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Preface

This book is designed for a one semester course in discrete mathematics
for sophomore or junior level students. The text covers the mathematical
concepts that students will encounter in many disciplines such as computer
science, engineering, Business, and the sciences.
Besides reading the book, students are strongly encouraged to do all the exer-
cises. Mathematics is a discipline in which working the problems is essential
to the understanding of the material contained in this book.
Students are encouraged first to do the problems without referring to the
solutions. Answers and Solutions to problems found at the end of this book
can only be used when you are stuck. Exert a reasonable amount of efforts
towards solving a problem before you look up the answer, and rework any
problem you miss.
Students are strongly encouraged to keep up with the exercises and the se-
quel of concepts as they are going along, for mathematics builds on itself.
A solution guide to the text is available through email: mfinan@atu.edu

Marcel B. Finan
Russellville, Arkansas
August 2014
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Set Numbers Notations

In this chapter, we introduce the set of numbers that we will use in this book.

• The set of all positive integers

N = {1, 2, 3, · · · }.

• The set of whole numbers

W = {0, 1, 2, · · · }.

• The set of all integers

Z = {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · }.

• The set of all rational numbers

Q = {a
b

: a, b ∈ Z with b 6= 0}.

• The set of irrational numbers I.
• The set R of all real numbers.

Also, when a number n belongs to a certain set, we will use the notation
∈ . For example, −2 ∈ Z and −2 6∈ N.
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Fundamentals of Mathematical
Logic

Logic is commonly known as the science of reasoning. This introductory
chapter covers modern mathematical logic such as propositions and quanti-
fiers.
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6 FUNDAMENTALS OF MATHEMATICAL LOGIC

1 Propositions and Related Concepts

A proposition is any meaningful statement that is either true or false, but
not both. We will use lowercase letters, such as p, q, r, · · · , to represent
propositions. We will also use the notation

p : 1 + 1 = 3

to define p to be the proposition 1+1 = 3. The truth value of a proposition
is true, denoted by T, if it is a true statement and false, denoted by F, if it
is a false statement. Statements that are not propositions include questions
and commands.

Example 1.1
Which of the following are propositions? Give the truth value of the propo-
sitions.
(a) 2 + 3 = 7.
(b) Julius Caesar was president of the United States.
(c) What time is it?
(d) Be quiet !

Solution.
(a) A proposition with truth value (F).
(b) A proposition with truth value (F).
(c) Not a proposition since no truth value can be assigned to this statement.
(d) Not a proposition

Example 1.2
Which of the following are propositions? Give the truth value of the propo-
sitions.
(a) The difference of two primes.
(b) 2 + 2 = 4.
(c) Washington D.C. is the capital of New York.
(d) How are you?

Solution.
(a) Not a proposition.
(b) A proposition with truth value (T).
(c) A proposition with truth value (F).

https://www.youtube.com/watch?v=0s_VgdpswV8
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(d) Not a proposition

New propositions called compound propositions or propositional func-
tions can be obtained from old ones by using symbolic connectives which
we discuss next. The propositions that form a propositional function are
called the propositional variables.
Let p and q be propositions. The conjunction of p and q, denoted by p ∧ q
(read “p wedge q”), is the proposition: p and q. This proposition is defined
to be true only when both p and q are true and it is false otherwise.
The disjunction of p and q, denoted by p∨ q (read “p vee q”), is the propo-
sition: p or q. The “or” is used in an inclusive way. This proposition is false
only when both p and q are false, otherwise it is true.

Example 1.3
Let

p : 5 < 9

q : 9 < 7.

Construct the propositions p ∧ q and p ∨ q.

Solution.
The conjunction of the propositions p and q is the proposition

p ∧ q : 5 < 9 and 9 < 7.

This proposition is false since the proposition 9 < 7 has a truth value F.
The disjunction of the propositions p and q is the proposition

p ∨ q : 5 < 9 or 9 < 7

which is a true proposition

Example 1.4
Consider the following propositions

p : It is Friday

q : It is raining.

Construct the propositions p ∧ q and p ∨ q.
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Solution.
The conjunction of the propositions p and q is the proposition

p ∧ q : It is Friday and it is raining.

The disjunction of the propositions p and q is the proposition

p ∨ q : It is Friday or It is raining

A truth table displays the relationships between the truth values of propo-
sitions. Next, we display the truth tables of p ∧ q and p ∨ q.

p q p ∧ q
T T T
T F F
F T F
F F F

p q p ∨ q
T T T
T F T
F T T
F F F

Let p and q be two propositions. The exclusive or (or exclusive disjunc-
tion) of p and q, denoted p⊕ q, is the proposition that is true when exactly
one of p and q is true and is false otherwise. The truth table of the exclusive
“or” is displayed below

p q p⊕ q
T T F
T F T
F T T
F F F

Example 1.5
(a) Construct a truth table for (p⊕ q)⊕ r.
(b) Construct a truth table for p⊕ p.

Solution.
(a) The truth table is

https://www.youtube.com/watch?v=ZmHseRQOaqs
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p q r p⊕ q (p⊕ q)⊕ r
T T T F T
T T F F F
T F T T F
T F F T T
F T T T F
F T F T T
F F T F T
F F F F F

(b) The truth table is

p p⊕ p
T F
F F

The final operation on a proposition p that we discuss is the negation of p.
The negation of p, denoted ∼ p, is the proposition not p. The truth table of
∼ p is displayed below

p ∼ p
T F
F T

Example 1.6
Consider the following propositions:
p: Today is Thursday.
q: 2 + 1 = 3.
r: There is no pollution in New Jersey.
Construct the truth table of [∼ (p ∧ q)] ∨ r.
Solution.

p q r p ∧ q ∼ (p ∧ q) [∼ (p ∧ q)] ∨ r
T T T T F T
T T F T F F
T F T F T T
T F F F T T
F T T F T T
F T F F T T
F F T F T T
F F F F T T



10 FUNDAMENTALS OF MATHEMATICAL LOGIC

Example 1.7
Find the negation of the proposition p : −5 < x ≤ 0.

Solution.
The negation of p is the proposition ∼ p : x > 0 or x ≤ −5

A compound proposition is called a tautology if it is always true, regardless
of the truth values of the propositional variables which comprise it.

Example 1.8
(a) Construct the truth table of the proposition (p∧ q)∨ (∼ p∨ ∼ q). Deter-
mine if this proposition is a tautology.
(b) Show that p∨ ∼ p is a tautology.

Solution.
(a) The truth table is

p q ∼ p ∼ q ∼ p∨ ∼ q p ∧ q (p ∧ q) ∨ (∼ p∨ ∼ q)
T T F F F T T
T F F T T F T
F T T F T F T
F F T T T F T

Thus, the given proposition is a tautology.
(b) The truth table is

p ∼ p p∨ ∼ p
T F T
F T T

Again, this proposition is a tautology

Two propositions are equivalent if they have exactly the same truth values
under all circumstances. We write p ≡ q.

Example 1.9
(a) Show that ∼ (p ∨ q) ≡∼ p∧ ∼ q.
(b) Show that ∼ (p ∧ q) ≡∼ p∨ ∼ q.
(c) Show that ∼ (∼ p) ≡ p.
Parts (a) and (b) are known as DeMorgan’s laws.

https://www.youtube.com/watch?v=O0KbymjE7xU
https://www.youtube.com/watch?v=QGA9Dt1ay00
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Solution.
(a) The truth table is

p q ∼ p ∼ q p ∨ q ∼ (p ∨ q) ∼ p∧ ∼ q
T T F F T F F
T F F T T F F
F T T F T F F
F F T T F T T

Note that the columns of ∼ (p∨q) and ∼ p∧ ∼ q have the same truth values.
(b) The truth table is

p q ∼ p ∼ q p ∧ q ∼ (p ∧ q) ∼ p∨ ∼ q
T T F F T F F
T F F T F T T
F T T F F T T
F F T T F T T

Note that the columns of ∼ (p∧q) and ∼ p∨ ∼ q have the same truth values.
(c) The truth table is

p ∼ p ∼ (∼ p)
T F T
F T F

Example 1.10
(a) Show that p ∧ q ≡ q ∧ p and p ∨ q ≡ q ∨ p.
(b) Show that (p ∨ q) ∨ r ≡ p ∨ (q ∨ r) and (p ∧ q) ∧ r ≡ p ∧ (q ∧ r).
(c) Show that (p∧ q)∨ r ≡ (p∨ r)∧ (q ∨ r) and (p∨ q)∧ r ≡ (p∧ r)∨ (q ∧ r).

Solution.
(a) The truth table is

p q p ∧ q q ∧ p
T T T T
T F F F
F T F F
F F F F
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p q p ∨ q q ∨ p
T T T T
T F T T
F T T T
F F F F

(b) The truth table is

p q r p ∨ q q ∨ r (p ∨ q) ∨ r p ∨ (q ∨ r)
T T T T T T T
T T F T T T T
T F T T T T T
T F F T F T T
F T T T T T T
F T F T T T T
F F T F T T T
F F F F F F F

p q r p ∧ q q ∧ r (p ∧ q) ∧ r p ∧ (q ∧ r)
T T T T T T T
T T F T F F F
T F T F F F F
T F F F F F F
F T T F T F F
F T F F F F F
F F T F F F F
F F F F F F F

(c) The truth table is

p q r p ∧ q p ∨ r q ∨ r (p ∧ q) ∨ r (p ∨ r) ∧ (q ∨ r)
T T T T T T T T
T T F T T T T T
T F T F T T T T
T F F F T F F F
F T T F T T T T
F T F F F T F F
F F T F T T T T
F F F F F F F F
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p q r p ∨ q p ∧ r q ∧ r (p ∨ q) ∧ r (p ∧ r) ∨ (q ∧ r)
T T T T T T T T
T T F T F F F F
T F T T T F T T
T F F T F F F F
F T T T F T T T
F T F T F F F F
F F T F F F F F
F F F F F F F F

Example 1.11
Show that ∼ (p ∧ q) 6≡∼ p∧ ∼ q

Solution.
We will use truth tables to prove the claim.

p q ∼ p ∼ q p ∧ q ∼ (p ∧ q) ∼ p∧ ∼ q
T T F F T F F
T F F T F T 6= F
F T T F F T 6= F
F F T T F T T

A compound proposition that has the value F for all possible values of the
propositions in it is called a contradiction.

Example 1.12
Show that the proposition p∧ ∼ p is a contradiction.

Solution.

p ∼ p p∧ ∼ p
T F F
F T F

https://www.youtube.com/watch?v=O0KbymjE7xU
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Review Problems

Problem 1.1
Indicate which of the following sentences are propositions.
(a) 1,024 is the smallest four-digit number that is a perfect square.
(b) She is a mathematics major.
(c) 128 = 26.
(d) x = 26.

Problem 1.2
Consider the propositions:
p: Juan is a math major.
q: Juan is a computer science major.

Use symbolic connectives to represent the proposition “Juan is a math major
but not a computer science major.”

Problem 1.3
In the following sentence is the word “or” used in its inclusive or exclusive
sense? “A team wins the playoffs if it wins two games in a row or a total of
three games.”

Problem 1.4
Write the truth table for the proposition: (p ∨ (∼ p ∨ q))∧ ∼ (q∧ ∼ r).

Problem 1.5
Let t be a tautology. Show that p ∨ t ≡ t.

Problem 1.6
Let c be a contradiction. Show that p ∨ c ≡ p.

Problem 1.7
Show that (r ∨ p) ∧ [(∼ r ∨ (p ∧ q)) ∧ (r ∨ q)] ≡ p ∧ q.

Problem 1.8
Use De Morgan’s laws to write the negation for the proposition: “This com-
puter program has a logical error in the first ten lines or it is being run with
an incomplete data set.”
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Problem 1.9
Use De Morgan’s laws to write the negation for the proposition: “The dollar
is at an all-time high and the stock market is at a record low.”

Problem 1.10
Assume x ∈ R.Use De Morgan’s laws to write the negation for the proposition:−5 <
x ≤ 0.

Problem 1.11
Show that the proposition s = (p ∧ q) ∨ (∼ p ∨ (p∧ ∼ q)) is a tautology.

Problem 1.12
Show that the proposition s = (p∧ ∼ q) ∧ (∼ p ∨ q) is a contradiction.

Problem 1.13
(a) Find simpler proposition forms that are logically equivalent to p⊕ p and
p⊕ (p⊕ p).
(b) Is (p⊕ q)⊕ r ≡ p⊕ (q ⊕ r)? Justify your answer.
(c) Is (p⊕ q) ∧ r ≡ (p ∧ r)⊕ (q ∧ r)? Justify your answer.

Problem 1.14
Show the following:
(a) p ∧ t ≡ p, where t is a tautology.
(b) p ∧ c ≡ c, where c is a contradiction.
(c) ∼ t ≡ c and ∼ c ≡ t, where t is a tautology and c is a contradcition.
(d) p ∨ p ≡ p and p ∧ p ≡ p.

Problem 1.15
Which of the following statements are propositions?
(a) The Earth is round.
(b) Do you know how to swim?
(c) Please leave the room.
(d) x+ 3 = 5.
(e) Canada is in Asia.

Problem 1.16
Write the negation of the following propositions:
(a) ∼ p ∧ q.
(b) John is not at work or Peter is at the gym.
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Problem 1.17
Construct the truth table of the compound proposition (p ∧ q) ∨ (∼ p).

Problem 1.18
Show that p⊕ q ≡ (p ∨ q)∧ ∼ (p ∧ q).

Problem 1.19
Show that p∨ ∼ (p ∧ q) is a tautology.

Problem 1.20
Show that ∼ p ∧ (p ∧ q) is a contradiction.
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2 Basics of Digital Logic Design

In this section we discuss the logic of digital circuits which are considered to
be the basic components of most digital systems, such as electronic comput-
ers, electronic phones, traffic light controls, etc.
The purpose of digital systems is to manipulate discrete information which
are represented by physical quantities such as voltages and current. The
smallest representation unit is one bit, short for binary digit. Since electronic
switches have two physical states, namely high voltage and low voltage we
attribute the bit 1 to high voltage and the bit 0 for low voltage.
A logic gate is the smallest processing unit in a digital system. It takes one
or few bits as input and generates one bit as an output.
A circuit is composed of a number of logic gates connected by wires. It
takes a group of bits as input and generates one or more bits as output.
The six basic logic gates are the following:
(1) NOT gate (also called inverter): Takes an input of 0 to an output of
1 and an input of 1 to an output of 0. The corresponding logical symbol is
∼ P.
(2) AND gate: Takes two bits, P and Q, and outputs 1 if P and Q are 1 and
0 otherwise. The logical symbol is P ∧ Q. In Boolean algebra notation, one
uses P ·Q.
(3) OR gate: outputs 1 if either P or Q is 1 and 0 otherwise. The logical
symbol is P ∨Q. The corresponding Boolean algebra notation is P +Q.
(4) NAND gate: outputs a 0 if both P and Q are 1 and 1 otherwise. The
symbol is ∼ (P ∧ Q). Also, denoted by P |Q, where | is called a Scheffer
stroke.
(5) NOR gate: output a 0 if at least one of P or Q is 1 and 1 otherwise. The
symbol is ∼ (P ∨Q) or P ↓ Q, where ↓ is a Pierce arrow.
(6) XOR gate or the exclusive or: Outputs a 1 if exactly one of the inputs is
1 and 0 otherwise. The symbol is P ⊕Q.

Example 2.1
Construct the input/output tables of the gates discussed in this section.

Solution.
Table for NOT-gate:

P ∼ P
1 0
0 1

https://www.youtube.com/watch?v=6s0AR3_-i0k
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Table for AND-gate:

P Q P ∧Q
1 1 1
1 0 0
0 1 0
0 0 0

Table for OR-gate:

P Q P ∨Q
1 1 1
1 0 1
0 1 1
0 0 0

Table for NAND-gate:

P Q ∼ (P ∧Q)
1 1 0
1 0 1
0 1 1
0 0 1

Table for NOR-gate:

P Q ∼ (P ∨Q)
1 1 0
1 0 0
0 1 0
0 0 1

Table for XOR-gate:

P Q P ⊕Q
1 1 0
1 0 1
0 1 1
0 0 0

Graphical representations of the logic gates are shown in Figure 2.1.
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Figure 2.1

If you are given a set of input signals for a circuit, you can find its output
by tracing through the circuit gate by gate.

Example 2.2
Give the output signal S for the following circuit, given that P = 0, Q = 1,
and R = 0 :

Solution.
The circuit is shown in Figure 2.2
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Figure 2.2

A variable with exactly two possible values is called a Boolean variable.
A Boolean expression is an expression composed of Boolean variables and
connectives (which are the gates in this section).

Example 2.3
Find the Boolean expression that corresponds to the circuit of Example 2.2.

Solution.
The Boolean expression is (P ∨Q) ∧ (P ∨R)

Two digital logic circuits are equivalent if, and only if, their corresponding
Boolean expressions are logically equivalent. Alternatively, the two Boolean
expressions have the same truth table.

Example 2.4
Show that the following two circuits are equivalent:

https://www.youtube.com/watch?v=b7Mw6S8gznw
https://www.youtube.com/watch?v=CEYabEK09lU
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Solution.
The Boolean expression corresponding to (a) is given by (P ∧ Q) ∨ Q and
that corresponding to (b) is given by (P ∨Q)∧Q. These two expressions are
logically equivalent:

(P ∧Q) ∨Q ≡ (P ∨Q) ∧ (Q ∨Q)

≡(P ∨Q) ∧Q

In the next example, we describe the process of converting a number from
base 10 to base 2 (binary) and vice versa.

Example 2.5
(a) Write the number 1, 99810 in base 2.
(b) Write the number 110012 in base 10.

Solution.
(a) Let q denote the quotient of the division of a by b and r denote the
remainder. We have

a b q r
1,998 2 999 0
999 2 499 1
499 2 249 1
249 2 124 1
124 2 62 0
62 2 31 0
31 2 15 1
15 2 7 1
7 2 3 1
3 2 1 1
1 2 0 1.

Hence,
1, 99810 = 111110011102.

(b) We have

110012 = 1× 24 + 1× 23 + 0× 22 + 0× 2 + 1 = 25
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Integers Binary Representations
Several methods have been used for expressing negative integers in the com-
puter. The most obvious way is to convert the number to binary and stick
on another bit to indicate sign, 0 for positive and 1 for negative. Suppose
that integers are stored using this signed-magnitude technique in 8 bits so
that the leftmost bit holds the sign while the remaining bits represent the
magnitude. Thus, +4110 = 00101001 and −4110 = 10101001.
The above procedure has a gap. How one would represent the bit 0? Well,
there are two ways for storing 0. One way is 00000000 which represents
+0 and a second way 10000000 represents −0. A method for representing
numbers that avoid this problem is called the two’s complement. Con-
sidering −4110 again, first, convert the absolute value to binary obtaining
4110 = 00101001. Then take the complement of each bit obtaining 11010110.
This is called the one’s complement of 41. To complete the procedure,
increment by 1 the one’s complement to obtain −4110 = 11010111.
Conversion of +4110 to two’s complement consists merely of expressing the
number in binary, i.e., +4110 = 00101001.

Example 2.6
(a) Represent the integer −610 using one’s complement.
(b) Represent the integer −610 using two’s complement.

Solution.
(a) We have 610 = 01102. The one’s complement is −610 = 1001.
(b) The two’s complement is −610 = 1001 + 1 = 1010
Now, an algorithm to find the decimal representation of a negative integer
with a given 8-bit two’s complement is the following:
1. Find the two’s complement of the given two’s complement,
2. write the decimal equivalent of the result.

Example 2.7
(a) What is the decimal representation for the integer with 8-bit two’s com-
plement 10101001?
(b) What is the decimal representation for the integer with 8-bit two’s com-
plement 00101111?

Solution.
(a) The two’s complement of 10101001 is 01010111 = 8710. Thus, the number
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is −8710.
(b) Since the integer is positive, 00101111 = 1011112 = 1 · 25 + 1 · 23 + 1 ·
22 + 1 · 2 + 1 = 4710
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Review Problems

Problem 2.1
Write the input/output table for the circuit of Example 2.2 where P,Q, and
R are any inputs.

Problem 2.2
Construct the circuit corresponding to the Boolean expression: (P ∧Q)∨ ∼
R.

Problem 2.3
For the following input/output table, construct (a) the corresponding Boolean
expression and (b) the corresponding circuit:

P Q R S
1 1 1 0
1 1 0 1
1 0 1 0
1 0 0 0
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 0

Problem 2.4
Consider the following circuit
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Complete the following table

P Q R S
1 1
1 0
0 1
0 0

Problem 2.5
(a) Convert 104310 to base 2.
(b) Convert 011011012 to base 10.

Problem 2.6
Express the numbers 104 and −104 in two’s complement representation with
8 bits.

Problem 2.7
Construct the input/output table of the circuit given below.

Problem 2.8
The negation of the exclusive or is the exclusive nor (abbreviated by XNOR)
whose gate is shown below.



26 FUNDAMENTALS OF MATHEMATICAL LOGIC

Contruct the input/output table of this gate.

Problem 2.9
Show that A⊕ A and A⊕ (∼ A) are constants.

Problem 2.10
Construct a circuit whose Boolean expression is Q = (A ∧ B) ∨ [(B ∧ C) ∧
(B ∨ C)].

Problem 2.11
Find the Boolean expression that corresponds to the circuit.

Problem 2.12
Find the Boolean expression S that corresponds to the input output table,
where P,Q, and R are the Boolean variables.

P Q R S
1 1 1 1
1 1 0 0
1 0 1 1
1 0 0 0
0 1 1 0
0 1 0 0
0 0 1 0
0 0 0 0
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Problem 2.13
Show that the following two circuits are equivalent:

Problem 2.14
Show that the following two circuits are equivalent:

Problem 2.15
Let A,B,C and D be the Boolean variables of the circuit below. Find the
Boolean Expressions: X, Y, Z,W, and Q.
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Problem 2.16
(a) Write the number 51310 in base 2.
(b) Write the number 11102 in base 10.

Problem 2.17
Write the two’s complement values of the numbers 7 and −2 in (a) 4-bit
format (b) 8-bit format (c) 16-bit format.

Problem 2.18
Represent the integer −7210 as an 8-bit two’s complement.

Problem 2.19
Convert 8110 to an 8-bit two’s complememt.

Problem 2.20
What is the decimal representation for the integer with 8-bit two’s comple-
ment 10010011?

Problem 2.21
What is the decimal representation for the integer with 8-bit two’s comple-
ment 01001000?
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3 Conditional and Biconditional Propositions

Let p and q be propositions. The conditional proposition p → q is the
proposition that is false only when p is true and q is false; otherwise it is true.
p is called the hypothesis and q is called the conclusion. The connective
→ is called the conditional connective.

Example 3.1
Construct the truth table of the implication p→ q.

Solution.
The truth table is

p q p→ q
T T T
T F F
F T T
F F T

Example 3.2
Show that p→ q ≡ (∼ p) ∨ q.

Solution.

p q ∼ p p→ q (∼ p) ∨ q
T T F T T
T F F F F
F T T T T
F F T T T

It follows from the previous example that the proposition p → q is always
true if the hypothesis p is false, regardless of the truth value of q. We say
that p→ q is true by default or vacuously true.
In terms of words the proposition p→ q also reads:
(a) if p then q.
(b) p implies q.
(c) p is a sufficient condition for q.
(d) q is a necessary condition for p.
(e) p only if q.

https://www.youtube.com/watch?v=OOT1kW2EUho
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Remark 3.1
In a purely logical sense, conditional sentences do not necessarily imply a
cause and effect between the components p and q, although in mathematics
and in general discourse they do. From a logical point of view the proposition
“If 2 + 3 = 7 then I −1 > 0” is a true proposition although there is no
relationship between the component parts.

In propositional functions that involve the connectives ∼,∧,∨, and → the
order of operations is that ∼ is performed first and → is performed last.

Example 3.3
Show that ∼ (p→ q) ≡ p ∧ (∼ q).

Solution.
We use De Morgan’s laws as follows.

∼ (p→ q) ≡ ∼ [(∼ p) ∨ q)
≡[∼ (∼ p)] ∧ (∼ q)

≡p ∧ (∼ q)

The converse of p→ q is the proposition q → p. The opposite or inverse
of p→ q is the proposition ∼ p→∼ q. The contrapositive of p→ q is the
proposition ∼ q →∼ p.

Example 3.4
Find the converse, opposite, and the contrapositive of the implication: “ If
1 + 2 = 4 then President Lincoln is from Illinois.”

Solution.
The converse: If President Lincoln is from Illinois then 1 + 2 = 4.
The opposite: If 1 + 2 6= 4 then President Lincoln is not from Illinois.
The contrapositive: If President Lincoln is not from Illinois then 1 + 2 6= 4

Example 3.5
Show that p→ q ≡∼ q →∼ p.

https://www.youtube.com/watch?v=aMfoUCrz5ok


3 CONDITIONAL AND BICONDITIONAL PROPOSITIONS 31

Solution.
We use De Morgan’s laws as follows.

p→ q ≡(∼ p) ∨ q
≡ ∼ [p ∧ (∼ q)]

≡ ∼ [(∼ q) ∧ p]
≡[∼ (∼ q)] ∨ (∼ p)

≡q ∨ (∼ p)

≡ ∼ q →∼ p

Example 3.6
Using truth tables show the following:
(a) p→ q 6≡ q → p.
(b) p→ q 6≡∼ p→∼ q.

Solution.
(a) It suffices to show that (∼ p) ∨ q 6≡ (∼ q) ∨ p.

p q ∼ p ∼ q (∼ p) ∨ q (∼ q) ∨ p
T T F F T T
T F F T F 6= T
F T T F T 6= F
F F T T T T

(b) We will show that (∼ p) ∨ q 6≡ p ∨ (∼ q).

p q ∼ p ∼ q (∼ p) ∨ q p ∨ (∼ q)
T T F F T T
T F F T F 6= T
F T T F T 6= F
F F T T T T

The biconditional proposition of p and q, denoted by p ↔ q, is the
propositional function that is true when both p and q have the same truth
values and false if p and q have opposite truth values. Also reads, “p if and
only if q” or “p is a necessary and sufficient condition for q.”

Example 3.7
Construct the truth table for p↔ q.

https://www.youtube.com/watch?v=-r8FzV84sj8
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Solution.

p q p↔ q
T T T
T F F
F T F
F F T

Example 3.8
Show that the biconditional proposition of p and q is logically equivalent to
the conjunction of the conditional propositions p→ q and q → p.

