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∙ Factorising and completing the square.
∙ Solve simultaneous equations, where one is linear and one is nonlinear.
∙  Solve quadratic equations including by factorising, completing the 

square and using the quadratic formula.

Srinivasa Ramanujan (1887−1920) was a 
self-taught, Indian mathematician who made 
a huge contribution to the subject in the early 
20th century. In 1914, he travelled to England 
to work with G. H. Hardy at Trinity College in 
Cambridge, but he was plagued by ill-health 
and returned to India five years later. During 
his time at Cambridge, he made contributions 
to many areas of mathematics, including 
analysis and number theory, and solved many 
problems that were at that time considered 
unsolvable. He was made a Fellow of the Royal 
Society in 1918, two years before his death at 
the age of 32.

Ingrid Daubechies (1954−) is a Belgian 
physicist and mathematician, best known for 
her work on image compression technology. 
Her work has also enabled scientists to extract 
information from samples of bones and teeth. 
The image processing methods she has helped 
to develop can be used to establish the age and 
authenticity of works of art and have been used 
on paintings by artists such as Vincent van 
Gogh and Rembrandt.
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In Chapter 2 you expanded expressions such as x(3x − 1) to  
give 3x2 − x.

The reverse of this process is called factorising. When you 
factorise an expression, you look for the highest common factor 
of all terms.

Example
Factorise: a) 4x + 4y b) x2 + 7x c) 3y2 − 12y

d) 6a2b − 10ab2 e) 12ax2 + 4ax + 8a2x 

a) 4 is common to 4x and 4y b) x is common to x2 and 7x

4x + 4y = 4(x + y)  x2 + 7x = x(x + 7)

c) 3y is common to both terms d) 2ab is common to both terms

3y2 − 12y = 3y(y − 4) 6a2b − 10ab2 = 2ab(3a − 5b)

e) 4ax is common to all three terms

  12ax2 + 4ax + 8a2x = 4ax(3x + 1 + 2a)

When a question asks you to factorise, you must factorise fully. 
This means all common factors will be written outside of the 
brackets. In part (c) of the example above, if you had just written 
3(y2 − 4y) this would not be correct as it is only partially factorised. 

6.1 Factorising

Exercise 6.1A
Factorise:

1. 5a + 5b 2. 7x + 7y 3. 7x + x2 4. y2 + 8y

5. 2y2 + 3y 6. 6y2 − 4y 7. 3x2 − 21x 8. 16a − 2a2

9. 6c2 − 21c 10. 15x − 9x2 11. 56y − 21y2 12. ax + bx + 2cx

13. x2 + xy + 3xz 14. x2y + y3 + z2y 15. 3a2b + 2ab2 16. x2y + xy2

17. 6a2 + 4ab + 2ac 18. ma + 2bm + m2 19. 2kx + 6ky + 4kz 20. ax2 + ay + 2ab

21. x2k + xk2 22. a3b + 2ab2 23. abc − 3b2c 24. 2a2e − 5ae2

25. a3b + ab3 26. x3y + x2y2 27. 6xy2 − 4x2y 28. 3ab3 − 3a3b

29. 2a3b + 5a2b2 30. ax2y − 2ax2z 31. 2abx + 2ab2 + 2a2b 32. ayx + yx3 − 2y2x2

6.1 Factorising
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Introduction

v

Additional support can be found on 
Kerboodle. There are resources for every 
sub-topic, including adaptive assessments, 
personalised Next Steps and data-rich 
reports. You can also access the Digital 
Student Book.

About this book
This book is designed specifically for the 
Cambridge IGCSE® Mathematics course. 
Experienced examiners have been involved 
in all aspects of the course, to ensure that the 
content adheres to the latest syllabus. 

Using this book will ensure that you are well 
prepared for the exam at this level, and also 
studies beyond the IGCSE level in Mathematics. 
The features below are designed to make 
learning as interesting and effective as 
possible.

Finding your way around
To get the most out of this book when studying 
or revising, use the:

• Contents list to help you find the
appropriate units

• Index to find key words so you can turn to
any concept straight away.

Learning objectives
At the start of each chapter you will find a list of 
objectives. These will tell you what you should 
be able to do by the end of the chapter. They 
are based on what you need to cover for the 
Cambridge IGCSE syllabus.

Famous mathematicians
These are included at the start of each chapter 
to give you a brief insight into the life of a 
mathematician who played an important part 
in the development of the ideas contained in 
that chapter. 

By finding out about the history of mathematics 
and considering a topic within the broader 
context of the subject, you can make 
connections between topics and develop a 
greater appreciation of how mathematics has 
developed over the centuries.

Worked examples
Worked examples are an important feature of 
the book and can be found in every  
sub-topic. These show you the important skills 
techniques required in the exercises below and 
also provide a model for how to structure your 
solutions.

Exercises
There are thousands of questions in this book, 
providing ample opportunities to practise the 
skills and techniques required in the exam. The 
exercises contain questions of varying levels 
of difficulty, so that you can progress through 
a topic as your knowledge and confidence 
increases.

