Python Operators:

e The operator can be defined as a symbol which is responsible for a particular operation
between two operands.
Python provides a variety of operators, which are described as follows.

Arithmetic operators
Comparison operators
Assignment Operators
Logical Operators
Bitwise Operators
Membership Operators
Identity Operators

ANANENENENENENEN

Python Arithmetic Operators

Arithmetic operators are used with numeric values to perform common mathematical operations:

Operator
+ (Addition)

- (Subtraction)

/ (divide)

* (Multiplication)
% (reminder)

** (Exponent)

// (Floor division)

Description

It is used to add two operands. For example, if a =20, b = 10 => a+b =30

It is used to subtract the second operand from the first operand. If the first operand is less
than the second operand, the value results negative. For example, ifa=20,b=10=>a-b =10

It returns the quotient after dividing the first operand by the second operand. For example, ifa=20,b=10=>a/b=2.0
It is used to multiply one operand with the other. For example, ifa=20,b=10=>a * b =200

It returns the reminder after dividing the first operand by the second operand. For example, ifa=20,b=10=>a%b =0
It is an exponent operator represented as it calculates the first operand power to the second operand.

It gives the floor value of the quotient produced by dividing the two operands.

Python Comparison Operators

Comparison operators are used to compare two values:

Operator Description

If the value of two operands is equal, then the condition becomes true.

If the value of two operands is not equal, then the condition becomes true.

Operator

%=

k¥

/1

<= If the first operand is less than or equal to the second operand, then the condition becomes true.

>= If the first operand is greater than or equal to the second operand, then the condition becomes true.
> If the first operand is greater than the second operand, then the condition becomes true.
< If the first operand is less than the second operand, then the condition becomes true.

Assignment Operators

The assignment operators are used to assign the value of the right expression to the left operand.
The assignment operators are described in the following table.
Description

It assigns the value of the right expression to the left operand.

It increases the value of the left operand by the value of the right operand and assigns the modified value back to left
operand. For example, if a = 10, b = 20 => a+ = b will be equal to a = a+ b and therefore, a = 30.

It decreases the value of the left operand by the value of the right operand and assigns the modified value back to left
operand. For example, if a =20, b = 10 => a- = b will be equal to a = a- b and therefore, a = 10.

It multiplies the value of the left operand by the value of the right operand and assigns the modified value back to then the
left operand. For example, if a = 10, b = 20 => a* = b will be equal to a = a* b and therefore, a = 200.

It divides the value of the left operand by the value of the right operand and assigns the reminder back to the left operand.
For example, if a=20,b=10=>a % = b will be equal to a=a % b and therefore, a = 0.

a**=b will be equal to a=a**b, for example, if a =4, b =2, a**=b will assign 4**2 = 16 to a.

A//=b will be equal to a =a// b, for example, if a=4, b =3, a//=b will assign 4//3 =1to a.

Python Logical Operators

Logical operators are used to combine conditional statements:

Operator Description Example

and Returns True if both statements are true x<5and x<10

or Returns True if one of the statements is true x<5o0rx<4

not Reverse the result, returns False if the result is true not(x <5 and x < 10)

Python Bitwise Operators

Bitwise operators are used to compare (binary) numbers

Operator Name Description

& AND Sets each bit to 1 if both bits are 1

| OR Sets each bit to 1 if one of two bits is 1

A XOR Sets each bit to 1 if only one of two bitsis 1

~ NOT Inverts all the bits

<< Zero fill left shift Shift left by pushing zeros in from the right and let the

leftmost bits fall off
>> Signed right shift Shift right by pushing copies of the leftmost bit in from

the left, and let the rightmost bits fall off

Example:
ifa=7
b=6

then, binary (a) = 0111
binary (b) = 0110

hence, a & b =0011

a|b=0111
a”b=0100
~a=1000

Membership Operators

e Python membership operators are used to check the membership of value inside a Python
data structure.

e If the value is present in the data structure, then the resulting value is true otherwise it
returns false.

Operator Description

in It is evaluated to be true if the first operand is found in the second operand (list, tuple, or
dictionary).

not in It is evaluated to be true if the first operand is not found in the second operand (list, tuple, or

dictionary).

Identity Operators

The identity operators are used to decide whether an element certain class or type.

Operator Description
is It is evaluated to be true if the reference present at both sides point to the same object.

is not It is evaluated to be true if the reference present at both sides do not point to the same object.

Python Comments

e We might wish to take notes of why a section of script functions, for instance. We leverage
the remarks to accomplish this. Formulas, procedures, and sophisticated business logic are
typically explained with comments.

e Single-line comments, multi-line comments, and documentation strings are the 3 types of
comments in Python.

Below are some of the most common uses for comments:

o Readability of the Code
o Restrict code execution
o Provide an overview of the program or project metadata

o To add resources to the code

Types of Comments in Python

Single-Line Comments

e Single-line remarks in Python have shown to be effective for providing quick descriptions for
parameters, function definitions, and expressions.

e A single-line comment of Python is the one that has a hashtag # at the beginning of it and
continues until the finish of the line.

e The Python compiler ignores this line.

Code

This code is to show an example of a single-line comment
print('This statement does not have a hashtag before it')

Multi Line Comments

e Python does not really have a syntax for multi line comments.
e To add a multiline comment you could insert a # for each line:

#This is a comment
#written in

#more than just one line
print("Hello, World!")

Since Python will ignore string literals that are not assigned to a variable, you can add a multiline
string (triple quotes) in your code, and place your comment inside it

This is a comment
written in
more than just one line

print("Hello, World!")

Python Data Types

Built-in Data Types

In programming, data type is an important concept.

Variables can store data of different types, and different types can do
different things.

Python has the following data types built-in by default, in these categories:
Text Type: str

Numeric Types: int, float, complex

Sequence Types:

Mapping Type:

Set Types:

Boolean Type:

Binary Types:

None Type:

Example

list, tuple, range

dict

set, frozenset

bool

bytes, bytearray, memoryview

NoneType

X = "Hello World"

X = 20
X = 20.5
x = 1j

x = ["apple", "banana", "cherry"]

x = ("apple", "banana", "cherry")

Data Type

str

int

float

complex

list

tuple

X = range(6) range

x = {"name" : "John", "age" : 36} dict

x = {"apple", "banana", "cherry"} set

x = frozenset({"apple", "banana", "cherry"}) frozenset

X = True bool

x = b"Hello" bytes

x = bytearray(5) bytearray

x = memoryview(bytes(5)) memoryview
X = None NoneType

Getting the Data Type

You can get the data type of any object by using the type() function:

X =5
print(type(x))

Boolean Values

In programming you often need to know if an expression is True or False.

You can evaluate any expression in Python, and get one of two
answers, True or False.

When you compare two values, the expression is evaluated and Python
returns the Boolean answer:

print(1e > 9)

print(10 == 9)
print(10 < 9)

Evaluate Values and Variables

The bool() function allows you to evaluate any value, and give
you True or False in return,

print(bool("Hello"))
print(bool(15))

	Python Logical Operators
	Python Bitwise Operators
	Bitwise operators are used to compare (binary) numbers
	Membership Operators
	Identity Operators
	Python Comments
	Types of Comments in Python
	Single-Line Comments
	Multi Line Comments

	Python Data Types
	Built-in Data Types
	Getting the Data Type
	Boolean Values
	Evaluate Values and Variables