Solution.

p q p→ q q → p p↔ q (p→ q) ∧ (q → p)
T T T T T T
T F F T F F
F T T F F F
F F T T T T

The order of operations for the five logical connectives is as follows:
1. ∼
2. ∧,∨ in any order.
3. →,↔ in any order.
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Review Problems

Problem 3.1
Construct the truth table for the proposition: (∼ p) ∨ q → r.

Problem 3.2
Construct the truth table for the proposition: (p→ r)↔ (q → r).

Problem 3.3
Write negations for each of the following propositions.
(a) If 2 + 2 = 4, then 2 is a prime number.
(b) If 1 = 0 then

√
2 is rational.

Problem 3.4
Write the contrapositives for the propositions of Problem 3.3.

Problem 3.5
Write the converses for the propositions of problem 3.3

Problem 3.6
Write the inverses for the propositions of problem 3.3

Problem 3.7
Show that p ∨ q ≡ (p→ q)→ q.

Problem 3.8
Show that ∼ (p↔ q) ≡ (p∧ ∼ q) ∨ (∼ p ∧ q).

Problem 3.9
Let p : 2 > 3 and q : 0 < 5. Find the truth value of p→ q and q → p.

Problem 3.10
Assuming that p is true, q is false, and r is true, find the truth value of each
proposition.
(a) p ∧ q → r.
(b) p ∨ q →∼ r.
(c) p ∨ (q → r).



34 FUNDAMENTALS OF MATHEMATICAL LOGIC

Problem 3.11
Show using a chain of logical equivalences that (p→ r)∧(q → r) ≡ (p∨q)→
r.

Problem 3.12
Show using a chain of logical equivalences that p↔ q ≡ (p∧q)∨ (∼ p∧ ∼ q).

Problem 3.13
(a) What are the truth values of p and q for which a conditional proposition
and its inverse are both true?
(b) What are the truth values of p and q for which a conditional proposition
and its inverse are both false?

Problem 3.14
Show that p↔ q ≡∼ (p⊕ q).

Problem 3.15
Determine whether the following propostion is true or false: “If the moon is
made of milk then I am smarter than Einstein.”

Problem 3.16
Construct the truth table of ∼ p ∧ (p→ q).

Problem 3.17
Show that (p→ q) ∨ (q → q) is a tautology.

Problem 3.18
Construct a truth table for (p→ q) ∧ (q → r).

Problem 3.19
Find the converse, inverse, and contrapositive of“It is raining is a necessary
condition for me not going to town.

Problem 3.20
Show that (p∧ ∼ q) ∨ q ↔ p ∨ q is a tautology.
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4 Related Propositions: Inference Logic

The main concern of logic is how the truth of some propositions is connected
with the truth of another. Thus, we will usually consider a group of related
propositions.
An argument is a set of two or more propositions related to each other in
such a way that all but one of them, the premises, are supposed to provide
support for the remaining one, the conclusion.
The transition from premises to conclusion is the inference upon which the
argument relies.

Example 4.1
Show that the propositions “The star is made of milk, and strawberries are
red. My dog has fleas.” do not form an argument.

Solution.
Indeed, the truth or falsity of each of the propositions has no bearing on that
of the others

Example 4.2
Show that the propositions: “Mark is a lawyer. So Mark went to law school
since all lawyers have gone to law school” form an argument.

Solution.
This is an argument. The truth of the conclusion, “Mark went to law school,”
is inferred or deduced from its premises, “Mark is a lawyer” and “all lawyers
have gone to law school.”

The above argument can be represented as follows: Let
p : Mark is a lawyer.
q : All lawyers have gone to law school.
r : Mark went to law school.
Then

p ∧ q

.̇. r
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The symbol .̇. is to indicate the inferrenced conclusion.

Now, suppose that the premises of an argument are all true. Then the
conclusion may be either true or false. When the conclusion is true then the
argument is said to be valid. When the conclusion is false then the argument
is said to be invalid.
To test an argument for validity one proceeds as follows:
(1) Identify the premises and the conclusion of the argument.
(2) Construct a truth table including the premises and the conclusion.
(3) Find rows in which all premises are true.
(4) In each row of Step (3), if the conclusion is true then the argument is
valid; otherwise the argument is invalid.

Example 4.3
Show that the argument

p→ q

q → p

.̇. p ∨ q

is invalid

Solution.
We construct the truth table as follows.

p q p→ q q → p p ∨ q
T T T T T
T F F T T
F T T F T
F F T T F

From the last row we see that the premises are true but the conclusion is
false. The argument is then invalid
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Next, we discuss some basic rules of inference.

Example 4.4 (Modus Ponens or the method of affirmative)
Show that the argument

p→ q

p

.̇. q

is valid.

Solution.
The truth table is as follows.

p q p→ q
T T T
T F F
F T T
F F T

The first row shows that the argument is valid

Example 4.5 (Modus Tollens or the method of denial)
Show that the argument

p→ q

∼ q

.̇. ∼ p

is valid.

Solution.
The truth table is as follows.

p q p→ q ∼ q ∼ p
T T T F F
T F F T F
F T T F T
F F T T T

The last row shows that the argument is valid

https://www.youtube.com/watch?v=eKhJeWSgBPk
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Example 4.6 (Disjunctive Addition)
Show that the argument

p

.̇. p ∨ q

is valid.

Solution.
The truth table is as follows.

p q p ∨ q
T T T
T F T
F T T
F F F

The first and second rows show that the argument is valid

Example 4.7 (Conjunctive addition)
Show that

p, q

.̇. p ∧ q

is valid

Solution.
The truth table is as follows.

p q p ∧ q
T T T
T F F
F T F
F F F

The first row shows that the argument is valid
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Example 4.8 (Conjunctive simplification)
Show that the argument

p ∧ q

.̇. p

is valid.

Solution.
The truth table is as follows.

p q p ∧ q
T T T
T F F
F T F
F F F

The first row shows that the argument is valid

Example 4.9 (Disjunctive syllogism)
Show that the argument

p ∨ q
∼ q

.̇. p

is valid.

Solution.
The truth table is as follows.

p q ∼ p ∼ q p ∨ q
T T F F T
T F F T T
F T T F T
F F T T F

The second row shows that the argument is valid
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Example 4.10 (Hypothetical syllogism)
Show that the argument

p→ q

q → r

.̇. p→ r

is valid.

Solution.
The truth table is as follows.

p q r p→ q q → r p→ r
T T T T T T
T T F T F F
T F T F T T
T F F F T F
F T T T T T
F T F T F T
F F T T T T
F F F T T T

The first , fifth, seventh, and eighth rows show that the argument is valid

Example 4.11 (Rule of contradiction)
Show that if c is a contradiction then the following argument is valid for any
p.

∼ p→ c

.̇. p

Solution.
Constructing the truth table we find

c p ∼ p→ c
F T T
F F F

The first row shows that the argument is valid



4 RELATED PROPOSITIONS: INFERENCE LOGIC 41

Review Problems

Problem 4.1
Show that the propositions “Abraham Lincolm was the president of the
United States, and blueberries are blue. My car is yellow” do not form
an argument.

Problem 4.2
Show that the propositions: “Steve is a physician. So Steve went to medical
school since all doctors have gone to medical school” form an argument.
Identify the premises and the conclusion.

Problem 4.3
Show that the argument

∼ p ∨ q → r

∼ p ∨ q

.̇. r

is valid.

Problem 4.4
Show that the argument

p→ q

q

.̇. p

is invalid.

Problem 4.5
Show that the argument

p→ q

∼ p

.̇. ∼ q

is invalid.
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Problem 4.6
Show that the argument

q

.̇. p ∨ q

is valid.

Problem 4.7
Show that the argument

p ∧ q

.̇. q

is valid.

Problem 4.8
Show that the argument

p ∨ q
∼ p

.̇. q

is valid.

Problem 4.9
Use modus ponens or modus tollens to fill in the blanks in the argument
below so as to produce valid inferences.

If
√

2 is rational, then
√

2 = a
b

for some integers a and b.

It is not true that
√

2 = a
b

for some integers a and b.

.̇.
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Problem 4.10
Use modus ponens or modus tollens to fill in the blanks in the argument
below so as to produce valid inferences.

If logic is easy, then I am a monkey’s uncle.
I am not a monkey’s uncle.
.̇.

Problem 4.11
Use a truth table to determine whether the argument below is invalid.

p→ q

q → p

.̇. p ∧ q

Problem 4.12
Use a truth table to determine whether the argument below is valid.

p

p→ q

∼ q ∨ r

.̇. r

Problem 4.13
Use symbols to write the logical form of the given argument and then use a
truth table to test the argument for validity.
If Tom is not on team A, then Hua is on team B.
If Hua is not on team B, then Tom is on team A.
.̇. Tom is not on team A or Hua is not on team B.

Problem 4.14
Use symbols to write the logical form of the given argument and then use a
truth table to test the argument for validity.
If Jules solved this problem correctly, then Jules obtained the answer 2.
Jules obtained the answer 2.
.̇. Jules solved this problem correctly.
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Problem 4.15
Use symbols to write the logical form of the given argument and then use a
truth table to test the argument for validity.
If this number is larger than 2, then its square is larger than 4.
This number is not larger than 2.
.̇. The square of this number is not larger than 4.

Problem 4.16
Use the valid argument forms of this section to deduce the conclusion from
the premises.

∼ p ∨ q → r

s∨ ∼ q

∼ t

p→ t

∼ p ∧ r →∼ s

.̇. ∼ q

Problem 4.17
Use the valid argument forms of this section to deduce the conclusion from
the premises.

∼ p→ r∧ ∼ s

t→ s

u→∼ p

∼ w

u ∨ w

.̇. ∼ t ∨ w

Problem 4.18
Use the valid argument forms of this section to deduce the conclusion from
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the premises.

∼ (p ∨ q)→ r

∼ p

∼ r

.̇. q

Problem 4.19
Use the valid argument forms of this section to deduce the conclusion from
the premises.

p ∧ q
p→∼ (q ∧ r)
s→ r

.̇. ∼ s

Problem 4.20
Show that

p→ (q → r)

∼ (q → r)

.̇. ∼ p



46 FUNDAMENTALS OF MATHEMATICAL LOGIC

5 Predicates and Quantifiers

Statements such as “x > 3” or “x2 + 4 ≥ 4” are often found in mathematical
assertions and in computer programs. These statements are not propositions
when the variables are not specified. However, one can produce propositions
from such statements.
A predicate is an expression involving one or more variables defined on some
domain, called the domain of discourse. Substitution of a particular value
for the variable(s) produces a proposition which is either true or false. For
instance, P (n) : n is prime is a predicate on the set of natural numbers1 N.
Observe that P (1) is false, P (2) is true. In the expression P (x), x is called a
free variable. As x varies the truth value of P (x) varies as well. The set of
true values of a predicate P (x) is called the truth set and will be denoted
by TP .

Example 5.1
Let Q(x, y) : x = y + 3 with domain Z+. What are the truth values of the
propositions Q(1, 2) and Q(3, 0)?

Solution.
By substitution in the expression of Q we find: Q(1, 2) is false since 1 = x 6=
y + 3 = 5. On the contrary, Q(3, 0) is true since x = 3 = 0 + 3 = y + 3

If P (x) and Q(x) are two predicates with a common domain D then the nota-
tion P (x)⇒ Q(x) means that every element in the truth set of P (x) is also an
element in the truth set of Q(x). Same logical manipulations that were used
with propositions can be used with predicates. For example, P (x) ⇒ Q(x)
is the same as ∼ P (x) ∨Q(x).

Example 5.2
Consider the two predicates P (x) : x is a factor of 4 and Q(x) : x is a factor
of 8. Show that P (x)⇒ Q(x).

Solution.
Finding the truth set of each predicate we have: TP = {1, 2, 4} and TQ =
{1, 2, 4, 8}. Since every number appearing in TP also appears in TQ we have

1We define the set of natural numbers to be the set N = {1, 2, 3, · · · }. We will denote
the set of all non-negative integers or the set of whole numbers by W = Z+ = {0, 1, 2, · · · }.
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P (x)⇒ Q(x)

If two predicates P (x) and Q(x) with a common domain D are such that
TP = TQ then we use the notation P (x)⇔ Q(x).

Example 5.3
Let D = R. Consider the two predicates P (x) : −2 ≤ x ≤ 2 and Q(x) : |x| ≤
2. Show that P (x)⇔ Q(x).

Solution.
Indeed, if x in TP then the distance from x to the origin is at most 2. That is,
|x| ≤ 2 and hence x belongs to TQ. Now, if x is an element in TQ then |x| ≤ 2,
i.e. (x−2)(x+2) ≤ 0. Solving this inequality we find that −2 ≤ x ≤ 2. That
is, x ∈ TP

Quantifiers
A quantifier turns a predicate into a proposition without assigning specific
values for the variable. There are primarily two quantifiers: Universal quanti-
fier and existential quantifier. The universal quantification of a predicate
P (x) is the proposition ∀x ∈ D,P (x) is true, where the symbol ∀ is the
universal quantifier. For example, if k is a non-negative integer, then the
predicate P (k) : 2k is even is true for all k ∈ Z+ = W. Using the universal
quantifier ∀, we can write,

∀k ∈ Z+, (2k is even).

The proposition ∀x ∈ D,P (x) is false if P (x) is false for at least one value
of x. In this case, x is called a counterexample.

Example 5.4
Show that the proposition [∀x ∈ R, x > 1

x
] is false.

Solution.
A counterexample is x = 1

2
. Clearly, 1

2
< 2 = 1

1
2

Example 5.5
Write in the form ∀x ∈ D,P (x) the proposition : “Every real number is
either positive, negative or 0.”



48 FUNDAMENTALS OF MATHEMATICAL LOGIC

Solution.
∀x ∈ R, x > 0, x < 0, or x = 0

The existential quantification of the predicate P (x) is the proposition
∃x ∈ D,P (x) that is true if there is at least one value of x ∈ D where
P (x) is true; otherwise it is false. The symbol ∃ is called the existential
quantifier.

Example 5.6
Let P (x) denote the statement “x > 3.” What is the truth value of the
proposition ∃x ∈ R, P (x).

Solution.
Since 4 ∈ R and 4 > 3, the given proposition is true

The proposition ∀x ∈ D,P (x) =⇒ Q(x) is called the universal condi-
tional proposition. For example, the proposition ∀x ∈ R, if x > 2 then
x2 > 4 is a universal conditional proposition.

Example 5.7
Rewrite the proposition “If a real number is an integer then it is a rational
number” as a universal conditional proposition.

Solution.
∀x ∈ R, if x is an integer then x is a rational number

Example 5.8
(a) What is the negation of the proposition ∀x ∈ D,P (x)?
(b) What is the negation of the proposition ∃x ∈ D,P (x)?
(c) What is the negation of the proposition ∀x ∈ D,P (x) =⇒ Q(x)?

Solution.
(a) ∃x ∈ D,∼ P (x). That is, there is an x ∈ D where P (x) is false.
(b) ∀x ∈ D,∼ P (x). That is, P (x) is false for all x ∈ D.
(c) There is an x ∈ D such that ∼ (∼ P (x) ∨Q(x)) = P (x)∧ ∼ Q(x). That
is, P (x) is true and Q(x) is false

Example 5.9
Write the negation of each of the following propositions:
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(a) ∀x ∈ R, x > 3 =⇒ x2 > 9.
(b) Every polynomial function is continuous.
(c) There exists a triangle with the property that the sum of the interior
angles is different from 180◦.

Solution.
(a) ∃x ∈ R, x > 3 and x2 ≤ 9.
(b) There exists a polynomial that is not continuous everywhere.
(c) For any triangle, the sum of the interior angles is equal to 180◦

Nested Quantifiers
Next, we discuss predicates that contain multiple quantifiers. A typical ex-
ample is the definition of a limit. We say that L = limx→a f(x) if and only if
∀ε > 0,∃ a positive number δ such that if |x− a| ≤ δ then |f(x)− L| < ε.

Example 5.10
(a) Let P (x, y) denote the statement “x + y = y + x.” What is the truth
value of the proposition (∀x ∈ R)(∀y ∈ R), P (x, y)?
(b) Let Q(x, y) denote the statement “x + y = 0.” What is the truth value
of the proposition (∃y ∈ R)(∀x ∈ R), Q(x, y)?

Solution.
(a) The given proposition is always true since addition of real numbers is
commutative.
(b) The proposition is false. For otherwise, one can choose x 6= −y to obtain
0 6= x+ y = 0 which is impossible

Example 5.11
Find the negation of the following propositions:
(a) ∀x∃y, P (x, y).
(b) ∃x∀y, P (x, y).

Solution.
(a) ∃x∀y,∼ P (x, y).
(b) ∀x∃y,∼ P (x, y)

Example 5.12
The symbol ∃! stands for the phrase “there exists a unique”. Which of the
following statements are true and which are false.
(a) ∃!x ∈ R,∀y ∈ R, xy = y.
(b) ∃! integer x such that 1

x
is an integer.
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Solution.
(a) True. Let x = 1.
(b) False since 1 and −1 are both integers with integer reciprocals
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Review Problems

Problem 5.1
By finding a counterexample, show that the proposition: “For all positive
integers n and m,m.n ≥ m+ n” is false.

Problem 5.2
Consider the statement

∃x ∈ R such that x2 = 2.

Which of the following are equivalent ways of expressing this statement?
(a) The square of each real number is 2.
(b) Some real numbers have square 2.
(c) The real number x has square 2.
(d) If x is a real number, then x2 = 2.
(e) There is at least one real number whose square is 2.

Problem 5.3
Rewrite the following propositions informally in at least two different ways
without using the symbols ∃ and ∀ :
(a) ∀ squares x, x is a rectangle.
(b) ∃ a set A such that A has 16 subsets.

Problem 5.4
Rewrite each of the following statements in the form “∃ x such that ”:
(a) Some exercises have answers.
(b) Some real numbers are rational numbers.

Problem 5.5
Rewrite each of the following statements in the form “∀ , if then .”:
(a) All COBOL programs have at least 20 lines.
(b) Any valid argument with true premises has a true conclusion.
(c) The sum of any two even integers is even.
(d) The product of any two odd integers is odd.

Problem 5.6
Which of the following is a negation for “Every polynomial function is con-
tinuous”?
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(a) No polynomial function is continuous.
(b) Some polynomial functions are discontinuous.
(c) Every polynomial function fails to be continuous.
(d) There is a non-continuous polynomial function.

Problem 5.7
Determine whether the proposed negation is correct. If it is not, write a
correct negation.
Proposition : For all integers n, if n2 is even then n is even.
Proposed negation : For all integers n, if n2 is even then n is not even.

Problem 5.8
Let D = {−48,−14,−8, 0, 1, 3, 16, 23, 26, 32, 36}. Determine which of the fol-
lowing propositions are true and which are false. Provide counterexamples
for those propositions that are false.
(a) ∀x ∈ D, if x is odd then x > 0.
(b) ∀x ∈ D, if x is less than 0 then x is even.
(c) ∀x ∈ D, if x is even then x ≤ 0.
(d) ∀x ∈ D, if the ones digit of x is 2, then the tens digit is 3 or 4.
(e) ∀x ∈ D, if the ones digit of x is 6, then the tens digit is 1 or 2.

Problem 5.9
Write the negation of the proposition :∀x ∈ R, if x(x+ 1) > 0 then x > 0 or
x < −1.

Problem 5.10
Write the negation of the proposition : If an integer is divisible by 2, then it
is even.

Problem 5.11
Given the following true propostion: “∀ real numbers x, ∃ an integer n such
that n > x.” For each x given below, find an n to make the predicate n > x
true.
(a) x = 15.83 (b) x = 108 (c) x = 101010 .

Problem 5.12
Given the proposition: ∀x ∈ R,∃ a real number y such that x+ y = 0.
(a) Rewrite this proposition in English without the use of the quantifiers.
(b) Find the negation of the given proposition.
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Problem 5.13
Given the proposition: ∃x ∈ R,∀y ∈ R, x+ y = 0.
(a) Rewrite this proposition in English without the use of the quantifiers.
(b) Find the negation of the given proposition.

Problem 5.14
Consider the proposition “Somebody is older than everybody.” Rewrite this
proposition in the form “∃ a person x such that ∀ .”

Problem 5.15
Given the proposition: “There exists a program that gives the correct answer
to every question that is posed to it.”
(a) Rewrite this proposition using quantifiers and variables.
(b) Find a negation for the given proposition.

Problem 5.16
Given the proposition: ∀x ∈ R,∃y ∈ R such that x < y.
(a) Write a proposition by interchanging the symbols ∀ and ∃.
(b) State which is true: the given proposition, the one in part (a), neither,
or both.

Problem 5.17
Find the contrapositive, converse, and inverse of the proposition “∀x ∈ R, if
x(x+ 1) > 0 then x > 0 or x < −1.”

Problem 5.18
Find the truth set of the predicate P (x) : x + 2 = 2x where the domain of
discourse is the set of real numbers.

Problem 5.19
Let P (x) be the predicate x + 2 = 2x, where the domain of discourse is the
set {1, 2, 3}. Which of the following statements are true?
(i) ∀x, P (x) (ii) ∃x, P (x).

Problem 5.20
Let P (x, y) be the predicate x+ y = 10 where x and y are any real numbers.
Which of the following statements are true?
(a) (∀x)(∃y), P (x, y).
(b) (∃y)(∀x), P (x, y).
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Fundamentals of Mathematical
Proofs

In this chapter we discuss some common methods of proof and the standard
terminology that accompanies them.

55



56 FUNDAMENTALS OF MATHEMATICAL PROOFS

6 Methods of Direct Proof

A mathematical system consists of axioms, definitions, and undefined
terms. An axiom is a statement that is assumed to be true. A definition
is used to create new concepts in terms of existing ones. A theorem is a
proposition that has been proved to be true. A lemma is a theorem that
is usually not interesting in its own right but is useful in proving another
theorem. A corollary is a theorem that follows quickly from a theorem.

Example 6.1
The Euclidean geometry furnishes an example of mathematical system:
• points and lines are examples of undefined terms.
• An example of a definition: Two angles are supplementary if the sum of
their measures is 180◦.
• An example of an axiom: Given two distinct points, there is exactly one
line that contains them.
• An example of a theorem: If two sides of a triangle are equal, then the
angles opposite them are equal.
• An example of a corollary: If a triangle is equilateral, then it is equiangular.

An argument that establishes the truth of a theorem is called a proof. Logic
is a tool for the analysis of proofs.

First we discuss methods for proving a theorem of the form “∃x such that
P (x).” This theorem guarantees the existence of at least one x for which the
predicate P (x) is true. The proof of such a theorem is constructive: that
is, the proof is either by finding a particular x that makes P (x) true or by
exhibiting an algorithm for finding x.

Example 6.2
Show that there exists a positive integer whose square can be written as the
sum of the squares of two positive integers.

Solution.
Indeed, one example is 52 = 32 + 42

Example 6.3
Show that there exists an integer x such that x2 = 15, 129.

https://www.youtube.com/watch?v=aj3pa1yVVOo
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Solution.
We will use the well-known algorithm of extracting the square root as follows:
Step 1. Group the numbers in pairs starting from right to left. We obtain√

01 51 29.
Step 2. Then, using the first pair, (01) find the largest positive integer whose
square is less than or equal to 1. In this case, it is 1. Put 1 on top of the
square root sign:

1
√

1 51 29

Step 3. Subtract the square of the number on top, that is 1, from the first
pair and then bring down the next pair of numbers (51):

1
√

1 51 29

51

Step 4. Double 1 to get 2 and put 2 next to 51 on the left side:

1
√

1 51 29

2 51

Step 5: Find the largest digit z such that 2z × z ≤ 51. In this case, z = 2.
Put 2 next to 1 above the square root sign and then subtract 44 from 51:

12
√

1 51 29

22× 2 51

44

7
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Step 6: Bring down the pair (29):

12
√

1 51 29

22× 2 51

44

729

Step 7: Double 12 to get 24 and write it to the left of 729.

12
√

1 51 29

22× 2 51

44

24 729

Step 8: Find the largest digit z such that 24z × z ≤ 729. In this case, z = 3.
Put 3 next to 12 above the square root sign and then subtract 729 from 729
to obtain a zero remainder:

123
√

1 51 29

22× 2 51

44

243× 3 729

729

0.

Hence,
√

15129 = 123

In contrast to constructive existence proofs, a non-constructive existence
proof uses known results to imply the existence of an x such that P (x) is
true without the need of knowing the actual value of x. We illustrate this
method in the next example.
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Example 6.4
In Calculus, the Intermediate Value Theorem states that if a function f is
continuous in a closed interval [a, b] and c is a number between f(a) and f(b)
then the equation f(x) = c has at least one solution in the open interval
(a, b). Use the IVT to show that the equation x5 + 2x3 + x − 5 = 0 has a
solution in the interval (1, 2).

Solution.
Let f(x) = x5 + 2x3 + x − 5. Note that f(1) = −1 and f(2) = 45 so
that f(1) < 0 < f(2). Since f is continuous in [1, 2], by the Intermediate
Value Theorem, there is a number 1 < c < 2 such that f(c) = 0. That is,
x5 + 2x3 + x− 5 = 0 has a solution in the interval (1, 2)

Next, we consider theorems of the form “∀x ∈ D, P (x).” If D is a finite
set, then one checks the truth value of P (x) for each x ∈ D. This method is
called the method of exhaustion.

Example 6.5
Show that for each positive integer 1 ≤ n ≤ 10, n2−n+11 is a prime number.

Solution.
In this example,

D = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

and P (n) = n2− n+ 11 is a prime number. Using the method of exhaustion
we see that

P (1) = 11 ; P (2) = 13 ; P (3) = 17 ; P (4) = 23
P (5) = 31 ; P (6) = 41 ; P (7) = 53 ; P (8) = 67
P (9) = 83 ; P (10) = 101

The proposition “∀x ∈ D, P (x)” can be written in the form “∀x if x ∈ D
then P (x).” Thus, we consider propositions of the form “∀x ∈ D if P (x) then
Q(x).” We call P (x) the hypothesis and Q(x) the conclusion.

By a direct method of proof we mean a method that consists of showing
that if P (x) is true for x ∈ D then Q(x) is also true.

The following shows the format of the direct proof of a theorem.
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Theorem 6.1
For all n,m ∈ Z, if m and n are even then so is m+ n.

Proof.
Let m and n be two even integers. Then there exist integers k1 and k2 such
that n = 2k1 and m = 2k2. We must show that m + n is even, that is, an
integer multiple of 2. Indeed,

m+ n = 2k1 + 2k2 = 2(k1 + k2) = 2k

where k = k1 + k2 ∈ Z. Thus, by the definition of even, m+ n is even

Example 6.6
Prove the following theorem.