Each exercise has an icon to denote whether 
you can use a calculator or not. This  means 
you can use a calculator, while this  means 
you should not. The same icons also appear in 
the Revision Exercises.

Revision Exercise
At the end of each chapter, you will find revision 
questions to bring together all your knowledge 
and test your understanding of the contents of 
the chapter. 

Examination-style questions
The revision exercises are followed by  
exam-style practice questions. These are very 
similar to the kind of questions you should 
expect to see in the real exam.

Tips
Yellow boxes throughout the exercises provide 
further information, hints on how to approach a 
question, or reminders of other concepts.

Answers
These can be found at the back of this book, 
so you can find out immediately whether or 
not you have answered a question correctly. 
Answers to all the numerical problems in the 
exercises, the review questions, and the  
exam-style questions are all included.Sam
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∙ Substitute into expressions and formulae.
∙ Simplify expressions and expand brackets.
∙ Construct and solving linear equations including those where x appears in the

denominator as part of a linear expression.
∙ Solve simultaneous equations.

Isaac Newton (1642–1727) was an English 
scientist and mathematician, and a prominent 
figure in the Scientific Revolution of the 17th 
century. He went to Trinity College Cambridge 
in 1661 and by the age of 23 he had made 
three major discoveries: the nature of colours, 
calculus and the law of gravitation. He used his 
version of calculus to give the first satisfactory 
explanation of the motion of the Sun, the 
Moon and the stars. Because he was extremely 
sensitive to criticism, Newton was always very 
secretive, but he was eventually persuaded to 
publish his discoveries in 1687.

Algebra 12

Sam
ple

 M
ate

ria
l



53

Algebra 1

2.1 Substitution
In algebra, letters are used to represent numbers. These letters 
are called variables.

Mathematical expressions are made up of one or more terms and 
operations. A term may be a number, a variable or a combination 
of both. The expression 5x2 − 6x + 7 has three terms:

 5x2, −6x and 7

You can evaluate an expression by replacing the variables in the 
expression with specific values. This is called substitution.

For example, when x = −1, the expression 5x2 − 6x + 7 is 
evaluated:

 5(−1)2 − 6(−1) + 7 = 5 × 1 + 6 + 7

     = 18

Example
When a = 3, b = −2, and c = 5, find the value of:

a) 3a + b       b) ac + b2    c) 
a c

b
+

         d) a(c − b)

a) 3 3 3 2

9 2

7

a b+ = × + −
= −
=

( ) ( )    b) ac b+ = × + −
= +
=

2 23 5 2

15 4

19

( ) ( )    c) a c
b
+

=
+
−

=
−

= −

3 5
2

8
2
4

 

d) a c b( ) [ ( )]

( )

− = − −
=
=

3 5 2

3 7

21

Note that working down the page makes the steps easy to read and easy to follow.

Tip
When substituting, remember to always use BIDMAS.

2.1 Substitution
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Algebra 1Algebra 1

Exercise 2.1A
Evaluate the following.

For Questions 1 to 12, a = 3, c = 2, e = 5.

1. 3a − 2  2. 4c + e  3. 2c + 3a  4. 5e − a

5. e − 2c  6. e − 2a  7. 4c + 2e  8. 7a − 5e

9. c − e            10. 10a + c + e           11. a + c − e            12. a − c − e

For Questions 13 to 24, h = 3, m = −2, t = −3.

13. 2m − 3           14. 4t + 10           15. 3h − 12           16. 6m + 4

17. 9t − 3           18. 4h + 4           19. 2m − 6           20. m + 2

21. 3h + m           22. t − h           23. 4m + 2h           24. 3t − m

For Questions 25 to 36, x = −2, y = −1, k = 0.

25. 3x + 1           26. 2y + 5           27. 6k + 4           28. 3x + 2y

29. 2k + x           30. xy            31. xk            32. 2xy

33. 2(x + k)           34. 3(k + y)           35. 5x − y           36. 3k − 2x

Tip
2x2 means 2(x2)

(2x)2 means ‘work out 
2x and then square it’

−7x means −7(x)

−x2 means −(x2)

Example
When x = −2, find the value of:

a) 2x2 − 5x  b)  (3x)2 − x2

a) 2 5 2 2 5 2
2 4 10

18

2 2x x− = − − −
= +
=

( ) ( )
( )

  b)  ( ) ( ) ( )

( ) ( )

3 3 2 1 2

6 1 4
36 4

32

2 2 2 2

2

x x− = × − − −
= − −
= −
=
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Algebra 1

Exercise 2.1B
If x = −3 and y = 2, evaluate:

  1. x2      2. 3x2     3. y2     4. 4y2 

  5. (2x)2    6. 2x2     7. 10 − x2    8. 10 − y2 

  9. 20 − 2x2  10. 20 − 3y2   11. 5 + 4x  12. x2 − 2x

13. y2 − 3x2  14. x2 − 3y  15. (2x)2 − y2  16. 4x2

17. (4x)2  18. 1 − x2  19. y − x2  20. x2 + y2

21. x2 − y2  22. 2 − 2x2  23. (3x)2 + 3  24. 11 − xy

25. 12 + xy  26. (2x)2 − (3y)2 27. 2 − 3x2  28. y2 − x2

29. x2 + y3  30. 
x
y    31. 10 − 3x  32. 2y2

33. 25 − 3y  34. (2y)2  35. −7 + 3x  36. −8 + 10y

37. (xy)2  38. xy2   39. −7 + x2  40. 17 + xy

41. −5 − 2x2  42. 10 − (2x)2  43. x2 + 3x + 5 44. 2x2 − 4x + 1

45. 
x
y

2

Example
When a = −2, b = 3, c = −3, evaluate:

a) 
2 2a b a

c
( )−

 b) ( )a b2 2+

a) ( ) ( )b a2 9 2
11

− = − −
=

b) ( ) ( ) ( )a b2 2 2 22 3

4 9

13

+ = − +

= +

= 

∴
−

=
× − ×

−

=
−
−

=

=

2 2 2 11
3

44
3

44
3

14
2
3

2a b a
c

( ) ( ) ( ) Tip
In mathematics, 
the ∴ symbol 
means ‘therefore’.

2.1 Substitution
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Algebra 1Algebra 1

Exercise 2.1C

Evaluate the following expressions.

For Questions 1 to 16, a = 4, b = −2, c = −3.

  1. a(b + c)    2. a2 (b − c)    3. 2c(a − c)    4. b2 (2a + 3c)

  5. c2(b − 2a)    6. 2a2(b + c)     7. 2(a + b + c)   8. 3c(a − b − c) 

  9. b2 + 2b + a 10. c2 − 3c + a  11. 2b2 − 3b  12. a c2 2+( )
13. ab c+( )2  14. c b2 2−( )   15. 

b
a

c
b

2 2
+   16. 

c
b

b
a

2 4
+

For Questions 17 to 32, k = −3, m = 1, n = −4.

17. k2(2m − n)     18. 5 2 2m k n+( )   19. ( )kn m+ 4

20. kmn(k2 + m2 + n2)    21. k2m2(m − n)  22. k2 − 3k + 4

23. m3 + m2 + n2 + n    24. k3 + 3k   25. m(k2 − n2)

26. m k n( )−     27. 100k2 + m   28. m2(2k2 − 3n2) 

29. 
2k m
k n
+
−

      30. 
kn k

m
−

2
   31. 

3 2
2 3
k m
n k
+
−

32. 
k m n

k m n
+ +
+ +2 2 2

For Questions 33 to 48, w = −2, x = 3, y = 0, z = −
1
2

33. 
w
z

x+   34. 
w x

z
+

  35. y
x z

w
+






   36. x2 (z + wy)

37. x x wz+( )  38. w z y2 2 2+( )  39. 2(w2 + x2 + y2) 40. 2x(w − z)

41. 
z
w

x+   42. z w
x
+   43. x w

z
+

2
  44. y w

xz

2 2−

45. z2 + 4z + 5  46. 
1 1 1
w z x

+ +  47. 
4 10
z w
+   48. 

yz xw
xz w
−
−

49. Find K a b c c
a b c

= + + −
+ +











2 2 2

2 2

2
4

  when  a = 3, b = −2, c = −1.

50. Find W
kmn k m n

k m k n
=

+ +
+ +
( )

( )( )
  when  k =

1
2

, m = −
1
3

, n =
1
4
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Algebra 1

When a calculation is repeated many times, it is often helpful 
to use a formula. An example of a scientific formula is the 
formula for converting between degrees Celsius and degrees 
Fahrenheit. An example of a mathematical formula is the one 
for calculating the volume of a sphere.

Example 1
Use the formula F C= +

9
5

32 to convert 45 °C to degrees  
Fahrenheit.

If C = 45, then F = × + =
9
5

45 32 113 °F.

Tip
Rearranging 
the formula to 
convert degrees 
Fahrenheit to 
degrees Celsius 
will be covered 
in Chapter 8: 
Changing the 
subject of a 
formula.

Example 2
Use the formula V r=

4
3

3π  to calculate the volume of a sphere 

with diameter 12 cm.

Leave your answer in terms of π.

The diameter is 12 cm, so the radius is 6 cm.

So V = π π
4
3

6 2883× =  cm3

Exercise 2.1D
1. The final speed v of a car is given by the formula v = u + at.

[u = initial speed, a = acceleration, t = time taken]

Find v when u = 15 m/s, a = 0.2 m/s2, t = 30 s.

2. The period T of a simple pendulum is given by the formula

T l
g

= 







2π , where l is the length of the pendulum and g  

is the gravitational acceleration. Find T when l = 0.65 m, 
g = 9.81 m/s2 and π = 3.142.

3. The total surface area A of a cone is related to the radius r 
and the slant height l by the formula A = πr(r + l ).  
Find A when r = 7 cm and l = 11 cm.

