig. 1. Speedups for class A of the EP benchmark for OpenMP/DSM and MPI

4.3 The CG Benchmark Kernel

The CG benchmarks kernel uses a conjugate gradient method to compute an ap-
proximation to the smallest eigenvalue of a large, sparse, unstructured matrix.
The kernel is useful for testing unstructured grid computations and communi-
cations since the underlying matrix has randomly generated locations of entries.

218 Matthias Hess et al.

Parallelization for message passing and directive based versions occur on the
same level within the conjugate gradient algorithm. The basic parallel opera-
tions are: sparse matrix vector multiply, AXPY operations, and sum reductions.
The code was parallelized using CAPO without any user interaction. If na de-
notes the number of rows of the sparse matrix and nz the number of non-zero
elements per row, then the problem size of the benchmark classes under consid-
eration are:

Class S: na = 1400, nz = 7
Class W: na = 7000, nz = 8
Class A: na = 14000, nz = 11

In Fig. 2 we show the speedup for the three benchmark classes. For class
A, the MPI as well as the OpenMP/DSM and OpenMP/SMP implementations
show reasonable speedup. The OpenMP/SMP version shows occasional super-
linear speedup due to cache effects. For 8 nodes, the OpenMP/DSM efficiency
reaches about 75% of that of MPI. The MPI version maintains this speedup for
the smaller problem sizes but the performance of the OpenMP/DSM version
decreases drastically. For 8 nodes and class W the OpenMP/DSM efficiency is
only 35% and for class S is goes down to 6% yielding a speedup of less than 1.
The class S problem size is far too small to serve as a realistic example. However,
we have a closer look at the performance differences for this class to get an idea
about potential scalability issues related to the DSM system.

Our first observation is that the Omni compiler and its runtime library intro-
duce additional overhead which decreases performance even on a shared memory
system. This is demonstrated in Fig. 2d, where we compare the speedup of class
S for the Omni compiler with that of the Intel compiler and Guide, which is part
of the KAP/Pro ToolSet of Kuck & Associates/Intel.

To analyze the DSM performance we examine the three major time con-
suming loops within one conjugate gradient iteration. These loops are the same
in the MPI and the OpenMP/DSM implementation. They implement a sparse
matrix-vector multiplication (MVM), a dot-product (DOT) , and a loop com-
bining two AXPY operations and a dot-product. Code examples are shown in
Fig. 3

The sparse matrix A is stored in packed format such that indirect addressing
is required for matrix operations. The sparse matrix-vector multiply is a double-
nested loop requiring indirect addressing. For OpenMP, it is parallelized by using
an OMP PARALLEL DO on the outer loop across the rows of the sparse matrix. The
dot-product as well as the AXPY’s combined with a dot-product are single loop
nests, using the OpenMP REDUCTION clause to build the global sum.

The speedups for class S for the three major loops are shown in Fig. 4.
Both implementations suffer from a large communication to computation ratio
for the single nested loops. However, the effect is far more severe for the DSM
system. In the MPI version the communication required for the global reduc-
tion operations is highly optimized by using non-blocking send and receive to
minimize synchronization overhead. The set of processes that communicate with
each other is determined in advance. This allows the reduction of the amount of

Experiences Using OpenMP 219

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

O
p

en
M

P
/D

S
M

 S
p

ee
d

u
p

threads

class A
class W
class S

(a)

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

M
P

I S
p

ee
d

u
p

processes

class A
class W
class S

(b)

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

O
p

en
M

P
/S

M
P

 S
p

ee
d

u
p

threads

class A
class W
class S

(c)

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

O
p

en
M

P
/S

M
P

 S
p

ee
d

u
p

 C
la

ss
 S

threads

KAP/Pro Guide
Intel

Omni

(d)

Fig. 2. Speedups for different classes of the CG benchmarks. In (a) the speedup
for OpenMP/DSM is shown for classes A, W and S. The MPI speedup for the
same classes is given in (b). The speedup for a true shared memory system is
presented in (c). (d) shows a comparison of the speedup for class S for different
compilers on a shared memory platform. The Guide and the Intel compiler both
support OpenMP natively

communication within the iteration loop. In the OpenMP/DSM implementation,
processing the OpenMP REDUCTION clause by the DSM system generates a large
communication overhead which is indicated by a high number of page requests
and manifests itself by poor speedup as can be seen in Fig. 4. The parallel effi-
ciency is bad for the matrix-vector-multiply and disastrous for the dot-product
and AXPY operations. We conclude that the performance loss for the small size
problems is due to:

1. Additional overhead due to the Omni compiler,
2. A high communication to computation ratio which results from short loops

and global communication operations.

For the more realistic benchmark class A the performance of the DSM system
is acceptable.

220 Matthias Hess et al.

Matrix-Vector Product:

!$omp parallel do private(j,k,sum)

do j=1,lastrow-firstrow+1

sum = 0.d0

do k=rowstr(j),rowstr(j+1)-1

sum = sum + a(k)*p(colidx(k))

enddo

q(j) = sum

enddo

Dot-Product

d = 0.0d0

!$omp parallel do private(j) reduction(+:d)

do j=1, lastcol-firstcol+1

d = d + p(j)*q(j)

enddo

AXPY/Dot-Product Combination

rho = 0.0d0

!$omp parallel do private(j) reduction(+:rho)

do j=1, lastcol-firstcol+1

z(j) = z(j) + alpha*p(j)

r(j) = r(j) - alpha*q(j)

rho = rho + r(j)*r(j)

enddo

Fig. 3. Code examples for multiplication, a dot-product, and a loop combining
two AXPY operations and a dot-product

4.4 The FT Kernel Benchmark

The FT benchmark is the computational kernel of a spectral method based on
a 3-D Fast Fourier Transform (FFT). During the setup phase the 3-D array is
filled with random numbers. Unlike in the other benchmarks, the setup phase is
part of the timed code. The serial implementation of FT code was changed to
pre-calculate the values for the loop that initializes each data plane. This enables
the directive based parallelization of the loop. The main loop in FT could not be
parallelized completely automatically. Due to the complicated structure of the
loop CAPO had to assume data dependencies that prevented parallelization.
In contrast to a compiler CAPO allows interactive user guidance during the
parallelization process. Parallelization could be achieved by privatizing certain
arrays through the CAPO user interface.

Experiences Using OpenMP 221

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4

O
p

en
M

P
/D

S
M

 S
p

ee
d

u
p

threads

MVM
DOT

AXPY+DOT

(a)

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4

M
P

I S
p

ee
d

u
p

processes

MVM
DOT

AXPY+DOT

(b)

Fig. 4. Details of CG benchmark’s class S. Speedups are shown for the matrix-
vector multiplication (MVM), for the dot-product (DOT) and AXPY+dot-
product (AXPY+DOT). (a) results for DSM, (b) results for MPI

If nx, ny, and nz denote the number of grid points in each of the spatial
dimensions,the sizes of the benchmark classes under consideration are given as:

Class S: nx= 64, ny= 64, nz= 64
Class W: nx=128, ny=128, nz= 32
Class A: nx=256, ny=256, nz=128

The speedup for OpenMP/DSM, MPI, and OpenMP/SMP versions for our
three benchmark classes is shown in Fig. 5. For 8 nodes the OpenMP/DSM
implementation achieves about 70% of the MPI speedup, for class W 65% and
for class S 50%. The OpenMP/DSM speedup is limited to about 4 out of 8
processes compared to 6 out of 8 for the MPI implementation. To understand
the performance difference we examine the different steps of the FT benchmarks
in detail. In both implementations, the 3-D FFT is accomplished by performing
a 1-D FFT in each of the three spatial dimensions. For each spatial dimension
the three-dimensional array is copied into a one-dimensional array, the FFT is
performed on the one-dimensional array, and the result is copied back. A code
fragment for the first dimension is shown Fig. 6.

The OpenMP parallelization is achieved by inserting an OMP PARALLEL
DO on the outermost loop. This results in a distribution of the data in dimension
of K corresponding to the z-direction. The speedup for the individual three
spatial dimensions for the OpenMP implementation on the class A benchmark
is shown in Fig. 7. While the FFT in x and y dimension reach a speedup of 6
out of 8, the speedup in z-dimension is only 2 out of 8. The performance loss in
X and Y dimension is mostly due to communication caused by writing to the
shared array U which is indicated by page requests within this loop. Logically
there is no communication required for this loop, since only the local part of
the array is accessed. The performance decrease for the z-dimension is due to

222 Matthias Hess et al.

the fact that here the outermost loop of the loop nest from Fig. 6 runs in J
and not in K dimension. Since the data was distributed in K dimension, parallel
execution of the loop requires access to remote data and causes a large number
of page requests. The MPI implementation performs a transpose of the three-
dimensional array in z-dimension, which is achieved by a call to MPI ALLTOALL.
This causes some decrease in performance, but not as severe as in the DSM
system.

5 Problems Encountered

The installation of SCore, SCASH and Omni OpenMP was rather straightfor-
ward. For the basic SCore installation we tried to use aggressive compiler opti-
mizations whenever possible and we went through an iterative process to find
a stable configuration in terms of compiler settings. The SCASH and Omni
OpenMP configurations were based on the one found for the basic SCore sys-
tem. We were able to run all tests and examples delivered with either SCASH
or the Omni OpenMP compiler suite successfully.

0
1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8

O
p

en
M

P
/D

S
M

 S
p

ee
d

u
p

threads

class A
class W
class S

(a)

0
1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8

M
P

I S
p

ee
d

u
p

processes

class A
class W
class S

(b)

0
1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8

O
p

en
M

P
/S

M
P

 S
p

ee
d

u
p

threads

class A
class W
class S

(c)

Fig. 5. Comparison of MPI and OpenMP/DSM speedups for classes A, W and
S of the FT benchmark. (a) Speedup for OpenMP/DSM, (b) MPI Speedup, (c)
Speedup on the SMP system

Experiences Using OpenMP 223

do k = 1, n3

do j = 1, n2

do i = 1, n1

w(i) = u(i,j,k)

enddo

call fft (w,...)

do i = 1, d(1)

u(i,j,k) = w(i)

enddo

enddo

enddo

Fig. 6. Code fragment for the first dimension of FFT

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

O
p

en
M

P
/D

S
M

 S
p

ee
d

u
p

threads

x
y
z

Fig. 7. Speedup for different directions of the FFT Class A benchmark on the
DSM system

We ran into problems when trying to run the three kernel benchmarks EP,
CG, and FT for larger problem sizes such as they are given class B or C. We
also could not run any of the simulated CFD applications BT, SP, and LU
that are part of the benchmark suite, even for the small problem size given in
class A. The problems we encountered were due to the fact that SCASH was
not able to allocate enough of virtual memory. The SCASH system itself uses
a large amount of memory for its own memory management on top of the one
provided by the operating system. To improve data exchange performance (i.e.
bandwidth and latency) SCASH specifically allocates pin-down memory [22].
For larger benchmark classes it seems that there is not enough pin-able memory
available.

224 Matthias Hess et al.

Another severe restriction is the 32 bit address-space of the IA32 architecture.
With 32 bit addresses the address-space is restricted to at most 232 addresses,
equal to 4 GB of main memory. Usually the memory management of operating
systems like Linux or Windows 1 allows a process to use only part of this address-
space for its private data. The operating system uses the rest to mirror some
internal data structures into the process’ virtual address-space. Under Linux a
process can only use 2 GB of the theoretical maximum of 4 GB for its private
data, because Linux maps kernel structures and data into the upper 2 GB.

Without additional effort, the kernel itself would suffer from this 4 GB bar-
rier. To enable the use of more main memory, IA32 Linux uses Physical Address
Extension (PAE) to access up to 64 GB. This is achieved by having a three stage
page address translation mechanism. But even with this system, only the kernel
can handle more than 4 GB. A single process is still restricted to 2 GB of private
memory.

A software distributed shared memory system like SCASH that runs in user-
mode and uses a 32 bit global address-space will therefore be restricted to a
maximum of 4 GB global shared memory.

6 Related Work

Another system supporting the OpenMP paradigm on distributed memory sys-
tems is TreadMarks [2]. Comparisons of the TreadMarks systems with message
passing programming are given in [7] and [11]. Other systems that support soft-
ware DSM programming are Cashmere [18] and SMP-Shasta [15] There are a
number of papers reporting on comparisons of different programming paradigms.
As an example we name [16] and [17] where message passing and shared memory
programming are compared on shared memory architectures.

7 Conclusions and Future Work

We have evaluated the performance of OpenMP/DSM implementations of three
of the NAS Parallel Benchmarks on a commodity cluster of PCs. We compared
the speedup to the speedup obtained with MPI implementations of the same
algorithms. The difference in performance depends on the structure of the appli-
cation and the problem size. For the largest problem sizes under consideration
the observed OpenMP/DSM speedups range between 100% and 70% of the MPI
speedup for all benchmarks. In cases with an extremely high communication to
computation ratio the OpenMP/DSM speedup is significantly lower than that
obtained by MPI. This occurs in the smallest class of the CG benchmark, where
AXPY and dot-product operations for short vector lengths are being parallelized.
We have noticed that in this extreme case part of the performance decrease was
due to compiler deficiencies which also show on a shared memory system. The
memory problems described in section 5 are implementation dependent and we

1 Windows is a registered trademark of Microsoft Corp.

Experiences Using OpenMP 225

expect them to be resolved in commercial software. Usage of 64 bit system soft-
ware and kernel enhancements to support DSM on a system level will improve
the general usability of DSM systems.

All in all we are encouraged by the results we obtained considering the fact
that we were using public domain software. The DSM system allowed us to ex-
ploit parallelism over all nodes of the cluster by using automatically parallelized
code based on OpenMP. We find the performance differences when compared
with hand-optimized MPI code acceptable when we take into account the ex-
tremely short development time of the parallel code. Our future plan is to run
full size applications in our testbed environment.

Acknowledgments

We would like to thank Jahed Djohmeri and Rob van der Wijngaart of NAS
for reviewing the paper and the suggestions they made for improving it. The
authors also wish to thank Rob van der Wijngaart for many helpful discussions
about the NAS Parallel Benchmarks and DSM systems. Part of this work was
supported by NASA contracts NAS 2-14303 and DTTS59-99-D-00437/A61812D
with Computer Sciences Corporation.