Theorem Every integer is a rational number. That is, for all n, if n ∈ Z
then n ∈ Q.

Solution.
Proof. Let n be an arbitrary integer. Then n = n

1
. By the definition of

rational numbers, n is rational

Example 6.7
Prove the following theorem.

Theorem If a, b ∈ Q then a+ b ∈ Q.

Solution.
Proof. Let a and b be two rational numbers. Then there exist integers
a1, a2, b1 6= 0, and b2 6= 0 such that a = a1

b1
and b = a2

b2
. By the property of

addition of two fractions we have

a+ b =
a1
b1

+
a2
b2

=
a1b2 + a2b1

b1b2
.

By letting p = a1b2 + a2b1 ∈ Z and q = b1b2 ∈ Z∗ we get a+ b = p
q
. That is,

a+ b ∈ Q
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Example 6.8
Prove the following corollary.

Corollary The double of a rational number is rational.

Solution.
Proof. Let a = b in the previous theorem we see that 2a = a+a = a+b ∈ Q

Common mistakes when writing a mathematical proof
Next, we point out of some common mistakes that must be avoided in prov-
ing theorems.

• Arguing from examples. The validity of a general statement can not
be proved by just using a particular example. For example, suppose that
we want to show that the sum of two even integers is an even integer. The
statement that 2 and 4 are even integers such that 2 + 4 = 6 is also even is
not a proof of our general statement. A complete proof is the one provided
in Theorem 6.1.

• Using the same letters to mean two different things. For example, sup-
pose that m and n are any two given even integers. Then by writing m = 2k
and n = 2k this would imply that m = n which is inconsistent with the
statement that m and n are arbitrary and can be different.

• Jumping to a conclusion. Let us illustrate by an example. Suppose
that we want to show that if the sum of two integers is even so is their differ-
ence. Consider the following proof: Suppose that m+ n is even. Then there
is an integer k such that m + n = 2k. Then, m = 2k − n and so m − n is
even.
The problem with this proof is that the crucial step m− n = 2k − n− n =
2(k − n) is missing. The author of the proof has jumped prematurely to a
conclusion.

• Begging the question or circular reasoning. By that we mean that
the author of a proof uses in his argument a fact that he is supposed to
prove. For example, suppose that we want to show x+ 1

x
≥ 2 for any positive

real number x. Multiplying through by x, we obtain x2 + 1 ≥ 2x. Subtract
2x from both sides, we find x2 − 2x + 1 = (x − 1)2 ≥ 0. Since the square
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of any real number is greater than or equal to 0, then x+ 1
x
≥ 2 must be true.

We end this section, to mentioning that for a proposition of the form ∀x ∈ D,
if P (x) then Q(x) to be false it suffices to find an element x ∈ D where P (x)
is true but Q(x) is false. Such an x is called a counterexample.

Example 6.9
Disprove the proposition ∀a, b ∈ R, if a < b then a2 < b2.

Solution.
A counterexample is the following. Let a = −2 and b = −1. Then a < b but
a2 > b2
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Review Problems
A real number r is called rational if there exist two integers a and b 6= 0
such that r = a

b
. A real number that is not rational is called irrational.

Problem 6.1
Show that there exist integers m and n such that 3m+ 4n = 25.

Problem 6.2
Show that there is a positive integer x such that x4 + 2x3 + x2− 2x− 2 = 0.
Hint: Use the rational zero test.

Problem 6.3
Show that there exist two prime numbers whose product is 143.

Problem 6.4
Show that there exists a point in the Cartesian system that is not on the line
y = 2x− 3.

Problem 6.5
Using a constructive proof, show that the number r = 6.32152152... is a
rational number.

Problem 6.6
Show that the equation x3 − 3x2 + 2x − 4 = 0 has at least one solution in
the interval (2, 3).

Problem 6.7
Use a non-constructive proof to show that there exist irrational numbers a

and b such that ab is rational. Hint: Look at the number q =
√

2
√
2
. Consider

the cases q is rational or q is irrational.

Problem 6.8
Use the method of exhaustion to show: ∀n ∈ N, if n is even and 4 ≤ n ≤ 21
then n can be written as the sum of two prime numbers.

Problem 6.9
Use the method of exhaustion to show: ∀n ∈ N, if n is prime and n < 7 then
2n+ 1 is prime.
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Problem 6.10
Prove the following theorem: The product of two rational numbers is a ra-
tional number.

Problem 6.11
Use the previous problem to prove the following corollary: The square of any
rational number is rational.

Problem 6.12
Use the method of constructive proof to show that if r and s are two real
numbers then there exists a real number x such that r < x < s.

Problem 6.13
Disprove the following statement by finding a counterexample: ∀x, y, z ∈ R,
if x > y then xz > yz.

Problem 6.14
Disprove the following statement by finding a counterexample: ∀x ∈ R, if
x > 0 then 1

x+2
= 1

x
+ 1

2
.

Problem 6.15
Show that for any even integer n, we have (−1)n = 1.

Problem 6.16
Show that the product of two odd integers is odd.

Problem 6.17
Identify the error in the following proof:“For all positive integer n, the prod-
uct (n− 1)n(n+ 2) is divisible by 3 since 3(4)(5) is divisible by 3.”

Problem 6.18
Identify the error in the following proof:“ If n amd m are two different odd
integers then there exists an integer k such that n = 2k+1 and m = 2k+1.”

Problem 6.19
Identify the error in the following proof:“Suppose that m and n are integers
such that n + m is even. We want to show that n −m is even. For n + m
to be even, n and m must be even. Hence, n = 2k1 and m = 2k2 so that
n−m = 2(k1 − k2) which is even.”
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Problem 6.20
Identify the error in proving that if a product of two integers x and y is
divisible by 5 then x is divisible by 5 or y is divisible by 5:“ Since xy is
divisible by 5, there is an integer k such that xy = 5k. Hence, x = 5k1 for
some k1 or y = 5k2 for some k2. Thus, either x is divisible by 5 or y is divisible
by 5.”

Problem 6.21
Consider the system of integers where the numbers are considered as the
undefined terms of the mathematical system. Examples of axioms are the
arithmetic properties of addition such as commutativity, associativity, etc.
In this system, consider the following definitions:
Definition 1: “A number is even if it can be written as an integer multiple
of 2.”
Definition 2: “A number is odd if it can be written as 2k + 1 for some
unique integer k.”
Prove each of the following:
(a) Lemma: The product of two odd integers is always odd.
(b) Theorem: If the product of two integers m and n is even, then either m
is even or n is even.
(c) Corollary: If n2 is even then n is even.
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7 More Methods of Proof

A vacuous proof is a proof of an implication p → q in which it is shown
that p is false. Thus, if p is false then the implication is true regardless of
the truth value of q.

Example 7.1
Use the method of vacuous proof to show that if x ∈ ∅ then 2 is an odd
number.

Solution.
Since the proposition x ∈ ∅ is always false, the given proposition is vacuously
true

Example 7.2
Show that if 4 is a prime number then −4 = 4.

Solution.
The hypothesis is false, therefore the implication is vacuously true (even
though the conclusion is also false)

A trivial proof of an implication p → q is one in which q is shown to
be true without any reference to p.

Example 7.3
Use the method of trivial proof to show that if n is an even integer then n is
divisible by 1.

Solution.
Since the proposition n is divisible by 1 is always true, the given implication
is trivially true. Notice that the hypothesis n is an even integer did not play
a role in the proof

The method of proof by cases is a direct method of proving the condi-
tional proposition p1 ∨ p2 ∨ · · · ∨ pn → q. The method consists of proving the
conditional propositions p1 → q, p2 → q, · · · , pn → q.

Example 7.4
Show that if n is a positive integer then n3 + n is even.
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Solution.
We use the method of proof by cases.

Case 1. Suppose that n is even. Then there is k ∈ N such that n = 2k.
In this case, n3 + n = 8k3 + 2k = 2(4k3 + k) which is even.

Case 2. Suppose that n is odd. Then there is a k ∈ N such that n = 2k + 1.
So, n3 + n = 2(4k3 + 6k2 + 4k + 1) which is even

Example 7.5
Use the proof by cases to prove the triangle inequality: |x+ y| ≤ |x|+ |y|.

Solution.
Case 1. x ≥ 0 and y ≥ 0. Then x+ y ≥ 0 and so |x+ y| = x+ y = |x|+ |y|.
Case 2. x ≥ 0 and y < 0. Then x + y < x + 0 = |x| ≤ |x| + |y|. On the
other hand, −(x + y) = −x + (−y) ≤ 0 + (−y) = |y| ≤ |x| + |y|. Thus,
if |x + y| = x + y then |x + y| < |x| + |y| and if |x + y| = −(x + y) then
|x+ y| ≤ |x|+ |y|.
Case 3. The case x < 0 and y ≥ 0 is similar to case 2.
Case 4. Suppose x < 0 and y < 0. Then x + y < 0 and therefore |x + y| =
−(x+ y) = (−x) + (−y) = |x|+ |y|.
So in all four cases |x+ y| ≤ |x|+ |y|

Now, given a real number x, the largest integer n less than or equal to x
is called the floor of x and is denoted by bxc. The smallest integer n greater
than or equal to x is called the ceiling of x and is denoted by dxe.

Example 7.6
Compute bxc and dxe for the following values of x :
(a) 37.999 (b) −57

2
(c) −14.001

Solution.
(a) b37.999c = 37, d37.999e = 38.
(b) b−57

2
c = −29, d−57

2
e = −28.

(c) b−14.001c = −15, d−14.001e = −14

Remark 7.1
Note that if n is an integer than bnc = dne = n.
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Example 7.7
Use the proof by a counterexample to show that the proposition “∀x, y ∈
R, bx+ yc = bxc+ byc” is false.

Solution.
Let x = y = 0.5. Then bx+ yc = 1 and bxc+ byc = 0

The following gives another example of the method of proof by cases.

Theorem 7.1
For any integer n,

bn
2
c =

{
n
2
, if n is even

n−1
2
, if n is odd

Proof.
Let n be any integer. Then we consider the following two cases.

Case 1. n is odd. In this case, there is an integer k such that n = 2k + 1.
Hence,

bn
2
c = b2k + 1

2
c = bk +

1

2
c = k.

Since n = 2k+ 1, solving this equation for k we find k = n−1
2
. It follows that

bn
2
c = k =

n− 1

2
.

Case 2. Suppose n is even. Then there is an integer k such that n = 2k.
Hence, bn

2
c = bkc = k = n

2

Proof of Many Equivalent Statements
In future math courses you will sometimes encounter a certain kind of theo-
rem that is neither a conditional nor a biconditional statement. Instead, it
asserts that a list of statements is “equivalent.”
To say that statements p1, p2, · · · , pn are all equivalent means that either
they are all true or all false. To prove that they are equivalent, one assumes
p1 to be true and proves that p2 is true, then assumes p2 to be true and
proves that p3 is true, continuing in this fashion, assume that pn−1 is true
and prove that pn is true and finally, assume that pn is true and prove that
p1 is true. This is known as the proof by circular argument. The logical
equivalence of the above process is shown in Problem 7.20.
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Example 7.8
Show that all the following statements are equivalent:
(i) ad = bc.
(ii) a

b
= c

d
.

(iii) a+b
b

= c+d
d
.

(iv) a
c

= b
d

where a, b, c, and d are non-zero numbers.

Solution.
(i) =⇒ (ii): Suppose ad = bc. Divide both sides by bd to obtain a

b
= c

d
.

(ii) =⇒ (iii): Suppose a
b

= c
d
. Add 1 to both sides to obtain a

b
+ 1 = c

d
+ 1.

Hence, a+b
b

= c+d
d
.

(iii) =⇒ (iv): Suppose a+b
b

= c+d
d
. Then a

b
+ 1 = c

d
+ 1. Subtract 1 from both

sides to obtain a
b

= c
d

= m. Hence, a = bm and c = dm. Thus, a
c

= bm
dm

= b
d
.

(iv) =⇒ (i): Suppose that a
c

= b
d

= m. Then a = cm and ad = dcm. Likewise,
b = dm and bc = dcm. It follows that ad = bc
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Review Problems

Problem 7.1
Using the method of vacuous proof, show that if n is a positive integer and
n = −n then n2 = n.

Problem 7.2
Show that for all x ∈ R, x2 + 1 < 0 implies x2 ≥ 4.

Problem 7.3
Let x ∈ R. Show that if x2 − 2x+ 5 < 0 then x2 + 1 < 0.

Problem 7.4
Use the method of trivial proof to show that if x ∈ R and x > 0 then
x2 + 1 > 0.

Problem 7.5
Show that if 6 is a prime number then 62 = 36.

Problem 7.6
Use the method of proof by cases to prove that for any integer n the product
n(n+ 1) is even.

Problem 7.7
Use the method of proof by cases to prove that the square of any integer has
the form 4k or 4k′ + 1 for some integers k and k′

Problem 7.8
Use the method of proof by cases to to prove that for any integer n, n(n2 −
1)(n+ 2) is divisible by 4.

Problem 7.9
State a necessary and sufficient condition for the floor function of a real
number to equal that number

Problem 7.10
Prove that if n is an even integer then dn

2
e = n

2
.

Problem 7.11
Show that the equality bx− yc = bxc − byc is not valid for all real numbers
x and y.
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Problem 7.12
Show that the equality dx+ ye = dxe+ dye is not valid for all real numbers
x and y.

Problem 7.13
Prove that for all real numbers x and all integers m, dx+me = dxe+m.

Problem 7.14
Show that if n is an odd integer then dn

2
e = n+1

2
.

Problem 7.15
Prove that all of the following statements are equivalent:
(i) x2 − 4 = 0.
(ii) (x− 2)(x+ 2) = 0.
(iii) x = −2 or x = 2.

Problem 7.16
Let x and y be two real numbers. Show that all the following are equivalent:
(a) x < y (b) x+y

2
> x (c) x+y

2
< y.

Problem 7.17
Show that all the following are equivalent:
(a) x2 − 5x+ 6 = 0.
(b) (x− 2)(x− 3) = 0.
(c) x− 2 = 0 or x− 3 = 0.
(d) x = 2 or x = 3.

Problem 7.18
Use the method of proof by cases to show that for all x ∈ R, we have
−5 ≤ |x+ 2| − |x− 3| ≤ 5.

Problem 7.19
Use the method of proof by cases to show that

∣∣a
b

∣∣ = |a|
|b| for all a, b ∈ R with

b 6= 0.

Problem 7.20
Using truth tables, show that (p↔ q)∧ (q ↔ r)∧ (r ↔ p) ≡ (p→ q)∧ (q →
r) ∧ (r → p).
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8 Methods of Indirect Proofs: Contradiction

and Contraposition

Recall that in a direct proof one starts with the hypothesis of an implication
p → q and then proves that the conclusion is true. Any other method of
proof will be referred to as an indirect proof. In this section we study two
methods of indirect proofs, namely, the proof by contradiction and the proof
by contrapositive.

Proof by contradiction
We want to show that q is true. Instead, we assume it is not, i.e., ∼ q is true,
and derive that a proposition of the form r∧ ∼ r is true. But r∧ ∼ r is a con-
tradiction which is always false (See Example 1.12). Hence, the assumption
∼ q must be false, so the original proposition q must be true.

Theorem 8.1
If n2 is an even integer so is n.

Proof.
Suppose the contrary. That is suppose that n is odd. Then there is an
integer k such that n = 2k + 1. In this case, n2 = 2(2k2 + 2k) + 1 is odd
and this contradicts the assumption that n2 is even. Hence, n must be even

The method of proof by contradiction is not limited to just proving con-
ditional propositions of the form p→ q, it can be used to prove any kind of
statement whatsoever. We illustrate this point in the next example.

Theorem 8.2
The number

√
2 is irrational.

Proof.
Suppose not. That is, suppose that

√
2 is rational. Then there exist two

integers m and n with no common divisors such that
√

2 = m
n
. Squaring

both sides of this equality we find that 2n2 = m2. Thus, m2 is even. By
Theorem 8.1, m is even. That is, 2 divides m. But then m = 2k for some
integer k. Taking the square we find that 2n2 = m2 = 4k2, that is n2 = 2k2.
This says that n2 is even and by Theorem 8.1, n is even. We conclude that
2 divides both m and n and this contradicts our assumption that m and n
have no common divisors. Hence,

√
2 must be irrational
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Example 8.1
Use the proof by contradiction to show that there are no positive integers n
and m such that n2 −m2 = 1.

Solution.
Suppose the contrary. Then (n − m)(n + m) = 1 implies the system of
equation {

n−m = 1
n+m = 1.

Solving this system we find n = 1 and m = 0, contradicting our assumption
that n and m are positive integers

Proof by contrapositive
We already know that p→ q ≡∼ q →∼ p. So to prove p→ q we sometimes
instead prove ∼ q →∼ p.

Theorem 8.3
If n is an integer such that n2 is odd then n is also odd.

Proof.
Suppose that n is an integer that is even. Then there exists an integer k such
that n = 2k. But then n2 = 2(2k2) which is even

Remark 8.1
How is the proof by contrapositive different from the proof by contradicton?
Let’s examine how the two methods work when trying to prove p → q.
Using the method by contradiction, we assume that p and ∼ q and derive a
contradiction. Using the method of contrapositive, we assume ∼ q and prove
∼ p. Hence, the method of contrapositive has the advantage that your goal
is clear: Prove ∼ p. In the method of contradiction, your goal is to prove a
contradiction, but it is not always clear what the contradiction is going to
be at the start.

Example 8.2
Prove by the method of contrapositive: If a and b are two integers such that
a · b is even then at least one the two must be even.
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Solution.
Suppose that a and b are both odd. Then there exist integers m and n
such that a = 2m + 1 and b = 2n + 1. Thus, a · b = (2m + 1)(2n + 1) =
2(2mn + m + n) + 1 = 2k + 1 where k = 2mn + m + n ∈ Z. Hence, a · b is
odd

Example 8.3 (Perfect squares test)
Prove by the method of contrapositive: If n is a positive integer such that
the remainder of the division of n by 4 is either 2 or 3, then n is not a perfect
square.

Solution.
Suppose that n is a perfect square. Then n = k2 for some k ∈ Z.
• If the remainder of the division of k by 4 is 0 then k = 4m1 and n =
16m2

1 = 4(4m2
1) so that the remainder of the division of n by 4 is 0.

• If the remainder of the division of k by 4 is 1 then k = 4m2 + 1 and
n = 4(4m2

2 + 2m2) + 1 so that the remainder of the division of n by 4 is 1.
• If the remainder of the division of k by 4 is 2 then k = 4m3 + 2 and
n = 4(4m2

3 + 4m3 + 1) so that the remainder of the division of n by 4 is 0.
• If the remainder of the division of k by 4 is 3 then k = 4m4 + 3 and
n = 4(4m2

4 + 6m4 + 2) + 1 so that the remainder of the division of n by 4 is
1
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Review Problems

Problem 8.1
Use the proof by contradiction to prove the proposition “There is no greatest
even integer.”

Problem 8.2
Prove by contradiction that the difference of any rational number and any
irrational number is irrational.

Problem 8.3
Use the proof by contraposition to show that if a product of two positive real
numbers is greater than 100, then at least one of the numbers is greater than
10.

Problem 8.4
Use the proof by contradiction to show that the product of any nonzero
rational number and any irrational number is irrational.

Problem 8.5
Show that if n is an integer and n2 is divisible by 3 then n is also divisible
by 3.

Problem 8.6
Show that the number

√
3 is irrational.

Problem 8.7
Use the proof by contrapositive to show that if n and m are two integers for
which n+m is even then either both n and m are even or both are odd.

Problem 8.8
Use the proof by contrapositive to show that for any integer n, if 3n + 1 is
even then n is odd.

Problem 8.9
Use the proof by contradiction to show that there are no positive integers n
and m such that n2 −m2 = 2.

Problem 8.10
Use the proof by contradiction to show that for any integers n and m, we
have n2 − 4m 6= 2.
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Problem 8.11
Prove by contrapositive: If n is a positive integer such that the remainder of
the division of n by 3 is 2 then n is not a perfect square.

Problem 8.12
Prove by contrapositive: Suppose that a, b ∈ Z. If a · b is not divisible by 5
then both a and b are not divisible by 5.

Problem 8.13
Prove by contradiction: Suppose that n ∈ Z. If n3 + 5 is odd then n is even.

Problem 8.14
Prove by contradiction: There exist no integers a and b such that 18a+6b = 1.

Problem 8.15
Prove by contrapositive: If a and b are two integers such that a · b is not
divisible by n then a and b are not divisible by n.

Problem 8.16
Prove by contradiction: Suppose that a, b, and c are positive real numbers.
Show that if ab = c then a ≤

√
c or b ≤

√
c.

Problem 8.17
Prove by contrapositive: Let n ∈ Z. If n2 − 6n+ 5 is even then n is odd.

Problem 8.18
Prove by contradiction: There is no largest even integer.

Problem 8.19
Prove by contrapositive: Let a, b ∈ Z. If a+ b ≥ 15 then a ≥ 8 or b ≥ 8.

Problem 8.20
Prove by contradiction: Let a ∈ Z. If p is a prime number that divides a
then p does not divide a+ 1.
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9 Method of Proof by Induction

With the emphasis on structured programming has come the development of
an area called program verification, which means your program is correct
as you are writing it.
One technique essential to program verification is mathematical induc-
tion, a method of proof that has been useful in every area of mathematics
as well.
Consider an arbitrary loop in Pascal starting with the statement

FOR I := 1 TO N DO

If you want to verify that the loop does something regardless of the particular
integral value of N, you need mathematical induction.
Also, sums of the form

n∑
k=1

k =
n(n+ 1)

2

are very useful in analysis of algorithms and a proof of this formula is math-
ematical induction.
Next we examine this method. We want to prove that a predicate P (n) is
true for any nonnegative integer n ≥ n0. The steps of mathematical induc-
tion are as follows:
(i) (Basis of induction) Show that P (n0) is true.
(ii) (Induction hypothesis) Assume P (k) is true for n0 ≤ k ≤ n.
(iii) (Induction step) Show that P (n+ 1) is true.

Example 9.1
Use the technique of mathematical induction to show that

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
, n ≥ 1.

Solution.
Let P (n) : 1 + 2 + · · ·+ n = n(n+1)

2
. Then

(i) (Basis of induction) P (1) : 1 = 1(1+1)
2

. That is, P (1)is true.
(ii) (Induction hypothesis) Assume P (k) is true for 1 ≤ k ≤ n.
(iii) (Induction step) We must show that P (n+ 1) : 1 + 2 + 3 + · · ·+n+ 1 =
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(n+1)(n+2)
2

. Indeed,

1 + 2 + · · ·+ n+ (n+ 1) =(1 + 2 + · · ·+ n) + n+ 1

=
n(n+ 1)

2
+ (n+ 1)

=
(n+ 1)(n+ 2)

2

Example 9.2 (Geometric progression)

(a) Use induction to show P (n) :
∑n

i=0 ar
i = a(1−rn+1)

1−r , n ≥ 0 where r 6= 1.

(b) Show that 1 + 1
2

+ · · ·+ 1
2n−1 ≤ 2, for all n ≥ 1.

Solution.
(a) We use the method of proof by mathematical induction.
(i) (Basis of induction) a = a1−r0+1

1−r =
∑0

k=0 ar
k. That is, P (0)is true.

(ii) (Induction hypothesis) Assume P (k) is true for 0 ≤ k ≤ n.
(iii) (Induction step) We must show that P (n+1) is true. That is,

∑n+1
k=0 ar

k =
a(1−rn+2)

1−r . Indeed,

n+1∑
i=0

ari =
n∑

i=0

ari + arn+1

=a
1− rn+1

1− r
+ arn+11− r

1− r

=a
1− rn+1 + rn+1 − rn+2

1− r

=a
1− rn+2

1− r
.

(b) By (a) we have

1 +
1

2
+

1

22
+ · · ·+ 1

2n−1 =
1− (1

2
)n

1− 1
2

=2(1− (
1

2
)n)

=2− 1

2n−1

≤2
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Example 9.3 (Arithmetic progression)
Use induction to show that P (n) :

∑n
i=1(a+(i−1)r) = n

2
[2a+(n−1)r], n ≥ 1.

Solution.
We use the method of proof by mathematical induction.
(i) (Basis of induction) a = 1

2
[2a + (1 − 1)r] =

∑1
i=1(a + (i − 1)r). That is,

P (1)is true.
(ii) (Induction hypothesis) Assume P (k) is true for 1 ≤ k ≤ n.
(iii) (Induction step) We must show that P (n+1) is true. That is,

∑n+1
i=1 (a+

(i− 1)r) = (n+1)
2

[2a+ nr]. Indeed,

n+1∑
i=1

(a+ (i− 1)r) =
n∑

i=1

(a+ (i− 1)r) + a+ (n+ 1− 1)r

=
n

2
[2a+ (n− 1)r] + a+ nr

=
2an+ n2r − nr + 2a+ 2nr

2

=
2a(n+ 1) + n(n+ 1)r

2

=
n+ 1

2
[2a+ nr]

Example 9.4
(a) Use induction to prove that n < 2n for all non-negative integers n.
(b) Use induction to prove that 2n < n! for all non-negative integers n ≥ 4.

Solution.
(a) Let P (n) : n < 2n. We want to show that P (n) is valid for all n ≥ 0. We
use the method of mathematical induction.
(i) (Basis of induction) We have 0 < 20 = 1. Thus, P (0)is true.
(ii) (Induction hypothesis) Assume P (k) is true for 0 ≤ k ≤ n.
(iii) (Induction step) We must show that P (n + 1) is also true. That is,
n+ 1 < 2n+1. Indeed,

n+ 1 <2n + 1

≤2n + n

<2n + 2n

=2 · 2n = 2n+1
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where we used the fact that n < 2n twice.
(b) Let P (n) : 2n < n!. We want to show that P (n) is valid for all n ≥ 4. By
the method of mathematical induction we have
(i) (Basis of induction) 16 = 24 < 24 = 4!. That is, P (4)is true.
(ii) (Induction hypothesis) Assume P (k) is true for 4 ≤ k ≤ n.
(iii) (Induction step) We must show that P (n + 1) is true. That is, 2n+1 <
(n+ 1)!. Indeed,

2n+1 =2n + 2n

<2n!

<(n+ 1)n! = (n+ 1)!

where we have used the fact that if n+ 1 ≥ 5 > 2

Example 9.5 (Bernoulli’s inequality)
Let h > −1. Use induction to show that

(1 + nh) ≤ (1 + h)n, n ≥ 0.