4. The sum S of the squares of the integers from 1 to n is 

given by S n n n= + +
1
6

1 2 1( ) )( . Find S when n = 12.

Tip
The period of a 
pendulum is the 
time it takes to 
complete one full 
cycle: a left swing 
and a right swing.

lh

r

2.1 Substitution
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Algebra 1

5. The acceleration a of a train is found using the formula 

a
v u

s
=

−2 2

2
.  

Find a when v = 20 m/s, u = 9 m/s and s = 2.5 m.

6. Einstein’s famous equation relating energy, mass and the 
speed of light is E = mc2.  
Find E when m = 0.0001 kg and c = 3 × 108 m/s.

7. The distance s travelled by an accelerating rocket is  

given by s ut at= + 1
2

2 .  

Find s when u = 3 m/s, t = 100 s and a = 0.1 m/s2.

8. Find a formula for the area of the shape below, in terms  
of a, b and c.

a

b

c

a

9. Find a formula for the length of the shaded part below, in    
terms of p, q and r.

q

p

r

Tip
You can find out 
more about area 
in Chapter 5.

2.2 Brackets and simplifying
A term outside a pair of brackets multiplies each of the terms 
inside the brackets. This is the distributive law.

Example 1 
3(x − 2y) = 3x − 6y

Example 2
2x(x − 2y + z) = 2x2 − 4xy + 2xz
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Example 3
7y − 4(2x − 3) = 7y − 8x + 12

Example 5
7x + 3x(2x − 3) = 7x + 6x2 − 9x

     = 6x2 − 2x

In general, like terms can be added:

 x terms can be added to x terms

 y terms can be added to y terms

 x2 terms can be added to x2 terms

But they must not be mixed.

Example 4
2x + 3y + 3x2 + 2y − x = 2x − x + 3y + 2y + 3x2

           = x + 5y + 3x2

You can rearrange 
the expression to 
group together 
like terms.

Exercise 2.2A
Simplify these expressions as far as possible.

  1. 3x + 4y + 7y   2. 4a + 7b − 2a + b   3. 3x − 2y + 4y

  4. 2x + 3x + 5   5. 7 − 3x + 2 + 4x   6. 5 − 3y − 6y − 2

  7. 5x + 2y − 4y − x2   8. x2 − 2 + 3x + x2 + 7   9. 2x − 7y − 2x − 3y

10. 4a + 3a2 − 2a  11. 1 + 7a − 8a2 + 6 + a2 12. x2 + 3x2 − 4x2 + 5x

13. 
3 7

2
a

b
a

b+ + −  14. 
4 7 1 2
x y x y
− + +  15. 

m
x

m
x

+
2

16. 
5 7 1

2x x
− +  17. 

3 2
2

a
b

a
b+ + +  18. 

n m n m
4 3 2 3
− − +

19. x3 + 7x2 − 2x3 20. (2x)2 − 2x2 21. (3y)2 + x2 − (2y)2

22. (2x)2 − (2y)2 − (4x)2 23. 5x − 7x2 − (2x)2 24. 
3 5

2 2x x
+

2.2 Brackets and simplifying
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Algebra 1

Example 1
Expand ( )( )x x+ +5 3

( )( ) ( ) ( )x x x x x

x x x

x x

+ + = + + +

= + + +
= + +

5 3 3 5 3

3 5 15

8 15

2

2

(Multiply each term in the 
second bracket by x and by 5.)

Example 2
( )( ) ( ) ( )2 3 4 3 2 4 3 3 4 3

8 6 12 9

x y x y y

xy x y

− + = + − +
= + − −

Example 3
3 1 2 3 2 1 2

3 2 2

3 3 6

2

2

( )( ) [ ( ) ( )]

[ ]

x x x x x

x x x

x x

+ − = − + −

= − + −
= − −

Expand the brackets and collect like terms to simplify  
each expression.

25. 3x + 2(x + 1) 26. 5x + 7(x − 1) 27. 7 + 3(x − 1)

28. 9 − 2(3x − 1) 29. 3x − 4(2x + 5) 30. 5x − 2x(x − 1)

31. 7x + 3x(x − 4) 32. 4(x − 1) − 3x 33. 5x(x + 2) + 4x

34. 3x(x − 1) − 7x2 35. 3a + 2(a + 4) 36. 4a − 3(a − 3)

37. 3ab − 2a(b − 2) 38. 3y − y(2 − y) 39. 3x − (x + 2)

40. 7x − (x − 3) 41. 5x − 2(2x + 2) 42. 3(x − y) + 4(x + 2y)

43. x(x − 2) + 3x(x − 3) 44. 3x(x + 4) − x(x − 2) 45. y(3y − 1) − (3y − 1)

46. 7(2x + 2) − (2x + 2) 47. 7b(a + 2) − a(3b + 3) 48. 3(x − 2) − (x − 2)

Two pairs of brackets
To expand two pairs of brackets, multiply each term in  
the first pair of brackets by each term in the second pair.