References

1. http://www.conservativecomputer.com/myrinet/perf.html.
2. C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu,

and W. Zwaenepoel. TreadMarks: Shared Memory Computing on Networks of
Workstations. IEEE Computer, 29(2):18–28, February 1996.

3. D. Bailey, J. Barton, T Lasinski, and H. Simon. The NAS Parallel Benchmarks.
Technical Report RNR-91-002, NASA Ames Research Center, Moffett Field, CA,
1991.

4. D. Bailey, T. Harris, W. Saphir, R van der Wijngaart, A. Woo, and M. Yarrow.
The NAS Parallel Benchmarks 2.0. Technical Report NAS-95-020, NASAAmes Re-
search Center, Moffett Field, CA, 1995. http://www.nas.nasa.gov/Software/NPB .

5. Phillip Ezolt. A Study in Malloc: A Case of Excessive Minor Faults. In Proceedings

of the 5th Annual Linux Showcase & Conference, November 5–10, 2001.
6. H. Harada, Y. Ishikawa, A. Hori, H. Tezuka, S. Sumimoto, and T. Takahashi.

Dynamic Home Node Reallocation on Software Distributed Shared Memory. In
Proceedings of HPC Asia 2000, Beijing, China, pages 158–163, May 2000.

7. Y. C. Hu, H. Lu A. L. Cox, and W. Zwaenepoel. OpenMP for Networks of SMPs. In
Proceedings of the Thirteenth International Parallel Processing Symposium, pages
302–310, 1999.

8. C. S. Ierotheou, S. P. Johnson, M. Cross, and P. F. Leggett. Computer Aided
Parallelisation Tools (CAPTools)-Conceptual Overview and Performance on the
Parallelisation of Structured Mesh Codes. Parallel Computing, 22:163–195, 1996.

9. H. Jin, M. Frumkin, and J. Yan. The OpenMP Implementations of NAS Parallel
Benchmarks and Its Performance. Technical Report NAS-99-011, NAS, 1999.

10. H. Jin, M. Frumkin, and J. Yan. Automatic Generation of OpenMP Directives and
Its Application to Computational Fluid Dynamics Codes. In Proceedings of Third
International Symposium on High Performance Computing (ISHPC2000), Tokyo,
Japan, October 16-18, 2000.

226 Matthias Hess et al.

11. H. Lu, S. Dwarkdadas, A. L. Cox, and W. Zwaenepoel. Quantifying the Per-
formance Differences Between PVM and TreadMarks. Journal of Parallel and
Distributed Computation, 43(2):65–78, June 1997.

12. MPI 1.1 Standard. http://www-unix.mcs.anl.gov/mpi/mpich.
13. Omni OpenMP and SCASH. http://www.pccluster.org.
14. OpenMP Fortran Application Program Interface. http://www.openmp.org.
15. D. Scales, K. Gharachorloo, and A. Aggarwal. Finegran software distributed shared

memory on SMP clusters. In Proceedings of the Fourth International Symposium
on High-Performance Computer Architecture, pages 125–136, February 1998.

16. H. Shan and J. Pal Singh. A comparison of MPI,SHMEM, and Cache-Coherent
Shared Address Space Programming Models on a Tightly-Coupled Multiprocessor.
International Journal of Parallel Programming, 29(3), 2001.

17. H. Shan and J. Pal Singh. Comparison of Three Programming Models for Adaptive
Applications on the Origin 2000. Journal of Parallel and Distributed Computing,
62:241–266, 2002.

18. R. Stets, S. Dwarkadas, N. Hardavellas, G. Hunt, L. Kontothanassis,
S. Parthasarathy, and M. Scott. Cashmere-2L:Software coherent shared memory
on a clustered remote write network. In Proceedings of the 16th ACM Symposium
on Operating System Principles, pages 170–183, October 1997.

19. K. Taura, S. Matsuoka, and A. Yonezawa. StackThreads: An abstract machine
for scheduling fine-grain threads on stock CPUs. In Proceedings of Workshop on
Theory and Practice of Parallel Programming, pages 121–136, 1994.

20. H. Tezuka, A. Hori, and Y. Ishikawa. Design and Implementation of PM: a Com-
munication Library for Workstation Cluster. In JSPP’96, IPSJ, pages 41–48, June
1996. (In Japanese).

21. H. Tezuka, A. Hori, and Y. Ishikawa. PM: A High-Performance Communication
Library for Multi-user Parallel Environments. Technical Report TR-96015, RWC,
November 1996.

22. H. Tezuka, F. O’Carroll, A. Hori, and Y. Ishikawa. Pin-down Cache: A Virtual
Memory Managment Technique for Zero-copy Communication. Technical Report
TR 97006, Tsukuba Research Center, Real World Computing Partnership, 1997.

M.J. Voss (Ed.): WOMPAT 2003, LNCS 2716, pp. 227–243, 2003.
© Springer–Verlag Berlin Heidelberg 2003

Managing C++ OpenMP Code
 and Its Exception Handling

Shi-Jung Kao

Hewlett-Packard Company
shi-jung.kao@hp.com

Abstract. This paper discusses the issue of C++ exception handling in
C++ OpenMP Programs. Two possible implementation techniques are de-
scribed and contrasted. This paper also suggests ways to synchronize the
execution of C++ OpenMP programs in the event of uncaught exceptions.

1 Introduction

The OpenMP Standard states that a program that throws an exception within a parallel
region and fails to catch that exception within that parallel region is non-conforming.
Because the standard does not address the behavior of non-conforming programs, the
compiler is free to choose any behavior. Users, however, can have certain expecta-
tions, and for this reason, behavior consistent with the C++ standard exception han-
dling mechanism and other non-OpenMP code would be desirable.

1 . 1 Current Standards Requirements

The “OpenMP C and C++ Application Program Interface”, Version 2.0, March 2002,
specifies that “A throw executed inside a parallel region must cause execution to re-
sume within the dynamic extent of the same structured block, and it must be caught
by the same thread that threw the exception.”

The C++ ISO Standard states “when an exception is thrown, control is transferred to
the nearest handler with a matching type [15.1 -2-]” and “…exception handling must
be abandoned for less subtle error handling techniques: … when the exception handling
mechanism cannot find a handler for a thrown exception … [15.5.1 -1-]”.

Shi-Jung Kao228

1 . 2 Examples

Consider the following examples:

Example 1.
try {

#pragma omp parallel
{ // region A

…
throw 5;

}
…

} catch (…) {
… // handler

}
(An OpenMP parallel construct

within a C++ try block.)

Example 2.
try {

#pragma omp parallel
{

#pragma omp parallel
{// region A

…
throw 5;

}
…

}
} catch (…) {

… // handler.
}

(Nested OpenMP parallel constructs within a C++ try block. It has more threads
then the other example)

#pragma omp parallel defines a parallel region, which is a region of the program to be
executed by multiple threads in parallel.

When a thread encounters an OpenMP parallel construct, a team of threads is created.
This thread becomes the master thread of the team, and all threads, including the mas-
ter thread, execute the region in parallel.

In both examples, the execution of the master thread transfers control to its handler
while all other threads created for the parallel region are terminated after the “throw”
statement. The execution of the handler may not be finished before the whole execu-
tion is terminated (aborted).

Managing C++ OpenMP Code and Its Exception Handling 229

While both examples can be exposed by modern compilers which can then issue
warnings about applications throwing an exception inside a parallel region without a
handler, more complex cases can be difficult to detect.

1 . 3 Expensive Runtime Diagnostic

What we need is a runtime implementation that can do either of the following:
ß Detect such an uncaught C++ exception from an OpenMP parallel region and

issue a diagnostic.
ß Treat the exception like a C++ uncaught exception.

Although issuing a runtime diagnostic seems to be a straightforward way to deal with
an uncaught C++ exception from an OpenMP parallel region, it is expensive. The
C++ standard does not require issuing such a diagnostic on an uncaught exception.
This would be an add-on feature to our C++ compiler that would not only require
changes in our C++ exception runtime library but would also incur a performance
penalty for all non-OpenMP applications and all OpenMP applications that have no
exceptions due to a common code path during execution.

Would it not be better to make the runtime mechanism for uncaught exceptions
within a parallel region similar to that for uncaught exceptions in the C++ standard?

In Appendix A at the end of this paper, a method of analyzing runtime uncaught ex-
ception is suggested.

2 Implementation Possibilities

There are three possible implementations:

1. Make the parallel region a function call with a throw(); that is, use a
C++ exception specification.

2. Associate the parallel region through try block.
a. Put a try block around the parallel region with a catch-all

handler to terminate the execution when necessary.
b. Reset the try block when entering a parallel region and let

C++ standard behavior take care of uncaught exceptions.

Note that none of this is necessary if the parallel code cannot throw an exception.
(Such behavior is not unusual and could be implemented.)

Shi-Jung Kao230

2 . 1 Using an Exception Specification

The set of exceptions that might be thrown can be specified in the C++ function
declaration as follows:

void f() throw (); // exception specification with empty list.

Function f throws no exception, and during execution, any uncaught exception inside f
would be transformed into a call of std::unexpected. The std::unexpected() call would
then call std::terminate().

It seems reasonable to mark the parallel region with an empty exception-specification
(throw(), for example), considering that the behavior of uncaught exceptions within a
parallel region and the behavior of uncaught exceptions within function f are similar.

We implemented a parallel region as a function. Although labeling such a function
with “throw ()” would be easy, we rejected this approach for two reasons:

1. Enabling the master thread to continue to search for its handler beyond the
parallel region would require changes in the runtime library.

2 . It might have been necessary to add the exception specification to the
“pragma omp parallel” in the future.

In a similar situation, marking the function that contains the parallel region with an
empty exception specification would also not achieve the desired behavior. This ap-
proach would complicate the situation and interfere with the user’s exception specifica-
tion, making it difficult to separate exceptions from parallel regions and other places.

2.2 Using a Try Block

Two implementations should be considered for a compiler to generate code to manage
uncaught OpenMP exceptions during runtime:

1. Use the existing internal structure layout1 of a try block, and emit a catch-all
handler for the entire parallel region. This implementation would cause the
runtime to search for the handler and stop at the catch-all handler, after which
execution can be terminated. The implementation must find a way to let the
master thread continue its execution beyond such a parallel region if this be-
havior matches its default behavior.

1 Internal structure layout of “try block” – To ensure that make sure the C++ exception is be

handled properly and all objects associated with to the try block are destroyed/destructed
correctly when necessary, the compiler must maintain has to keep some internal infor-
mation structures about the layout of the try block available at both compiler time and
run time.

Managing C++ OpenMP Code and Its Exception Handling 231

2. Reset the internal layout of the try block to no nested try block outside the
parallel region when the compiler encounters the first try block inside this
parallel region. The search for the handler inside the function f that contains
this parallel region stops within the parallel region, even if the parallel re-
gion is nested inside a try block of function f. If there is no stack unwind-
ing, everything should terminate correctly.

2 . 2 . 1 Emitting a Catch-All Handler for the Entire Parallel Region

#pragma omp parallel
{

// Body of parallel region
…

}

This approach can be implemented semantically in two ways, as shown in the follow-
ing code fragments. Note that the semantic meanings can vary according to the com-
piler’s implementation.

a)
#pragma omp parallel
try {

// Body of parallel region
…

} catch (…) {
std::unexpected();

}

b)
try {

#pragma omp parallel
{

// Body of parallel region
…

}
} catch (…) {

std::unexpected();
}

The advantage of this implementation is that the compiler needs to emit only an extra
try block along with its catch-all handler for the OpenMP parallel region. The com-
piler therefore has less chance of breaking existing non-OpenMP applications. The
obvious disadvantage is that an extra try block per OpenMP parallel region can be
expensive, especially in a small parallel region. Because this is an add-on feature, it is
important that the behavior be consistent with the behaviors of existing C++ excep-
tion applications.

Shi-Jung Kao232

The following example shows how the output size of an assembly listing increases
with this implementation.

Example 3.
int main () {

int i = 0;
#pragma omp parallel
{

i = 5;
}
return 0;

}

0
20
40
60
80

100
120
140
160

Total number of lines in Compiler
gererated assembly listing

Normal

Compiler emits internal
"try" for parallel region

Fig. 1. After the compiler emits the try..catch(…) handler, its assembly listing size
doubles

Consider also the case of a parallel region within a user-declared try block, where the
new behavior of uncaught C++ exceptions in a parallel region meets the existing
behavior of C++ exceptions in a nested try block.

User’s code

try {
…
#pragma omp parallel
{

// Body of parallel region
…

}
} catch (…) {

// Handler code.
}

Managing C++ OpenMP Code and Its Exception Handling 233

Compiler emits equivalent code

try {
…
#pragma omp parallel
try {

// Body of parallel region
…

} catch (…) {
std::unexpected();

}
} catch (…) {

// Handler code.
}

This code, an OpenMP parallel region within a try block, semantically directs map-
ping to code with nested try blocks. When a thread from the inner try block termi-
nates, its cleanup process can cause the handler of the outer try block to be executed.
It can also lead to the destruction of all objects constructed in the outer try block, even
though they do not exist for some threads from the inner try block. That is, threads
are created in a parallel region other than the master one. Attempted destruction of
non-existing objects can then cause serious problems.
The following example illustrates the correct and incorrect number of objects to be
destroyed.

Example 4 (Assuming OMP_NUM_THREADS is 4).
struct Object {

int count;
Object () { }
~Object () { }

}

extern void foo(Object obj);

int main () {
try {

Object obj1;
#pragma omp parallel
{

foo(obj1);
}

} catch (…) {
// Handler code.

}
}

Shi-Jung Kao234

0

1

2

3

4

5

Total objects destructed (correct)

Outside parallel
region

Inside parallel
region

0

1

2

3

4

5

Total objects destructed (incorrect)

Outside parallel
region

Inside parallel region

Fig. 2. A total of four destructions should occur within the parallel region (that is, one
copy of obj1 per thread is destroyed) and only one destruction should occur outside the
parallel region (the obj1 of the master thread)

Because the C++ standard states that the mechanism for unwinding the stack after the
function terminate() is called is implementation-defined (see following), and because
the “unwind” can lead to improper destruction of objects, a reset of the try block when
entering an OpenMP parallel region could work well if this behavior matches the
existing implementation-defined behavior.