Solution.
Let P (n) : (1 + nh) ≤ (1 + h)n. We want to show that P (n) is valid for all
nonnegative integers.
(i) (Basis of induction) 1 + 0h = 1 ≤ 1 = (1 + h)0. That is, P (0)is true.
(ii) (Induction hypothesis) Assume P (k) is true for 0 ≤ k ≤ n.
(iii) (Induction step) We must show that P (n+ 1) is true. That is, (1 + (n+
1)h) ≤ (1 + h)n+1. Indeed,

(1 + nh) ≤(1 + h)n

(1 + h)(1 + nh) ≤(1 + h)n+1

1 + (n+ 1)h+ nh2 ≤(1 + h)n+1.

But nh2 ≥ 0 so that 1 + (n+ 1)h ≤ 1 + (n+ 1)h+ nh2 ≤ (1 + h)n+1
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Review Problems

Problem 9.1
Use the method of induction to show that

2 + 4 + 6 + · · ·+ 2n = n2 + n

for all integers n ≥ 1.

Problem 9.2
Use mathematical induction to prove that

1 + 2 + 22 + · · ·+ 2n = 2n+1 − 1

for all integers n ≥ 0.

Problem 9.3
Use mathematical induction to show that

12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6

for all integers n ≥ 1.

Problem 9.4
Use mathematical induction to show that

13 + 23 + · · ·+ n3 =

(
n(n+ 1)

2

)2

for all integers n ≥ 1.

Problem 9.5
Use mathematical induction to show that

1

1 · 2
+

1

2 · 3
+ · · ·+ 1

n(n+ 1)
=

n

n+ 1

for all integers n ≥ 1.
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Problem 9.6
Use the formula

1 + 2 + · · ·+ n =
n(n+ 1)

2

to find the value of the sum

3 + 4 + · · ·+ 1, 000.

Problem 9.7
Find the value of the geometric sum

1 +
1

2
+

1

22
+ · · ·+ 1

2n
.

Problem 9.8
Let S(n) =

∑n
k=1

k
(k+1)!

. Evaluate S(1), S(2), S(3), S(4), and S(5). Make a
conjecture about a formula for this sum for general n, and prove your con-
jecture by mathematical induction.

Problem 9.9
For each positive integer n let P (n) be the proposition 4n − 1 is divisible by
3.
(a) Write P (1). Is P (1) true?
(b) Write P (k).
(c) Write P (k + 1).
(d) In a proof by mathematical induction that this divisibility property holds
for all integers n ≥ 1, what must be shown in the induction step?

Problem 9.10
For each positive integer n let P (n) be the proposition 23n− 1 is divisible by
7. Prove this property by mathematical induction.

Problem 9.11
Show that 2n < (n+ 2)! for all integers n ≥ 0.

Problem 9.12
(a) Use mathematical induction to show that n3 > 2n + 1 for all integers
n ≥ 2.
(b) Use mathematical induction to show that n! > n2 for all integers n ≥ 4.



9 METHOD OF PROOF BY INDUCTION 83

Problem 9.13
A sequence a1, a2, · · · is defined recursively by a1 = 3 and an = 7an−1 for
n ≥ 2. Show that an = 3 · 7n−1 for all integers n ≥ 1.

Problem 9.14
Show by using mathematical induction: For all integers n ≥ 1, 22n − 1 is
divisible by 3.

Problem 9.15
Define the following sequence of numbers: a1 = 2 and for n ≥ 2, an = 5an−1.
Find a formula for an and then prove its validity by mathematical induction.

Problem 9.16
Prove by mathematical induction that n3+5n is divisible by 6 for all positive
integer n.

Problem 9.17
Use mathematical induction to show that the sum of the first n odd positive
integers is equal to n2.

Problem 9.18
Use mathematical induction to show that 23n − 1 is divisible by 11 for all
positive integer n.

Problem 9.19
Define the following sequence of numbers: a1 = 1, a2 = 8 and for n ≥ 3,
an = an−1 + 2an−2. Use induction to show that an = 3 · 2n−1 + 2(−1)n for all
positive integers n.

Problem 9.20
Consider the sequence of real numbers defined by the relations a1 = 1 and
an+1 =

√
1 + 2an for all n ≥ 1. Use mathematical induction to show that

an < 4 for all n ≥ 1.
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Number Theory and
Mathematical Proofs

In this chapter, we look at the applications of mathematical proofs to number
theory.

85
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10 Divisibility. The Division Algorithm

In this section we study the divisibility of integers. Our main goal is to
obtain the Division Algorithm. This is achieved by applying the well-
ordering principle which we prove next.

Theorem 10.1 (The Well-Ordering Principle)
If S is a nonempty subset of N then there is m ∈ S such that m ≤ x for all
x ∈ S. That is, S has a smallest or least element.

Proof.
We will use contraposition to prove the theorem. That is, by assuming that
S has no smallest element we will prove that S = ∅.
We will prove that n 6∈ S for all n ∈ N. We do this by induction on n. Since
S has no smallest element, we have 1 6∈ S. Asuume that we have proved that
1, 2, · · · , n 6∈ S. We will show that n+ 1 6∈ S. If n+ 1 ∈ S then n+ 1 would
be the smallest element of S since 1, 2, 3, · · · , n 6∈ S, and this contradicts the
assumption that S has no smallest element. Thus, we must have n+ 1 6∈ S.
Hence, by the principle of mathematical induction, n 6∈ S for all n ∈ N. But
this leads to S = ∅. This establishes a proof of the theorem

Remark 10.1
The above theorem is false if N is replaced by Z,Q, or R. For example, the
set of even integers is nonempty subset of Z with no smallest element.

Example 10.1
Prove that there is no positive integer between 0 and 1.

Solution.
Suppose the contrary. Let n ∈ N such that 0 < n < 1. Define the set
S = {a ∈ N : 0 < a < 1}. Since n ∈ S, S is non-empty. By Theorem 10.1,
S has a smallest element b where b ∈ N and 0 < b < 1. Multiply this last
inequality by b to obtain 0 < b2 < b < 1. But then b2 ∈ S and b2 < b which
contradicts the fact that b is the smallest element of S. By the method of
proof by contradiction, we conclude that there is no positive integer between
0 and 1

With the Well-Ordering Principle we can establish the following theorem.
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Theorem 10.2 (Division Algorithm)
If a and b are integers with b ≥ 1 then there exist unique integers q and r
such that

a = bq + r, 0 ≤ r < b.

Proof.
The proof consists of two parts: existence and uniqueness.

Existence
Consider the sets

S = {a− bt : t ∈ Z}, S ′ = {x ∈ S : x ≥ 0}.

The set S ′ is nonempty. To see this, if a ≥ 0 then a− 0t ∈ S and a− 0t ≥ 0.
That is, a ∈ S ′. If a < 0 then since a− ba ∈ S and a− ba = a(1− b) ≥ 0 so
that a− ba ∈ S ′.
Now, if 0 ∈ S ′ then a− qb = 0 for some q ∈ Z and so r = 0 and in this case
the theorem holds. So, assume that 0 6∈ S ′. By Theorem 10.1, there exists a
smallest element r ∈ S ′. That is,

a− qb = r, for some q ∈ Z.

Since r ∈ S ′, we have r > 0 since 0 6∈ S ′. It remains to show that r < b. If
we assume the contrary, i.e., r ≥ b, then

a− b(q + 1) = a− bq − b = r − b ≥ 0

and this implies that a− b(q + 1) ∈ S ′. But b ≥ 1 > 0 so that

a− b(q + 1) = a− bq − b < a− bq = r

and this contradicts the definition of r as being the smallest element of S ′.
Thus, for the given a and b we can find integers q and r such that

a = bq + r, 0 ≤ r < b.

Uniqueness
Suppose that

a = bq1 + r1, 0 ≤ r1 < b

and
a = bq2 + r2, 0 ≤ r2 < b.
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We must show that r1 = r2 and q1 = q2. Indeed, bq1 + r1 = bq2 + r2 implies
b(q1− q2) = r2− r1. This says that b|(r2− r1). But 0 ≤ r1 < b and 0 ≤ r2 < b
so that −b < −r1 < r2 − r1 < r2 < b. That is, −b < r2 − r1 < b. Hence,
−b < b(q2−q1) < b which by dividing through by b we find −1 < q2−q1 < 1.
Now, q2 − q1 is an integer strictly between −1 and 1. Thus, q2 − q1 = 0 or
q1 = q2. But then r2 − r1 = b(q1 − q2) = 0 and this implies r1 = r2

Example 10.2
Find q and r when a = 11 and b = 4.

Solution
By long division of numbers, we find q = 2 and r = 3

Next, we introduce the concept of divisibility and derive some of its proper-
ties.
An integer m is divisible by a nonzero integer n if and only if m = nq for
some integer q. We also say that n divides m, n is a divisor of m, m is a
multiple of n, or n is a factor of m. We write n|m. If n does not divide m
we write n 6 | m. For example, 2| 8 and 4| 8. However, 4 6 | 6.

The following theorem discusses some of the properties of divisibility.

Theorem 10.3
(a) If n|m then n|(−m).
(b) If n|a and n|b then n|(a± b)
(c) If n|m and m|p then n|p.
(d) If n|m and m|n then either n = m or n = −m.

A positive integer n > 1 with only divisors 1 and n is called prime. An
integer greater than 1 that is not prime is called composite. That is, a
composite number is a positive integer that has at least one positive divisor
other than one or the number itself. For example, 2 is the first prime number
whereas 4 is first composite number.

If a positive number p is composite then one can always write p as the
product of primes, where the prime factors are written in increasing order.
This result is known as the Fundamental Theorem of Arithmetic or the
Unique Factorization Theorem.
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Theorem 10.4
Every positive integer n > 1 is either a prime or can be written as a product
of prime integers, and this product is unique except for the order of the
factors.

Example 10.3
Write the prime factorization of 180.

Solution.
The prime factorization is 180 = 22 × 32 × 5

The following important theorem shows that if a number is not divisible
by any prime less than or equal to its square root then the number must be
prime.

Theorem 10.5
If n is a composite integer, then n has a prime divisor less than or equal to√
n.

Proof.
Since n is composite, there is a divisor a of n such that 1 < a < n. Write
n = ab where b is a positive integer. Note that b is also a divisor of n. If
a >
√
n and b >

√
n then n = ab >

√
n
√
n = n, a false conclusion. Thus,

either a ≤
√
n or b ≤

√
n. Hence, n has a positive divisor which is less than

or equal to
√
n. If the divisor, say a, is a prime then we are done. If a is not

a prime then by the Fundamental Theorem of Arithmetic there is a prime
number p that divides a.That is, a = pk. But then n = pqb so that p divides
n and p < a ≤

√
n. In either case, n has a prime divisor less than or equal

to
√
n

Example 10.4
Use the previous theorem to show that the number 101 is prime.

Solution.
The prime numbers less than or equal to

√
101 are: 2, 3, 5, 7. Since none of

them divides 101, by the previous theorem, 101 is prime

Let a and b be two integers, not both zero. The largest positive integer
d that divides both a and b is called the greatest common divisor of a
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and b. We write d = (a, b) or d = gcd(a, b). If gcd(a, b) = 1 then we say
that a and b are relatively prime. For example, the numbers 2 and 3 are
relatively prime.

Example 10.5
Find the greatest common divisor of 42 and 56.

Solution.
Since

D42 = {±1,±2,±3,±6,±7,±14,±21,±42}

and
D56 = {±1,±2,±4,±7,±8,±14,±28,±56},

we have gcd(42, 56) = 14

Example 10.6
Find the greatest common divisor of 15 and 28.

Solution.
Since

D15 = {±1,±3,±5,±15}

and
D28 = {±1,±2,±4,±7,±14,±28},

we have gcd(15, 28) = 1 so that 15 and 28 are relatively prime

The greatest common divisor is useful for writing fractions in lowest term.
For example, −42

56
= −3

4
where we cancelled 14 = gcd(42, 56).

Remark 10.2
In the next section we will establish the existence and uniqueness of the
greatest common divisor and provide an algorithm of how to find it.
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Review Problems

Problem 10.1
Show that the set of all positive real numbers does not have a least element.

Problem 10.2
Use the well-ordering principle to show that every positive integer n ≥ 8 can
be written as sums of 3’s and 5’s.

Problem 10.3
Let a and b be positive integers such that a

b
=
√

2. Let S = {n ∈ N :
√

2n ∈
N}. Show that S is the empty set. Hence, concluding that

√
2 is irrational.

Problem 10.4
Let n and m be integers such that n|m where n 6= 0. Show that n|(−m).

Problem 10.5
Let n, a and b be integers such that n|a and n|b where n 6= 0. Show that
n|(a± b).

Problem 10.6
Let n,m and p be integers such that n|m and m|p where n,m 6= 0. Show
that n|p.

Problem 10.7
Let n and m be integers such that n|m and m|n where n,m 6= 0. Show that
either n = m or n = −m.

Problem 10.8
Write the first 7 prime numbers.

Problem 10.9
Show that 227 is a prime number.

Problem 10.10
Write the prime factorization of 42 and 105.

Problem 10.11
Find the greatest common divisor of 42 and 105.
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Problem 10.12
Are the numbers 27 and 35 relatively prime?

Problem 10.13
We say that an integer n is even if and only if there exists an integer k such
that n = 2k. An integer n is said to be odd if and only if there exists an
integer k such that n = 2k + 1.
Let m and n be two integers.
(a) Is 6m+ 8n an even integer?
(b) Is 6m+ 4n2 + 3 odd?

Problem 10.14
Let a, b, and c be integers such that a|b where a 6= 0. Show that a|(bc).

Problem 10.15
Let m and n be positive integers with m > n. Is m2 − n2 composite?

Problem 10.16
Show that if a|b and a|c then a|(mb+ nc) for all integers m and n.

Problem 10.17
If two integers a and b have the property that their difference a−b is divisible
by an integer n, i.e., a − b = nq for some integer q, we say that a and b are
congruent modulo n. Symbolically, we write a ≡ b(mod n). Show that if
a ≡ b(mod n) and c ≡ d(mod n) then a+ c ≡ (b+ d)(mod n).

Problem 10.18
Show that if a ≡ b(mod n) and c ≡ d(mod n) then ac ≡ bd(mod n).

Problem 10.19
Show that if a ≡ a(mod n) for all integer a.

Problem 10.20
Show that if a ≡ b(mod n) then b ≡ a(mod n).

Problem 10.21
Show that if a ≡ b(mod n) and b ≡ c(mod n) then a ≡ c(mod n).

Problem 10.22
What are the solutions of the linear congruences 3x ≡ 4(mod 7)?

Problem 10.23
Solve 2x+ 11 ≡ 7(mod 3)?
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11 The Euclidean Algorithm

In this section, we discuss the question of existence of the gcd of two integers,
in which one the integers is non-zero, and develop a systematic procedure for
finding it, known as the Euclid’s Algorithm.. For that purpose, we need
the following result.

Theorem 11.1
If a, b, q, and r are integers such that a = bq + r then gcd(a, b) = gcd(b, r).

Proof.
Let d1 = gcd(a, b) and d2 = gcd(b, r). We will show that d1 = d2. Since d2|bq
and d2|r, we have d2|(bq + r) (Problem 10.5). Hence, d2|a. Thus, by the
definition of gcd, we have d2 ≤ d1. Now, since d1|b, we have d1|bq (Problem
10.7). Since d1|a, we have d1|(a− bq) (Problem 10.5). Hence, d1|r. From the
definition of d2, we have d1 ≤ d2. Thus, d1 ≤ d2 and d2 ≤ d1. We conclude
d1 = d2

Example 11.1
Find gcd(998, 996) using Theorem 11.1.

Solution.
Using Theorem 11.1, we have that gcd(bq + r, b) = gcd(r, b) for any in-
teger q. Thus, gcd(998, 996) = gcd(998 − 996, 996) = gcd(2, 996). Since
gcd(2, 996)|2, gcd(2, 996) − 1 or gcd(2, 996) = 2. Since 2|996, we conclude
that gcd(998, 996) = 2

The following theorem, establishes the existence and uniqueness of the great-
est common divisor and provides an algorithm of how to find it.

Theorem 11.2 (The Euclidean Algorithm)
If a and b are two integers with b > 0, then there exists a unique largest
positive integer d that divide both numbers.

Proof.
Uniqueness: Suppose that d1 and d2 are two greatest common divisors of
a and b. In this case, we can write d1 ≤ d2 and d2 ≤ d1. Hence, d1 = d2.
Existence: If a = 0 then d = b. So assume that a 6= 0. By the Division
Algorithm (Theorem 10.2) there exist unique integers q1 and r1 such that

a = bq1 + r1, 0 ≤ r1 < b.
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If r1 = 0 then d = b. So assume r1 > 0. Using the Division Algorithm for a
second time to find unique integers q2 and r2 such that

b = r1q2 + r2 0 ≤ r2 < r1.

If r2 = 0 then by Theorem 11.1, r1 = gcd(b, r1) = gcd(a, b). If r2 > 0, we find
integers q3 and r3 such that

r1 = r2q3 + r3, 0 ≤ r3 < r2.

If r3 = 0, then r2 = gcd(r1, r2) = gcd(b, r1) = gcd(a, b). We keep this process
going and eventually we will find integers rn−2, rn−1 and rn such that

rn−2 = rn−1qn + rn, 0 < rn < rn−1

and

rn−1 = rnqn+1

with rn = gcd(rn, rn−1) = gcd(rn−1, rn−2) = · · · = gcd(a, b). Note that rn is
the last nonzero remainder in the process

Example 11.2
Find gcd(1776,1492).

Solution.
Performing the arithmetic for the Euclidean algorithm we have

1776 = (1)(1492) + 284

1492 = (5)(284) + 72

284 = (3)(72) + 68

72 = (1)(68) + 4

68 = 4(17).

So gcd(1776, 1492) = 4

Theorem 11.3 (Bezout)
If a and b are two integers with b > 0, then there exist integers m and n such
that gcd(a, b) = ma+ nb.
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Proof.
From the proof of Theorem 11.2, we have

gcd(a, b) = rn =rn−2 − rn−1qn
=m1rn−1 + n1rn−2

=m1(rn−3 − rn−2qn−1) + n1rn−2

=m2rn−2 + n2rn−3

=m2(rn−4 − rn−3qn−2) + n2rn−3

=m3rn−3 + n3rn−4
...
...

=mr1 + n′b

=m(a− bq1) + n′b

=ma+ nb
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Review Problems

Problem 11.1
(i) Find gcd(120, 500).
(ii) Show that 17 and 22 are relatively prime.

Problem 11.2
Use the Euclidean algorithm to find gcd(414, 662).

Problem 11.3
Use the Euclidean algorithm to find gcd(287, 91).

Problem 11.4
Use the Euclidean algorithm to find gcd(−24, 25).

Problem 11.5
Use the Euclidean algorithm to find gcd(−6,−15).

Problem 11.6
Prove that if n ∈ Z, then gcd(3n+ 4, n+ 1) = 1.

Problem 11.7
Show that gcd(a, b) = gcd(|a|, |b|).

Problem 11.8
Show that if d = gcd(a, b) then a

d
and b

d
are relatively prime.

Problem 11.9
Show that if a|bc and gcd(a, b) = 1 then a|c.

Problem 11.10
Show that if a|c and b|c and gcd(a, b) = 1 then ab|c.

Problem 11.11
Show that if gcd(a, c) = 1 and gcd(b, c) = 1 then gcd(ab, c) = 1.

Problem 11.12
Show that there are integers m and n such that 121m+ 38n = 1.

Problem 11.13
Find integers m and n such that 121m+ 38n = 1.
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Problem 11.14
Show that gcd(ma, na) = a · gcd(m,n), where a is a positive integer.

Problem 11.15
Show that gcd(a, bc)|gcd(a, b)gcd(a, c).

Problem 11.16
Give an example where ma+ nb = d but d 6= gcd(a, b).

Problem 11.17
Let p be a prime number. Find gcd(a, p) where a ∈ Z.

Problem 11.18
Show that if gcd(a, b) = 1 then xa ≡ 1(mod b) has a solution.

Problem 11.19
Show that if ma+ nb = d then d is a multiple of gcd(a, b).

Problem 11.20
Let p be a prime number such that p|ab. Show that p|a or p|b.
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Fundamentals of Set Theory

Set is the most basic term in mathematics and computer science. Hardly
any discussion in either subject can proceed without set or some synonym
such as class or collection. In this chapter we introduce the concept of sets
and its various operations and then study the properties of these operations.

99
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12 Basic Definitions

We first consider an example of a paradox known as the barber paradox:
“Terry is a barber in an army captain who was ordered to shave all members
of the company who do not shave themselves. Does the barber shave himself?
If he shaves himself then being the barber of the company he disobeyed the
captain’s order. If he does not shave himself, then by the captain’s order he
is supposed to shave himself.” Obviously, to resolve the above paradox one
has to take the barber out of the company.
Naive set theory defines a set to be any definable collection. Such a defi-
nition leads to the following paradox:
Russell’s Paradox. Consider the set A = {X : X is a set, X 6∈ X}. Since
A is itself a set, either A ∈ A or A 6∈ A. Saying that A ∈ A will imply that
A 6∈ A by the definition of A. Saying that A 6∈ A means that A ∈ A by the
definition of A. Thus, in either case the assumption that A is a set leads to
the paradox: A ∈ A and A 6∈ A.
Such a paradox indicated the necessity of a formal axiomatization of set
theory.
We define a set A as a collection of well-defined objects (called elements or
members of A) such that for any given object x either one (but not both)
of the following holds:

• x belongs to A and we write x ∈ A.

• x does not belong to A, and in this case we write x 6∈ A.

With this definition, the A in Russell’s paradox is not a set.
We denote sets by capital letters A,B,C, · · · and elements by lowercase let-
ters a, b, c, · · · Sets consisting of sets will be denoted by script letters.
There are different ways to represent a set. The first one is to list, without
repetition, the elements of the set. We say that the set is given in tabular
form. Another way is to describe a property characterizing the members of
the set. Such a representation is referred to as the descriptive form of a
set. The third way is to write in symbolic form the common characteristic
shared by all the elements of the set such as

A = {x ∈ Z|x2 − 4 = 0}.

We refer to such a form as the set-builder form.
We define the empty set, denoted by ∅, to be the set with no elements.
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Example 12.1
In what form are the following sets are defined?
(a) A is the vowel of the English alphabet.
(b) A = {1, 2, 3}.
(c) A = {x ∈ R|x2 − 1 = 0}.

Solution.
(a) Descriptive form.
(b) Tabular form.
(c) Set-builder form

Example 12.2
List the elements of the following sets:
(a) {x ∈ R|x2 = 1}.
(b) {x ∈ Z|x2 − 3 = 0}.

Solution.
(a) {−1, 1}.
(b) ∅

Example 12.3
Write the set-builder form of each of the following sets.
(a) {a, e, i, o, u}.
(b) {1, 3, 5, 7, 9}.

Solution.
(a) {x is a letter of the English alphabet|x is a vowel}.
(b) {n ∈ N|nis odd and less than 10}

Let A and B be two sets. We say that A is a subset of B, denoted by
A ⊆ B, if and only if every element of A is also an element of B. Symboli-
cally:

[A ⊆ B]⇔ [x ∈ A =⇒ x ∈ B].

If there exists an element of A which is not in B then we write A 6⊆ B.
Now, for any set A, the proposition x ∈ ∅ =⇒ x ∈ A is vacuously true since
x ∈ ∅ is always false. Hence ∅ ⊆ A.

Example 12.4
Suppose that A = {2, 4, 6}, B = {2, 6}, and C = {4, 6}. Determine which of
these sets are subsets of which other(s) of these sets.
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Solution.
B ⊆ A and C ⊆ A

If sets A and B are represented as regions in the plane, relationships be-
tween A and B can be represented by pictures, called Venn diagrams.

Example 12.5
Represent A ⊆ B using a Venn diagram.

Solution.

Two sets A and B are said to be equal if and only if A ⊆ B and B ⊆ A.
We write A = B. Thus, to show that A = B it suffices to show the double
inclusions mentioned in the definition. For non-equal sets we write A 6= B.

Example 12.6
Determine whether each of the following pairs of sets are equal.
(a) {1, 3, 5} and {5, 3, 1}.
(b) {{1}} and {1, {1}}.

Solution.
(a) {1, 3, 5} = {5, 3, 1}.
(b) {{1}} 6= {1, {1}} since 1 6∈ {{1}}

Let A and B be two sets. We say that A is a proper subset of B, de-
noted by A ⊂ B, if A ⊆ B and A 6= B. Thus, to show that A is a proper
subset of B we must show that every element of A is an element of B and
there is an element of B which is not in A.

Example 12.7
Order the sets of numbers: Z,R,Q,N using ⊂



12 BASIC DEFINITIONS 103

Solution.
N ⊂ Z ⊂ Q ⊂ R

Example 12.8
Determine whether each of the following statements is true or false.
(a) x ∈ {x} (b) {x} ⊆ {x} (c) {x} ∈ {x}
(d) {x} ∈ {{x}} (e) ∅ ⊆ {x} (f) ∅ ∈ {x}

Solution.
(a) True (b) True (c) False (d) True (e) True (f) False

If U is a given set whose subsets are under consideration, then we call U
a universal set.
Let U be a universal set and A,B be two subsets of U. The absolute com-
plement of A is the set

Ac = {x ∈ U |x 6∈ A}.

The relative complement of A with respect to B is the set

B\A = {x ∈ U |x ∈ B and x 6∈ A}.

Example 12.9
Let U = R. Consider the sets A = {x ∈ R|x < −1 or x > 1} and B = {x ∈
R|x ≤ 0}. Find
(a) Ac.
(b) B\A.

Solution.
(a) Ac = [−1, 1].
(b) B\A = [−1, 0]

Let A and B be two sets. The union of A and B is the set

A ∪B = {x|x ∈ A or x ∈ B}.

where the “or” is inclusive. This definition can be extended to more than
two sets. More precisely, if A1, A2, · · · , are sets then

∪∞n=1An = {x|x ∈ Ai for some i}.
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Let A and B be two sets. The intersection of A and B is the set

A ∩B = {x|x ∈ A and x ∈ B}.

If A ∩ B = ∅ we say that A and B are disjoint sets. Given the sets
A1, A2, · · · , we define

∩∞n=1An = {x|x ∈ Ai for all i}.