Algebra 1
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Exercise 2.2B
Expand the brackets and simplify:

  1. (x + 1)(x + 3)   2. (x + 3)(x + 2)   3. (y + 4)(y + 5)

  4. (x − 3)(x + 4)   5. (x + 5)(x − 2)   6. (x − 3)(x − 2)

  7. (a − 7)(a + 5)   8. (z + 9)(z − 2)   9. (x − 3)(x + 3)

10. (k − 11)(k + 11) 11. (2x + 1)(x − 3) 12. (3x + 4)(x − 2)

13. (2y − 3)(y + 1) 14. (7y − 1)(7y + 1) 15. (3x − 2)(3x + 2)

16. (3a + b)(2a + b) 17. (3x + y)(x + 2y) 18. (2b + c)(3b − c)

19. (5x − y)(3y − x) 20. (3b − a)(2a + 5b) 21. 2(x − 1)(x + 2)

22. 3(x − 1)(2x + 3) 23. 4(2y − 1)(3y + 2) 24. 2(3x + 1)(x − 2)

25. 4(a + 2b)(a − 2b) 26. x(x − 1)(x − 2) 27. 2x(2x − 1)(2x + 1)

28. 3y(y − 2)(y + 3) 29. x(x + y)(x + z) 30. 3z(a + 2m)(a − m)

Be careful with an expression like (x − 3)2.  
It is not x2 − 9 or even x2 + 9.

( ) ( )( )
( ) ( )

x x x
x x x

x x

− = − −
= − − −

= − +

3 3 3
3 3 3

6 9

2

2

Another common mistake occurs with an expression  
like 4 − (x − 1)2.

A common error is to forget that to multiply a set of brackets  
by −1, you need to change the sign of all terms inside the brackets.  
The following work is correct.

4 1 4 1 1 1

4 1 2 1

4 2 1

3 2

2

2

2

2

− − = − − −
= − − +
= − + −
= + −

( ) ( )( )

( )

x x x

x x

x x

x x

Using a bracket here helps to get 
the signs correct.

Exercise 2.2C
Expand the brackets and simplify:

 1. (x + 4)2  2. (x + 2)2  3. (x − 2)2

 4. (2x + 1)2  5. (y − 5)2  6. (3y + 1)2

2.2 Brackets and simplifying
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 7. (x + y)2  8. (2x + y)2  9. (a − b)2

10. (2a − 3b)2 11. 3(x + 2)2 12. (3 − x)2

13. (3x + 2)2 14. (a − 2b)2 15. (x + 1)2 + (x + 2)2

16. (x − 2)2 + (x + 3)2 17. (x + 2)2 + (2x + 1)2 18. (y − 3)2 + (y − 4)2

19. (x + 2)2 − (x − 3)2 20. (x − 3)2 − (x + 1)2 21. (y − 3)2 − (y + 2)2

22. (2x + 1)2 − (x + 3)2 23. 3(x + 2)2 − (x + 4)2 24. 2(x − 3)2 − 3(x + 1)2

Three pairs of brackets
To expand three pairs of brackets, expand the first two pairs  
of brackets, and then multiply this result by the third pair.

Exercise 2.2D
Expand the brackets and simplify.

 1. (x + 2)(x − 3)(x − 4)  2. (x − 1)(x + 2)(x − 5)  3. (x + 6)(x − 3)(x + 5)

 4. (2x − 1)(x + 1)(x − 1)  5. (3x + 1)(2x + 1)(x − 2)  6. (x + 2)(4x − 3)(2x + 3)

 7. (6x − 5)(2x + 7)(3x − 8)  8. (x + 1)2(x − 4)  9. (x − 3)(x − 2)2

10. (x − 1)(2x + 3)2 11. (x − 1)3 12. (3x + 2)3

13. (x − 2)3 −  (x + 1)3 14. (x + 3)3 −  (x − 4)3 15. (2x + 1)3 + 3(x + 1)3

Example 
( )( )( ) ( )

[ ]( )

(

[ ( ) ( )]x x x x x x x

x x x x

x

+ + + = + + + +

= + + + +

= +

1 2 3 2 1 2 3

2 2 32

2 33 2 3

3 2 3 3 2

3 2 3 9 6

6

2 2

3 2 2

3

x x

x x x x x

x x x x x

x x

+ +

= + + + + +

= + + + + +

= +

)( )

( ) ( )

22 11 6+ +x

2.3 Solving linear equations
If an equation contains only one variable, and the highest power 
of that variable is 1, then the equation is a linear equation. In this 
section you are going to solve linear equations.
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Here are some examples, illustrating a few of the techniques you 
may use.

• If the x term is negative, add an x term with a positive 
coefficient to both sides of the equation.

• If there are x terms on both sides, collect them on one side and 
then simplify.

• If there is a fraction in the x term, multiply out to simplify  
the equation.

Example 1
Solve 4 3 2− =x

   

4 2 3

2 3

2
3

= +
=

=

x

x

x

(Add 3x to both sides.)
(Subtract 2 from both sides.)