The C++ ISO Standard states “… If no matching handler is found in a program, the
function terminate() is called; whether or not the stack is unwound before this call to
terminate() is implementation-defined.[C++ ISO Standard, 15.3]”

In this example, to prevent threads from destroying the obj1 illegally, we must reset
the internal layout of the try block when execution enters the parallel region. The
master thread, however, could be a problem.

2 . 2 . 2 Resetting the Internal Layout of the Try Block

To obtain correct behavior in some environments, the compiler must modify the
layout of the try block to prevent the thread from accessing the environment of a try
block that does not belong to it. In other words, the compiler must reset the layout of
the try block when entering the parallel region. This behavior recognizes that each
thread within the parallel region has no pre-existing try block.

Managing C++ OpenMP Code and Its Exception Handling 235

In the previous example, if all four threads were trying to destroy obj1 (continue their
cleanup outside the parallel region), the only way to prevent this destruction would be
to reset the internal layout of the try block when execution enters the parallel region.
This reset ensures that the handler search stops at the parallel region. For example:

Example 5.
User’s code

try {
…
#pragma omp parallel
{

// Body of parallel region
…

}
} catch (…) {

// Handler code.
}

Compiler emits equivalent code

#pragma omp parallel
{ // Not within a try block

// Body of parallel region
…

}

Advantages: If no additional code is added, there is no performance penalty.
Disadvantages: Because the compiler must change or reset some structure contents
of the try block’s internal layout, chances of breaking the compiler’s existing behavior
increase.

Consider these two cases:
ß A parallel region within a try block.
ß A parallel region within the dynamic extent of a try block. The “reset” of the

internal layout of a try block is addressed in the first section. The runtime
library must ensure that only the master thread crosses the parallel region dur-
ing the unwind process.

Shi-Jung Kao236

3 Comparison of Results on EPCC OpenMP Microbenchmarks
(http://www.epcc.ed.ac.uk/research/openmpbench)

EPCC tests results ran on an ES40 AlphaServer with four processors in HP Tru64
UNIX V5.0a, showing no performance difference between these two implementations
under the test of Synchronization Overhead (All four C programs were compiled with
the C++ Compiler. The EPCC contains two sets of tests: Synchronization Overhead
and Scheduling Overhead.)

Synchronization Overhead
Percentage of Overhead time / Average time

0.00

20.00

40.00

60.00

80.00

PARALLEL FOR PARALLEL
FOR

SINGLE

Normal

Parallel region guarded with
try-block

Fig. 3. Synchronization overhead

On the other hand, the results for the Scheduling benchmark, which compares the
overhead of the DO directive using different scheduling options with chunk sizes, did
incur penalties on the parallel region that was guarded with additional try blocks.

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 32 64 128

Chunksize

Scheduling Overhead: Percentage of Overhead time / Average
time

Static

Static (with try-block)

Dynamic

Dynamic (with try-block)

Guided

Guided (with try-block)

Fig. 4. Scheduling overhead: Percentage of overhead time / average time

Managing C++ OpenMP Code and Its Exception Handling 237

The Scheduling Overhead showed that parallel regions guarded with a try block had a
higher overhead time in general. Data was collected with the following characteristics:

Running OpenMP benchmark on 4 thread(s)
Assumed clock rate = 667 MHz
Delay length = 14
Delay time = 65.165900 cycles

Note that this data was collected from a prototype HP C++ Compiler on Tru64
UNIX, and is used only for comparison of the two experimental implementations
discussed in this document.

Scheduling Overhead on ES40 AlphaServer - 4 processors

0

50

100

150

200

250

300

350

400

1 2 4 8 16 32 64 128

Chunksize

Static

Static (with try-block)

Dynamic

Dynamic (with try-block)

Guided

Guided (with try-block)

Fig. 5. Scheduling overheads (microseconds)

Shi-Jung Kao238

4 Conclusions

Adding a new feature to an existing compiler with minimal work is good practice, and
avoiding runtime library changes at the same time is even better — unless functional-
ity, compatibility and performance become issues. An uncaught C++ exception
within a parallel region can make cleanup complicated during the unwind process.
Such an uncaught exception can require a runtime check to identify the master thread
from a parallel region inside the dynamic extent of a try block and to let that thread
continue its execution and comply with the C++ standard.

It is fair to conclude that resetting the internal layout of try block is a better solution
if no changes are needed in the runtime library for the cleanup and unwind processes.

While epcc benchmark tests show some performance degradation when the compiler
emits an extra try block to guard the parallel region, a similar study at Digital Equip-
ment Corporation (now Hewlett-Packard Company) in 1998 showed that optimizing
away unneeded C++ exception handling (based on the paper “Optimizing Away C++
Exception Handling” by Jonathan L. Schilling from SCO, Inc.) would reduce object
sizes in C++ applications from between 3.5% to 10%.

The following chart compares the object size of the C++ Standard Library before and
after such optimization:

Object size of C++ Standard Library before and after the Optimization of
unneeded exception specification (Data collected in 1998)

0

500000

1000000

1500000

2000000

2500000

With debugging information Without debugging information

libcxxstd.a
object size

Before

After

Fig. 6. Optimization on unneeded exception specification

5 Future Direction

We might want to consider adding an exception specification to the syntax of “omp
parallel”. The OpenMP applications could then tell compilers whether and which kind
of C++ exception can occur. If the compiler knows that the parallel region can have

Managing C++ OpenMP Code and Its Exception Handling 239

no C++ exceptions, it can generate more efficient code. A C++ exception specifica-
tion added to the “clause” of an OpenMP parallel construct would have the following
syntax:

#pragma omp parallel throw()

Acknowledgments

Larry Weissman, August Reinig, Kenneth Block, Lazarus Guisso, Kevin Harris,
Premanand Rao, Bob Morgan, John Paolillo, and Kristine Kao contributed useful
comments from both technical and editorial review of this paper.

References

OpenMP C and C++ Application Program Interface, Version 2.0, March 2002

C++ Front End Internal Documentation, January 19,1996, Edison Design Group, Inc.

The C++ Programming Language Third Edition, Bjarne Stroustrup. Published by
Addison Wesley

STL Tutorial and Reference Guide, David R. Musser. Published by Addison Wesley

Tru64 UNIX Guide to DECthreads, July 1999, Compaq Computer Corporation

Tru64 UNIX Version 5.1B, Online document, Hewlett-Packard Company

Digital C++ Exception Handling Implementation, September 18, 1998, Coleen Phil-
limore, Digital Equipment Corporation

DEC C Design Note DN043, Microsoft Structured Exception Handling in DEC C
Alpha VMS, August 17 1992, Digital Equipment Corporation

Optimizing Away C++ Exception Handling, Jonathan L. Schilling, SCO Inc.

Internal C and C++ Notes, December 1998, Digital Equipment Corporation

The EPCC Microbenchmarks, http://www.epcc.ed.ac.uk/research/openmpbench

C++ ISO Standard Paper, http://www.iso.ch/iso/en/ISOOnline

Shi-Jung Kao240

Appendix: Debugging Uncaught Exception from a Parallel Region

Function set_unexpected() and set_terminate()

Debugging a parallel application is difficult. Debugging a parallel application that
causes “uncaught” C++ exceptions is even more difficult. Two functions that can be
helpful in analyzing the problem are

set_unexpected [ISO 18.6.2.3 lib.set.unexpected]
unexpected_handler set_unexpected(unexpected_handler f)throw();

This function sets f as the current unexpected handler. When a function exits via an
exception not allowed by its exception-specification, the unexpected() function is
called, which then calls unexpected_handler.

set_terminate [ISO 18.6.3.2 lib.set.terminate]
terminate_handler set_terminate(terminate_handler f) throw();

This function sets f as the current handler function for terminating exception process-
ing. When exception handling must be abandoned, the terminate() function is called,
which then calls the terminate_handler.
The following example illustrates the use of these two functions.

Example 6 (Assuming OMP_NUM_THREADS is 4).

#include “cxx_exception.h”
extern “C” int printf(const char *,…);
extern “C” int exit(int);

void announce() {
printf(“Unexpected!\n”);
throw;

}

void my_terminate() {
printf(“Terminated!\n”);
exit(0);

}

void foo() throw();
void foo() throw() {

static int x = 44;
throw &x;

}

Managing C++ OpenMP Code and Its Exception Handling 241

int main() {
#pragma omp parallel
{

set_unexpected(announce);
set_terminate(my_terminate);
try {

foo();
} catch (int *p) {

printf(“Caught %d\n”, *p);
}

}
return 0;
} // main

Runtime output:
Unexpected!
Terminated!

If we rewrite my_terminate() and announce() into following:

void my_terminate() {
printf(“Terminated!\n”);

#pragma omp barrier
exit(0);

}// See output1 and output2
void announce() {

printf(“Unexpected!\n”);
#pragma omp barrier

throw;
}// See output2

Output1:
Unexpected!
Unexpected!
Terminated!
Terminated!
Unexpected!
Terminated!
Unexpected!
Terminated!

Output2:
Unexpected!
Unexpected!
Unexpected!
Unexpected!
Terminated!
Terminated!
Terminated!
Terminated!

Shi-Jung Kao242

Sometimes it is still difficult to debug an unexpected behavior even with all the de-
bugger tools.
The following test was converted from an original non-OpenMP test in our compiler
development testing environment. Considerable effort was required to determine why
it caused an unexpected runtime hang.

Example 7 (Assuming OMP_NUM_THREADS is 4).

#include “cxx_exception.h”
extern “C” int printf(const char *,…);
extern “C” int exit(int);

void announce() {
printf(“Terminated!\n”);

#pragma omp barrier
exit(0);

}

struct Object {
static int static_count;
static int threshold;
int count;
Object () {

if (static_count >= threshold) {
threshold += 10;
throw static_count;

}
count = ++ static_count;
printf(“Making: %d\n”, count);

 }
~Object () {

printf(“Killed %d\n”, count);
throw count;

}
};

int object::static_count = 0;
int object::threshold = 2;

struct derived {
object obj[3];
derived () { }

};

int main () {
#pragma omp parallel

set_terminate(announce);

Managing C++ OpenMP Code and Its Exception Handling 243

#pragma omp parallel
{

try {
derived local;

} catch (…) {
printf(“Caught explicit\n”);

}
}
return 0;

}

The execution hung at the end because not every thread reached the barrier in the func-
tion announce().

Its runtime output showed something was missing.

Making: 1
Making: 4
Making: 5
Killed 5
Making: 3
Making: 6
Making: 7
Killed 7
Making: 2
Making: 8
Making: 9
Killed 6
Killed 4
Terminated!
Terminated!
Killed 9
Caught explicit
Killed 8
Terminated!

M.J. Voss (Ed.): WOMPAT 2003, LNCS 2716, pp. 244–259, 2003.
© Springer–Verlag Berlin Heidelberg 2003

Improving the Performance of OpenMP
 by Array Privatization*

Zhenying Liu, Barbara Chapman, Tien-Hsiung Weng, and Oscar Hernandez

Department of Computer Science, University of Houston
{ zliu , chapman , thweng , oscar }@cs.uh.edu

Abstract. The scalability of an OpenMP program in a ccNUMA system
with a large number of processors suffers from remote memory accesses,
cache misses and false sharing. Good data locality is needed to overcome
these problems whereas OpenMP offers limited capabilities to control it on
ccNUMA architecture. A so-called SPMD style OpenMP program can achieve
data locality by means of array privatization, and this approach has shown
good performance in previous research. It is hard to write SPMD OpenMP
code; therefore we are building a tool to relieve users from this task by
automatically converting OpenMP programs into equivalent SPMD style
OpenMP. We show the process of the translation by considering how to
modify array declarations, parallel loops, and showing how to handle a vari-
ety of OpenMP constructs including REDUCTION, ORDERED clauses and
synchronization. We are currently implementing these translations in an in-
teractive tool based on the Open64 compiler.

1 Introduction

OpenMP has emerged as a popular parallel programming interface for medium scale
high performance applications on shared memory platforms. Strong points are its
ability to support incremental parallelization, portability, and ease of use. However,
the obstacles to scale an OpenMP code to hundreds or thousands of processors, as may
be configured in ccNUMA systems, are latency of remote memory access, poor cache
memory reuse, a large number of barriers and false sharing of data in cache. Good data
locality is needed to overcome these performance problems.

It is possible to obtain data locality, as well as to minimize false sharing between
threads on a ccNUMA system, via manual privatization of the arrays in an OpenMP
program. However, a systematic use of array privatization that separates array ele-
ments that are shared by multiple threads from those elements of the same arrays that
are not shared, requires extensive program modification. The so-called SPMD style of
OpenMP programming is a systematic realization of this approach and it has been

 *This work was partially supported by the DOE under contract DE-FC03-01ER25502 and

by the Los Alamos National Laboratory Computer Science Institute (LACSI) through
LANL contract number 03891-99-23.

Improving the Performance of OpenMP by Array Privatization 245

shown to provide scalable performance [2, 3, 20] that is superior to a straightforward
parallelization of loops for ccNUMA systems.

SPMD style OpenMP code is distinct from ordinary OpenMP code: In most
OpenMP programs, shared arrays are declared and PARALLEL DO (or FOR) directives
are used to realize a distribution of work among threads possibly via explicit loop
scheduling. In the SPMD style, a systematic privatization of arrays, by creating pri-
vate instances of (sub-)arrays, provides opportunities to spread computation among
threads in a manner that ensures data locality. When data that have been privatized need
to be shared by two or more threads, the programmer must insert additional data struc-
tures and code to achieve this. This is because in OpenMP programs, interactions
between threads occur via shared variables only; each thread may moreover access its
own private variables which are not visible to other threads. Thus a number of non-
trivial program modifications are required to convert a program to the SPMD style.