Example 12.10
Let A = {a, b, c}, B = {b, c, d}, and C = {b, c, e}.
(a) Find A ∪ (B ∩ C), (A ∪ B) ∩ C, and (A ∪ B) ∩ (A ∪ C). Which of these
sets are equal?
(b) Find A ∩ (B ∪ C), (A ∩ B) ∪ C, and (A ∩ B) ∪ (A ∩ C). Which of these
sets are equal?
(c) Find A\(B\C) and (A\B)\C. Are these sets equal?

Solution.
(a) A ∪ (B ∩ C) = A, (A ∪ B) ∩ C = {b, c}, (A ∪ B) ∩ (A ∪ C) = {b, c} =
(A ∪B) ∩ C.
(b) A ∩ (B ∪ C) = {b, c}, (A ∩ B) ∪ C = C, (A ∩ B) ∪ (A ∩ C) = {b, c} =
A ∩ (B ∪ C).
(c) A\(B\C) = A and (A\B)\C = {a} 6= A\(B\C)

Example 12.11
For each n ≥ 1, let An = {x ∈ R : x < 1 + 1

n
}. Show that

∩∞n=1An = {x ∈ R : x ≤ 1}.

Solution.
The proof is by double inclusions method. Let y ∈ {x ∈ R : x ≤ 1}. Then
for all positive integer n we have y ≤ 1 < 1 + 1

n
. That is, y ∈ ∩∞n=1An. This

shows that {x ∈ R : x ≤ 1} ⊆ ∩∞n=1An.
Conversely, let y ∈ ∩∞n=1An. Then y < 1 + 1

n
for all n ≥ 1. Now take the limit

of both sides as n→∞ to obtain y ≤ 1. That is, y ∈ {x ∈ R : x ≤ 1}. This
shows that ∩∞n=1An ⊆ {x ∈ R : x ≤ 1}

Example 12.12
The symmetric difference of A and B, denoted by A∆B, is the set contain-
ing those elements in either A or B but not both. Find A∆B if A = {1, 3, 5}
and B = {1, 2, 3}.
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Solution.
A∆B = {2, 5}

The notation (a1, a2, · · · , an) is called an ordered n-tuples. We say that
two n−tuples (a1, a2, · · · , an) and (b1, b2, · · · , bn) are equal if and only if
a1 = b1, a2 = b2, · · · , an = bn.
Given n sets A1, A2, · · · , An the Cartesian product of these sets is the set

A1 × A2 × · · · × An = {(a1, a2, · · · , an)|a1 ∈ A1, a2 ∈ A2, · · · , an ∈ An}

Example 12.13
Let A = {x, y}, B = {1, 2, 3}, and C = {a, b}. Find
(a) A×B × C.
(b) (A×B)× C.

Solution.
(a)

A×B × C ={(x, 1, a), (x, 2, a), (x, 3, a), (y, 1, a), (y, 2, a),

(y, 3, a), (x, 1, b), (x, 2, b), (x, 3, b), (y, 1, b)

(y, 2, b), (y, 3, b)}

(b)

(A×B)× C ={((x, 1), a), ((x, 2), a), ((x, 3), a), ((y, 1), a), ((y, 2), a),

((y, 3), a), ((x, 1), b), ((x, 2), b), ((x, 3), b), ((y, 1), b)

((y, 2), b), ((y, 3), b)}
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Review Problems

Problem 12.1
Write each the following sets in tabular form.
(a) A = {x ∈ N |x > 0}.
(b) A consists of the first five prime number.
(c) A = {x ∈ Z|2x2 + x− 1 = 0}.

Problem 12.2
Write each the following sets in set-builder notation.
(a) A = {1, 2, 3, 4, 5}.
(b) A = {4, 6, 8, 9, 10}.

Problem 12.3
Which of the following sets are equal?
(a) {a, b, c, d}
(b) {d, e, a, c}
(c) {d, b, a, c}
(d) {a, a, d, e, c, e}

Problem 12.4
Let A = {c, d, f, g}, B = {f, j}, and C = {d, g}. Answer each of the following
questions. Give reasons for your answers.
(a) Is B ⊆ A?
(b) Is C ⊆ A?
(c) Is C ⊆ C?
(d) Is C a proper subset of A?

Problem 12.5
(a) Is 3 ∈ {1, 2, 3}?
(b) Is 1 ⊆ {1}?
(c) Is {2} ∈ {1, 2}?
(d) Is {3} ∈ {1, {2}, {3}}?
(e) Is 1 ∈ {1}?
(f) Is {2} ⊆ {1, {2}, {3}}?
(g) Is {1} ⊆ {1, 2}?
(h) Is 1 ∈ {{1}, 2}?
(i) Is {1} ⊆ {1, {2}}?
(j) Is {1} ⊆ {1}?
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Problem 12.6
Let A = {b, c, d, f, g} and B = {a, b, c}. Find each of the following:
(a) A ∪B.
(b) A ∩B.
(c) A\B.
(d) B\A.

Problem 12.7
Indicate which of the following relationships are true and which are false:
(a) Z+ ⊆ Q.
(b) R− ⊂ Q.
(c) Q ⊂ Z.
(d) Z+ ∪ Z− = Z.
(e) Q ∩ R = Q.
(f) Q ∪ Z = Z.
(g) Z+ ∩ R = Z+

(h) Z ∪Q = Q.

Problem 12.8
Let A = {x, y, z, w} and B = {a, b}. List the elements of each of the following
sets:
(a) A×B
(b) B × A
(c) A× A
(d) B ×B.

Problem 12.9
(a) Find all possible subsets of the set A = {a, b, c}.
(b) How many proper subsets are there?

Problem 12.10
Subway prepared 60 4-inch sandwiches for a birthday party. Among these
sandwiches, 45 of them had tomatoes, 30 had both tomatoes and onions,
and 5 had neither tomatoes nor onions. Using a Venn diagram, how many
sandwiches did he make with
(a) tomatoes or onions?
(b) onions?
(c) onions but not tomatoes?
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Problem 12.11
A camp of international students has 110 students. Among these students,

75 speak english,
52 speak spanish,
50 speak french,
33 speak english and spanish,
30 speak english and french,
22 speak spanish and french,
13 speak all three languages.

How many students speak
(a) english and spanish, but not french,
(b) neither english, spanish, nor french,
(c) french, but neither english nor spanish,
(d) english, but not spanish,
(e) only one of the three languages,
(f) exactly two of the three languages.

Problem 12.12
Let A be the set of the first five composite numbers and B be the set of
positive integers less than or equal to 8. Find A\B and B\A.

Problem 12.13
Let U be a universal set. Find U c and ∅c.

Problem 12.14
Let A be the set of natural numbers less than 0 and B = {1, 3, 7}. Find A∪B
and A ∩B.

Problem 12.15
Let

A ={x ∈ N|4 ≤ x ≤ 8}
B ={x ∈ N|x even and x ≤ 10}.

Find A ∪B and A ∩B.

Problem 12.16
Using a Venn diagram, show that A∆B = (A\B)∪ (B\A) = (A∩Bc)∪ (B∩
Ac).
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Problem 12.17
Let A = {a, b, c}. Find A× A.

Problem 12.18
Find the symmetric difference of the two sets A = {1, 3, 5} and B = {1, 2, 3}.

Problem 12.19
Let A = {1, 2, 3} and B = {2, 5} be two subsets of a universal set U =
{1, 2, 3, 4, 5}. Compare (A ∪B)c and Ac ∩Bc.

Problem 12.20
Let A and B be two subsets of a universal set U. Compare A\B and A∩Bc.
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13 Properties of Sets

In this section, we derive some properties of the set theory operations in-
troduced in the previous section. The following example shows that the
operation ⊆ is reflexive and transitive, concepts that will be discussed in the
next chapter.

Example 13.1
(a) Show that A ⊆ A.
(b) Suppose that A,B,C are sets such that A ⊆ B and B ⊆ C. Show that
A ⊆ C.

Solution.
(a) The proposition if x ∈ A then x ∈ A is always true. Thus, A ⊆ A.
(b) We need to show that every element of A is an element of C. Let x ∈ A.
Since A ⊆ B, we have x ∈ B. But B ⊆ C so that x ∈ C

Theorem 13.1
Let A and B be two sets. Then
(a) A ∩B ⊆ A and A ∩B ⊆ B.
(b) A ⊆ A ∪B and B ⊆ A ∪B.

Proof.
(a) If x ∈ A ∩ B then x ∈ A and x ∈ B. This still imply that x ∈ A. Hence,
A ∩B ⊆ A. A similar argument holds for A ∩B ⊆ B.
(b) The proposition “if x ∈ A then x ∈ A ∪ B” is always true. Hence,
A ⊆ A ∪B. A similar argument holds for B ⊆ A ∪B

Theorem 13.2
Let A be a subset of a universal set U. Then
(a) ∅c = U.
(b) U c = ∅.
(c) (Ac)c = A.
(d) A ∪ Ac = U.
(e) A ∩ Ac = ∅.

Proof.
(a) If x ∈ U then x ∈ U and x 6∈ ∅. Thus, U ⊆ ∅c. Conversely, suppose that
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x ∈ ∅c. Then x ∈ U and x 6∈ ∅. This implies that x ∈ U. Hence, ∅c ⊆ U.
(b) It is always true that ∅ ⊆ U c. Conversely, the proposition “x ∈ U and
x 6∈ U implies x ∈ ∅” is vacuously true since the hypothesis is false. This
says that U c ⊆ ∅.
(c) Let x ∈ (Ac)c. Then x ∈ U and x 6∈ Ac. That is, x ∈ U and (x 6∈ U or
x ∈ A). Since x ∈ U, we have x ∈ A. Hence, (Ac)c ⊆ A. Conversely, suppose
that x ∈ A. Then x ∈ U and x ∈ A. That is, x ∈ U and x 6∈ Ac. Thus,
x ∈ (Ac)c. This shows that A ⊆ (Ac)c.
(d) and (e) See Problem 13.17

Theorem 13.3
If A and B are subsets of U then
(a) A ∪ U = U.
(b) A ∪ A = A.
(c) A ∪ ∅ = A.
(d) A ∪B = B ∪ A.
(e) (A ∪B) ∪ C = A ∪ (B ∪ C).

Proof.
(a) Clearly, A ∪ U ⊆ U. Conversely, let x ∈ U . Then definitely, x ∈ A ∪ U.
That is, U ⊆ A ∪ U.
(b) If x ∈ A then x ∈ A or x ∈ A. That is, x ∈ A ∪ A and consequently
A ⊆ A ∪ A. Conversely, if x ∈ A ∪ A then x ∈ A. Hence, A ∪ A ⊆ A.
(c) If x ∈ A ∪ ∅ then x ∈ A since x 6∈ ∅. Thus, A ∪ ∅ ⊆ A. Conversely, if
x ∈ A then x ∈ A or x ∈ ∅. Hence, A ⊆ A ∪ ∅.
(d) and (e) See Problem 13.18

Theorem 13.4
Let A and B be subsets of U . Then
(a) A ∩ U = A.
(b) A ∩ A = A.
(c) A ∩ ∅ = ∅.
(d) A ∩B = B ∩ A.
(e) (A ∩B) ∩ C = A ∩ (B ∩ C).

Proof.
(a) If x ∈ A ∩ U then x ∈ A. That is , A ∩ U ⊆ A. Conversely, let x ∈ A.
Then definitely, x ∈ A and x ∈ U. That is, x ∈ A ∩ U. Hence, A ⊆ A ∩ U.
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(b) If x ∈ A then x ∈ A and x ∈ A. That is, A ⊆ A ∩ A. Conversely, if
x ∈ A ∩ A then x ∈ A. Hence, A ∩ A ⊆ A.
(c) Clearly ∅ ⊆ A∩ ∅. Conversely, if x ∈ A∩ ∅ then x ∈ ∅. Hence, A∩ ∅ ⊆ ∅.
(d) If x ∈ A∩B then x ∈ A and x ∈ B. But this is the same thing as saying
x ∈ B and x ∈ A. That is, x ∈ B ∩A. Now interchange the roles of A and B
to show that B ∩ A ⊆ A ∩B.
(e) Let x ∈ (A ∩ B) ∩ C. Then x ∈ (A ∩ B) and x ∈ C. Thus, (x ∈ A and
x ∈ B) and x ∈ C. This implies x ∈ A and (x ∈ B and x ∈ C). Hence,
x ∈ A ∩ (B ∩ C). The converse is similar

Theorem 13.5
If A,B, and C are subsets of U then
(a) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).
(b) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

Proof.
(a) Let x ∈ A ∩ (B ∪ C). Then x ∈ A and x ∈ B ∪ C. Thus, x ∈ A and
(x ∈ B or x ∈ C). This implies that (x ∈ A and x ∈ B) or (x ∈ A and
x ∈ C). Hence, x ∈ A ∩ B or x ∈ A ∩ C, i.e. x ∈ (A ∩ B) ∪ (A ∩ C). The
converse is similar.
(b) See Problem 13.19

Theorem 13.6 (De Morgan’s Laws)
Let A and B be subsets of U then
(a) (A ∪B)c = Ac ∩Bc.
(b) (A ∩B)c = Ac ∪Bc.

Proof.
(a) Let x ∈ (A ∪B)c. Then x ∈ U and x 6∈ A ∪B. Hence, x ∈ U and (x 6∈ A
and x 6∈ B). This implies that (x ∈ U and x 6∈ A) and (x ∈ U and x 6∈ B).
It follows that x ∈ Ac ∩Bc. Now, go backward for the converse.
(b) Let x ∈ (A∩B)c. Then x ∈ U and x 6∈ A∩B. Hence, x ∈ U and (x 6∈ A
or x 6∈ B). This implies that (x ∈ U and x 6∈ B) or (x ∈ U and x 6∈ A). It
follows that x ∈ Ac ∪Bc. The converse is similar

Theorem 13.7
Suppose that A ⊆ B. Then
(a) A ∩B = A.
(b) A ∪B = B.
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Proof.
See Problem 13.20

Example 13.2
Let A and B be arbitrary sets. Show that (A\B) ∩B = ∅.

Solution.
Suppose not. That is, suppose (A\B) ∩ B 6= ∅. Then there is an element
x that belongs to both A\B and B. By the definition of A\B we have that
x 6∈ B. Thus, x ∈ B and x 6∈ B which is a contradiction

A collection of nonempty subsets {A1, A2, · · · , An} of A is said to be a par-
tition of A if and only if
(i) A = ∪n

k=1Ak.
(ii) Ai ∩ Aj = ∅ for all i 6= j.

Example 13.3
Let A = {1, 2, 3, 4, 5, 6}, A1 = {1, 2}, A2 = {3, 4}, A3 = {5, 6}. Show that
{A1, A2, A3} is a partition of A.

Solution.
(i) A1 ∪ A2 ∪ A3 = A.
(ii) A1 ∩ A2 = A1 ∩ A3 = A2 ∩ A3 = ∅

The number of elements of a set is called the cardinality of the set. We
write |A| to denote the cardinality of the set A. If A has a finite cardinality
we say that A is a finite set. Otherwise, it is called infinite.

Example 13.4
What is the cardinality of each of the following sets?
(a) ∅.
(b) {∅}.
(c) {a, {a}, {a, {a}}}.

Solution.
(a) |∅| = 0
(b) |{∅}| = 1
(c) |{a, {a}, {a, {a}}}| = 3

Let A be a set. The power set of A, denoted by P(A), is the empty set
together with all possible subsets of A.
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Example 13.5
Find the power set of A = {a, b, c}.

Solution.

P(A) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}

Theorem 13.8
If A ⊆ B then P(A) ⊆ P(B).

Proof.
Let X ∈ P(A). Then X ⊆ A. Since A ⊆ B, we have X ⊆ B. Hence,
X ∈ P(B)

Example 13.6
(a) Use induction to show that if |A| = n then |P(A)| = 2n.
(b) If P(A) has 256 elements, how many elements are there in A?

Solution.
(a) If n = 0 then A = ∅ and in this case P(A) = {∅}. Thus |P(A)| = 1.
As induction hypothesis, suppose that if |A| = n then |P(A)| = 2n. Let
B = A∪ {an+1}. Then P(B) consists of all subsets of A and all subsets of A
with the element an+1 added to them. Hence, |P(B)| = 2n+2n = 2·2n = 2n+1.
(b) Since |P(A)| = 256 = 28, we have |A| = 8
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Review Problems

Problem 13.1
Let A,B, and C be sets. Prove that if A ⊆ B then A ∩ C ⊆ B ∩ C.

Problem 13.2
Find sets A,B, and C such that A ∩ C = B ∩ C but A 6= B.

Problem 13.3
Find sets A,B, and C such that A ∩ C ⊆ B ∩ C and A ∪ C ⊆ B ∪ C but
A 6= B.

Problem 13.4
Let A and B be two sets. Prove that if A ⊆ B then Bc ⊆ Ac.

Problem 13.5
Let A,B, and C be sets. Prove that if A ⊆ C and B ⊆ C then A ∪B ⊆ C.

Problem 13.6
Let A,B, and C be sets. Show that A× (B ∪ C) = (A×B) ∪ (A× C).

Problem 13.7
Let A,B, and C be sets. Show that A× (B ∩ C) = (A×B) ∩ (A× C).

Problem 13.8
(a) Is the number 0 in ∅? Why?
(b) Is ∅ = {∅}? Why?
(c) Is ∅ ∈ {∅}? Why?

Problem 13.9
Let A and B be two sets. Prove that (A\B) ∩ (A ∩B) = ∅.

Problem 13.10
Let A and B be two sets. Show that if A ⊆ B then A ∩Bc = ∅.

Problem 13.11
Let A,B and C be three sets. Prove that if A ⊆ B and B ∩ C = ∅ then
A ∩ C = ∅.
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Problem 13.12
Find two sets A and B such that A ∩B = ∅ but A×B 6= ∅.

Problem 13.13
Suppose that A = {1, 2} and B = {2, 3}. Find each of the following:
(a) P(A ∩ B).
(b) P(A).
(c) P(A ∪ B).
(d) P(A× B).

Problem 13.14
(a) Find P(∅).
(b) Find P(P(∅)).
(c) Find P(P(P(∅))).

Problem 13.15
Determine which of the following statements are true and which are false.
Prove each statement that is true and give a counterexample for each state-
ment that is false.
(a) P(A ∪ B) = P(A) ∪ P(B).
(b) P(A ∩ B) = P(A) ∩ P(B).
(c) P(A) ∪ P(B) ⊆ P(A ∪ B).
(d) P(A× B) = P(A)× P(B).

Problem 13.16
Find two sets A and B such that A ∈ B and A ⊆ B.

Problem 13.17
Let A be a subset of a universal set U. Prove:
(a) A ∪ Ac = U.
(b) A ∩ Ac = ∅.

Problem 13.18
Let A and B be subsets of U. Prove:
(a) A ∪B = B ∪ A.
(b) (A ∪B) ∪ C = A ∪ (B ∪ C).

Problem 13.19
Let A,B, and C b subsets of U. Prove A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).
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Problem 13.20
Suppose that A ⊆ B. Prove:
(a) A ∩B = A.
(b) A ∪B = B.
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14 Boolean Algebra

Logic circuits are the basis for modern digital computer systems. To ap-
preciate how computer systems operate you will need to understand digital
logic and boolean algebra. This Chapter provides only a basic introduction
to boolean algebra.
A Boolean algebra is a nonempty set S together with two operations ⊕
and � that satisfy the following axioms:

• Closure: a⊕ b ∈ S and a� b ∈ S for all a, b ∈ S.
• Cummutative law: a⊕ b = b⊕ a and a� b = b� a, ∀a, b ∈ S.
• Associative law: a⊕ (b⊕ c) = (a⊕ b)⊕ c and a� (b� c) = (a� b)� c),
∀a, b, c ∈ S.
•Distributive law: a⊕(b�c) = (a⊕b)�(a⊕c) and a�(b⊕c) = a�b⊕a�c
∀a, b, c ∈ S.
• Identity element: There exist distinct elements 0 and 1 in S such that
a⊕ 0 = a and a� 1 = a ∀a ∈ S.
• Inverse element: For each a ∈ S there exists an element a such that
a⊕ a = 1 and a� a = 0. We call a the complement or the negation of a.

We write (S,⊕,�).

Example 14.1
Show that if S is a collection of propositions with finite propositional variables
then (S,∨,∧) is a Boolean algebra.

Solution.
Let p, q, r ∈ S. Then
(1) p ∨ q ∈ S and p ∧ q ∈ S.
(2) p ∨ q ≡ q ∨ p and p ∧ q ≡ q ∧ p.
(3) p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r and p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r.
(4) p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) and p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r).
(5) Let c be a contradiction and t a tautology then p ∨ c ≡ p and p ∧ t ≡ p.
(6) If p ∈ S then ∼ p ∈ S is such that p∨ ∼ p ≡ t and p∧ ∼ p ≡ c

Example 14.2
Show that for a given nonempty set S, (P(S),∪,∩) is a Boolean algebra.
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Solution.
Let A,B,C ∈ P(S). Then
(1) A ∪B ∈ P(S) and A ∩B ∈ P(S).
(2) A ∪B = B ∪ A and A ∩B = B ∩ A.
(3) (A ∪B) ∪ C = A ∪ (B ∪ C) and (A ∩B) ∩ C = A ∩ (B ∩ C).
(4) A∪ (B ∩C) = (A∪B)∩ (A∪C) and A∩ (B ∪C) = (A∩B)∪ (A∩C).
(5) A ∪ ∅ = A and A ∩ S = A.
(6) A ∪ Ac = S and A ∩ Ac = ∅

Example 14.3 (Idempotent law)
Show that x⊕ x = x.

Solution.
We have

x⊕ x =(x⊕ x)� 1 = (x⊕ x)� (x⊕ x)

=x⊕ (x� x)

=x⊕ 0 = x

Example 14.4 (Domination law)
Show that x⊕ 1 = 1.

Solution.
We have

x⊕ 1 =x⊕ (x⊕ x)

=(x⊕ x)⊕ x
=x⊕ x = 1

Example 14.5 (Absorption law)
Show that (x� y)⊕ x = x.

Solution.
We have

(x� y)⊕ x =x� y ⊕ x� 1

=x� (y ⊕ 1)

=x� 1 = x
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Example 14.6
Show that if x⊕ y = 1 and x� y = 0 then y = x.

Solution.
We have

y =y � 1

=y � (x⊕ x)

=y � x⊕ y � x
=0⊕ y � x
=y � x.

Likewise, we have

x =x� 1

=x� (x⊕ y)

=x� x⊕ x� y
=0⊕ x� y
=x� y = y � x.

Hence, y = x

Example 14.7 (Double Complement)
Show that x = x.

Solution.
Since x⊕ x = 1 and x� x = 0, the previous example implies that x = x

Example 14.8
Let u ∈ S such that x⊕ u = x for all x ∈ S. Show that u = 0.

Solution.
Since x⊕ u = x for all x ∈ S, by choosing x = 0 we have 0 = 0⊕ u = u

Example 14.9 (DeMorgan’s law)
Show that x� y = x⊕ y.
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Solution.
We have

(x� y)⊕ (x⊕ y) =(x⊕ y)⊕ (x� y)

=[(x⊕ y)⊕ x]� [(x⊕ y)⊕ y]

=[y ⊕ (x⊕ x]� [x⊕ (y ⊕ y)]

=(y ⊕ 1)� (x⊕ 1)

=1� 1 = 1

and

(x� y)� (x⊕ y) =[(x� y)� x]⊕ [(x� y)� y]

=[(x� x)� y]⊕ [x� (y � y)]

=(0� y)⊕ (x� 0)

= = 0.

Note that 0� x = 0� y = 0 by Problem 14.2. Hence, by Example 14.6, we
have x� y = x⊕ y

Example 14.10
In Chapter 2, we denote the logical gate AND by ·, the logical gate OR by
+, and the logical gate ∼ P by P . Simplify the circuit given in Figure 14.1.

Figure 14.1

Solution.
From Problem 14.4, we have x + x · y = x + y. Hence, the resulting circuit
simplification is shown in Figure 14.2

Figure 14.2
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Review Problems

Problem 14.1
Show that x� x = x.

Problem 14.2
Show that x� 0 = 0.

Problem 14.3
Show that (x⊕ y)� x = x.

Problem 14.4
Show that x⊕ (x� y) = x⊕ y.

Problem 14.5
Let v ∈ S such that x� v = x for all x ∈ S. Show that v = 1.

Problem 14.6
Show that x⊕ y = x� y.

Problem 14.7
Show that 1 = 0 and 0 = 1.

Problem 14.8
Show that x� (x⊕ y) = x� y.

Problem 14.9
Show that x� y = x⊕ y.

Problem 14.10
Simplify [(x⊕ y ⊕ z)� s⊕ t]⊕ [(x⊕ y ⊕ z)� (s⊕ t)].

Problem 14.11
Simplify x⊕ x� y.

Problem 14.12
Simplify x� y � (x⊕ y)� (y ⊕ y).

Problem 14.13
Simplify (a⊕ b)� (a⊕ c).
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Problem 14.14
Find the resulting circuit simplification of the circuit below.

Problem 14.15
Simplify (a� b)⊕ [a� (b⊕ c)]⊕ [b� (b⊕ c)].

Problem 14.16
Find the resulting circuit simplification of the circuit below.

Problem 14.17
Simplify a⊕ (a� b)⊕ [a� (a⊕ c)].

Problem 14.18
Simplify a · b+ b · c · (b+ c).

Problem 14.19
Find the resulting circuit simplification of the circuit below.
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Problem 14.20
Simplify (a� b)⊕ (a� b)⊕ b.

Problem 14.21
Simplify: (A ·B · C) · C + A ·B · C +D.

Problem 14.22
Reduce the following logic circuit with a simple logic circuit.



Relations and Functions

The reader is familiar with many relations which are used in mathematics
and computer science, i.e. “is a subset of”, “ is less than” and so on.
One frequently wants to compare or contrast various members of a set, per-
haps to arrange them in some appropriate order or to group together those
with similar properties. The mathematical framework to describe this kind
of organization of sets is the theory of relations.
There are two kinds of relations which we discuss in this chapter: (i) equiv-
alence relations, and (ii) order relations.

125
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15 Binary Relations

Let A and B be two given sets. An ordered pair (a, b), where a ∈ A and
b ∈ B, is defined to be the set {a, {a, b}}. The element a (resp. b) is called
the first (resp. second) component.

Example 15.1
(a) Show that if a 6= b then (a, b) 6= (b, a).
(b) Show that (a, b) = (c, d) if and only if a = c and b = d.

Solution.
(a) If a 6= b then {a, {a, b}} 6= {b, {a, b}}. That is, (a, b) 6= (b, a).
(b) (a, b) = (c, d) if and only if {a, {a, b}} = {c, {c, d}} and this is equivalent
to a = c and {a, b} = {c, d} by the definition of equality of sets. Thus, a = c
and b = d

Example 15.2
Find x and y such that (x+ y, 0) = (1, x− y).

