
INFORMATION SHEET PL 101-7.1.1
“Python Statement, Indentation, Comments, Variables, Constants”

In this lesson, you will learn about Python statements, why indentation is important and use of

comments in programming, you will also learn about Python variables, constants, literals and their use
cases.

References:
• Python Programming for Beginners

INFORMATION SHEET PL 101-7.1.1

“Python Statement, Indentation, Comments, Variables, Constants and Literals”

Python Statement

Instructions that a Python interpreter can execute are called statements. For

example, a = 1 is an assignment statement. if statement, for statement, while statement, etc.

are other kinds of statements which will be discussed later.

Multi-line statement

In Python, the end of a statement is marked by a newline character. But we can make a

statement extend over multiple lines with the line continuation character (\). For example:

a = 1 + 2 + 3 + \
 4 + 5 + 6 + \
 7 + 8 + 9

This is an explicit line continuation. In Python, line continuation is implied inside

parentheses (), brackets [], and braces { }. For instance, we can implement the above multi-

line statement as:

a = (1 + 2 + 3 +
 4 + 5 + 6 +
 7 + 8 + 9)

Here, the surrounding parentheses () do the line continuation implicitly. Same is the case

with [] and { }. For example:

colors = ['red',
 'blue',
 'green']

We can also put multiple statements in a single line using semicolons, as follows:

a = 1; b = 2; c = 3

Python Indentation

Most of the programming languages like C, C++, and Java use braces { } to define a block

of code. Python, however, uses indentation.

A code block (body of a function, loop, etc.) starts with indentation and ends with the

first unindented line. The amount of indentation is up to you, but it must be consistent

throughout that block.

Generally, four whitespaces are used for indentation and are preferred over tabs. Here

is an example.

for i in range(1,11):
 print(i)
 if i == 5:
 break

The enforcement of indentation in Python makes the code look neat and clean. This

results in Python programs that look similar and consistent.

Indentation can be ignored in line continuation, but it's always a good idea to indent. It

makes the code more readable. For example:

if True:
 print('Hello')
 a = 5

and

if True: print('Hello'); a = 5

both are valid and do the same thing, but the former style is clearer.

Incorrect indentation will result in IndentationError.

Python Comments

Comments are very important while writing a program. They describe what is going on

inside a program, so that a person looking at the source code does not have a hard time

figuring it out.

You might forget the key details of the program you just wrote in a month's time. So

taking the time to explain these concepts in the form of comments is always fruitful.

In Python, we use the hash (#) symbol to start writing a comment.

It extends up to the newline character. Comments are for programmers to better understand a

program. Python Interpreter ignores comments.

#This is a comment
#print out Hello
print('Hello')

Multi-line comments

We can have comments that extend up to multiple lines. One way is to use the hash(#)

symbol at the beginning of each line. For example:

#This is a long comment
#and it extends
#to multiple lines

Another way of doing this is to use triple quotes, either ''' or """.

These triple quotes are generally used for multi-line strings. But they can be used as a multi-

line comment as well. Unless they are not docstrings, they do not generate any extra code.

"""This is also a
perfect example of
multi-line comments"""

Docstrings in Python

A docstring is short for documentation string.

Python docstrings (documentation strings) are the string literals that appear right after the

definition of a function, method, class, or module.

Triple quotes are used while writing docstrings. For example:

def double(num):
 """Function to double the value"""
 return 2*num

Docstrings appear right after the definition of a function, class, or a module. This separates

docstrings from multiline comments using triple quotes.

The docstrings are associated with the object as their __doc__ attribute.

So, we can access the docstrings of the above function with the following lines of code:

def double(num):

 """Function to double the value"""
 return 2*num
print(double.__doc__)

Output

Function to double the value

Python Variables

A variable is a named location used to store data in the memory. It is helpful to think of

variables as a container that holds data that can be changed later in the program. For

example,

number = 10

Here, we have created a variable named number. We have assigned the value 10 to the

variable.

You can think of variables as a bag to store books in it and that book can be replaced at

any time.

number = 10
number = 1.1

Initially, the value of number was 10. Later, it was changed to 1.1.

Note: In Python, we don't actually assign values to the variables. Instead, Python gives the

reference of the object(value) to the variable.

Assigning values to Variables in Python

As you can see from the above example, you can use the assignment operator = to

assign a value to a variable.

Example 1: Declaring and assigning value to a variable

website = "apple.com"
print(website)

Output

apple.com

In the above program, we assigned a value apple.com to the variable website. Then, we

printed out the value assigned to website i.e. apple.com

Note: Python is a type-inferred language, so you don't have to explicitly define the variable

type. It automatically knows that apple.com is a string and declares the website variable as a

string.