It is thus hard for a user to write SPMD style OpenMP code, especially for a large
application. Ease of program development is a major motivation for adopting
OpenMP and it is important to provide some help for users who wish to improve the
performance of a rapidly created program by adopting SPMD style. One approach is to
provide a tool that supports the generation of SPMD style OpenMP code, either from
a sequential program or from an OpenMP code with loop-level parallelism. We are
developing just such a tool. It is being implemented using the open source Open64
compiler [14] infrastructure. The tool is interactive, because we believe that user in-
volvement is essential for good results.

This paper is organized as follows. In the next section, we describe the basic trans-
lation to SPMD style, using a simple Jacobi code fragment to show the process step
by step. The subsequent sections discuss the translation of OpenMP directives and
clauses that may be encountered in the original OpenMP program. After this, an over-
view of related work is given and some conclusions are reached.

2 Overview of SPMD Translation

Programs written using SPMD style with array privatization have shown superior
performance [2, 3] on the SGI Origin 2000, a typical ccNUMA architecture. Indeed,
their superior data locality has even been shown to improve performance on small
SMPs [2]. Our goal is to help the user translate OpenMP programs into equivalent
SPMD ones, which are expected to achieve data locality and high performance in
ccNUMA systems, without introducing extensions to OpenMP. We follow a transla-
tion strategy that privatizes a program’s arrays automatically or semi-automatically by
following the OpenMP semantics of loop scheduling. The work described here as-
sumes we know which arrays are to be privatized and the manner of privatization.

SPMD (Single Program Multiple Data) fashion code is parameterized by the thread
number and loaded by all the target processors. Arrays are generally distributed among
threads in such a manner that the region of the array assigned to a thread becomes a
private data structure and is allocated locally. If appropriately carried out, this per-
mits a high degree of data locality. This implies that additional work is needed when-

Zhenying Liu et al.246

ever privatized array elements are used by other threads. In the following, we out-
line the general techniques required to translate OpenMP code into SMPD style for
execution on a ccNUMA machine. While doing so, we point out the difference be-
tween the array privatization required by this style and the privatization commonly
used in OpenMP codes.

2.1 SPMD Style with Array Privatization

Our privatization approach in support of SPMD translation differs from other work on
array privatization [19]. First, in the previous research, the following condition must
be satisfied in order to privatize an array: every fetch to an array element in a loop
must be preceded by a store to the element in the same iteration of the loop. In other
words, there may be no dependences between loop iterations involving this array. This
condition does not need to hold in order for us to privatize an array to generate SPMD
style code. Second, a thread may access array elements that are private to other threads
in SPMD style code, while this is not allowed in previous array privatization. We
must naturally perform additional code modifications in order to realize these accesses.

Basic Translation. In this section, we describe the process of translating loop-
parallel OpenMP programs into SPMD style code. We indicate the modifications
needed for array declarations when privatizing arrays, the basic modification of loop
nests, and a strategy for sharing the privatized data between threads when it is required
by the code. We show a simple example of a Jacobi code which approximates the
solution of a partial differential equation discretized on a grid, and translate this
straightforward OpenMP program in Fig. 1 into corresponding SPMD style in Fig.
2. We discuss the translation of this code fragment to illustrate our approach in the
following subsections.

The Declaration of Private Arrays. In order to obtain an SPMD program, the
major arrays must be distributed among the threads. Within the context of OpenMP,
data distribution is achieved via privatization. The approach is similar to that of MPI
in the sense that a data distribution is chosen by the user or a tool and modified data
structures are declared that have a shape and size corresponding to the (thread-) local
portion of the array. In general, our translation strategy will choose to create
threadprivate data structures, as threadprivate variables are globally accessible within
the code. As a consequence of the above, the size of the threadprivate arrays at run
time will depend on the manner in which we have partitioned and distributed the
arrays, as well as their original size and the number of threads. The thread that declares
and defines a section of a privatized array is called the owner of that section.
In our example code fragment, we privatize arrays A and B. The manner in which we
do so is not arbitrary, but depends on the approach taken by the user to parallelize the
original OpenMP code. Here, the j-loop has been parallelized (how to achieve the loop
bounds start_y and end_y of the j-loop in Fig. 2 is further explained below) and the
threads each access a contiguous segment of the second dimension of arrays A and B,

Improving the Performance of OpenMP by Array Privatization 247

whereas all elements in the first dimension are accessed. (In the current OpenMP defi-
nition, only one loop nest may be parallelized and the parallelization of two or more
loops, which will often correspond to distribution of two or more array dimensions, is
only possible via collapsing of loops. We expect this to change in the future.) Array
section analysis computes the regions of A and B that are read and written by individ-
ual threads. We use the array sections that are written by threads to decide how to
distribute the arrays. For example, in S 1 statement of Fig. 2, the array section
A[1:1000,id_1000/numthreads:(id+1)_1000/numthreads] is defined by the thread with
identifier id, where numthreads is the total number of threads, since the default block
schedule is used. Therefore we distribute array A by block in the second dimension
according to the loop scheduling in the OpenMP program. In this case, the paralleliza-
tion strategy enables us to distribute data in a manner that privatizes almost all refer-
ences to both arrays. In a more realistic program, this may not be the case. Since
OpenMP by its nature does not expect the user to compare the data usage implied by
the parallelization strategy, it is possible that the loops chosen for parallelization
imply different data distributions in different parts of the program. Since this will
result in many nonlocal accesses, no matter which distribution we base our translation
on, it will seriously detract from the performance benefits of our approach. This is a
challenge for our translation process and is one of the reasons why we do not expect to
fully automate this translation. We return to this topic below. But note that achieving
consistency in thread data usage is likely to benefit even small programs executed on
just a few CPUs [2, 3].

double precision A(1000,1000)
double precision B(1000,1000)
 call omp_set_num_threads(4)
!$omp parallel default(shared)
!$omp& private(i,j)
 do k=1, 20
!$omp do
 do j = 2 ,999
 do i = 2 , 999
S1: A(i,j) = (B(i-1,j)+B(i+1,j)
 + B(i,j-1)+B(i,j+1)) * c
 end do
 end do
!$omp do
 do j=1, 1000
 do i= 1, 1000
S2: B(i,j) = A(i,j)
 end do
 end do
 end do
!$omp end parallel

Fig.1. Jacobi kernel in
OpenMP

double precision Aloc(1000,0:251),Bloc(1000,0:251)
double precision buf_upper(1000,-1:5)
double precision buf_lower(1000,-1:5)
!$omp threadprivate(Aloc, Bloc)
!$omp parallel default(shared)
!$omp& private(shtart_y,end_y,i,j,k,id)
 id = omp_get_thread_num()
 do k = 1, 20
 S1’: buf_upper(1:1000, id)=Bloc(1:1000,250)
 S2’: buf_lower(1:1000, id) = Bloc(1:1000, 1)
!$omp barrier
 S3’: Bloc(1:1000,0)=buf_upper(1:1000,id -1)
 S4’: Bloc(1:1000,251)=buf_lower(1:1000,id+1)
 do j=start_y, end_y
 do i=2, 999
 S5’: Aloc(i,j) = ((Bloc(i-1,j) + Bloc(i+1,j)
 + Bloc(i,j-1) + Bloc(i,j+1)) * c
 end do
 end do
 do j=1, 250
 do i=1, 1000
 S6’: Bloc(i,j) = Aloc(i,j)
 end do
 end do
 end do
!$omp end parallel

Fig. 2. Jacobi kernel in OpenMP SPMD
style

Zhenying Liu et al.248

In our example translation (Figures 1 and 2), we have assumed that the program is
executed by four threads for the sake of simplicity. The parallelization strategy as-
signs each thread the task of updating a contiguous block of columns of each of arrays
A and B. We accordingly distribute a contiguous block of columns of A and B to each
thread; the corresponding private arrays have been renamed Aloc and Bloc. Note that
the user has not specified a loop schedule; with such a schedule, the distribution of
loop iterations, and hence of array updates, would change. We are able to declare the
threadprivate arrays statically in this case, since the number of threads at run time is
fixed (Fig. 1). Dynamic arrays have to be used if the user does not explicitly specify
how many threads will execute the code. It is obviously more flexible to compile the
program for an unspecified number of threads. We must use the relationship between
an original globally shared array and the privatized array to translate array references.
For example, Aloc(1:1000,1:250) for thread 0, 1, 2, and 3 in Fig. 2 represents
A(1:1000,1:250), A(1:1000:1,251:500), A(1:1000,501:750) and A(1:1000,751:1000)
in the original OpenMP program in Fig. 1 respectively. The translation process actu-
ally introduces a common block, since it is needed to pass privatized arrays across the
procedures in SPMD code. In the examples of this paper, we simplify our discussion
by only declaring the privatized array in a threadprivate directive without introducing a
new common block.

Loop Translation. Parallel loops are the major source of parallelism in most
programs and they drive our translation into SPMD style. The translation process
must not only translate array references, but also deal with DO directives, the do loop
control statement and the loop body. Some DO and END DO directives can be re-
moved if a privatized array is inside a parallel region. In general, assignment state-
ments are surrounded by guards (if-constructs) in SPMD code [18] so that they are
only executed by the thread owning the privatized array element on the left hand side.
In the case of statements within parallel loops, these loop bounds are modified so that
the guards are redundant. We adapt the loop bounds so that each thread executes the
portion assigned to it by the loop schedule. We may choose to retain global coordi-
nates and use the thread id to parameterize it, or we may translate the array bounds and

 Fig. 3. Translation of loop bounds (start_y, end_y) of the first j-loop in Fig. 1
 into SPMD style

!$omp parallel private(start_y, end_y, id, numthreads)
 numthreads = omp_get_num_threads()
 if(id .eq.0) then
 start_y = 2; end_y = 250
 else if (id .eq. (numthreads-1)) then
 start_y = 1; end_y = 249
 else
 start_y = 1; end_y = 250
 end if
 do j = start_y, end_y
 …
 end do
!$omp end parallel

Improving the Performance of OpenMP by Array Privatization 249

hence all references to the loop variable in the original loop (as in our code). In each
case, the loop control variable can be directly used as subscript for privatized arrays
without modification. The original loop bounds of j, 2 to 999, are reduced to start_y
and end_y in Fig. 2, whose calculation is demonstrated in Fig. 3.

Sharing Elements of Privatized Data between Threads. In OpenMP,
threads interact via references to shared data. In the original OpenMP program,
multiple threads may reference part of an array that has been privatized in our SPMD
translation process. Since entire loop iterations are executed by a thread, it may occur
that a thread needs to read data that have been privatized and are not local; it may also
need to write non-local data as in an LBE program we previously studied [3]. For
example, in our Jacobi code fragment, some elements of array B are accessed by more
than one thread. Since B has been privatized in the SPMD version, some array
elements private to a thread must be accessed (read, in this case) by another thread. We
thus have the task of identifying such array elements and of modifying the code to
ensure that the data are available: the owner thread must explicitly “export” this data.
In our example, the privatized array Bloc on thread 1 will correspond to the original
B(1:1000,250:500). This is equivalent to the region of the array that is written by it.
However, thread 1 also needs to read the array section B(1:1000,249:501). When we
compare this with the privatized region, we observe that two columns of the original
array are used by thread 1 but are not immediately accessible to it: the non-local array
elements B(1:1000,249) and B(1:1000,501) must be shared between threads as a result.

Wherever privatized data must be shared between threads, we require a translation
from the original OpenMP program into SPMD style in the following steps:
(1) Shared buffers must be declared to store the non-local array references. The size of
the shared buffers depends on the total number of threads, the number of array sections
of non-local elements and the dimensions that are not privatized. For instance, in Fig.
2, buf_lower and buf_upper are declared for this purpose. Their declaration is double
precision buf_lower(1000,4), buf_upper(1000,4). Because each of four threads accesses
one column of B from neighbor threads, the total size of the buffer is one column
multiplied by total number of threads. If the number of threads is not fixed, two dy-
namic arrays have to be declared to hold the data shared with neighbor threads at left
and right boundaries.
(2) The size of the privatized array must be increased to create space to store the non-
local data accessed. The adjusted size of the privatized array is obtained from the non-
local access pattern. For example, Aloc and Bloc must be expanded by one column at
both sides. The declarations of arrays Aloc and Bloc are thus modified to double preci-
sion Aloc(1:1000, 0:251), Bloc(1:1000,0:251). The additional memory spaces
(1:1000, 0) and (1:1000, 251) are referred to as the shadow area [259], or ghost area. It
is also common to append this storage directly to the local array in MPI SPMD pro-
grams, since it simplifies the translation process and is likely to provide better per-
formance than using separate data structures.

Zhenying Liu et al.250

(3) Executable instructions are generated to implement the sharing of private data
between threads. Statements are inserted into the code to ensure that the owner thread
writes data that are needed by another thread into shared buffers. In our example, S1’
and S2’ in Fig. 2 are inserted to copy two columns from array Bloc to buf_upper and
buf_lower.
(4) Synchronization directives are inserted to ensure correct order of accesses to data
in the shared buffers. In Fig. 2, data are written to, and should subsequently be re-
trieved from, shared buffers buf_upper and buf_lower; we need to insert a barrier to
enforce this order of access. In general, we have several alternatives for implementing
this, including barriers or a more loosely synchronous code.
(5) Executable instructions are generated to store the contents of shared buffers into
the shadow area of the reading thread. Hence in Fig. 2, statements S3’ and S4’ are
inserted. Since the local copies are part of a private data structure, we can benefit from
its data locality in subsequent use. Note that these steps are only slightly modified if a
thread writes non-local data.

2.2 General Strategy for SPMD Translation

In the previous section, we outlined the basic translation steps using our Jacobi ex-
ample. Now we discuss a more general translation technique for SPMD style code,
because we need to apply this strategy not only when the program is much more
complex, but also in the presence of other OpenMP constructs.

The Transformation between Global and Local Representations. For a
given parallel loop in an OpenMP program, we may need to translate references to
both privatized arrays as well as arrays that remain shared. Basically, we follow the
method of [18] that we will first remove the DO directive and reduce the loop bounds.
The resulting array subscript is local to each thread. This method is described in the
translation of Jacobi program. However, whenever the loop control variable appears
outside a reference to a privatized array, we have to recover its original “global” value
to ensure correct translation. This requires a local to global conversion (see) of sub-
scripts. To show this, we choose to privatize array A only in the example of Fig.
3(a). The code is transformed into the SPMD style in Fig. 3(b) using the index con-
version method; the global loop index i is transformed into local iloc, where i is equal
to iloc+id*chunk. Thus we must replace the loop variable by the latter expression
wherever it is not referred to in a privatized data structure.