Solution.
We have the system {

x + y = 1

x− y = 0.

Solving by the method of elimination one finds x = 1
2

and y = 1
2

The collection of all ordered pairs (a, b) where a ∈ A and b ∈ B is denoted
by A×B. We call A×B the Cartesian product of A and B.

Example 15.3
(a) Show that if A is a set with m elements and B is a set of n elements then
A×B is a set of mn elements.
(b) Show that if A×B = ∅ then A = ∅ or B = ∅.
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Solution.
(a) Suppose that A = {a1, a2, · · · , am} and B = {b1, b2, · · · , bn}. Then

A×B = {(a1, b1), (a1, b2), · · · , (a1, bn),

(a2, b1), (a2, b2), · · · , (a2, bn),

(a3, b1), (a3, b2), · · · , (a3, bn),

...

(am, b1), (am, b2), · · · , (am, bn)}

Thus, |A×B| = m · n = |A| · |B|.
(b) We use the proof by contrapositive. Suppose that A 6= ∅ and B 6= ∅.
Then there is at least an a ∈ A and an element b ∈ B. That is, (a, b) ∈ A×B
and this shows that A×B 6= ∅

Example 15.4
Let A = {1, 2}, B = {1}. Show that A×B 6= B × A.

Solution.
We have A×B = {(1, 1), (2, 1)} 6= {(1, 1), (1, 2)} = B × A

A binary relation R from a set A to a set B is a subset of A × B. If
(a, b) ∈ R we write aRb and we say that a is related to b. If a is not related
to b we write a 6Rb. In case A = B we call R a binary relation on A.
The set

Dom(R) = {a ∈ A|(a, b) ∈ R for some b ∈ B}

is called the domain of R. The set

Range(R) = {b ∈ B|(a, b) ∈ R for some a ∈ A}

is called the range of R.

Example 15.5
(a) Let A = {2, 3, 4} and B = {3, 4, 5, 6, 7}. Define the relation R by aRb if
and only if a divides b. Find, R,Dom(R),Range(R).
(b) Let A = {1, 2, 3, 4}. Define the relation R by aRb if and only if a ≤ b.
Find, R,Dom(R),Range(R).
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Solution.
(a)R = {(2, 4), (2, 6), (3, 3), (3, 6), (4, 4)},Dom(R) = {2, 3, 4}, and Range(R) =
{3, 4, 6}.
(b)R = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)},Dom(R) =
A,Range(R) = A

A function is a special case of a relation. A function from A to B, de-
noted by f : A → B, is a relation from A to B such that for every x ∈ A
there is a unique y ∈ B such that (x, y) ∈ f. The element y is called the
image of x and we write y = f(x). The set A is called the domain of f and
the set of all images of f is called the range of f.

Example 15.6
(a) Show that the relation

f = {(1, a), (2, b), (3, a)}

defines a function from A = {1, 2, 3} to B = {a, b, c}. Find its range.
(b) Show that the relation f = {(1, a), (2, b), (3, c), (1, b)} does not define a
function from A = {1, 2, 3} to B = {a, b, c}.

Solution.
(a) Note that each element of A has exactly one image. Hence, f is a function
with domain A and range Range(f) = {a, b}.
(b) The relation f does not define a function since the element 1 has two
images, namely a and b

An informative way to picture a relation on a set is to draw its digraph. To
draw a digraph of a relation on a set A, we first draw dots or vertices to
represent the elements of A. Next, if (a, b) ∈ R we draw an arrow (called a
directed edge) from a to b. Finally, if (a, a) ∈ R then the directed edge is
simply a loop.

Example 15.7
Draw the directed graph of the relation in part (b) of Example 15.5.
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Solution.

Next we discuss three ways of building new relations from given ones. Let R
be a relation from a set A to a set B. The inverse of R is the relation R−1

from Range(R) to Dom(R) such that

R−1 = {(b, a) ∈ B × A : (a, b) ∈ R}.

Example 15.8
Let R = {(1, y), (1, z), (3, y)} be a relation from A = {1, 2, 3} to B =
{x, y, z}.
(a) Find R−1.
(b) Compare (R−1)−1 and R.

Solution.
(a) R−1 = {(y, 1), (z, 1), (y, 3)}.
(b) (R−1)−1 = R

Let R and S be two relations from a set A to a set B. Then we define
the relations R ∪ S and R ∩ S by

R ∪ S = {(a, b) ∈ A×B|(a, b) ∈ R or (a, b) ∈ S},

and
R ∩ S = {(a, b) ∈ A×B|(a, b) ∈ R and (a, b) ∈ S}.

Example 15.9
Given the following two relations from A = {1, 2, 4} to B = {2, 6, 8, 10} :



130 RELATIONS AND FUNCTIONS

aRb if and only if a|b.
aSb if and only if b− 4 = a.

List the elements of R, S,R ∪ S, and R ∩ S.

Solution.
We have

R ={(1, 2), (1, 6), (1, 8), (1, 10), (2, 2), (2, 6), (2, 8), (2, 10), (4, 8)}
S ={(2, 6), (4, 8)}

R ∪ S =R

R ∩ S =S

Now, if we have a relation R from A to B and a relation S from B to C we
can define the relation S ◦ R, called the composition relation2, to be the
relation from A to C defined by

S ◦R = {(a, c)|(a, b) ∈ R and (b, c) ∈ S for some b ∈ B}.

Example 15.10
Let

R ={(1, 2), (1, 6), (2, 4), (3, 4), (3, 6), (3, 8)}
S ={(2, u), (4, s), (4, t), (6, t), (8, u)}

Find S ◦R.

Solution.

S ◦R = {(1, u), (1, t), (2, s), (2, t), (3, s), (3, t), (3, u)}

2Some authors prefer the notation R◦S instead of S ◦R. We rather prefer the notation
S ◦ R so that we are consistent with the case when R and S are functions. That is, if R
and S are functions then the composition of R and S is S ◦R.
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Review Problems

Problem 15.1
Suppose that |A| = 3 and |A×B| = 24. What is |B|?

Problem 15.2
Let A = {1, 2, 3}. Find A× A.

Problem 15.3
Find x and y so that (3x− y, 2x+ 3y) = (7, 1).

Problem 15.4
Find the domain and range of the relationR = {(5, 6), (−12, 4), (8, 6), (−6,−6), (5, 4)}.

Problem 15.5
Let A = {1, 2, 3} and B = {a, b, c, d}.
(a) Is the relation f = {(1, d), (2, d), (3, a)} a function from A to B? If so,
find its range.
(b) Is the relation f = {(1, a), (2, b), (2, c), (3, d)} a function from A to B? If
so, find its range.

Problem 15.6
Let R be the divisibility relation on the set A = {1, 2, 3, 4, 5, 6, 7, 8, 9}. Con-
struct the digraph of R.

Problem 15.7
Find the inverse relation of R = {(a, 1), (b, 5), (c, 2), (d, 1)}. Is the inverse
relation a function?

Problem 15.8
Let

A ={1, 2, 3, 4}
B ={1, 2, 3}
R ={(1, 2), (1, 3), (1, 4), (2, 2), (3, 4), (4, 1), (4, 2)}
S ={(1, 1), (1, 2), (1, 3), (2, 3)}.

Find (a) R ∪ S (b) R ∩ S (c) R\S and (d) S\R.
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Problem 15.9
Let

A ={a, b, c}
B ={1, 2}
C ={a, b, g}
R ={(a, 1), (a, 2), (b, 2), (c, 1)}
S ={(1, a), (2, b), (2, g)}.

Find S ◦R.

Problem 15.10
Let X = {a, b, c}. Recall that P(X) is the power set of X. Define a binary
relation R on P(X) as follows:

A,B ∈ P(x), A R B ⇔ |A| = |B|.

(a) Is {a, b}R{b, c}?
(b) Is {a}R{a, b}?
(c) Is {c}R{b}?

Problem 15.11
Let A = {4, 5, 6} and B = {5, 6, 7} and define the binary relations R, S, and
T from A to B as follows:

(x, y) ∈ A×B, (x, y) ∈ R⇔ x ≥ y.

(x, y) ∈ A×B, x S y ⇔ 2|(x− y).

T = {(4, 7), (6, 5), (6, 7)}.

(a) Draw arrow diagrams for R, S, and T.
(b) Indicate whether any of the relations S,R, or T are functions.

Problem 15.12
Let A = {3, 4, 5} and B = {4, 5, 6} and define the binary relation R as
follows:

(x, y) ∈ A×B, (x, y) ∈ R⇔ x < y.

List the elements of the sets R and R−1.



15 BINARY RELATIONS 133

Problem 15.13
Let A = {2, 4} and B = {6, 8, 10} and define the binary relations R and S
from A to B as follows:

(x, y) ∈ A×B, (x, y) ∈ R⇔ x|y.

(x, y) ∈ A×B, x S y ⇔ y − 4 = x.

List the elements of A×B,R, S,R ∪ S, and R ∩ S.

Problem 15.14
A couple is planning their wedding. They have four nieces (Sara, Cindy,
Brooke, and Nadia) and three nephews (Mike, John, and Derik). How many
different pairings are possible to have one boy and one girl as a ring bearer
and flower girl? List the possible choices as a Cartesian product.

Problem 15.15
Let R be a relation on a set A. We define the complement of R to be the
relation ∼ R = (A × A)\R. Let A = {1, 2, 3} and R be the relation xRy if
and only if x ≤ y. Find ∼ R.

Problem 15.16
Let R = {(x, y) ∈ R×R : y = x2} and S = {(x, y) ∈ R×R : y = −x}. Find
R ∩ S.

Problem 15.17
Consider a family A with five children, Amy, Bob, Charlie, Debbie, and Eric.
We abbreviate the names to their first letters so that

A = {a, b, c, d, e}.

Let R be the brother-sister relation on A. Find R and draw the directed
graph.

Problem 15.18
If |A| = n, where n is a positive integer, then how many binary relations are
there on the set A?

Problem 15.19
Let R = {(a, b), (b, a), (b, c)} be a relation on the set A = {a, b, c}. Find R◦R.



134 RELATIONS AND FUNCTIONS

Problem 15.20
Let A = {1} and B = {4, 3, 2}. Find all the binary relations from A to B.

Problem 15.21
Let f be the relation on R defined by x f y if and only f(x) = −4x+ 9. Let
g be the relation on R defined by x g y if and only g(x) = 2x− 7. Find f ◦ g
and g ◦ f.
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16 Equivalence Relations

In this section, we define four types of binary relations. A relation R on a
set A is called reflexive if (a, a) ∈ R for all a ∈ A. In this case, the digraph
of R has a loop at each vertex.

Example 16.1
(a) Show that the relation a ≤ b on the set A = {1, 2, 3, 4} is reflexive.
(b) Show that the relation on R defined by aRb if and only if a < b is not
reflexive.

Solution.
(a) Since 1 ≤ 1, 2 ≤ 2, 3 ≤ 3, and 4 ≤ 4, the given relation is reflexive.
(b) Indeed, for any real number a we have a− a = 0 and not a− a < 0

A relation R on A is called symmetric if whenever (a, b) ∈ R then we
must have (b, a) ∈ R. The digraph of a symmetric relation has the property
that whenever there is a directed edge from a to b, there is also a directed
edge from b to a.

Example 16.2
(a) Let A = {a, b, c, d} and R = {(a, a), (b, c), (c, b), (d, d)}. Show that R is
symmetric.
(b) Let R be the set of real numbers and R be the relation aRb if and only
if a < b. Show that R is not symmetric.

Solution.
(a) bRc and cRb so R is symmetric.
(b) 2 < 4 but 4 6< 2

A relation R on a set A is called antisymmetric if whenever (a, b) ∈ R
and a 6= b then (b, a) 6∈ R. The digraph of an antisymmetric relation has the
property that between any two vertices there is at most one directed edge.

Example 16.3
(a) Let N be the set of positive integers and R the relation aRb if and only
if a divides b. Show that R is antisymmetric.
(b) Let A = {a, b, c, d} and R = {(a, a), (b, c), (c, b), (d, d)}. Show that R is
not antisymmetric.
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Solution.
(a) Suppose that a|b and b|a. We must show that a = b. Indeed, by the def-
inition of division, there exist positive integers k1 and k2 such that b = k1a
and a = k2b. This implies that a = k2k1a and hence k1k2 = 1. Since k1 and
k2 are positive integers, we must have k1 = k2 = 1. Hence, a = b.
(b) bRc and cRb with b 6= c

A relation R on a set A is called transitive if whenever (a, b) ∈ R and
(b, c) ∈ R then (a, c) ∈ R. The digraph of a transitive relation has the prop-
erty that whenever there are directed edges from a to b and from b to c then
there is also a directed edge from a to c.

Example 16.4
(a) Let A = {a, b, c, d} and R = {(a, a), (b, c), (c, b), (d, d)}. Show that R is
not transitive.
(b) Let Z be the set of integers and R the relation aRb if a divides b. Show
that R is transitive.

Solution.
(a) (b, c) ∈ R and (c, b) ∈ R but (b, b) 6∈ R.
(b) Suppose that a|b and b|c. Then there exist integers k1 and k2 such that
b = k1a and c = k2b. Thus, c = (k1k2)a which means that a|c

Now, let A1, A2, · · · , An be a partition of a set A. That is, the A′is are
subsets of A that satisfy
(i) ∪ni=1Ai = A
(ii) Ai ∩ Aj = ∅ for i 6= j.
Define on A the binary relation x R y if and only if x and y belongs to the
same set Ai for some 1 ≤ i ≤ n.

Theorem 16.1
The relation R defined above is reflexive, symmetric, and transitive.

Proof.
See Problem 16.9

A relation that is reflexive, symmetric, and transitive on a set A is called
an equivalence relation on A. For example, the relation “=” is an equiv-
alence relation on R.
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Example 16.5
Let Z be the set of integers and n ∈ Z. Let R be the relation on Z defined
by aRb if a− b is a multiple of n. We denote this relation by a ≡ b (mod n)
read “a congruent to b modulo n.” Show that R is an equivalence relation
on Z.

Solution.
≡ is reflexive: For all a ∈ Z, a− a = 0 · n. That is, a ≡ a (mod n).
≡ is symmetric: Let a, b ∈ Z such that a ≡ b (mod n). Then there is an
integer k such that a− b = kn. Multiply both sides of this equality by (−1)
and letting k′ = −k we find that b− a = k′n. That is b ≡ a (mod n).
≡ is transitive: Let a, b, c ∈ Z be such that a ≡ b (mod n) and b ≡ c (mod n).
Then there exist integers k1 and k2 such that a − b = k1n and b − c = k2n.
Adding these equalities together we find a − c = kn where k = k1 + k2 ∈ Z
which shows that a ≡ c (mod n)

Theorem 16.2
Let R be an equivalence relation on A. For each a ∈ A let

[a] = {x ∈ A|xRa}

A/R = {[a]|a ∈ A}.

Then the union of all the elements of A/R is equal to A and the intersection
of any two distinct members of A/R is the empty set. That is, A/R forms a
partition of A.

Proof.
By the definition of [a] we have that [a] ⊆ A. Hence, ∪a∈A[a] ⊆ A. We next
show that A ⊆ ∪a∈A[a]. Indeed, let a ∈ A. Since A is reflexive, a ∈ [a] and
consequently a ∈ ∪b∈A[b]. Hence, A ⊆ ∪b∈A[b]. It follows that A = ∪a∈A[a].
This establishes (i).
It remains to show that if [a] 6= [b] then [a]∩ [b] = ∅ for a, b ∈ A. Suppose the
contrary. That is, suppose [a]∩ [b] 6= ∅. Then there is an element c ∈ [a]∩ [b].
This means that c ∈ [a] and c ∈ [b]. Hence, a R c and b R c. Since R is sym-
metric and transitive, a R b. We will show that the conclusion a R b leads to
[a] = [b]. The proof is by double inclusions. Let x ∈ [a]. Then x R a. Since
a R b and R is transitive, x R b which means that x ∈ [b]. Thus, [a] ⊆ [b].
Now interchange the letters a and b to show that [b] ⊆ [a]. Hence, [a] = [b]
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which contradicts our assumption that [a] 6= [b]. This establishes (ii). Thus,
A/R is a partition of A

The sets [a] defined in the previous exercise are called the equivalence
classes of A given by the relation R. The element a in [a] is called a repre-
sentative of the equivalence class [a].

Example 16.6
Let R be an equivalence relation on A. Show that if aRb then [a] = [b].

Solution.
[a] ⊆ [b] : Let c ∈ [a]. Then cRa. But aRb so that cRb since R is transitive.
Hence, c ∈ [b].
[b] ⊆ [a] : Let c ∈ [b]. Then cRb. Since R is symmetric, bRa. Hence, cRa since
R is transitive. Thus, c ∈ [a]

Example 16.7
Find the equivalence classes of the the equivalence relation on Z defined by
a ≡ b mod 4.

Solution.
For any integer a ∈ Z, the congruence class of a is

[a] = {n ∈ Z|n− a = 4k for some k ∈ Z}.

Hence,

[0] ={0,±4,±8,±12, · · · }
[1] ={· · · ,−11,−7,−3, 1, 5, 9, · · · }
[2] ={· · · ,−10,−6,−2, 2, 6, 10, · · · }
[3] ={· · · ,−9,−5,−1, 3, 7, 11, · · · }.

Note that {[0], [1], [2], [3]} is a partition of Z. Also, note that [0] = [±4] =
[±8] = · · · ; [1] = [−11] = [−7] = · · · , etc
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Review Problems

Problem 16.1
Consider the binary relation on R defined as follows:

x, y ∈ R, x R y ⇔ x ≥ y.

Is R reflexive? symmetric? transitive?

Problem 16.2
Consider the binary relation on R defined as follows:

x, y ∈ R, x R y ⇔ xy ≥ 0.

Is R reflexive? symmetric? transitive?

Problem 16.3
Let A 6= ∅ and P(A) be the power set of A. Consider the binary relation on
P(A) defined as follows:

X, Y ∈ P(A), X R Y ⇔ X ⊆ Y.

Is R reflexive? symmetric? transitive?

Problem 16.4
Let E be the binary relation on Z defined as follows:

a E b⇔ m ≡ n (mod 2).

Show that E is an equivalence relation on Z and find the different equivalence
classes.

Problem 16.5
Let I be the binary relation on R defined as follows:

a I b⇔ a− b ∈ Z.

Show that I is an equivalence relation on R and find the different equivalence
classes.
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Problem 16.6
Let A be the set all straight lines in the cartesian plane. Let || be the binary
relation on A defined as follows:

l1||l2 ⇔ l1 is parallel to l2.

Show that || is an equivalence relation on A and find the different equivalence
classes.

Problem 16.7
Let A = N× N. Define the binary relation R on A as follows:

(a, b) R (c, d)⇔ a+ d = b+ c.

(a) Show that R is reflexive.
(b) Show that R is symmetric.
(c) Show that R is transitive.
(d) List five elements in [(1, 1)].
(e) List five elements in [(3, 1)].
(f) List five elements in [(1, 2)].
(g) Describe the distinct equivalence classes of R.

Problem 16.8
Let R be a binary relation on a set A and suppose that R is symmetric and
transitive. Prove the following: If for every x ∈ A there is a y ∈ A such that
x R y then R is reflexive and hence an equivalence relation on A.

Problem 16.9
Prove Theorem 16.1.

Problem 16.10
Let R and S be two equivalence relations on a non-empty set A. Show that
R ∩ S is also an equivalence relation on A.

Problem 16.11
Let A be a set of 10 elements and let R be an equivalence relation on A.
Suppose that a, b, c ∈ A with |[a]| = 3, |[b]| = 5, and |[c]| = 1. . How many
equivalence classes does A contain?
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Problem 16.12
Define the relation R on Z by a R b if and only id 2a+ 5b ≡ 0(mod 7). Show
that R is an equivalence relation on Z.

Problem 16.13
Consider the following relations on Z. Explain why each is not an equivalence
relation.
(a) a R b if and only if a2 − b2 ≤ 7.
(b) a R b if and only if a+ b ≡ 0(mod 5).
(c) a R b if and only if a2 + b2 = 0.

Problem 16.14
Let A = {1, 2, 3, 4, 5} and R be an equivalence relation on A given by

R = {(1, 1), (1, 3), (1, 4), (2, 2), (2, 5), (3, 1), (3, 3), (3, 4), (4, 1), (4, 3), (4, 4), (5, 2), (5, 5)}.

Determine the equivalence classes of R.

Problem 16.15
Let R be the relation on N×N defined by (a, b) R (c, d) if and only if ad = bc.
Show that R is an equivalence relation on N× N.

Problem 16.16
Let R be the relation on Z defined by x R y if and only if x2 = y2. Show
that R is an equivalence relation. Find [4].

Problem 16.17
Let A = {a, b, c, d, e}. Suppose R is an equivalence relation on A. Suppose
also that a R d and b R c, e R a and c R e. How many equivalence classes
does R have?

Problem 16.18
Let R be the relation on R× R defined by

(x1, y1) R (x2, y2)⇔ x21 + y21 = x22 + y22.

Show that R is an equivalence relation and describe geometrically the equiv-
alence classes of R.
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Problem 16.19
Define a relation R on R by

a R b⇔ |a|+ |b| = |a+ b|.

Show that R is reflexive, symmetric, but not transitive.

Problem 16.20
Let R be the relation on R defined by

a R b⇔ a− b ∈ Z.

Show that of a R b and c R d then (a+ c) R (b+ d).
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17 Partial Order Relations

A relation ≤ on a set A is called a partial order if ≤ is reflexive, antisym-
metric, and transitive. In this case we call (A,≤) a poset.

Example 17.1
Show that the set Z of integers together with the relation of inequality ≤ is
a poset.

Solution.
≤ is reflexive: For all x ∈ Z we have x ≤ x since x = x.
≤ is antisymmetric: By the trichotomy law of real numbers, for a given pair
of numbers x and y only one of the following is true: x < y, x = y, or x > y.
So if x ≤ y and y ≤ x then we must have x = y.
≤ is transitive: If x ≤ y and y ≤ z then x ≤ z

Example 17.2
Show that the relation a|b in N = {1, 2, 3, · · · } is a partial order relation.

Solution.
Reflexivity: Since a = 1 · a, we have a|a.
Antisymmetry: Suppose that a|b and b|a. Then there exist positive integers
k1 and k2 such that b = k1a and a = k2b. Hence, a = k1k2a which implies
that k1k2 = 1. Since k1, k2 ∈ N, we must have k1 = k2 = 1; that is, a = b.
Transitivity: Suppose that a|b and b|c. Then there exist positive integers k1
and k2 such that b = k1a and c = k2b. Thus, c = k1k2a which means that
a|c

Example 17.3
Let P(X) be the power set of X. Let R be the relation on P(X)defined by

A R B ⇔ A ⊆ B.

Show that P(X) is a poset.

Solution.
⊆ is reflexive: For any set A ∈ P(X), A ⊆ A.
⊆ is antisymmetric: By the definition of = of sets if A ⊆ B and B ⊆ A then
A = B, where A,B ∈ P(X).



144 RELATIONS AND FUNCTIONS

⊆ is transitive: We have seen in Example 13.1, that if A ⊆ B and B ⊆ C
then A ⊆ C

Another simple pictorial representation of a partial order is the so called
Hasse diagram. The Hasse diagram of a partial order on the set A is a
drawing of the points of A and some of the arrows of the digraph of the or-
der relation. We assume that the directed edges of the Hasse diagram point
upward. There are rules to determine which arrows are drawn and which are
omitted, namely,
• omit all arrows that can be inferred from transitivity
• omit all loops
• draw arrows without “heads”.

Example 17.4
Let A = {1, 2, 3, 9, 18} and the “divides” relation on A. Draw the Hasse
diagram of this relation.

Solution.
The directed graph of the given relation and the cooresponding Hasse dia-
gram are shown in Figure 17.1

Figure 17.1

Now, given the Hasse diagram of a partial order relation one can find the
digraph as follows:
• reinsert the direction markers on the arrows making all arrows point upward
• add loops at each vertex
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• for each sequence of arrows from one point to a second point and from that
second point to a third point, add an arrow from the first point to the third.

Example 17.5
Let A = {1, 2, 3, 4} be a poset. Find the directed graph corresponding to the
Hasse diagram on A shown in Figure 17.2.

Figure 17.2

Solution.
The directed graph is shown in Figure 17.3

Figure 17.3

Next, if A is a poset then we say that a and b are comparable if either
a ≤ b or b ≤ a. If every pair of elements of A are comparable then we call ≤
a total order.
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Example 17.6
Consider the “divides” relation defined on the set A = {5, 15, 30}. Prove that
this relation is a total order on A.

Solution.
The fact that the “divides” relation is a partial order is easy to verify. Since
5|15, 5|30, and 15|30, any pair of elements in A are comparable. Thus, the
“divides” relation is a total order on A

Example 17.7
Show that the “divides” relation on N is not a total order.

Solution.
A counterexample of two noncomparable numbers are 2 and 3, since 2 does
not divide 3 and 3 does not divide 2

Let (A,≤) be a poset. An element a ∈ A is called a least element if
and only if a ≤ b for all b ∈ A. Likewise, an element b ∈ A is called a
greatest element of A if and only if a ≤ b for all a ∈ A.

Example 17.8
(a) Find the least element of the poset (N,≤).
(b) Find the least element and the greatest element of the poset (P(A),⊆)
where A = {a, b}.

Solution.
(a) 1 is the least element of the poset (N,≤).
(b) The empty set is the least element of the given poset whereas A is the
greatest element

A partial order R on a set A is a well order if every non-empty subset
of A has a least element.

Example 17.9
Show that (N,≤) is well-ordered.

Solution.
This is true because every non-empty subset of natural numbers has a least
element (See Theorem 10.1)
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Review Problems

Problem 17.1
Define a relation R on Z as follows: for all m,n ∈ Z

m R n⇔ m+ n is even.

Is R a partial order? Prove or give a counterexample.

Problem 17.2
Define a relation R on R as follows: for all m,n ∈ R

m R n⇔ m2 ≤ n2.

Is R a partial order? Prove or give a counterexample.

Problem 17.3
Let S = {0, 1} and consider the partial order relation R defined on S × S as
follows: for all ordered pairs (a, b) and (c, d) in S × S

(a, b) R (c, d)⇔ a ≤ c and b ≤ d.

Draw the Hasse diagram for R.