(Divide both sides by 3.)

Example 2
Solve 2 7 5 3x x− = −

    

2 3 5 7

5 12

12
5

2
2
5

x x

x

x

+ = +
=

= =

(Add 3x to both sides.)

(Divide both sides by 5 and simplify.) 

Example 3

Solve 2
3

10
x
=

    

2 30

30
2

15

x

x

=

= =

Exercise 2.3A
Solve:

  1. 2x − 5 = 11  2. 3x − 7 = 20  3. 2x + 6 = 20  4. 5x + 10 = 60

 5. 8 = 7 + 3x  6. 12 = 2x − 8  7. −7 = 2x − 10  8. 3x − 7 = −10

2.3 Solving linear equations

(Multiply both sides by 3.)

(Divide both sides by 2 and simplify.)Sam
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 9. 12 = 15 + 2x 10. 5 + 6x = 7 11. 
x
5

7=  12. 
x

10
13=

13. 7
2

=
x

 14. 
x
2

1
3

=  15. 
3
2

5
x
=  16. 

4
5

2
x
= −

17. 7
7
3

=
x

 18. 
3
4

2
3

=
x

 19. 
5
6

1
4

x
=  20. − =

3
4

3
5
x

21. 
x
2

7 12+ =  22. 
x
3

7 2− =  23. 
x
5

6 2− = −  24. 4
2

5= −
x

25. 10 3
4

= +
x

 26. 
a
5

1 4− = −  27. 100x − 1 = 98 28. 7 = 7 + 7x

29. 
x

100
10 20+ =  30. 1000x − 5 = −6 31. −4 = −7 + 3x 32. 2x + 4 = x − 3

33. x − 3 = 3x + 7 34. 5x − 4 = 3 − x 35. 4 − 3x = 1 36. 5 − 4x = −3

37. 7 = 2 − x 38. 3 − 2x = x + 12 39. 6 + 2a = 3 40. a − 3 = 3a − 7

41. 2y − 1 = 4 − 3y 42. 7 − 2x = 2x − 7 43. 7 − 3x = 5 − 2x 44. 8 − 2y = 5 − 5y

45. x − 16 = 16 − 2x 46. x + 2 = 3.1 47. −x − 4 = −3 48. −3 − x = −5

49. − + = −
x
2

1
1
4

 50. − + = − −
3
5 10

1
5 5

x x

Example
Solve x x x− − = − +2 1 1 4 1( ) ( )

     

x x x

x x x

x

x

− + = − −
− + = − −

= −

= −

2 2 1 4 4

2 4 1 4 2

3 5

5
3

(Expand the brackets.)

(Be careful to get the sign of each term correct.)
(Add 4x to both sides.)
(Simplify.)

(Divide both sides by 3.)

Exercise 2.3B
Solve:

 1. x + 3(x + 1) = 2x  2. 1 + 3(x − 1) = 4

 3. 2x − 2(x + 1) = 5x  4. 2(3x − 1) = 3(x − 1)

 5. 4(x − 1) = 2(3 − x)  6. 4(x − 1) − 2 = 3x

 7. 4(1 − 2x) = 3(2 − x)  8. 3 − 2(2x + 1) = x + 17

 9. 4x = x − (x − 2) 10. 7x = 3x − (x + 20)

11. 5x − 3(x − 1) = 39 12. 3x + 2(x − 5) = 15

Equations with brackets
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13. 7 − (x + 1) = 9 − (2x − 1) 14. 10x − (2x + 3) = 21

15. 3(2x + 1) + 2(x − 1) = 23 16. 5(1 − 2x) − 3(4 + 4x) = 0

17. 7x − (2 − x) = 0 18. 3(x + 1) = 4 − (x − 3)

19. 3y + 7 + 3(y − 1) = 2(2y + 6) 20. 4(y − 1) + 3(y + 2) = 5(y − 4)

21. 4x − 2(x + 1) = 5(x + 3) + 5 22. 7 − 2(x − 1) = 3(2x − 1) + 2

23. 10(2x + 3) − 8(3x − 5) + 5(2x − 8) = 0 24. 2(x + 4) + 3(x − 10) = 8

25. 7(2x − 4) + 3(5 − 3x) = 2 26. 10(x + 4) − 9(x − 3) − 1 = 8(x + 3)

27. 5(2x − 1) − 2(x − 2) = 7 + 4x 28. 6(3x − 4) − 10(x − 3) = 10(2x − 3)

29. 3(x − 3) − 7(2x − 8) − (x − 1) = 0 30. 5 + 2(x + 5) = 10 − (4 − 5x)

31. 6 30 12 2 1
1
2

x x x+ − = −





( )  32. 3 2

2
3

7 1 0x x−





 − − =( )

33. 5(x − 1) + 17(x − 2) = 2x + 1 34. 6 2 1 9 1 8 1
1
4

( ) ( )x x x− + + = −







35. 7(x + 4) − 5(x + 3) + (4 − x) = 0 36. 0 = 9(3x + 7) − 5(x + 2) − (2x − 5)

37. 10(2.3 − x) − 0.1(5x − 30) = 0 38. 8 2
1
2

3
4

1
4

1
1
2

x x−





 − − =( )

39. ( ) ( ) ( )6 5 4
2

− − − − − = −x x x
x

40. 10 1
10

10
1

100
10 0 05−






 − − − − =

x
x x( ) ( ) .