In a few cases, the above method does not work. Hence an alternative translation
is required. In this approach, we retain the original loop bounds and thus it is the
subscript of the privatized array that is modified. The loop schedule ensures that
threads execute the required iterations. Although the global i is untouched, we need the
local index to access privatized arrays. The global to local conversion as described in
Table 1 is thus required to deal with references to the privatized array Aloc; we substi-
tute i-id*chunk for global i. Code generated using this method is displayed in Fig.
3(c). We can see the difference between these translations by comparing Fig. 3(b) and

Improving the Performance of OpenMP by Array Privatization 251

(c). This second strategy is used to translate the OpenMP ORDERED directive in
Section 3.1 below since we must keep the DO directive.

Fig. 4. An OpenMP example code, and its SPMD style code with loop bounds reduction
and reduced array size. Array A is privatized into Aloc, while B is not to be privatized

Table 1 gives formulae used to adapt loop lower and upper bounds, and transform
between local and global address spaces for the most common loop schedules. It can
be used as a reference to translate parallel loops into SPMD style when the loop
scheduling of OpenMP programs is the straightforward default chunk size and we
follow this loop scheduling to privatize arrays.

double precision Aloc(20),B(200)
!$omp threadprivate(Aloc)
 call omp_set_num_threads(10)
!$omp parallel shared(B)
 id = omp_get_thread_num()
 chunk = 200/omp_get_num_threads()
 do iloc=1,chunk
 Aloc(iloc)=iloc + id*chunk
 +B(iloc+id*chunk)
 end do
!$omp end parallel
…

(b) SPMD style with loop bounds reduction

double precision A(200)
double precision B(200)
call omp_set_num_threads(10)
!$omp parallel do shared(A,B)
 do i=1,200
 A(i) = i + B(i)
 end do
!$omp end parallel do
…
(a) OpenMP example code

double precision Aloc(10), B(200)
!$omp threadprivate(Aloc)
 call omp_set_num_threads(10)
!$omp parallel shared(B)
 id = omp_get_thread_num()
 chunk=200/omp_get_num_threads()
!$omp do schedule(static, chunk)
 do i=1,200
 Aloc(i-id*chunk) = i + B(i)
 end do
!$omp end do
!$omp end parallel
…
(c) SPMD style with transformed
subscripts for privatized array

Zhenying Liu et al.252

Table 1. Creation of loop bounds, local and global indices [18]

Transformation Block Cyclic
Global to local lower
loop bounds

MAX((id_chunk)+1, L)
–id_chunk

lb=((L -1)/numthreads + 1
If (id < MOD(L-1, numthreads))
lb = lb +1

Global to local upper
loop bounds

MIN((id+1)_chunk,U)
–id_chunk

ub = ((U-1)/numthreads) + 1
If (id > MOD(U-1, numthreads))

 ub = ub – 1
Global to local i - id _ chunk (i – 1)/chunk + 1
Local to global i+ id _ chunk ((i-1)_chunk) + 1 + id
Global index to owned
thread

CEIL(N/numthreads) – 1 MOD(i-1,numthreads)

numthreads = total number of threads; id = the thread number;
chunk = chunk size of local iterations; L, U: original lower, upper bounds;
lb, ub: transformed loop lower and upper bound

3 Translating OpenMP Constructs

In the previous section, we focused on the basic SPMD translation that permits us to
convert an OpenMP program with some shared arrays into an equivalent SPMD style
OpenMP program with threadprivate arrays. In this section, we discuss how efforts
have to be exerted to translate other OpenMP directives and clauses that may appear in
the code. We consider several DO directive clauses and other OpenMP constructs in-
cluding synchronization directives.

3.1 Other Issues in Loop Translation

We have discussed the basic loop translation in Section 2. However, more work has to
be done when some clauses, including REDUCTION and ORDERED of parallel do
loops, are encountered.

Fig. 5. Translation of reduction operations in OpenMP

 S= 0.0
!$omp parallel do default(shared)
!$omp& reduction(+:S)
 do i = 1, N
 S = S + A(i) * B(i)
 end do
!$omp end parallel do

(a) An OpenMP code with REDUCTION

!$omp threadprivate(Aloc, Bloc)
 S = 0.0
!$omp parallel reduction(+:S) default(shared)
 Sloc = 0.0
 do iloc=1,ub
 Sloc=Sloc + Aloc(i)*Bloc(i)
 end do
 S = S+ Sloc
!$omp end parallel
(b) The SMPD code

Improving the Performance of OpenMP by Array Privatization 253

REDUCTION Clause. If the arrays to be privatized are encountered in a parallel do
loop with a REDUCTION clause, a new private variable has to be introduced to save
the local result of the current thread; we must perform a global reduction operation
among all the threads to combine the local results. The REDUCTION clause will be
moved so that it is associated with the parallel region although it may be associated
with a DO directive in original OpenMP program. The SPMD transformations for the
do loops and privatized array are still needed. Fig. 4(a) and (b) depict the translation of
a REDUCTION clause. Sloc, which is a private scalar, is introduced to accumulate the
local sum for each thread taking advantage of privatized arrays Aloc and Bloc, and S is
the result of a global sum of the local Sloc among all the threads. Variable ub has to
be calculated according to Table 1.

ORDERED in a Parallel Loop. The ORDERED directive is special in
OpenMP as neither CRITICAL nor ATOMIC can ensure the sequential execution
order of loop iterations. So we have to retain not only the ORDERED directive, but
also the corresponding PARALLEL and DO directives in the generated code due to the
semantics of ORDERED. The translation of the parallel do loop follows the second
method introduced in section 2.3, where the DO directive and loop control statement
remain the same, while the index of the privatized array is converted from global to
local format. A schedule that permits threads to access private array elements as far as
possible is declared explicitly. The example in Fig. 5 shows an OpenMP program
with the ORDERED directive and corresponding SPMD code. The generated loop in
Fig. 5(b) has to sweep from 1 to N to ensure the correct distribution of iterations to
threads. We use an IF construct inside the do loop to isolate the wasteful first and last
iteration.

Fig. 6. Translation of ORDERED directive into SPMD style

 integer N
 parameter(N=1000)
 double precision A(N)
 call omp_set_num_threads(10)
!$omp parallel do ordered
 do i=2, N-1
 …
!$omp ordered
 write (4,*) A(i)
!$omp end ordered
 …
 end do
!$omp end parallel do

(a) An OpenMP code with
ORDERED

 double precision Aloc(100)
!$omp threadprivate(Aloc)
!$omp parallel
 id = omp_get_thread_num()
 chunk = N/omp_get_num_threads()
!$omp do ordered schedule (static, chunk)
 do i=1, N
 if (i .ge. 2 .and. i .le. N-1) then
 …
!$omp ordered
 write (4,*) Aloc(i-id*chunk)
!$omp end ordered
 …
 end if
 end do
!$omp end do
!$omp end parallel
 (b) The SPMD code

Zhenying Liu et al.254

Different Loop Scheduling and Different Number of Threads. In an
OpenMP program, we may encounter parallel loops whose execution requires that
each thread access arrays in a pattern that is quite different from the array elements that
they will need to access during the execution of other parallel loops. This is generally
detrimental to performance, since it will not permit the reuse of data in cache. How-
ever, it may be a suitable way to exploit parallelism inherent in the code. The ADI
(Alternating Direction Implicit) kernel provides a common example of this problem.
Since this could also introduce substantial inefficiencies into an SPMD program, we
have considered two solutions to this problem. In one of these, we create two private
arrays, each of which is privatized in first and second dimension separately. When the
loop scheduling is changed between these two dimensions, we have to transfer the
content of the first privatized array to the second through a shared buffer. This is simi-
lar to performing data redistribution. In the other solution, a private array is used for
one kind of loop scheduling; whenever the loop scheduling changes, the contents of
the private array are transferred to a shared buffer, which is subsequently referenced.
Both methods require a good deal of data motion. From previous experiments [9], we
know that such sharing is very expensive unless there is a great deal of computation
to amortize the overheads or a large number of processors are involved. In practice we
may ask the user to decide how to privatize.

In our outline of the basic translation strategy, we discussed the case of static
scheduling and a fixed number of threads. In our SPMD translation, we disable the
dynamic, guided scheduling and dynamic number of threads including
NUM_THREADS clause in order not to degrade the performance. It is hard to deter-
mine which iterations are executed by a thread under these scheduling methods and
when there is a dynamic number of threads. The size of privatized arrays may change
and a large number of privatized array elements may need to be shared between threads.
All of these will prevent us from generating efficient code.

3.2 Translation of Other OpenMP Constructs

Parallel regions must replace serial regions to enable access to privatized arrays within
them, since the thread number and threadprivate arrays that are essential for SPMD
style code can only be obtained in a parallel region. After constructing the parallel
region, we need to decide two things: which thread executes each statement of the
parallel region, and whether we need to share the privatized data between threads.

During the translation, only assignment statements may be modified, while control
statements are kept without modifications in the generated code. If a privatized array
appears on the left hand side of an assignment statement, then the owner thread of the
privatized array element executes this statement. If the private array is accessed on
both sides of a statement, the owner thread of the privatized array element on the right
hand side will execute this statement; data sharing statements are inserted if non-local
array elements are referenced.

Improving the Performance of OpenMP by Array Privatization 255

Fig. 6. Translation of MASTER directive into SPMD style

MASTER and SINGLE Directives. The semantics of the MASTER directive
and sequential regions is that the master thread performs the enclosed computation. We
can follow the OpenMP semantics in such program regions by modifying the code so
that privatized array elements are shared between the master thread and the owner
thread, or we can let the owner thread of a privatized array element compute instead.
Since both of these methods ensure correctness, we select the latter in our implemen-
tation for performance reasons, although it does not entirely follow the semantics of
the original OpenMP program. For example, we elect to privatize B but not A in Fig.
6(a). The translated code for the MASTER directive is shown in Fig. 6(b). We can see
that B(120) is mapped to Bloc(20) for thread 2, so thread 2 executes the code enclosed
within the MASTER directive. More conditionals may have to be introduced for each
statement of the code enclosed by the MASTER directive; these IF constructs may be
merged during the subsequent optimization process. The code enclosed within a
SINGLE directive could be translated in a similar way to that of the MASTER direc-
tive. The only difference between translating SINGLE and MASTER directives is that
we have to replace END SINGLE with a BARRIER if NOWAIT is not specified.

Synchronization Directives. If a private array appears in the code enclosed by
CRITICAL, ATOMIC and FLUSH directives, the enclosed code is translated according
to the strategy outlined in Section 2. Since the owner of a privatized array element on
the left hand side usually executes a statement, accesses to privatized arrays are serial-
ized. This may allow us to move the statements associated with private arrays outside
the synchronization directives, and improve the performance to some extent. Unfortu-
nately, sometimes the control flow and data flow of the program will not allow us to
carry out this improvement.

4 Current Implementation

The performance of the generated SPMD style OpenMP code will be greatly enhanced
by precise analyses and advanced optimizations [16]. Many compiler analyses are
required for the SPMD translation, for instance, dependence analysis in a do loop,
array section analysis within and between the loops and between the threads, parallel

 double precision A(100), B(200)
 call omp_set_num_threads(4)
!$omp parallel shared(A,B)
…
!$omp master
 B(120) = A(50)
!$omp end master
…

(a) An OpenMP code with MASTER

 double precision A(100), Bloc(50)
!$omp threadprivate (Bloc)
 call omp_set_num_threads(4)
!$omp parallel shared(A)
…
 if (id .eq. 2) then
 Bloc(20) = A(50)
 end if
…
(b) The SPMD code

Zhenying Liu et al.256

data flow analysis for OpenMP programs, the array access pattern analysis, affinity
analysis between the arrays [7], etc. Interprocedural analysis is important to determine
the array regions read and written in loop iterations. We need to calculate accesses to
array elements accurately for each thread in order to determine array privatization and
shared data elements, even in the presence of function calls within a parallel loop.
Interprocedural constant propagation can increase our precision. For example, if we do
not know whether a reference (for example, A(i,j+k)), is local, we have to make a
conservative assumption that they are not, and share it between the owner thread and
accessing thread, although this is not efficient. A(i,j+k) may be known to be local to
the current thread at compile time if the value of variable k can be fixed by interproce-
dural constant propagation.

Our translation from OpenMP into SPMD style OpenMP is being realized within
our Dragon tool based on the Open64 compiler [14], a suite of optimizing compilers
for Intel Itanium systems running on Linux that is a continuation of the SGI Pro64
compiler. Our choice of this system was motivated by a desire to create a robust,
deployable tool. It is a well-structured code that contains state-of-the-art analyses in-
cluding interprocedural analysis [8], array region analysis, pointer and equivalence
analyses, advanced data dependence analysis based on the Omega test, and a variety of
traditional data flow analyses and optimization. It also has a sophisticated loop nest
optimization package. A version of the Dragon tool with limited functionality has
been made widely available [5]. This extended version is aimed at helping the user
generate SPMD code interactively, by providing them with on-demand analysis and
assisting in the code generation/optimization process. The high-level forms of
WHIRL, the intermediate representation (IR) in the Open64 compiler, are able to
explicitly represent OpenMP constructs. We transform a standard OpenMP program
into an equivalent SPMD style one at the high level, i.e. before the IR constructs
corresponding to OpenMP directives and clauses are lowered. At that point, we may
either unparse the resulting WHIRL into source OpenMP code, or we may continue
by lowering the IR for the SPMD style code into low-level WHIRL and then object
code for the IA-64. We will discuss our implementation, including the analyses and
optimizations required for SPMD translation, in more detail in future publications.

5 Related Work

The idea of data privatization can be dated to the first version of OpenMP language.
However, it is still challenging to write an OpenMP program with scalable perform-
ance for ccNUMA architectures due to the data locality problem. In fact, data locality
issues and the strongly synchronous nature of most OpenMP programs pose problems
even on small SMP systems architectures. Most related work to date has addressed the
problem of obtaining performance under OpenMP on ccNUMA platforms.