Problem 17.4
Consider the “divides” relation defined on the set A = {1, 2, 22, · · · , 2n},
where n is a nonnegative integer.
a. Prove that this relation is a total order on A.
b. Draw the Hasse diagram for this relation when n = 3.

Problem 17.5
Let R be a partial order on A. Show that R−1 is also a partial order on A.

Problem 17.6
An order relation R is given by the following Hasse diagram. Find the cor-
responding digraph.
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.

Problem 17.7
Let F be a collection of finite sets. On this set, we define the relation R by

A R B ⇔ |A| ≤ |B|.

Show that R is reflexive, transitive but is neither anti-symmetric nor sym-
metric.

Problem 17.8
Let A = N× N and define R on A by

(a, b)R(c, d)⇔ a ≤ c and b ≥ d.

Show that (A,R) is a poset.

Problem 17.9
LetA = {a, b, c} and consider the poset (P(A),⊆). Let S = {{a}, {a, c}, {a, b}}.
Find the least element and the greatest element of S.

Problem 17.10
Show that the relation ≤ on Z is not well-ordered.

Problem 17.11
Show that if A is well-ordered under ≤ then ≤ is a total order on A.

Problem 17.12
Suppose that (A,≤) is a poset and S is a non-empty subset of A. If S has a
least element then this element is unique.
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Problem 17.13
Let R be thr relation on Z× Z defined by

(a, b)R(c, d)⇔ either a < c or (a = c and b ≤ d).

This relation is known as the dictionary order. Show that R is a total
order.

Problem 17.14
Define the relation R on R by

aRb⇔ a3 − 4a ≤ b3 − 4b.

Determine whether or not (R, R) is a poset.

Problem 17.15
Let A = {a, b, c, d} and consider the poset (P(A),⊆). Draw the Hasse dia-
gram of this relation.

Problem 17.16
Let A be a non-empty set with |A| ≥ 2. Show that P(A) is not a total order
under the relation of ⊆ .

Problem 17.17
Let R be the relation on P(U) defined by

ARB ⇔ A ∩B = A.

Show that R is reflexive and antisymmetric.

Problem 17.18
Let R be a relation on A. Show that if R is symmetric and transitive then it
is an equivalence relation on A.

Problem 17.19
Draw the Hasse diagram for the partial order “divides” on the setA consisting
of all the natural numbers less than or equal to 12.

Problem 17.20
Show that the set of positive real numbers is not well-ordered.
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18 Bijective and Inverse Functions

Let f : A → B be a function. We say that f is injective or one-to-one if
and only if for all x, y ∈ A, if f(x) = f(y) then x = y. Using the concept of
contrapositive, a function f is injective if and only if for all x, y ∈ A, if x 6= y
then f(x) 6= f(y). Taking the negation of this last conditional implication
we see that f is not injective if and only if there exist two distinct elements
a and b of A such that f(a) = f(b) (Example 3.3).

Example 18.1
(a) Show that the identity function IA on a set A is injective.
(b) Show that the function f : Z→ Z defined by f(n) = n2 is not injective.

Solution.
(a) Let x, y ∈ A. If IA(x) = IA(y) then x = y by the definition of IA. This
shows that IA is injective.
(b) Since 12 = (−1)2 and 1 6= −1, f is not injective

Example 18.2
Show that if f : R→ R is increasing then f is one-to-one.

Solution.
Suppose that x1 6= x2. Then without loss of generality we can assume that
x1 < x2. Since f is increasing, f(x1) < f(x2). That is, f(x1) 6= f(x2). Hence,
f is one-to-one

Example 18.3
Show that the composition of two injective functions is also injective.

Solution.
Let f : A→ B and g : B → C be two injective functions. We will show that
g ◦ f : A→ C is also injective. Indeed, suppose that (g ◦ f)(x1) = (g ◦ f)(x2)
for x1, x2 ∈ A. Then g(f(x1)) = g(f(x2)). Since g is injective, f(x1) = f(x2).
Now, since f is injective, x1 = x2. This completes the proof that g ◦ f is
injective

Now, for any function f : A → B we have Range(f) ⊆ B. If equality holds
then we say that f is surjective or onto. It follows from this definition that
a function f is surjective if and only if for each y ∈ B there is an x ∈ A such
that f(x) = y. By taking the negation of this we see that f is not onto if
there is a y ∈ B such that f(x) 6= y for all x ∈ A.
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Example 18.4
(a) Show that the function f : R→ R defined by f(x) = 3x− 5 is surjective.
(b) Show that the function f : Z → Z defined by f(n) = 3n − 5 is not
surjective.

Solution.
(a) Let y ∈ R. Is there an x ∈ R such that f(x) = y? That is, 3x − 5 = y.
But solving for x we find x = y+5

3
∈ R and f(x) = y. Thus, f is onto.

(b) Take m = 3. If f is onto then there should be an n ∈ Z such that
f(n) = 3. That is, 3n − 5 = 3. Solving for n we find n = 8

3
which is not an

integer. Hence, f is not onto

Example 18.5 (Projection Functions)
Let A and B be two nonempty sets. The functions prA : A×B → A defined
by prA(a, b) = a and prB : A × B → B defined by prB(a, b) = b are called
projection functions. Show that prA and prB are surjective functions.

Solution.
We prove that prA is surjective. Indeed, let a ∈ A. Since B is not empty,
there is a b ∈ B. But then (a, b) ∈ A × B and prA(a, b) = a. Hence, prA is
surjective. The proof that prB is surjective is similar

Example 18.6
Show that the composition of two surjective functions is also surjective.

Solution.
Let f : A → B and g : B → C, where Range(f) ⊆ C, be two surjective
functions. We will show that g ◦ f : A → C is also surjective. Indeed, let
z ∈ C. Since g is surjective, there is a y ∈ B such that g(y) = z. Since f is
surjective, there is an x ∈ A such that f(x) = y. Thus, g(f(x)) = z. This
shows that g ◦ f is surjective

Now, we say that a function f is bijective or one-to-one correspondence
if and only if f is both injective and surjective. A bijective function on a set
A is called a permutation.

Example 18.7
(a) Show that the function f : R→ R defined by f(x) = 3x− 5 is a bijective
function.
(b) Show that the function f : R→ R defined by f(x) = x2 is not bijective.
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Solution.
(a) First we show that f is injective. Indeed, suppose that f(x1) = f(x2).
Then 3x1 − 5 = 3x2 − 5 and this implies that x1 = x2. Hence, f is injective.
f is surjective by Example 18.4 (a).
(b) f is not injective since f(−1) = f(1) but −1 6= 1. Hence, f is not
bijective

Example 18.8
Show that the composition of two bijective functions is also bijective.

Solution.
This follows from Example 18.3 and Example 18.6

Theorem 18.1
Let f : X → Y be a bijective function. Then there is a function f−1 : Y → X
with the following properties:

(a) f−1(y) = x if and only if f(x) = y.
(b) f−1 ◦ f = IX and f ◦ f−1 = IY where IX denotes the identity function
on X.
(c) f−1 is bijective.

Proof.
For each y ∈ Y there is a unique x ∈ X such that f(x) = y since f is
bijective. Thus, we can define a function f−1 : Y → X by f−1(y) = x where
f(x) = y.
(a) Follows from the definition of f−1.
(b) Indeed, let x ∈ X such that f(x) = y. Then f−1(y) = x and (f−1◦f)(x) =
f−1(f(x)) = f−1(y) = x = IX(x). Since x was arbitrary, f−1 ◦ f = IX . The
proof that f ◦ f−1 = IY is similar.
(c) We show first that f−1 is injective. Indeed, suppose f−1(y1) = f−1(y2).
Then f(f−1(y1)) = f(f−1(y2)); that is, (f ◦ f−1)(y1) = (f ◦ f−1)(y2). By
b. we have IY (y1) = IY (y2). From the definition of IY we obtain y1 = y2.
Hence, f−1 is injective. We next show that f−1 is surjective. Indeed, let
y ∈ Y . Since f is onto, there is a unique x ∈ X such that f(x) = y. By
the definition of f−1, f−1(y) = x. Thus, for every element y ∈ Y there is an
element x ∈ X such that f−1(y) = x. This says that f−1 is surjective and
completes a proof of the theorem
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Example 18.9
Show that f : R→ R defined by f(x) = 3x−5 is bijective and find a formula
for its inverse function.

Solution.
We have already proved that f is bijective. We will just find the formula
for its inverse function f−1. Indeed, if y ∈ Y we want to find x ∈ X such
that f−1(y) = x, or equivalently, f(x) = y. This implies that 3x− 5 = y and
solving for x we find x = y+5

3
. Thus, f−1(y) = y+5

3
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Review Problems

Problem 18.1
(a) Define g : Z→ Z by g(n) = 3n− 2.
(i) Is g one-to-one? Prove or give a counterexample.
(ii) Is g onto? Prove or give a counterexample.
(b) Define G : R → R by G(x) = 3x − 2. Is G onto? Prove or give a
counterexample.

Problem 18.2
Determine whether the function f : R→ R given by f(x) = x+1

x
is one-to-one

or not.

Problem 18.3
Determine whether the function f : R → R given by f(x) = x

x2+1
is one-to-

one or not.

Problem 18.4
Let f : R→ Z be the floor function f(x) = bxc.
(a) Is f one-to-one? Prove or give a counterexample.
(b) Is f onto? Prove or give a counterexample.

Problem 18.5
If f : R→ R and g : R→ R are one-to-one functions, is f+g also one-to-one?
Justify your answer.

Problem 18.6
Define F : P{a, b, c} → N to be the number of elements of a subset of
{a, b, c}.
(a) Is F one-to-one? Prove or give a counterexample.
(b) Is F onto? Prove or give a counterexample.

Problem 18.7
If f : Z → Z and g : Z → Z are onto functions, is f + g also onto? Justify
your answer.

Problem 18.8
Show that the function F−1 : R → R given by F−1(y) = y−2

3
is the inverse

of the function F (x) = 3x+ 2.
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Problem 18.9
If f : X → Y and g : Y → Z are functions and g ◦ f : X → Z is one-to-one,
must both f and g be one-to-one? Prove or give a counterexample.

Problem 18.10
If f : X → Y and g : Y → Z are functions and g ◦ f : X → Z is onto, must
both f and g be onto? Prove or give a counterexample.

Problem 18.11
If f : X → Y and g : Y → Z are functions and g ◦ f : X → Z is one-to-one,
must f be one-to-one? Prove or give a counterexample.

Problem 18.12
If f : X → Y and g : Y → Z are functions and g ◦ f : X → Z is onto, must
g be onto? Prove or give a counterexample.

Problem 18.13
Let f : W → X, g : X → Y and h : Y → Z be functions. Must h ◦ (g ◦ f) =
(h ◦ g) ◦ f? Prove or give a counterexample.

Problem 18.14
Let f : X → Y and g : Y → Z be two bijective functions. Show that (g◦f)−1

exists and (g ◦ f)−1 = f−1 ◦ g−1.

Problem 18.15
(a) Compare |A| and |B| when f : A→ B is one-to-one.
(b) Compare |A| and |B| when f : A→ B is onto.
(c) Compare |A| and |B| when f : A→ B is one-to-one correspondence.

Problem 18.16
Let f : A→ B be a function. Define the relation R on A by

aRB ⇔ f(a) = f(b).

(a) Show that R is an equivalence relation.
(b) Show that the function F : A/R → Range(f) defined by F ([a]) = f(a)
is one-to-one correspondence.



156 RELATIONS AND FUNCTIONS

Problem 18.17
Let A = B = {1, 2, 3}. Consider the function f = {(1, 2), (2, 3), (3, 3)}. Is f
injective? Is f surjective?

Problem 18.18
Show that f : Z→ N defined by f(x) = |x|+ 1 is onto but not one-to-one.

Problem 18.19
Let f : A → B. For any subset C of B we define f−1(C) = {a ∈ A : f(a) ∈
C}. Show that f−1(S ∪ T ) = f−1(S) ∪ f−1(T ) where S, T ⊆ B.

Problem 18.20
Find the inverse of the function f(x) = x+1

3x+2
.
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19 The Pigeonhole Principle

The Pigeonhole principle asserts that if n pigeons fly into k holes with
n > k then some of the pigeonholes contain at least two pigeons. The
reason this statement is true can be seen by arguing by contradiction. If the
conclusion is false, each pigeonhole contains at most one pigeon and, in this
case, we can account for at most k pigeons. Since there are more pigeons
than holes, we have a contradiction.
In problem solving, the “pigeons” are often numbers or objects, and the
“pigeonholes” are properties that the numbers/objects might possess.

Example 19.1
Ten persons have first names George, William, and Laura and last names
Moe, Carineo, and Barber. Show that at least two persons have the same
first and last names.

Solution.
The pigeons are the ten persons and a hole is an ordered pair (First Name,
Last Name). Since there are at most nine holes, according to the pigeonhole
principle there exist at least two persons with the same first and last name

Generalized Pigeonhole Principle: If n pigeons fly into k holes with
n > k, then there is at least one pigeonhole with at least

⌈
n
k

⌉
pigeons.

A mathematical way to formulate the Generalized Pigeonhole Principle is
given by the following thoerem.

Theorem 19.1
Let S be a finite set and {A1, A2, · · · , Ak} be a partition of S with |S| > k.

There is an index 1 ≤ i ≤ k such that |Ai| ≥
⌈
|S|
k

⌉
.

Proof.
The proof is by contradiction. Suppose that |Ai| <

⌈
|S|
k

⌉
for all 1 ≤ i ≤ k.

Then |Ai| ≤
⌈
|S|
k

⌉
− 1 for all 1 ≤ i ≤ k. Since {A1, A2, · · · , Ak} is a partition
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of S, we have

|S| = |A1|+ |A2|+ · · ·+ |Ak|

≤
(⌈
|S|
k

⌉
− 1

)
+

(⌈
|S|
k

⌉
− 1

)
+ · · ·+

(⌈
|S|
k

⌉
− 1

)
= k

(⌈
|S|
k

⌉
− 1

)
< k

(
|S|
k

+ 1− 1

)
= |S|

and this is a contradiction

Example 19.2
Let S and T be two finite sets such that |S| > k|T | where k is a positive
integer. Show that for any function f : S → T there is a t ∈ T such that the
set At = {s ∈ S : f(s) = t} has more than k elements.

Solution.
For each t ∈ T the set At is a subset of S. Moreover, if t1 and t2 are two
different elements of T and s ∈ At1 ∩ At2 then f(s) = t1 and f(s) = t2 and
this contradicts the definition of a function. Hence, At1 ∩ At2 = ∅. Finally,
if s ∈ S then f(s) = t ∈ T so that s ∈ At. Hence, S = ∪t∈TAt. It follows
that {At}t∈T is a partition of S. By Theorem 19.1, there is a t ∈ T such

that|At| ≥ |S|
|T | > k. That is, At has at least k elements

As a consequence of the above example, we have

Example 19.3
If S and T are finite sets such that |S| > |T | then any function f : S → T is
not one-to-one.

Solution.
Let k = 1 in the previous problem. Then there is a set {s ∈ S : f(s) = t}
with more than one element. Say, s1, s2 are such that f(s1) = f(s2) = t with
s1 6= s2. But this says that f is not one-to-one



19 THE PIGEONHOLE PRINCIPLE 159

Review Problems

Problem 19.1
A family has 10 children. Show that at least two children were born on the
same day of the week.

Problem 19.2
Show that if 11 people take an elevator in a 10-story building then at least
two people exist the elevator on the same floor.

Problem 19.3
A class of 11 students wrote a short essay. George Perry made 9 errors, each
of the other students made less than that number. Prove that at least two
students made equal number of errors.

Problem 19.4
Let A = {1, 2, 3, 4, 5, 6, 7, 8}. Prove that if five integers are selected from A,
then at least one pair of integers have a sum of 9.

Problem 19.5
Prove that, given any 12 natural numbers, we can chose two of them and
such that their difference is divisible by 11.

Problem 19.6
In a group of 1500, find the least number of people who share the same
birthday.

Problem 19.7
Suppose that every student in aclass 18 flipped a coin four times. Show that
at least two students would have the exact same sequence of heads and tails.

Problem 19.8
Show that mong any N positive integers, there exists 2 whose difference is
divisible by N − 1.

Problem 19.9
Given any six integers between 1 and 10, inclusive, show that 2 of them have
an odd sum.
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Problem 19.10
Show that among any 13 people, at least two share a birth month.

Problem 19.11
Suppose that more than kn marbles are distributed over n jars. Show that
one jar will contain at least k + 1 marbles.

Problem 19.12
Use the generalized pigeonhole principle to show that among 85 people, at
least 4 must have the same last initial.

Problem 19.13
How many students must be in a class to guarantee that at least two students
receive the same score on the final exam, if the exam is graded on a scale
from 0 to 100 points.

Problem 19.14
Show that for any given N positive integers, the sum of some of these integers
(perhaps one of the numbers itself) is divisible by N.

Problem 19.15
If there are 6 people at a party, then show that either 3 of them knew each
other before the party or 3 of them were complete strangers before the party.

Problem 19.16
How many cards must be selected from a standard deck of 52 cards to ensure
that we get at least 3 cards of the same suit?

Problem 19.17
Suppose we have 27 different odd positive integers all less than 100. Show
that there is a pair of numbers whose sum is 102.

Problem 19.18
Among 100 people, at least how many people were born in the same month?

Problem 19.19
Show that an arbitrary subset A of n + 1 integers from the set {1, · · · , 2n}
will contain a pair of consecutive integers.

Problem 19.20
Fifteen children together gathered 100 nuts. Prove that some pair of chil-
dren gathered the same number of nuts. Hint: Use the method of proof by
contradiction.
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20 Recursion

A recurrence relation for a sequence a0, a1, · · · is a relation that defines
an in terms of a0, a1, · · · , an−1. The formula relating an to earlier values in
the sequence is called the generating rule. The assignment of a value to
one of the a’s is called an initial condition.

Example 20.1
The Fibonacci sequence

1, 1, 2, 3, 5, · · ·
is a sequence in which every number after the first two is the sum of the
preceding two numbers. Find the generating rule and the initial conditions.

Solution.
The initial conditions are a0 = a1 = 1 and the generating rule is an =
an−1 + an−2, n ≥ 2

A solution to a recurrence relation is an explicit formula for an in terms
of n.
The most basic method for finding the solution of a sequence defined recur-
sively is by using iteration. The iteration method consists of starting with
the initial values of the sequence and then calculate successive terms of the
sequence until a pattern is observed. At that point one guesses an explicit
formula for the sequence and then uses mathematical induction to prove its
validity.

Example 20.2
Consider the arithmetic sequence

an = an−1 + d, n ≥ 1

where a0 is the initial value. Find an explicit formula for an.

Solution.
Listing the first four terms of the sequence after a0 we find

a1 =a0 + d

a2 =a0 + 2d

a3 =a0 + 3d

a4 =a0 + 4d.
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Hence, a guess is an = a0 + nd. Next, we prove the validity of this formula
by induction:
Basis of induction: For n = 0, a0 = a0 + (0)d.
Induction hypothesis: Suppose that an = a0 + nd.
Induction step: We must show that an+1 = a0 + (n + 1)d. By the definition
of an+1, we have an+1 = an + d = a0 + nd+ d = a0 + (n+ 1)d

Example 20.3
Consider the geometric sequence

an = ran−1, n ≥ 1

where a0 is the initial value. Find an explicit formula for an.

Solution.
Listing the first four terms of the sequence after a0 we find

a1 =ra0

a2 =r2a0

a3 =r3a0

a4 =r4a0.

Hence, a guess is an = rna0. Next, we prove the validity of this formula by
induction.
Basis of induction: For n = 0, a0 = r0a0.
Induction hypothesis: Suppose that an = rna0.
Induction step: We must show that an+1 = rn+1a0. By the definition of an+1

we have an+1 = ran = r(rna0) = rn+1a0

When an iteration does not apply, other methods are available for finding
explicit formulas for special classes of recursively defined sequences. The
method explained below works for sequences of the form

an = Aan−1 +Ban−2 (20.1)

where n is greater than or equal to some fixed nonnegative integer k and A
and B are real numbers with B 6= 0. Such an equation is called a second-
order linear homogeneous recurrence relation with constant coeffi-
cients.



20 RECURSION 163

Example 20.4
Does the Fibonacci sequence satisfy a second-order linear homogeneous re-
lation with constant coefficients?

Solution.
Recall that the Fibonacci sequence is defined recursively by an = an−1 +an−2
for n ≥ 2 and a0 = a1 = 1. Thus, an satisfies a second-order linear homoge-
neous relation with A = B = 1

The following theorem gives a technique for finding solutions to (20.1).

Theorem 20.1
Equation (20.1) is satisfied by the sequence 1, t, t2, · · · , tn, · · · where t 6= 0 if
and only if t is a solution to the characteristic equation

t2 − At−B = 0. (20.2)

Proof.
(=⇒): Suppose that t is a nonzero real number such that the sequence
1, t, t2, · · · satisfies (20.1). We will show that t satisfies the equation t2 −
At−B = 0. Indeed, for n ≥ k we have

tn = Atn−1 +Btn−2.

Since t 6= 0 we can divide through by tn−2 and obtain t2 − At−B = 0.
(⇐=) : Suppose that t is a nonzero real number such that t2 − At− B = 0.
Multiply both sides of this equation by tn−2 to obtain

tn = Atn−1 +Btn−2.

This says that the sequence 1, t, t2, · · · satisfies (20.1)

Example 20.5
Consider the recurrence relation

an = an−1 + 2an−2, n ≥ 2.

Find two sequences that satisfy the given generating rule and have the form
1, t, t2, · · · .
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Solution.
According to the previous theorem t must satisfy the characteristic equation

t2 − t− 2 = 0.

Solving for t we find t = 2 or t = −1. So the two solutions to the given
recurrence sequence are {1, 2, 22, · · · , 2n, · · · } and {1,−1, · · · , (−1)n, · · · }

Are there other solutions than the ones provided by Theorem 20.1? The
answer is yes according to the following theorem.

Theorem 20.2
If sn and tn are solutions to (20.1) then for any real numbers C and D the
sequence

an = Csn +Dtn, n ≥ 0

is also a solution.

Proof.
Since sn and tn are solutions to (20.1), for n ≥ 2 we have

sn =Asn−1 +Bsn−2

tn =Atn−1 +Btn−2.

Therefore,

Aan−1 +Ban−2 =A(Csn−1 +Dtn−1) +B(Csn−2 +Dtn−2)

=C(Asn−1 +Bsn−2) +D(Atn−1 +Btn−2)

=Csn +Dtn = an

so that an satisfies (20.1)

Example 20.6
Find a solution to the recurrence relation

a0 =1, a1 = 8

an =an−1 + 2an−2, n ≥ 2.
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Solution.
By the previous theorem and Example 20.5, an = C2n +D(−1)n, n ≥ 2 is a
solution to the recurrence relation

an = an−1 + 2an−2.

If an satisfies the system then we must have

a0 = C20 +D(−1)0

a1 = C21 +D(−1)1.

This yields the system {
C +D = 1
2C −D = 8.

Solving this system to find C = 3 and D = −2. Hence, an = 3 ·2n−2(−1)n

Next, we discuss the case when the characteristic equation has a single root.

Theorem 20.3
Let A and B be real numbers and suppose that the characteristic equation

t2 − At−B = 0

has a single root r. Then the sequences {1, r, r2, · · · } and {0, r, 2r2, 3r3, · · · , nrn, · · · }
both satisfy the recurrence relation

an = Aan−1 +Ban−2.

Proof.
Since r is a root to the characteristic equation, the sequence {1, r, r2, · · · } is
a solution to the recurrence relation

an = Aan−1 +Ban−2.

Now, since r is the only solution to the characteristic equation we have

(t− r)2 = t2 − At−B.

This implies that A = 2r and B = −r2. Let sn = nrn, n ≥ 0. Then

Asn−1 +Bsn−2 =A(n− 1)rn−1 +B(n− 2)rn−2

=2r(n− 1)rn−1 − r2(n− 2)rn−2

=2(n− 1)rn − (n− 2)rn

=nrn = sn

So sn is a solution to an = Aan−1 +Ban−2.
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Example 20.7
Find an explicit formula for

a0 =1, a1 = 3

an =4an−1 − 4an−2, n ≥ 2

Solution.
Solving the characteristic equation

t2 − 4t+ 4 = 0

we find the single root r = 2. Thus,

an = C2n +Dn2n

is a solution to the equation an = 4an−1 − 4an−2. Since a0 = 1 and a1 = 3,
we obtain the following system of equations:

C =1

2C + 2D =3

Solving this system to obtain C = 1 and D = 1
2
. Hence, an = 2n + n

2
2n

Example 20.8
A function is said to be defined recursively or to be a recursive function
if its rule of definition refers to itself. Define the factorial function recursively.

Solution.
We have

f(0) =1

f(n) =nf(n− 1), n ≥ 1

Example 20.9
Let G : N→ Z be the relation given by

G(n) =


1, if n = 1

1 +G(n
2
), if n is even

G(3n− 1), if n > 1 is odd.

Show that G is not a function.
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Solution.
Assume that G is a function so that G(5) exists. Listing the first five values
of G we find

G(1) =1

G(2) =2

G(3) =G(8) = 1 +G(4) = 2 +G(2) = 4

G(4) =1 +G(2) = 3

G(5) =G(14) = 1 +G(7)

=1 +G(20)

=2 +G(10)

=3 +G(5)

But the last equality implies that 0 = 3 which is impossible. Hence, G does
not define a function.
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Review Problems

Problem 20.1
Find the first four terms of the following recursively defined sequence:

v1 =1, v2 = 2

vn =vn−1 + vn−2 + 1, n ≥ 3.

Problem 20.2
Prove each of the following for the Fibonacci sequence:
(a) F 2

k − F 2
k−1 = FkFk+1 − Fk+1Fk−1, k ≥ 1.

(b) F 2
k+1 − F 2

k − F 2
k−1 = 2FkFk−1, k ≥ 1.

(c) F 2
k+1 − F 2

k = Fk−1Fk+2, k ≤ 1.
(d) Fn+2Fn − F 2

n+1 = (−1)n for all n ≥ 0.

Problem 20.3
Find limn→∞

Fn+1

Fn
where F0, F1, F2, · · · is the Fibonacci sequence. (Assume

that the limit exists.)

Problem 20.4
Define x0, x1, x2, · · · as follows:

xn =
√

2 + xn−1, x0 = 0.

Find limn→∞ xn.