Example
Solve ( ) ( )x x+ = + +3 2 32 2 2

    

( )( ) ( )( )x x x x

x x x x

x x

x

x

+ + = + + +

+ + = + + +
+ = +

=
=

3 3 2 2 9

6 9 4 4 9

6 9 4 13

2 4

2

2 2

Exercise 2.3C
Solve:

 1. x2 + 4 = (x + 1)(x + 3)  2. x2 + 3x = (x + 3)(x + 1)

 3. (x + 3)(x − 1) = x2 + 5  4. (x + 1)(x + 4) = (x − 7)(x + 6)

2.3 Solving linear equations
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 5. (x − 2)(x + 3) = (x − 7)(x + 7)  6. (x − 5)(x + 4) = (x + 7)(x − 6)

 7. 2x2 + 3x = (2x − 1)(x + 1)  8. (2x − 1)(x − 3) = (2x − 3)(x − 1)

 9. x2 + (x + 1)2 = (2x − 1)(x + 4) 10. x(2x + 6) = 2(x2 − 5)

11. (x + 1)(x − 3) + (x + 1)2 = 2x(x − 4) 12. (2x + 1)(x − 4) + (x − 2)2 = 3x(x + 2)

13. (x + 2)2 − (x − 3)2 = 3x − 11 14. x(x − 1) = 2(x − 1)(x + 5) − (x − 4)2

15. (2x + 1)2 − 4(x − 3)2 = 5x + 10 16. 2(x + 1)2 − (x − 2)2 = x(x − 3)

17.  The area of the rectangle here exceeds the area of the square by 2 cm2. 
Find x.

x − 1

x + 2 x

x

18.  The area of the square exceeds the area of the rectangle by 13 m2.  
Find y.

y + 1

y − 3

y

y

19.  The area of the square is half the area of the rectangle. Find x.

2(x + 4)

(x − 2)

x

x

Equations involving fractions
When solving equations involving fractions, multiply both  
sides of the equation by a suitable number or letter to eliminate  
the fractions.

Example 1

Solve 5
2

x
=

    

5 2

5
2

=

=

x x

x

( .)Multiply both sides by

(Divide both sides by 2.)
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Example 2

Solve   
x x+

=
−3

4
2 1

3

12
3

4
12

2 1
3

×
+

= ×
−( ) ( )x x

    (Multiply both sides by 12.)

3 3 4 2 1

3 9 8 4

13 5

13
5

2 3
5

( ) ( )x x

x x

x

x

x

+ = −
+ = −

=

=

=

Exercise 2.3D
Solve:

  1. 
7

21
x
=    2. 30

6
=

x
   3. 

5
3

x
=

  4. 
9

3
x
= −    5. 11

5
=

x
   6. − =2

4
x

  7. 
x
4

3
2

=    8. x
3

5
4

=    9. 
x x+

=
−1

3
1

4

2.3 Solving linear equations

(Or you can cross multiply.)

(Subtract 3x, not 8x, so that 
the x term is positive.)

Example 3
Solve 5

1
2 12

( )x −
+ =

       

5
1

10

5 10 1

5 10 10

15 10

15
10

1
1
2

( )
( )

x
x

x

x

x

x

−
=

= −
= −
=

=

=

(2 and 12 are like terms so 
combine them first.)
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10. 
x x+

=
−3

2
4

5
  11. 

2 1
3 2

x x−
=  12. 3 1

5
2
3

x x+
=

13. 
8

2
2 2

5
−

=
+x x

 14. 
x x+

=
+2

7
3 6

5
 15. 

1
2

3
3

−
=

−x x

16. 
2

1
1

x −
=  17. 

x x
3 4

1+ =  18. 
x x
3 2

4+ =

19. 
x x
2 5

3− =  20. 
x x
3

2
4

= +  21. 
5

1
10

x x−
=

22. 
12

2 3
4

x −
=  23. 2

18
4

=
+x

 24. 
5

5
15

7x x+
=

+

25. 
9 5

3x x
=

−
 26. 

4
1

10
3 1x x−

=
−

 27. 
−
−

=
+

7
1

14
5 2x x

28. 
4

1
7

3 2x x+
=

−
 29. 

x x+
+

−
=

1
2

1
3

1
6

 30. 
1
3

2
1
5

3 2( ) ( )x x+ = +

31. 
1
2

1
1
6

1 0( ) ( )x x− − + =  32. 
1
4

5
2
3

0( )x
x

+ − =  33. 
4

2 3
x
+ =

34. 
6

3 7
x
− =  35. 