Researchers have presented several strategies to solve this problem automatically,
taking advantage of the first-touch policy and page migration policy provided either by
some operating systems such as those on SGI [17] and Compaq systems [1], or by the
user-level run-time libraries [12]. Hence program changes are minor. Besides, the

Improving the Performance of OpenMP by Array Privatization 257

SCHEDULE clause in OpenMP may be extended to schedule the computation in a
cache friendly way for regular and irregular applications [13]. These means attempt to
minimize the intervention from users. But the operating system or run-time libraries
are not able to know precisely when to migrate the page. Besides, the users are not
able to fully control the behavior of operating systems and tune the performance.

Data distribution directives give users facilities for determining how to allocate data
and arrange the computation locally. Decomposition of data in terms of page granular-
ity and element granularity is supported by SGI and Compaq. Data and thread affinity
are enabled by SGI to ensure the mapping of data with the corresponding computation;
similar functionality is provided by Compaq’s NUMA directive. There are some differ-
ences; SGI maps data to processors, whereas Compaq maps data to node memories.
Extending OpenMP with data distribution directives may improve the data locality and
decrease the remote memory access, but important features of OpenMP - incremental
parallelism, and portability and ease for programmer – will suffer as a result. Our
method is different from the data distribution method since we attempt to achieve the
same result, data locality, without introducing more directives. The work distribution
already implies a strategy for data distribution. Our goal is to permit the user to retain
full control of the translation process by making them aware of the performance im-
plications of their parallelization strategy and helping them change it as desired.

Some translation techniques used in this paper are similar to those developed for
HPF compilation [18, 21], as both are targeted to generating SPMD code. For in-
stance, HPF compilers also perform loop bounds reduction, global to local and local
to global conversion. There are several major differences between this approach and
HPF compilation, however. First, our SPMD code is not based on message passing,
but on the use of shared data to exchange values. A pair of assignment statements
with synchronization between them is enough to affect this exchange. Also the further
optimizations of data sharing in OpenMP and optimizations of communication in
MPI are different. Second, in HPF compilation, all the variables in the generated code
must be local or private, whereas some variables could possibly remain shared in the
translated SPMD style OpenMP code. This means that the user or tool may have
several alternative strategies available when adapting a program in this way.

6 Conclusion and Future Work

In this paper, we have described a basic strategy for translating OpenMP code into
SPMD style with array privatization for ccNUMA systems. Privatization is achieved
via the threadprivate feature of OpenMP, and may introduce the need to account for
sharing of privatized array elements between the threads. The translation of several
OpenMP constructs, directives, clauses and their enclosed code into SPMD style is
presented.

Our method of array privatization is based on mapping the data to threads. A disad-
vantage of this method is that we cannot ensure that logical neighbor threads are
physically near to each other. On the other hand, if we want to share the private data
among (say) two threads, we require global synchronization between the copies to and

Zhenying Liu et al.258

from a shared buffer and will have to deal with false sharing between them. Without
local synchronization, the generated code will be much less efficient. Unstructured or
irregular problems are not covered in this paper.

Our translated codes are primarily targeted to ccNUMA platforms. On the other
hand, we also plan to integrate SPMD OpenMP style code with Global Arrays [11], a
portable efficient shared-memory programming model for distributed memory systems,
so that we can implement OpenMP for distributed memory computers.

References

1. Bircsak, J., Craig, P., Crowell, R., Cvetanovic, Z., Harris, J., Nelson C.A., and Off-
ner, C.D.: Extending OpenMP for NUMA machines. Scientific programming. Vol. 8 ,
No. 3, (2000)

2. Chapman, B., Bregier, F., Patil, A., and Prabhakar, A.: Achieving High Performance
under OpenMP on ccNUMA and Software Distributed Share Memory Systems. Currency
and Computation Practice and Experience. Vol. 14, (2002) 1-17

3 . Chapman, B., Patil, A., and Prabhakar, A.: Performance Oriented Programming for
NUMA Architectures. Workshop on OpenMP Applications and Tools
(WOMPACT‘01), Purdue University, West Lafayette, Indiana. July 30-31 (2001)

4. Chapman, B., Weng, T.-H., Hernandez, O., Liu, Z., Huang, L., Wen, Y., and Adhianto,
L.: Cougar: An Interactive Tool for Cluster Computing. 6th World Multiconference on
Systemics, Cybernetics and Informatics. Orlando, Florida, July 14-18, (2002)

5. The Dragon analysis tool. http://www.cs.uh.edu/~dragon
6 . Eggers, S.J., Emer, J.S., Lo, J.L., Stamm, R.L., and Tullsen, D.M.: Simultaneous

Multithreading: A Platform for Next-Generation Processors. IEEE Micro, Vol. 17, No.
5, (1997) 12-19

7. Frumkin, M., and Yan, J.: Automatic Data Distribution for CFD Applications on Struc-
tured Grids. The 3r d Annual HPF User Group Meeting, Redondo Beach, CA, August 1-2,
1999. Full version: NAS Technical report NAS-99-012, (1999)

8. Hall, M.W., Hiranandani, S., Kennedy, K., and Tseng, C.-W.: Interprocedural Compi-
lation of FORTRAN D for MIMD Distributed-Memory Machines. Proceedings of
Supercomputing 92’, Nov. (1992) 522-534.

9 . Marowka, A., Liu, Z., and Chapman, B.: OpenMP-Oriented Applications for Distrib-
uted Shared Memory. In the Fourteenth IASTED International Conference on Parallel
and Distributed Computing and Systems. November 4-6, 2002, Cambridge, (2002)

10. Muller, M.: OpenMP Optimization Techniques: Comparison of FORTRAN and C Com-
pilers. Third European Workshop on OpenMP (EWOMP 2001), (2001)

11. Nieplocha, J., Harrison, R.J., and Littlefield, R.J.: Global Arrays: A portable `shared-
memory' programming model for distributed memory computers. Proceedings of
Supercomputing, (1994) 340-349

12. Nikolopoulos, D.S., Papatheodorou, T.S., Polychronopoulos, C.D., Labarta, J., and
Ayguade, E.: Is data distribution necessary in OpenMP. Proceedings of Supercomput-
ing, Dallas, TX, (2000)

13. Nicolopoulos, D.S., Ayguadé, E.: Scaling Irregular Parallel Codes with Minimal Pro-
gramming Effort. Proceedings of Supercomputing 2001 (SC’01), the International
Conference for High Performance Computing and Communications, Denver, Colorado,
November 10-16, (2001)

Improving the Performance of OpenMP by Array Privatization 259

14. The Open64 compiler. http://open64.sourceforge.net/
15. Sato, M., Harada, H., Hasegawa A., and Ishikawa Y.: Cluster-Enabled OpenMP: An

OpenMP Compiler for SCASH Software Distributed Share Memory System. Scientific
Programming Vol. 9, No. 2-3, Special Issue: OpenMP, (2001): 123-130

16. Satoh, S., Ksano K., and Sato, M.: Compiler Optimization Techniques for OpenMP
Programs. Scientific Programming Vol. 9, No. 2-3, Special Issue: OpenMP, (2001)
131-142

17. Silicon Graphics Inc. MIPSpro 7 FORTRAN 90 Commands and Directives Reference
Manual, Chapter 5: Parallel Processing on Origin Series Systems. Documentation
number 007-3696-003. http://techpubs.sgi.com/

18. Tseng, C.-W.: An Optimizing FORTRAN D Compiler for MIMD Distributed-Memory
Machines. PhD thesis, Dept. of Computer Science, Rice University, January (1993)

19. Tu, P., and Padua, D.: Automatic Array Privatization. Proc. Sixth Workshop on Lan-
guages and Compilers for Parallel Computing, Portland, OR. Lecture Notes in Com-
puter Science., Vol. 768, August 12-14, (1993) 500–521

20. Wallcraft, A.J.: SPMD OpenMP vs. MPI for Ocean Models. Proceedings of First Euro-
pean Workshops on OpenMP (EWOMP’99), Lund, Sweden, (1999)

21. Zima, H., and Chapman, B.: Compiling for Distributed Memory Systems, Proceedings
of the IEEE, Special Section on Languages and Compilers for Parallel Machines, Vol.
81, No. 2, Feb. (1993) 264-287

OpenMP Application Tuning Using Hardware

Performance Counters

Nils Smeds

Parallelldatorcentrum (PDC)
Royal Institute of Technology, SE100 44 Stockholm, Sweden

smeds@pdc.kth.se

http://www.pdc.kth.se/

Abstract. Hardware counter events on some popular architectures were
investigated with the purpose of detecting bottle-necks of particular in-
terest to shared memory programming, such as OpenMP. A fully portable
test suite was written in OpenMP, accessing the hardware performance
counters be means of PAPI. Relevant events for the intended purpose
were shown to exist on the investigated platforms. Further, these events
could in most cases be accessed directly through their platform indepen-
dent, PAPI pre-defined, names. In some cases suggestions for improve-
ment in the pre-defined mapping were made based on the experiments.

1 Introduction

Today’s dominating computing platform for scientific analysis is the super-scalar
CPU architecture. This architecture is characterized by multiple units in the
CPU capable of executing concurrent tasks within a serial workflow. To fully
utilize the computing capacity, all available units should be scheduled with useful
work. In particular, if a unit gets stalled because of an event such as a read from
system memory, there is a high risk that other units experience stalls due to
the complex dependencies between the concurrent tasks in the work flow of the
CPU.

One of the most critical components in minimizing the amount of CPU stall
is the hierarchical memory system. Ideally, this cache system is able to replace
loads and stores to system memory with loads and stores to a much faster CPU
cache. In reality, only some of the memory accesses can be fulfilled by the cache
hierarchy. The overall efficiency of the application is usually closely related to
the degree by which the caches can be used to satisfy memory accesses.

The cache coherency protocol present in close to all HPC systems today
assures that each local cache copy is either up to date or marked invalid. A
modification of a memory location in a cache line copy by one CPU will in-
validate the copies of the same cache line in the other caches. This coherency
protocol becomes an important issue in shared memory programming, such as
OpenMP. The availability of data in the local cache is then not only dependent
on the memory access pattern of the executing thread. It will also dependent on
invalidations caused by other threads.

M.J. Voss (Ed.): WOMPAT 2003, LNCS 2716, pp. 260–270, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

OpenMP Application Tuning Using Hardware Performance Counters 261

The time to access system memory is typically in the order of 10 to 100
times longer than to access local cache for the type of systems studied here.
A cache-to-cache refill due to an earlier cache line invalidation is comparative
in performance to a system memory access. That is, the possible performance
penalty of a cache miss due to an invalidation is of the same magnitude as the
number of CPUs available, if not larger. The potential speed-up by a shared
memory parallelization is thus at risk if the memory access pattern in the algo-
rithm introduces cache misses by cache invalidations. The effect usually becomes
more pronounced as more CPUs are used, resulting in poor, if indeed any, speed-
up.

By inspection of the code and detailed knowledge of the algorithms used,
experienced programmers may often be able to determine if a section of code
will experience poor scalability. However, this process of examining code is slow
and the complexity of modern computer systems makes it hard to predict to
what degree a particular stretch of code will affect the over-all performance. For
these reasons, it is desirable to use tools to measure the actual behavior of the
program on the computer platform, directing the programmers’ efforts to the
most critical regions of the code.

The CPUs of most modern computer architectures have a set of program-
mable counters available that can be used to count the occurrence of pre-defined
states or state changes. Examples of such events are CPU clock cycles passed
and the number of floating point operations performed. The application pro-
grammers interface (API) to these counters have often been proprietary and not
publicly available. The rising need to measure detailed application performance
have forced manufacturers to publish their calling interfaces and provide proper
operating system support in order to access the counters from user level code.

However, even with a documented API it is still a demanding task for the
developer to take benefit from the performance counters. The API and the events
available tend to differ between CPU models and are usually drastically different
between CPU and operating system vendors. This problem of in-portability is
eliminated by the Performance counters API (PAPI)[2]. A computer platform
with PAPI support gives the programmer access to a standardized, efficient and
well documented way to access the counters in the CPU.

With PAPI, the performance tool developer need only to implement code for
one unified counter API. With full access to the hardware performance coun-
ters, performance analysis tools can develop in the direction where they assist
the programmer in diagnosing why a particular section of code is a potential
bottle-neck instead of just locating code sections that consume the most CPU
time. This paper demonstrates techniques that can be used in performance tools
to discover and diagnose hot-spots due to mutual cache pollution by different
threads. The methods for diagnosing OpenMP bottle-necks due to cache in-
validations presented here investigate the applicability of PAPI and its set of
pre-defined events for this purpose.

262 Nils Smeds

2 The Experimental Setup

2.1 Test Cases Used

The most important potential bottle-neck in shared memory parallel programs
such as OpenMP programs, is here considered to be invalidations of shared cache
lines. For this reason the test cases were designed to verify if the available events
were able to discriminate between cache line sharing and cache line invalidation.
The former case is not considered to be a performance problem while the latter
is to be avoided by application programs if possible.

The cases used in this study are pictured in Fig. 1. Each test case consist of
an initialization phase and two measurement sections. In the initialization phase
the caches are put into a known state and the level 2 cache of the CPU executing
thread 0 gets filled with valid copies of the data array M. Any data of the array
present in the cache of the CPU executing thread 1 will at this point become
invalid.

In the first measurement section, thread 1 (TID 1) accesses the data of the
array in a strided fashion. The stride is a variable parameter of the experiment.
In a MESI cache coherency protocol, these accesses result in either an Invalid
(Test 2) or a Shared (Test 3) state of the cache line in the cache of the CPU that
just executed thread 0. The cache line in the CPU executing thread 1 will corre-
spondingly be put in state Exclusive or Shared. For other coherency protocols
the general behavior is similar although the details are modified according to
the protocol used.

In the second measurement section, thread 0 traverses through the array and
increments each item. In test 2 this will induce a cache-to-cache fill from the CPU
that executed thread 1, followed by an invalidation of the cache line when the
updated value is written by thread 0. In test 3 there is no cache-to-cache fill, but
only the invalidation caused by the write to the shared cache line by thread 0.