Example 2: Changing the value of a variable

website = "apple.com"
print(website)

assigning a new value to website
website = "samsung.com"

print(website)

Output

apple.com
samsung.com

In the above program, we have assigned apple.com to the website variable initially. Then, the

value is changed to samsung.com.

Example 3: Assigning multiple values to multiple variables

a, b, c = 5, 3.2, "Hello"

print (a)
print (b)
print (c)

If we want to assign the same value to multiple variables at once, we can do this as:

x = y = z = "same"

print (x)
print (y)
print (z)

The second program assigns the same string to all the three variables x, y and z.

Constants

A constant is a type of variable whose value cannot be changed. It is helpful to think of

constants as containers that hold information which cannot be changed later.

You can think of constants as a bag to store some books which cannot be replaced once

placed inside the bag.

Assigning value to constant in Python

In Python, constants are usually declared and assigned in a module. Here, the module is

a new file containing variables, functions, etc. which is imported to the main file. Inside the

module, constants are written in all capital letters and underscores separating the words.

Example 3: Declaring and assigning value to a constant

Create a constant.py:

PI = 3.14
GRAVITY = 9.8

Create a main.py:

import constant

print(constant.PI)
print(constant.GRAVITY)

Output

3.14
9.8

In the above program, we create a constant.py module file. Then, we assign the constant value

to PI and GRAVITY. After that, we create a main.py file and import the constant module.

Finally, we print the constant value.

Note: In reality, we don't use constants in Python. Naming them in all capital letters is a

convention to separate them from variables, however, it does not actually prevent

reassignment.

Rules and Naming Convention for Variables and constants

1. Constant and variable names should have a combination of letters in lowercase (a to z) or

uppercase (A to Z) or digits (0 to 9) or an underscore (_). For example:

snake_case

MACRO_CASE

camelCase

CapWords

2. Create a name that makes sense. For example, vowel makes more sense than v.

3. If you want to create a variable name having two words, use underscore to separate

them. For example:

1. my_name

current_salary

4. Use capital letters possible to declare a constant. For example:

2. PI

3. G

4. MASS

5. SPEED_OF_LIGHT

TEMP

5. Never use special symbols like !, @, #, $, %, etc.

6. Don't start a variable name with a digit.

Literals

Literal is a raw data given in a variable or constant. In Python, there are various types

of literals they are as follows:

Numeric Literals

Numeric Literals are immutable (unchangeable). Numeric literals can belong to 3

different numerical types: Integer, Float, and Complex.

Example 4: How to use Numeric literals in Python?

a = 0b1010 #Binary Literals
b = 100 #Decimal Literal
c = 0o310 #Octal Literal
d = 0x12c #Hexadecimal Literal

#Float Literal
float_1 = 10.5
float_2 = 1.5e2

#Complex Literal
x = 3.14j

print(a, b, c, d)
print(float_1, float_2)
print(x, x.imag, x.real)

Output

10 100 200 300
10.5 150.0
3.14j 3.14 0.0

In the above program,

 We assigned integer literals into different variables. Here, a is binary literal, b is a

decimal literal, c is an octal literal and d is a hexadecimal literal.

 When we print the variables, all the literals are converted into decimal values.

 10.5 and 1.5e2 are floating-point literals. 1.5e2 is expressed with exponential and is

equivalent to 1.5 * 102.

 We assigned a complex literal i.e 3.14j in variable x. Then we use imaginary literal

(x.imag) and real literal (x.real) to create imaginary and real parts of complex numbers.

 To learn more about Numeric Literals, refer to Python Numbers.

String literals

A string literal is a sequence of characters surrounded by quotes. We can use both

single, double, or triple quotes for a string. And, a character literal is a single character

surrounded by single or double quotes.

Example 7: How to use string literals in Python?

strings = "This is Python"
char = "C"
multiline_str = """This is a multiline string with more than one line code."""
unicode = u"\u00dcnic\u00f6de"
raw_str = r"raw \n string"

print(strings)
print(char)
print(multiline_str)
print(unicode)
print(raw_str)

Output

This is Python
C
This is a multiline string with more than one line code.
Ünicöde
raw \n string

In the above program, This is Python is a string literal and C is a character literal.

The value in triple-quotes """ assigned to the multiline_str is a multi-line string literal.

The string u"\u00dcnic\u00f6de" is a Unicode literal which supports characters other than

English. In this case, \u00dc represents Ü and \u00f6 represents ö.

r"raw \n string" is a raw string literal.

Boolean literals

A Boolean literal can have any of the two values: True or False.