9
7 1

x
− =  36. − = +2 1

3
x

37. 4
4

0− =
x

 38. 5
6

1− = −
x

 39. 7
3

2
1− =

x

40. 4
5

3
1+ = −

x
 41. 

9
2

5 0
x
− =  42. 

x x−
−

−
=

1
5

1
3

0

43. x x−
−

−
=

1
4

2 3
5

1
20

 44. 
4

1
3

1−
=

+x x
 45. 

x x+
− =

1
4 3

1
12

46. 2 1
8

1
3

5
24

x x+
−

−
=

2.4 Problems solved by linear equations
Step 1   Let the unknown quantity be x (or any other letter) and 

state the units (where appropriate).

Step 2   Express the given statement in the form of an equation. 
Do not include the units in the equation.

Step 3   Solve the equation for x and give the answer in words. (Do 
not finish by just writing ‘x = 3’.)

Step 4   Check your solution using the initial problem (not your 
equation).
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Example 2
The length of a rectangle is three times its width. If the 
perimeter is 36 cm, find the width.

Let the width of the rectangle  
be x cm.

Then the length of the rectangle  
is 3x cm.

Form an equation.

x + 3x + x + 3x = 36 or 2(x + 3x) = 36

Solve: 8 36

4 5

36
8

x
x

x

=
=

= .

In words:

The width of the rectangle is 4.5 cm

Check: If width cm

length cm

perimeter cm

=
=
=

4 5

13 5

36

.

.

3x

x

2.4 Problems solved by linear equations

Example 1
The sum of three consecutive whole numbers is 78. Find the 
numbers.

Let the smallest number be x; then the other numbers are  
(x + 1) and (x + 2).

Form an equation:

x + (x + 1) + (x + 2) = 78

             3x + 3 = 78

Solve: 3x = 75

    x = 25

In words:

The three numbers are 25, 26 and 27.

Check: 25 + 26 + 27 = 78
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Revision exercise 2
1. Solve these equations.

a) x + 4 = 3x + 9

b) 9 − 3a = 1

2. Given a = 3, b = 4 and c = −2, evaluate:

a) 2a2 − b

b) a(b − c)

c) 2b2 − c2

3. Solve these simultaneous equations.

a) 3 2 5

2 8

x y

x y

+ =
− =

b) 2 6

2 3 6

m n

m n

− =
+ = −

c) 3 4 19

6 10

x y

x y

− =
+ =

d) 3 7 11

2 3 4

x y

x y

− =
− =

4. Given that x = 4, y = 3, z = −2, evaluate:

a) 2x(y + z)     b) (xy)2 − z2

c) x2 + y2 + z2    d) (x + y)(x − z)

e) x z( )1 4−      f) xy
z

5. a)  Expand and simplify  
(x − 2)(x − 3)(x − 4).

b) Expand and simplify (2x − 3)3.

6. Solve these equations.

a) 5 − 7x = 4 − 6x

b) 
7 2

3x
=

7. Find the value of 
2 3
5 2

x y
x y
−
+

 when x = 2a 

and y = −a.

8. Solve these simultaneous equations.

a) 7 3 29

5 4 33

c d

c d

+ =
− =

b) 2 3 7

2 3 8

x y

y x

− =
− = −

c) 5 3 1

3 2 1 0

x y

x y

= −
+ + =

( )

d) 5 3 16

11 7 34

s t

s t

+ =
+ =

9. Solve these equations.

a) 4(2x − 1) − 3(1 − x) = 0

b) x
x
+

=
3

2

10. Given that m = −2, n = 4, evaluate:

a) 5m + 3n

b) 5 + 2m − m2

c) m2 + 2n2

d) (2m + n)(2m − n)

e) (n − m)2

f) n − mn − 2m2

11. Given that a + b = 2 and that a2 + b2 = 6,  
show that 2ab = −2. 
Find also the value of (a − b)2.

12. A jar contains 50 US coins, containing a 
mixture of dimes (10 cents) and quarters 
(25 cents). The total value of the coins is 
$9.35. How many dimes are there?

13. Pat bought 45 stamps, some for 40c 
and some for 58c. If he spent $22.50 
altogether, how many 40c stamps did 
he buy?

Algebra 1
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Examination-style exercise 2

NON-CALCULATOR

1. a)
5
7

11
14 2

+ =
x

Work out the value of x. [1]

b)
7
4

4 35
16

÷ =
y

Work out the value of y. [1]

2. Solve these simultaneous equations.
4 17

3 2 10

x y

x y

+ =
− =

[3]

3. Solve these equations.

    a) 
2
3

12 0
x
− = [2]

    b) 
x x+

=
−8

3
8 1

11
[2]

4. Solve these simultaneous equations.

 0.3x + 2y = 17
[3]

0.6x + 3y = 27

5. a)  Expand and simplify ( ) ( )x x− +3 3 12 . [3]

b)  Fully simplify ( ) ( ) ( )x x x− + − +3 3 1 22 2. [3]
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