Each of the two test cases comes in two versions. In the base version the
counters are started and stopped separately in each thread so that counts are
only registered during the section where the thread is “active”. In the second
version, B, the counters are started and stopped simultaneously in both threads
and the counting of events covers both measurement sections. The extent of the
measured region for each thread in the two versions is illustrated with brackets in
Fig. 1. The two versions of each experiment makes it possible to deduce in which
of the measured sections the counts are being detected. The count registered in
the B-tests should always be larger than in the base test as the B-test includes
both the “active” phase measured in the base test, but also the counts registered
in the “passive” part where the thread is waiting in a barrier for the completion
of the “active” section of the other thread.

The array used in the experiments is an array of 32768 double precision
elements (8 bytes) of a total size of 256KiBytes (1KiByte=1024bytes). The size
was chosen to be significantly larger than the level 1 data cache on all tested
platforms, while still only occupying at most half of the available level 2 cache.
The results thus pertain to the level 2 cache behavior of the systems. For each

OpenMP Application Tuning Using Hardware Performance Counters 263

Thread ID 0

Cache fill

Thread ID 0

M(:) = M(:) − 2.14

M(:) = 1.0

Test 3

Thread ID 1

s = sum(M(1:x:N))Test 2

M(:) = M(:) − 2.14

Test 2B

M(:) = 1.0

Barrier

Barrier

Barrier

Pollution

Update

Test 3

Thread ID 1

M(1:x:N) = M(1:x:N) + 1.0

Test 2

Cache fill

Sharing

Update

Barrier

Barrier

Barrier

Test 3B

Fig. 1. Pseudo-code describing the two test cases used. To the left the write-
invalidate/update-shared/write-shared case (test 2) and to the right the write-
invalidate/share/write-shared case (test 3). The extent of the measurement for
the two versions of each case is marked with brackets. The variable stride is
indicated by the variable x

stride the test was repeated 16 times. The average number of counts registered
together with the minimum and maximum counts are reported here. Further,
each set of experiments was repeated at different times of day and on repeated
days to ensure that the results obtained were representative and not biased by a
particular system load. No experiments were conducted under high system load.

2.2 Computer Architectures and PAPI Implementations

Four different shared memory parallel computer systems were used in this inves-
tigation.

1. Intel PentiumII, a dual CPU shared memory bus system implementing a
MESI cache coherency protocol.

2. IBM Power3, Nighthawk nodes with a switched memory bus and a MESI
protocol.

3. SGI R10K, ccNUMA system with IP27 MIPS CPUs, IRIX 6.5 and SGI
IRIX compilers. This system implements a directory based modified DASH
coherency protocol.

4. SGI R14K, ccNUMA system of a similar design as the previous system,
but with IP35 MIPS CPUs.

The systems are described in more detail in Tab. 1. Two different versions of
PAPI was used. The CVS repository development head of August 2002 and a
pre-release of version 2.3.4 available in April 2003.

3 Experimental Findings

3.1 Intel PentiumII

The Intel PentiumII system and later models implement a snoop based MESI
cache coherency protocol. The protocol is implemented by two separate bus
signals, HIT# and HITM#, used by the CPUs to signal that they have detected

264 Nils Smeds

Table 1. Systems used. Type of CPUs and number of CPUs in a node, clock
speeds and cache characteristics including level 1 data cache sizes, level 2 unified
cache sizes and line length. 1Ki is 210 = 1024

.

CPU type Clock CPUs L1D L2 Line length
MHz KiByte KiByte Byte

Intel PII 350 2 16 512 32
IBM pwr3 222 8 64 4096 128
SGI R10K 195 12 32 4096 128
SGI R14K 500 128 32 8192 128

a load of a memory address that the CPU has a copy of in its local cache [4].
Further, a write to a shared cache line needs to be announced to the other CPUs
on the bus to invalidate their copies of the cache line. In Fig. 2, the frequency of
the event BUS TRAN INVAL available on this platform is shown. Only results
from test 2 and test 3 are reproduced. Test 2B and 3B show identical behavior to
the base version, which means that the events occur in the “active” section of
the tests for both threads.

BUS_TRAN_INVAL

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

1 4 16 64 25
6

10
24

40
96

16
38

4

TID 0

TID 1

Test 2 BUS_TRAN_INVAL

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

1 4 16 64 25
6

10
24

40
96

16
38

4

TID 0

TID 1

Test 3

Fig. 2. Number of invalidation requests registered in an Intel PII dual CPU
system. The array access in thread 1 (TID1) is varied from linear access (stride
1) to stride 16384. The bars represent the average of 16 repetitions, the max and
min count detected are indicated with error bars (barely noticeable here). The
data cache line length is 32 bytes (i.e. 4 elements) which is clearly reflected in
the results

From Fig. 2 it is clear that the event BUS TRAN INVAL, available to the
PAPI user as PAPI CA INV, can be used to detect the invalidation of the shared
cache lines. The complete data array occupies 8192 cache lines, which is approx-
imately the number of counts registered for strides up to the cache line length.
Important here is the difference in the counts registered by thread 1 in the two
test cases reflecting the different invalidation patterns of the tests. The variation

OpenMP Application Tuning Using Hardware Performance Counters 265

in the results is very low as indicated by the barely noticeable error bars. As a
contrast, the results for some other events are shown in Fig. 3 to illustrate the
situation where the events registered are not correlated to the memory access
pattern of the specific test.

BUS_TRAN_RFO

0

5

10

15

20

25

1 4 64 16 25
6

10
24

40
96

16
38

4

TID 0

TID 1

Test 2B
BUS_TRAN_WB

0
50

100
150
200
250
300
350
400
450
500

1 4 16 64 25
6

10
24

40
96

16
38

4

TID 0

TID 1

Test 2B

Fig. 3. Example of read-for-ownership (RFO) and cache write-back (WB) events
registered on an Intel PII dual CPU system for test 2B. The registered counts
appear uncorrelated to the access pattern of the test

Two events that ought to have been relevant to the test kernels used here were
the BUS HIT DRV and BUS HITM DRV events. These events count the number
of cycles the CPU is driving the corresponding bus line. The PII/PIII CPU also
offers a feature called edge detection [5], which could have been used with these
events to estimate the number of cache loads that resulted in a shared state and
cache-to-cache fills. Unfortunately, experiments indicated that edge detection
did not work in conjunction with these particular events. Further investigation
is needed to determine why these events could not be applied to the test cases.

3.2 IBM Power3

A slightly different behavior from the Intel PII results was found on the IBM
Power3 platform. This architecture offers a large number of events related to
the cache coherency protocol, which is a bus-based snoopy MESI state protocol
[3]. The two events shown in Figs. 4-5 are cache line transitions E‖S → I and
M → E‖S. The graphs clearly illustrate that – for this platform and these metrics
– it is the “passive” thread waiting at the barrier that registers the counts.

A noteworthy characteristic of the results is that the variation in the number
of registered events is slightly larger than for the Intel experiments above. This
could be due to the more complex nature of the system. There is a larger number
of CPUs available and the memory bus is more complex than the bus architec-
ture of the PII/PIII Intel system. The tests were performed using 1:1 thread
scheduling (system scope) and spin waits (XLSMPOPTS=”spins=0:yields=0”).

The expected number of counts for strides in the range 1–16 is 2048 due to the
cache line length on this platform. Figure 4 shows that the present version (April
2003) of PAPI is able to produce values close to this. This is an improvement

266 Nils Smeds

PM_SNOOP_L2_E_OR_S_TO_I

0

500

1000

1500

2000

2500

1 4 16 64 25
6

10
24

40
96

16
38

4

TID 0

TID 1

Test 2B

PM_SNOOP_L2_E_OR_S_TO_I

0
10
20
30
40
50
60
70
80

1 4 16 64 25
6

10
24

40
96

16
38

4

TID 0

TID 1

Test 2

PM_SNOOP_L2_E_OR_S_TO_I

0

500

1000

1500

2000

2500

1 4 16 64 25
6

10
24

40
96

16
38

4

TID 0

TID 1

Test 3B

PM_SNOOP_L2_E_OR_S_TO_I

0

10

20

30

40

50

60

1 4 16 64 25
6

10
24

40
96

16
38

4

TID 0

TID 1

Test 3

Fig. 4. Registered events as a function of access stride on an 8-CPU IBM Power3
system. The level 2 cache line length corresponds to 16 elements (128 bytes) in
the array, which is reflected in the counts for the test cases 2B and 3B. Noticeable
is that it is the thread experiencing invalidations (the passive thread) rather than
the thread causing the invalidations that can be used for detecting the condition

PM_SNOOP_L2_M_TO_E_OR_S

0
200
400
600
800

1000
1200
1400
1600
1800

1 4 16 64 25
6

10
24

40
96

16
38

4

TID 0

TID 1

Test 2B

PM_SNOOP_L2_M_TO_E_OR_S

0

10

20

30

40

50

60

70

1 4 16 64 25
6

10
24

40
96

16
38

4

TID 0

TID 1

Test 2

PM_SNOOP_L2_M_TO_E_OR_S

0
200
400
600
800

1000
1200
1400
1600
1800
2000

1 4 16 64 25
6

10
24

40
96

16
38

4

TID 0

TID 1

Test 3B

PM_SNOOP_L2_M_TO_E_OR_S

0

10

20

30

40

50

60

1 16 64 25
6

10
24

40
96

16
38

4

TID 0

TID 1

Test 3

Fig. 5. Intervention events detected on IBM power3 CPUs. The counts refer to
transitions where a modified cache line goes into a shared state

OpenMP Application Tuning Using Hardware Performance Counters 267

from earlier experiences (August 2002) where an undercount of a factor 1
4 to

1
3 was present and the variance in the results was larger. In the case of Fig. 5
there is an apparent undercount of events. However, this is compensated by
events registered in the event PM SNOOP L1 M TO E OR S not included in
the figure.

Some other events available on this hardware platform are shown in Fig. 6.
The PM SNOOP and PM SNOOP L2HIT events shown are a factor 2 larger
than the results in Fig. 4. This reflects that in test 2B, the cache lines accessed
by thread 0 is first shared and invalidated by thread 1, then shared again be-
tween thread 0 and 1 and finally invalidated as thread 0 updates its value. The
corresponding counts for PM SNOOP and PM SNOOP L2HIT for test 3B were
found to be half the number of counts as for test 2B. Each passive thread thus
registered counts for both of the transitions Modified to Shared and Shared to
Invalid. No counts were registered in the active section for any thread in either
test.

PM_SNOOP

0

1000

2000

3000

4000

5000

6000

7000

1 4 16 64 25
6

10
24

40
96

16
38

4

TID 0

TID 1

Test 2B
PM_SNOOP_E_TO_S

0

50

100

150

200

250

1 4 16 64 25
6

10
24

40
96

16
38

4

TID 0

TID 1

Test 2B

PM_SNOOP_L2HIT

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

1 4 16 64 25
6

10
24

40
96

16
38

4

TID 0

TID 1

Test 2B
PM_SNOOP_PUSH_OR_INT

0
10000
20000
30000
40000
50000
60000
70000
80000

1 4 16 64 25
6

10
24

40
96

16
38

4

TID 0

TID 1

Test 2B

Fig. 6. Some other available events on the IBM power3 architecture shown for
the invalidating test case including passive counts (Test 2B). The corresponding
sharing benchmark showed similar behavior, but with approximately half the
number of counts for events PM SNOOP and PM SNOOP L2 HIT for both
threads. Also, for TID1 the counts for PM SNOOP PUSH INT were negligible
indicating that thread 1 do not need to push modified cache lines to thread 0

Further, in Fig. 6 it can be noticed that there were no transitions from Exclu-
sive to Shared detected. This could be due to the type of memory access exercised
by the particular tests used in this study. This behavior could also occur if the

268 Nils Smeds

event used refers to level 1 cache activity only, as the tests are constructed to
investigate level 2 cache behavior.

The last event illustrated in Fig. 6 is the PM SNOOP PUSH INT event. This
event is in this test most likely registering cache-to-cache fills. This assumption
is supported by the behavior of the same event for test 3B, although not shown
in the figure. In test 3B only thread 0 is showing counts of the same magnitude
as both threads do in test 2B. A particularity of this event is the high number
of counts which could indicate that it is not the number of occurrences that is
counted, but instead the number of CPU or bus cycles this state is active. Still,
the overall characteristics of the counts indicate that the registered number of
counts is closely related to the work load caused by the test kernel.

3.3 SGI R10K/R14K

The are four counting events available on the SGI platform that are directly
related to the cache coherency protocol [6]. Similar to the IBM AIX platform,
a significant improvement has been made in the ability of PAPI to accurately
measure the cache events in this experiment. In August 2002, only the general
trend of the expected behavior could be recovered from the counts registered.
Repeated measurements in April 2003 show the excellent agreement to theory
and low variation depicted in Fig. 7. This improvement applies to the R14K
platform as well as the R10K. As in the case of IBM Power3 the counts are
registered in the “passive” section of the tests and for this reason only the B
versions of the test cases are included in this paper.

4 Discussion

The experiments conducted show that bottle-necks typical of shared memory
parallel programs may be detected using hardware performance counters. The
different hardware platforms provide events that can be used for this purpose
and PAPI provides a means to access these events in a portable and platform
independent way.

In the present investigation the counters were programmed using the native
event support of PAPI. Native events removes the restriction on the programmer
to use only the pre-defined events in the PAPI event map. Instead, the full set
of events available on the platform can be accessed. In this study, native events
allowed for experimentation with events outside the PAPI map and also to vary
the accompanying bit masks of the events.