Example 8: How to use boolean literals in Python?

x = (1 == True)
y = (1 == False)

a = True + 4
b = False + 10

print("x is", x)
print("y is", y)
print("a:", a)
print("b:", b)

Output

x is True
y is False
a: 5
b: 10

In the above program, we use boolean literal True and False. In Python, True represents the

value as 1 and False as 0. The value of x is True because 1 is equal to True. And, the value

of y is False because 1 is not equal to False.

Similarly, we can use the True and False in numeric expressions as the value. The value

of a is 5 because we add True which has a value of 1 with 4. Similarly, b is 10 because we add

the False having value of 0 with 10.

Special literals

Python contains one special literal i.e. None. We use it to specify that the field has not

been created.

Example 9: How to use special literals in Python?

drink = "Available"
food = None

def menu(x):
 if x == drink:
 print(drink)

 else:
 print(food)

menu(drink)
menu(food)

Output

Available
None

In the above program, we define a menu function. Inside menu, when we set the argument

as drink then, it displays Available. And, when the argument is food, it displays None.

Literal Collections

There are four different literal collections List literals, Tuple literals, Dict literals, and Set

literals.

Example 10: How to use literals collections in Python?

fruits = ["apple", "mango", "orange"] #list
numbers = (1, 2, 3) #tuple
alphabets = {'a':'apple', 'b':'ball', 'c':'cat'} #dictionary
vowels = {'a', 'e', 'i' , 'o', 'u'} #set

print(fruits)
print(numbers)
print(alphabets)
print(vowels)

Output

['apple', 'mango', 'orange']
(1, 2, 3)

{'a': 'apple', 'b': 'ball', 'c': 'cat'}
{'e', 'a', 'o', 'i', 'u'}

In the above program, we created a list of fruits, a tuple of numbers, a dictionary dict having

values with keys designated to each value and a set of vowels.

 STUDENT NAME: __________________________________ SECTION: __________________

PERFORMANCE TASK PL 101-7.1.1

WRITTEN WORK TITLE: “Comment and Variables”

WRITTEN TASK OBJECTIVE:
 MATERIALS:

 Pen and Paper

TOOLS & EQUIPMENT:
 None

ESTIMATED COST: None

Instruction:
1. Create a Python program that assign “I want to be the best programmer!” to str_1

variable and display it on screen.
2. Create a Python program that assign “I Love Programming!” to str_2 variable and

display it on screen.
3. Add a single line comment for each number above

PRECAUTIONS:
 Do not just copy all your output from the internet.

 Use citation and credit to the owner if necessary.
ASSESSMENT METHOD: WRITTEN WORK CRITERIA CHECKLIST

STUDENT NAME: __________________________________ SECTION: __________________

PERFORMANCE OUTPUT CRITERIA CHECKLIST PL 101-7.1.1

CRITERIA
Did I . . .

SCORING

1 2 3 4 5
1. Focus - The single controlling point made with an awareness of a task

about a specific topic.
2. Content - The presentation of ideas developed through facts, examples,

anecdotes, details, opinions, statistics, reasons, and/or opinions
3. Organization – The order developed and sustained within and across

paragraphs using transitional devices and including the introduction and
conclusion.

4. Style – The choice, use, and arrangement of words and sentence
structures that create tone and voice.

5. .
6. .
7. .
8. .
9. .
10. .

TEACHER’S REMARKS:  QUIZ  RECITATION  PROJECT

GRADE:

5 - Excellently Performed
4 - Very Satisfactorily Performed
3 - Satisfactorily Performed
2 - Fairly Performed
1 - Poorly Performed

TEACHER

 Date: ______________________

	Python Statement
	Multi-line statement

	Python Indentation
	Python Comments
	Multi-line comments
	Docstrings in Python

	Python Variables
	Assigning values to Variables in Python
	Example 1: Declaring and assigning value to a variable
	Example 2: Changing the value of a variable
	Example 3: Assigning multiple values to multiple variables

	Constants
	Assigning value to constant in Python
	Example 3: Declaring and assigning value to a constant

	Rules and Naming Convention for Variables and constants
	Literals
	Numeric Literals
	Example 4: How to use Numeric literals in Python?

	String literals
	Example 7: How to use string literals in Python?

	Boolean literals
	Example 8: How to use boolean literals in Python?

	Special literals
	Example 9: How to use special literals in Python?

	Literal Collections
	Example 10: How to use literals collections in Python?

	STUDENT NAME: __________________________________ SECTION: __________________
	WRITTEN TASK OBJECTIVE:
	TOOLS & EQUIPMENT:
	None
	ESTIMATED COST: None
	PRECAUTIONS:
	Do not just copy all your output from the internet.
	Use citation and credit to the owner if necessary.
	ASSESSMENT METHOD: WRITTEN WORK CRITERIA CHECKLIST