When writing performance analysis tools, using native events may be cum-
bersome. The tools need to provide users with an easy interface to the events,
and the tools need to be maintainable as new processor versions, with modified
event sets, reach the market. For this reason it is important that the pre-defined
event names in the PAPI event map are relevant. The current (April 2003) map
for the cache coherency related events is shown in Tab. 2 for the platforms in
this study. The methodology in this paper provides a framework to investigate

OpenMP Application Tuning Using Hardware Performance Counters 269

PAPI_CA_INV

0

500

1000

1500

2000

2500

1 4 16 64 25
6

10
24

40
96

16
38

4

TID 0

TID 1

Test 3B

PAPI_CA_ITV

0

500

1000

1500

2000

2500

1 4 16 64 25
6

10
24

40
96

16
38

4

TID 0

TID 1

Test 2B

PAPI_CA_INV

0

500

1000

1500

2000

2500

1 4 16 64 25
6

10
24

40
96

16
38

4

TID 0

TID 1

Test 2B

PAPI_CA_ITV

0

500

1000

1500

2000

2500

1 4 16 64 25
6

10
24

40
96

16
38

4

TID 0

TID 1

Test 3B

Fig. 7. Cache coherency events measured on a SGI R10K system with 12 CPUs.
The results for the R14K system were close to identical. The cache line length
corresponds to 16 array elements (128Bytes)

how the events in the mapping correlate to events needed for application perfor-
mance optimization. In the light of the experiments performed here it is possible
to comment on the current mapping.

Table 2. Current (April 2003) mapping of cache coherency protocol related
events in PAPI. For the Intel events the bit mask used with the event is indicated
in parenthesis

PAPI event Intel PII/PIII IBM Power3 SGI R10K/R14K

PAPI CA SNP — PM SNOOP —
PAPI CA SHR L2 RQSTS (meSi) PM SNOOP E TO S Store/Fetch excl. to

shared block (L2)
PAPI CA CLN BUS TRAN RFO

(self)
— Store/Fetch excl. to

clean block (L2)
PAPI CA INV BUS TRAN INVAL

(self)
PM SNOOP PUSH INT Ext. invalidations

PAPI CA ITV BUS HITM DRV
(self, edge)

— Ext. interventions

In the case of the Intel PII/PIII mapping it is clear from Fig. 2 that
PAPI CA INV is mapped to a suitable CPU event. The PAPI CA ITV event
needs some further investigation as there appeared to be some issues with the

270 Nils Smeds

edge detection mechanism either in PAPI or in the CPU architecture. The rele-
vance of the mappings of the remaining events in Tab. 2 could not be examined
by the test cases in this study.

The rich number of events available on the IBM Power3 platform calls for a
rigorous investigation to find a suitable subset to use in the PAPI event name
mapping. In the light of the current results PAPI CA ITV could perhaps be
better mapped to the sum of PM SNOOP L2 M TO E OR S and
PM SNOOP L1 M TO E OR S. Likewise, PAPI CA INV could perhaps better
be mapped to PM SNOOP L2 E OR S TO I. The remaining events in the cur-
rent map need further investigation to assure that they detect relevant events
in all cache levels. Also, the methodology used here for the Power3 CPU needs
to be repeated in a similar study for the Power4 CPU with its more complex
memory system [1].

The PAPI event map on the SGI platform does not call for modifications.
The tests made in this work demonstrate that the available events can be effec-
tively used for the intended purpose as regards the events PAPI CA ITV and
PAPI CA INV. The other two events in the map on this platform were not in-
vestigated here. The improved accuracy of the results measured by PAPI on this
platform and on the IBM Power3 is believed to be due to a revision of the thread
handling in PAPI.

5 Conclusion

The present work demonstrates that it is possible to use PAPI to instrument
parallel applications written in OpenMP. Further, as OpenMP and PAPI are
available on most current computer systems this provides a portable implemen-
tation that can be used on different hardware. Still, more work is called for in the
mapping of available events to pre-defined PAPI names to match the measure-
ment needs of application developers writing shared memory parallel programs.

References

1. Andersson, S., Bell, R., Hague, J., Holthoff, H., Mayes, P., Nakano, J., Shieh,
D., Tuccillo, J.: POWER3 Introduction and Tuning Guide. IBM RedBook,
http://www.redbooks.ibm.com (1998)

2. Browne, S., Dongarra, J., Garner, N., London, K., Mucci, P.: A Scalable Cross-
Platform Infrastructure for Application Performance Tuning Using Hardware
Counters. Int. J. High Perf. Comput. Appl., 14(3) (2000) 189–204

3. Papermaster, M., Dinkjian, R., Mayfield, M., Lenk, P., Ciarfella, B., Connell, F.O.,
DuPont, R.: POWER3: Next Generation 64-bit PowerPC Processor Design. (1998)

4. Intel r©Architecture Optimization Reference Manual. Intel Corporation. (1999)
5. Intel Architecture Software Developer’s Manual Volume 3: System Programming.

Intel Corporation. (1999)
6. MIPS R10000 Microprocessor User’s Manual. MIPS Technologies (1996)

Author Index

Almasi, George 69
Ayguadé, Eduard 69, 147

Basumallik, Ayon 170
Blainey, Bob 84, 147
Boku, Taisuke 99
Burcea, Mihai 42

Caşcaval, Călin 69
Castaños, José 69
Chang, Hyeong Soo 122
Chapman, Barbara 26, 244
Chaudhary, Vipin 54
Cownie, James 137

DelSignore, John Jr. 137
Ding, Chris H.Q. 195
Dingxing, Wang 160
Duran, Alejandro 147

Eigenmann, Rudolf 170

Hadjidoukas, Panagiotis E. 180
He, Yun 195
Hernandez, Oscar 26, 244
Hess, Matthias 211
Huang, Lei 26

Jost, Gabriele 211

Kao, Shi-Jung 227
Kim, Chulwoo 109
Kim, Seon Wook 109, 122
Kiu, Zhenying 244

Labarta, Jesús 69, 147
Liu, Feng 54
Liu, Zhenying 26, 244

Mart́ınez, Francisco 69, 84, 147
Martorell, Xavier 69, 147
Min, Seung Jai 170
Moreira, José 69
Müller, Matthias 211

Oh, Jaegeun 109

Papatheodorou, Theodore S. 180
Petersen, Paul 1
Polychronopoulos, Eleftherios D. 180

Quinlan, Dan 13

Rühle, Roland 211

Sato, Mitsuhisa 99
Schordan, Markus 13
Shah, Sanjiv 1
Silvera, Raúl 147
Smeds, Nils 260
Supinski, Bronis R. de 13, 137

Takahashi, Daisuke 99
Tal, Arie 84

Voss, Michael J. 42

Warren, Karen 137
Weimin, Zheng 160
Wen, Yi 26
Weng, Tien-Hsiung 26, 244

Yi, Qing 13
Yongjian, Chen 160

Zhang, Guansong 84

	Front matter
	Chapter 1
	1 Introduction
	2 Correctness Analysis
	2.1 Correctness: Kinds of Theaded Errors
	2.2 Pros and Cons of Statis Analysis for Correctness
	2.3 Pros and Cons of Dynamic Analysis for Correctness

	3 Dynamic Correctness Analysis of OpenMP Applications
	3.1 Relaxed Sequential Programming and Benefits
	3.2 Projection Technology

	4 Intel Tools for OpenMP
	4.1 Creating Parallel Applications
	4.2 Debugging Parallel Applications

	5 Relaxed Sequential Programming: A Concrete Example
	6 Sample Use of Intel Thread Checker
	7 Conclusion

	Chapter 2
	1 Introduction
	2 Infrastructure
	2.1 Frontend
	2.2 Midend
	2.3 Backend

	3 Semantics-Driven Inroduction of OpenMP Directives
	3.1 User-Defined Abstractions
	3.2 A++/P++ Serial and Parallel Array Class Library
	3.3 Automated Insertion of OpenMP Directives
	3.4 Example C++ Code
	3.5 Discussion

	4 Translation of OpenMP Directives
	4.1 Translation Specification
	4.2 Translation Algorithm
	4.3 Discussion

	5 Related Work
	6 Conclusion and Future Work

	Chapter 3
	1 Introduction
	2 Consistent Loop Scheduling for Data Reuse
	2.1 Consistency Test
	2.2 Examples of Consistent and Inconsistent Schedules

	3 Interprocedural Analysis
	3.1 Call Graph
	3.2 Interprocedural Algorithm

	4 Privatization Analysis
	4.1 Privatization Algorithm
	4.2 Special Case 1: LU
	4.3 Special Case 2: ADI

	5 Related Work
	6 Conclusion and Future Work

	Chapter 4
	Introduction
	Related Work in Runtime Optimization
	OpenMP as a Target for Runtime Optimization
	Runtime Characteristics of OpenMP Applications
	Features of OpenMP Implementations
	Optimization Opportunities

	The stOMP Runtime Optimization System
	The stOMP Compiler
	The stOMP Runtime Library
	The stOMP Dynamic Optimizer

	A Preliminary Evaluation
	The Performance of the EPCC Scheduling Microbenchmark
	The Performance of Apsi, Art, and Equake

	Conclusions

	Chapter 5
	1 Introduction
	2 Parallel Programs on 3SoC
	2.1 Programming Different Parallel Processors
	2.2 Programming Using PEs
	2.3 Programming Using DSEs

	3 Design of OpenMP Compiler/Translator
	3.1 Synchronization
	3.2 Scheduling and Computation Division
	3.3 Data Attributes and Memory Allocation

	4 Extensions to OpenMP
	4.1 OpenMP Extensions for DSE Processors
	4.2 OpenMP Extensions for Optimization on SOCs

	5 Implementation
	6 Performance Evaluation
	7 Conclusion

	Chapter 6
	Introduction and Motivation
	The Blue Gene/Cyclops Architecture
	Towards OpenMP for BG/C
	Benchmark Description
	Micro-Benchmarks
	NAS Benchmarks

	Experimental Results
	Micro-Benchmarks
	NAS Benchmarks

	Improving OpenMP Support for BG/C
	Related Work
	Conclusions

	Chapter 7
	Introduction
	Overhead of a Barrier Synchronization
	POWER4 SMP Architecture and Software
	Testing Benchmark
	Barrier Overhead on an SMP System

	Design of Different Barriers
	Barrier with Fetch-and-Add
	Distributed Counter
	Distributed Counter with Padding
	Combined with Local Sensor

	Performance Data and Analysis
	Summary and Future Work

	Chapter 8
	Introduction
	A Recursive Three-Step FFT Algorithm
	In-Cache FFT Algorithm and Parallelization
	Performance Results
	Performance Results on the DELL PowerEdge 7150
	Performance Results on the hp Workstation zx6000

	Conclusion

	Chapter 9
	Introduction
	EEMBC
	Parallelization of EEMBC Benchmarks Using OpenMP
	Experiment Methodology
	Performance in OpenMP-Parallelized Codes

	Compilation Issue
	Conclusion

	Chapter 10
	Introduction
	Background
	Markov Decision Processes
	Parallel Rollout

	Parallelization of Parallel Rollout
	Evaluation on Multi-class Scheduling
	MDP Formulation

	Simulation
	Problem Setup
	Measurement

	Conclusion

	Chapter 11
	1 Introduction
	2 Background
	2.1 Multiple Compilers, User Levels
	2.2 Compiler Transformations

	3 DMPL Objective
	4DMPL Interface
	4.1 DMPL Types
	4.2 DMPL Functions

	5 Discussion

	Chapter 12
	Introduction
	Motivation and Related Work
	Dynamic Derivation of Loop Schedules
	Current Implementation
	Evaluation

	Chapter 13
	Introduction
	Related Work on Overhead Analysis
	Overhead Analysis: A Layered Model
	Case Study: TLP and ILP Overlap
	A New Overhead Classification Scheme
	Parallelism Identification
	Parallel Task Assignment/Scheduling
	Synchronization Clause

	Conclusion and Future Work

	Chapter 14
	1 Introduction
	2 Translating OpenMP Applications into Software DSM Programs
	3 Benchmark Evaluation of Real Application Benchmarks
	4 Advanced Optimizations
	4.1 Computation Repartitioning
	4.2 Page Aware Optimizations
	4.3 Privatization Optimization

	5 Results
	6 Conclusions

	Chapter 15
	Introduction
	OpenMP Runtime Library
	Design
	Architecture
	Implementation Platforms

	OpenMP Execution
	Sharing the User-Level Thread Stacks
	Sharing the Common Blocks
	Relaxing the Protocol

	Experimental Evaluation
	Hardware Shared Memory
	Distributed Memory - SMP Machine
	Distributed Memory - Cluster of SMPs

	Related Work
	Ongoing Work

	Chapter 16
	Introduction
	Vacancy Tracking Algorithm
	Parallel Paradigms on Cluster SMP Architectures
	Multi-threaded Parallelism
	Pure MPI Parallelism
	Hybrid MPI/OpenMP Parallelism

	Performance
	Scheduling for OpenMP Parallelism
	Pure MPI and Pure OpenMP Parallelisms within One Node
	Pure MPI and Hybrid MPI/OpenMP Parallelisms Across Nodes

	Conclusions

	Chapter 17
	Introduction
	Programming Models
	Message Passing
	Shared Address Space

	Hardware Platform and Software Description
	Platform Description
	SCore
	SCASH
	Omni OpenMP

	Case Studies
	Evaluation Strategy
	The EP Benchmark Kernel
	The CG Benchmark Kernel
	The FT Kernel Benchmark

	Problems Encountered
	Related Work
	Conclusions and Future Work

	Chapter 18
	1 Introduction
	1.1 Current Standards Requirements
	1.2 Examples
	1.3 Expensive Runtime Diagnostic

	2 Implementation Possibilities
	2.1 Using an Exception Specification
	2.2 Using a Try Block

	3 Comparison of Results on EPCC OpenMP Microbenchmarks
	4 Conclusions
	5 Future Directions
	Appendix: Debugging Uncaught Exception from a Parallel Region

	Chapter 19
	1 Introduction
	2 Overview of SPMD Translation
	2.1 SPMD Style with Array Privatization
	2.2 General Strategy for SPMD Translation

	3 Translating OpenMP Constructs
	3.1 Other Issues in Loop Translation
	3.2 Translation of Other OpenMP Constructs

	4 Current Implementation
	5 Related Work
	6 Conclusion and Future Work

	Chapter 20
	Introduction
	The Experimental Setup
	Test Cases Used
	Computer Architectures and PAPI Implementations

	Experimental Findings
	Intel PentiumII
	IBM Power3
	SGI R10K/R14K

	Discussion
	Conclusion

	Back matter