Problem 20.5
Find a formula for each of the following sums:
(a) 1 + 2 + · · ·+ (n− 1), n ≥ 2.
(b) 3 + 2 + 4 + 6 + 8 + · · ·+ 2n, n ≥ 1.
(c) 3 · 1 + 3 · 2 + 3 · 3 + · · · 3 · n, n ≥ 1.

Problem 20.6
Find a formula for each of the following sums:
(a) 1 + 2 + 22 + · · ·+ 2n−1, n ≥ 1.
(b) 3n−1 + 3n−2 + · · ·+ 32 + 3 + 1, n ≥ 1.
(c) 2n + 3 · 2n−2 + 3 · 2n−3 + · · ·+ 3 · 22 + 3 · 2 + 3, n ≥ 1.
(d) 2n − 2n−1 + 2n−2 − 2n−3 + · · ·+ (−1)n−1 · 2 + (−1)n, n ≥ 1.
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Problem 20.7
Use iteration to guess a formula for the following recursively defined sequence
and then use mathematical induction to prove the validity of your formula:
c1 = 1, cn = 3cn−1 + 1, for all n ≥ 2.

Problem 20.8
Use iteration to guess a formula for the following recursively defined sequence
and then use mathematical induction to prove the validity of your formula:
w0 = 1, wn = 2n − wn−1, for all n ≥ 2.

Problem 20.9
Determine whether the recursively defined sequence: a1 = 0 and an = 2an−1+
n− 1 satisfies the recursive formula an = (n− 1)2, n ≥ 1.

Problem 20.10
Which of the following are second-order homogeneous recurrence relations
with constant coefficients?
(a) an = 2an−1 − 5an−2.
(b) bn = nbn−1 + bn−2.
(c) cn = 3cn−1 · c2n−2.
(d) dn = 3dn−1 + dn−2.
(e) rn = rn−1 − rn−2 − 2.
(f) sn = 10sn−2.

Problem 20.11
Let a0, a1, a2, · · · be the sequence defined by the recursive formula

an = C · 2n +D, n ≥ 0

where C and D are real numbers.
(a) Find C and D so that a0 = 1 and a1 = 3. What is a2 in this case?
(b) Find C and D so that a0 = 0 and a1 = 2. What is a2 in this case?

Problem 20.12

Let a0, a1, a2, · · · be the sequence defined by the recursive formula

an = C · 2n +D, n ≥ 0

where C and D are real numbers. Show that for any choice of C and D,

an = 3an−1 − 2an−2, n ≥ 2.
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Problem 20.13
Let a0, a1, a2, · · · be the sequence defined by the recursive formula

a0 =1, a1 = 2

an =2an−1 + 3an−2, n ≥ 2.

Find an explicit formula for the sequence.

Problem 20.14
Let a0, a1, a2, · · · be the sequence defined by the recursive formula

a0 =1, a1 = 4

an =2an−1 − an−2, n ≥ 2.

Find an explicit formula for the sequence.

Problem 20.15
Show that the relation F : N→ Z given by the rule

F (n) =


1 if n = 1.

F (n
2
) if n is even

1− F (5n− 9) if n is odd and n > 1

does not define a function.

Problem 20.16
Find a solution for the recurrence relation

a0 =1

an =an−1 + 2, n ≥ 1.

Problem 20.17
Find a solution to the recurrence relation

a0 =0

an =an−1 + (n− 1), n ≥ 1.

Problem 20.18
Find an explicit formula for the Fibonacci sequence

a0 =a1 = 1

an =an−1 + an−2.



Fundamentals of Counting

The major goal of this chapter is to establish several (combinatorial) tech-
niques for counting large finite sets without actually listing their elements.
These techniques provide effective methods for counting the size of events,
an important concept in probability theory.

171
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21 The Fundamental Principle of Counting

Sometimes one encounters the question of listing all the outcomes of a certain
experiment. One way for doing that is by constructing a so-called tree
diagram.

Example 21.1
List all two-digit numbers that can be constructed from the digits 1,2, and
3.

Solution.

The different numbers are {11, 12, 13, 21, 22, 23, 31, 32, 33}

Of course, trees are manageable as long as the number of outcomes is not
large. If there are many stages to an experiment and several possibilities
at each stage, the tree diagram associated with the experiment would be-
come too large to be manageable. For such problems the counting of the
outcomes is simplified by means of algebraic formulas. The commonly used
formula is the Fundamental Principle of Counting, also known as the
multiplication rule of counting, which states:

Theorem 21.1
If a choice consists of k steps, of which the first can be made in n1 ways,
for each of these the second can be made in n2 ways,· · · , and for each of
these the kth can be made in nk ways, then the whole choice can be made in
n1 · n2 · · · ·nk ways.
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Proof.
In set-theoretic term, we let Si denote the set of outcomes for the ith task,
i = 1, 2, · · · , k. Note that n(Si) = ni. Then the set of outcomes for the entire
job is the Cartesian product S1 × S2 × · · · × Sk = {(s1, s2, · · · , sk) : si ∈
Si, 1 ≤ i ≤ k}. Thus, we just need to show that

n(S1 × S2 × · · · × Sk) = n(S1) · n(S2) · · ·n(Sk).

The proof is by induction on k ≥ 2.

Basis of Induction
This is just Example 15.3(a).
Induction Hypothesis
Suppose

n(S1 × S2 × · · · × Sk) = n(S1) · n(S2) · · ·n(Sk).

Induction Conclusion
We must show

n(S1 × S2 × · · · × Sk+1) = n(S1) · n(S2) · · ·n(Sk+1).

To see this, note that there is a one-to-one and onto correspondence be-
tween the sets S1 × S2 × · · · × Sk+1 and (S1 × S2 × · · ·Sk) × Sk+1 given by
f(s1, s2, · · · , sk, sk+1) = ((s1, s2, · · · , sk), sk+1). Thus, n(S1×S2×· · ·×Sk+1) =
n((S1×S2×· · ·Sk)×Sk+1) = n(S1×S2×· · ·Sk)n(Sk+1) ( by Example 15.3(a)).
Now, applying the induction hypothesis gives

n(S1 × S2 × · · ·Sk × Sk+1) = n(S1) · n(S2) · · ·n(Sk+1)

Example 21.2
The following three factors were considered in the study of the effectivenenss
of a certain cancer treatment:

(i) Medicine (A1, A2, A3, A4, A5)
(ii) Dosage Level (Low, Medium, High)
(iii) Dosage Frequency (1,2,3,4 times/day)

Find the number of ways that a cancer patient can be given the medecine?
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Solution.
The choice here consists of three stages, that is, k = 3. The first stage, can be
made in n1 = 5 different ways, the second in n2 = 3 different ways, and the
third in n3 = 4 ways. Hence, the number of possible ways a cancer patient
can be given medecine is n1 · n2 · n3 = 5 · 3 · 4 = 60 different ways

Example 21.3
How many license-plates with 3 letters followed by 3 digits exist?

Solution.
A 6-step process: (1) Choose the first letter, (2) choose the second letter,
(3) choose the third letter, (4) choose the first digit, (5) choose the second
digit, and (6) choose the third digit. Every step can be done in a number of
ways that does not depend on previous choices, and each license plate can
be specified in this manner. So there are 26 · 26 · 26 · 10 · 10 · 10 = 17, 576, 000
ways

Example 21.4
How many numbers in the range 1000 - 9999 have no repeated digits?

Solution.
A 4-step process: (1) Choose first digit, (2) choose second digit, (3) choose
third digit, (4) choose fourth digit. Every step can be done in a number
of ways that does not depend on previous choices, and each number can be
specified in this manner. So there are 9 · 9 · 8 · 7 = 4, 536 ways

Example 21.5
How many license-plates with 3 letters followed by 3 digits exist if exactly
one of the digits is 1?

Solution.
In this case, we must pick a place for the 1 digit, and then the remaining
digit places must be populated from the digits {0, 2, · · · 9}. A 6-step process:
(1) Choose the first letter, (2) choose the second letter, (3) choose the third
letter, (4) choose which of three positions the 1 goes, (5) choose the first
of the other digits, and (6) choose the second of the other digits. Every
step can be done in a number of ways that does not depend on previous
choices, and each license plate can be specified in this manner. So there are
26 · 26 · 26 · 3 · 9 · 9 = 4, 270, 968 ways
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Review Problems

Problem 21.1
If each of the 10 digits 0-9 is chosen at random, how many ways can you
choose the following numbers?
(a) A two-digit code number, repeated digits permitted.
(b) A three-digit identification card number, for which the first digit cannot
be a 0. Repeated digits permitted.
(c) A four-digit bicycle lock number, where no digit can be used twice.
(d) A five-digit zip code number, with the first digit not zero. Repeated
digits permitted.

Problem 21.2
(a) If eight cars are entered in a race and three finishing places are considered,
how many finishing orders can they finish? Assume no ties.
(b) If the top three cars are Buick, Honda, and BMW, in how many possible
orders can they finish?

Problem 21.3
You are taking 2 shirts(white and red) and 3 pairs of pants (black, blue, and
gray) on a trip. How many different choices of outfits do you have?

Problem 21.4
A Poker club has 10 members. A president and a vice-president are to be
selected. In how many ways can this be done if everyone is eligible?

Problem 21.5
In a medical study, patients are classified according to whether they have
regular (RHB) or irregular heartbeat (IHB) and also according to whether
their blood pressure is low (L), normal (N), or high (H). Use a tree diagram
to represent the various outcomes that can occur.

Problem 21.6
If a travel agency offers special weekend trips to 12 different cities, by air,
rail, bus, or sea; in how many different ways can such a trip be arranged?

Problem 21.7
If twenty different types of wine are entered in wine-tasting competition, in
how many different ways can the judges award a first prize and a second
prize?
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Problem 21.8
In how many ways can the 24 members of a faculty senate of a college choose
a president, a vice-president, a secretary, and a treasurer?

Problem 21.9
Find the number of ways in which four of ten new novels can be ranked first,
second, third, and fourth according to their figure sales for the first three
months.

Problem 21.10
How many ways are there to seat 8 people, consisting of 4 couples, in a row
of seats (8 seats wide) if all couples are to get adjacent seats?

Problem 21.11
On an English test, a student must write two essays. For the first essay,
the student must select from topics A, B, and C. For the second essay, the
student must select from topics 1, 2, 3, and 4. How many different ways can
the student select the two essay topics?

Problem 21.12
A civics club consists of 9 female Democrats, 5 male Democrats, 6 female
Republicans, and 7 male Republicans. How many ways can the club choose
(a) a female Democrat and a male Republican to serve on the budget com-
mittee?
(b) a female Democrat or a male Republican to serve as chairperson?
(c) a female or a Republican to serve as chairperson?

Problem 21.13
To open your locker at the fitness center, you must enter five digits in order
from the set 0, 1, 2, · · · , 9. How many different keypad patterns are possible
if
(a) any digits can be used in any position and repetition of digits is allowed?
(b) the digit 0 cannot be used as the first digit, but otherwise any digit can
be used in any position and repetition is allowed?
(c) any digits can be used in any position, but repetition is not allowed?

Problem 21.14
Professor Watson teaches an advanced cognitive sociology class of 10 stu-
dents. She has a visually challenged student, Marie, who must sit in the
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front row next to her tutor, who is also a member of the class. If there are
six chairs in the first row of her classroom, how many different ways can
Professor Watson assign students to sit in the first row?

Problem 21.15
Mias Pizza advertises a special in which you can choose a thin crust, thick
crust, or cheese crust pizza with any combination of different toppings. The
ad says that there are almost 200 different ways that you can order the pizza.
What is the smallest number of toppings available?

Problem 21.16
Telephone numbers in the United States have 10 digits. The first three are
the area code and the next seven are the local telephone number. How many
different telephone numbers are possible within each area code? (A telephone
number cannot have 0 or 1 as its first or second digit.)

Problem 21.17
How many non-repeating odd three-digit counting numbers are there?

Problem 21.18
A teacher is taking 13 pre-schoolers to the park. How many ways can the
children line up, in a single line, to board the bus?

Problem 21.19
A travel agent plans trips for tourists from Chicago to Miami. He gives them
three ways to get from town to town: airplane, bus, train. Once the tourists
arrive, there are two ways to get to the hotel: hotel van or taxi. The cost of
each type of transportation is given in the table below.

Transportation Type Cost ($)
Airplane 350
Bus 150
Train 225
Hotel Van 60
Taxi 40

Draw a tree diagram to illustrate the possible choices for the tourists. De-
termine the cost for each outcome.
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Problem 21.20
Suppose that we are carrting out a quality control check in a particleboard
mill and we have to select 3 sheets from the production line, 1 piece at a
time. The mill produces either defective (D) or non-defective (N) boards.
Draw a tree diagram showing all the outcomes.
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22 Permutations

Consider the following problem: In how many ways can 8 horses finish in a
race (assuming there are no ties)? We can look at this problem as a decision
consisting of 8 steps. The first step is the possibility of a horse to finish first
in the race, the second step is the possibility of a horse to finish second, · · · ,
the 8th step is the possibility of a horse to finish 8th in the race. Thus, by
the Fundamental Principle of Counting there are

8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 = 40, 320 ways.

This problem exhibits an example of an ordered arrangement, that is, the
order the objects are arranged is important. Such an ordered arrangement is
called a permutation. Products such as 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 can be written
in a shorthand notation called factorial. That is, 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 = 8!
(read “8 factorial”). In general, we define n factorial by

n! = n(n− 1)(n− 2) · · · 3 · 2 · 1, n ≥ 1

where n is a whole number. By convention we define

0! = 1

Example 22.1
Evaluate the following expressions: (a) 6! (b) 10!

7!
.

Solution.
(a) 6! = 6 · 5 · 4 · 3 · 2 · 1 = 720
(b) 10!

7!
= 10·9·8·7·6·5·4·3·2·1

7·6·5·4·3·2·1 = 10 · 9 · 8 = 720

Using factorials and the Fundamental Principle of Counting, we see that
the number of permutations of n objects is n!.

Example 22.2
There are 5! permutations of the 5 letters of the word “rehab.” In how many
of them is h the second letter?

Solution.
Then there are 4 ways to fill the first spot. The second spot is filled by the
letter h. There are 3 ways to fill the third, 2 to fill the fourth, and one way
to fill the fifth. There are 4! such permutations
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Example 22.3
Five different books are on a shelf. In how many different ways could you
arrange them?

Solution.
The five books can be arranged in 5 · 4 · 3 · 2 · 1 = 5! = 120 ways

Counting Permutations
We next consider the permutations of a set of objects taken from a larger
set. Suppose we have n items. How many ordered arrangements of k items
can we form from these n items? The number of permutations is denoted
by nPk. The n refers to the number of different items and the k refers to the
number of them appearing in each arrangement. A formula for nPk is given
next.

Theorem 22.1
For any non-negative integer n and 0 ≤ k ≤ n we have

nPk =
n!

(n− k)!
.

Proof.
We can treat a permutation as a decision with k steps. The first step can be
made in n different ways, the second in n − 1 different ways, ..., the kth in
n − k + 1 different ways. Thus, by the Fundamental Principle of Counting
there are n(n − 1) · · · (n − k + 1) k−permutations of n objects. That is,

nPk = n(n− 1) · · · (n− k + 1) = n(n−1)···(n−k+1)(n−k)!
(n−k)! = n!

(n−k)!

Example 22.4
How many license plates are there that start with three letters followed by 4
digits (no repetitions)?

Solution.
The decision consists of two steps. The first is to select the letters and this
can be done in 26P3 ways. The second step is to select the digits and this
can be done in 10P4 ways. Thus, by the Fundamental Principle of Counting
there are 26P3 ·10 P4 = 78, 624, 000 license plates

Example 22.5
How many five-digit zip codes can be made where all digits are different?
The possible digits are the numbers 0 through 9.
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Solution.
The answer is 10P5 = 10!

(10−5)! = 30, 240 zip codes
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Review Problems

Problem 22.1
Find m and n so that mPn = 9!

6!

Problem 22.2
How many four-letter code words can be formed using a standard 26-letter
alphabet
(a) if repetition is allowed?
(b) if repetition is not allowed?

Problem 22.3
Certain automobile license plates consist of a sequence of three letters fol-
lowed by three digits.
(a) If letters can not be repeated but digits can, how many possible license
plates are there?
(b) If no letters and no digits are repeated, how many license plates are
possible?

Problem 22.4
A permutation lock has 40 numbers on it.
(a) How many different three-number permutation lock can be made if the
numbers can be repeated?
(b) How many different permutation locks are there if the three numbers are
different?

Problem 22.5
(a) 12 cabinet officials are to be seated in a row for a picture. How many
different seating arrangements are there?
(b) Seven of the cabinet members are women and 5 are men. In how many
different ways can the 7 women be seated together on the left, and then the
5 men together on the right?

Problem 22.6
Using the digits 1, 3, 5, 7, and 9, with no repetitions of the digits, how many
(a) one-digit numbers can be made?
(b) two-digit numbers can be made?
(c) three-digit numbers can be made?
(d) four-digit numbers can be made?
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Problem 22.7
There are five members of the Math Club. In how many ways can the
positions of a president, a secretary, and a treasurer, be chosen?

Problem 22.8
Find the number of ways of choosing three initials from the alphabet if none
of the letters can be repeated. Name initials such as MBF and BMF are
considered different.

Problem 22.9
(a) How many four-letter words can be made using the standard alphabet?
(b) How many four-letter words can be made using the standard alphabet,
where the letters are all different?
(c) How many four-letter words have at least two letters the same?

Problem 22.10
Twelve people need to be photographed, but there are only five chairs. (The
rest of the people will be standing behind and their order does not matter.)
How many ways can you sit the twelve people on the five chairs?

Problem 22.11
An investor is going to invest $16,000 in 4 stocks chosen from a list of 12
prepared by his broker. How many different investments are possible if $6,000
is invested in one stock, $5,000 in another, $3,000 in the third, and $2,000 in
the fourth?

Problem 22.12
Suppose certain account numbers are to consist of two letters followed by
four digits and then three more letters, where repetitions of letters or digits
are not allowed within any of the three groups, but the last group of letters
may contain one or both of those used in the first group. How many such
accounts are possible?

Problem 22.13
A suitcase contains 6 distinct pairs of socks and 4 distinct pairs of pants. If a
traveler randomly picks 2 pairs of socks and then 3 pairs of pants, how many
ways can this be done?
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Problem 22.14
The number of permutations of n items, where n1 items are identical, n2

items are identical, n3 items are identical, and so on, is given by:

n!

n1!n2! · · ·
.

In how many distinct ways can the letters of the word MISSISSIPPI be
arranged?

Problem 22.15
How many different seven-digit phone numbers can be made from the digits
1,1,1,3,3,5,5?
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23 Combinations

In a permutation the order of the set of objects or people is taken into ac-
count. However, there are many problems in which we want to know the
number of ways in which k objects can be selected from n distinct objects in
arbitrary order. For example, when selecting a two-person committee from a
club of 10 members the order in the committee is irrelevant. That is choosing
Mr. A and Ms. B in a committee is the same as choosing Ms. B and Mr. A.
A combination is defined as a possible selection of a certain number of objects
taken from a group without regard to order. More precisely, the number of
k−element subsets of an n−element set is called the number of combina-
tions of n objects taken k at a time. It is denoted by nCk and is read
“n choose k”. The formula for nCk is given next.

Theorem 23.1
If nCk denotes the number of ways in which k objects can be selected from
a set of n distinct objects then

nCk =
nPk

k!
=

n!

k!(n− k)!
.

Proof.
Since the number of groups of k elements out of n elements is nCk and each
group can be arranged in k! ways, we have nPk = k!nCk. It follows that

nCk =
nPk

k!
=

n!

k!(n− k)!

An alternative notation for nCk is

(
n
k

)
. We define nCk = 0 if k < 0 or

k > n.

Example 23.1
A jury consisting of 2 women and 3 men is to be selected from a group of 5
women and 7 men. In how many different ways can this be done? Suppose
that either Steve or Harry must be selected but not both, then in how many
ways this jury can be formed?

Solution.
There are 5C2 ·7 C3 = 350 possible jury combinations consisting of 2 women
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and 3 men. Now, if we suppose that Steve and Harry can not serve together
then the number of jury groups that do not include the two men at the same
time is (5C2)(5C2)(2C1) = 200

The next theorem discusses some of the properties of combinations.

Theorem 23.2
Suppose that n and k are whole numbers with 0 ≤ k ≤ n. Then
(a) nC0 =n Cn = 1 and nC1 =n Cn−1 = n.
(b) Symmetry property: nCk =n Cn−k.
(c) Pascal’s identity: n+1Ck =n Ck−1 +n Ck.

Proof.
(a) From the formula of nCk we have nC0 = n!

0!(n−0)! = 1 and nCn = n!
n!(n−n)! =

1. Similarly, nC1 = n!
1!(n−1)! = n and nCn−1 = n!

(n−1)! = n.

(b) Indeed, we have nCn−k = n!
(n−k)!(n−n+k)!

= n!
k!(n−k)! =n Ck.

(c) We have

nCk−1 +n Ck =
n!

(k − 1)!(n− k + 1)!
+

n!

k!(n− k)!

=
n!k

k!(n− k + 1)!
+
n!(n− k + 1)

k!(n− k + 1)!

=
n!

k!(n− k + 1)!
(k + n− k + 1)

=
(n+ 1)!

k!(n+ 1− k)!
=n+1 Ck

Example 23.2
The Russellville School District has six members. In how many ways
(a) can all six members line up for a picture?
(b) can they choose a president and a secretary?
(c) can they choose three members to attend a state conference with no
regard to order?

Solution.
(a) 6P6 = 6! = 720 different ways
(b) 6P2 = 30 ways
(c) 6C3 = 20 different ways
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Pascal’s identity allows one to construct the so-called Pascal’s triangle (for
n = 10) as shown in Figure 16.1.

Figure 16.1

As an application of combination we have the following theorem which pro-
vides an expansion of (x+ y)n, where n is a non-negative integer.

Theorem 23.3 (Binomial Theorem)
Let x and y be variables, and let n be a non-negative integer. Then

(x+ y)n =
n∑

k=0

nCkx
n−kyk

where nCk will be called the binomial coefficient.

Proof.
The proof is by induction on n.

Basis of induction: For n = 0 we have

(x+ y)0 =
0∑

k=0

0Ckx
0−kyk = 1.

Induction hypothesis: Suppose that the theorem is true up to n. That is,

(x+ y)n =
n∑

k=0

nCkx
n−kyk
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Induction step: Let us show that it is still true for n+ 1. That is

(x+ y)n+1 =
n+1∑
k=0

n+1Ckx
n−k+1yk.

Indeed, we have

(x+ y)n+1 =(x+ y)(x+ y)n = x(x+ y)n + y(x+ y)n

=x
n∑

k=0

nCkx
n−kyk + y

n∑
k=0

nCkx
n−kyk

=
n∑

k=0

nCkx
n−k+1yk +

n∑
k=0

nCkx
n−kyk+1

=[nC0x
n+1 + nC1x

ny + nC2x
n−1y2 + · · ·+ nCnxy

n]

+[nC0x
ny + nC1x

n−1y2 + · · ·+ nCn−1xy
n + nCny

n+1]

=n+1C0x
n+1 + [nC1 + nC0]x

ny + · · ·+
[nCn + nCn−1]xy

n + n+1Cn+1y
n+1

=n+1C0x
n+1 + n+1C1x

ny + n+1C2x
n−1y2 + · · ·

+n+1Cnxy
n + n+1Cn+1y

n+1

=
n+1∑
k=0

n+1Ckx
n−k+1yk.

Note that the coefficients in the expansion of (x + y)n are the entries of the
(n+ 1)st row of Pascal’s triangle.

Example 23.3
Expand (x+ y)6 using the Binomial Theorem.

Solution.
By the Binomial Theorem and Pascal’s triangle we have

(x+ y)6 = x6 + 6x5y + 15x4y2 + 20x3y3 + 15x2y4 + 6xy5 + y6

Example 23.4
How many subsets are there of a set with n elements?
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Solution.
Since there are nCk subsets of k elements with 0 ≤ k ≤ n, the total number
of subsets of a set of n elements is

n∑
k=0

nCk = (1 + 1)n = 2n
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Review Problems

Problem 23.1
Find m and n so that mCn = 13

Problem 23.2
A club with 42 members has to select three representatives for a regional
meeting. How many possible choices are there?

Problem 23.3
In a UN ceremony, 25 diplomats were introduced to each other. Suppose
that the diplomats shook hands with each other exactly once. How many
handshakes took place?

Problem 23.4
There are five members of the math club. In how many ways can the two-
person Social Committee be chosen?

Problem 23.5
A medical research group plans to select 2 volunteers out of 8 for a drug
experiment. In how many ways can they choose the 2 volunteers?

Problem 23.6
A consumer group has 30 members. In how many ways can the group choose
3 members to attend a national meeting?

Problem 23.7
Which is usually greater the number of combinations of a set of objects or
the number of permutations?

Problem 23.8
Determine whether each problem requires a combination or a permutation:
(a) There are 10 toppings available for your ice cream and you are allowed to
choose only three. How many possible 3-topping combinations can yo have?
(b) Fifteen students participated in a spelling bee competition. The first
place winner will receive $1,000, the second place $500, and the third place
$250. In how many ways can the 3 winners be drawn?

Problem 23.9
Use the binomial theorem and Pascal’s triangle to find the expansion of
(a+ b)7.
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Problem 23.10
Find the 5th term in the expansion of (2a− 3b)7.

Problem 23.11
Does order matters for the following situations:
(a) 7 digits selected for a phone number.
(b) 3 member of the Math Faculty are selected to form a selection committee
for a Discrete Mathematics textbook.
(c) Among all ATU Math Majors, 4 officers must be elected to be the Presi-
dent, Vice-President, Treasurer, and Secretary of the Math Club.

Problem 23.12
(a) Out of a class of 15 students 1 must be chosen to do office duty, 1 to be
register monitor and one to be a captain, how many ways can these roles be
handed out?
(b) Out of a class of 15 students 3 are needed to do a display, how many
ways can they be chosen?

Problem 23.13
Find the constant term in the expansion

(
2x2 − 1

x

)6
.

Problem 23.14
A term in the expansion of (ma− 4)5 is −5760a2. What is the value of m?

Problem 23.15
Find the value of k if the expansion (a− 2)3k−5 consists of 23 terms.

Problem 23.16
In the expansion of (5a− 2b)9, find the coefficient of the term containing a5.

Problem 23.17
What is the third term in row 22 of Pascal’s triangle?

Problem 23.18
In how many ways can a President, a Vice-President and a committee of 3
can be selected from a group of 7 individuals?

Problem 23.19
When playing the lottery there are 6 different balls ranging between 0 and
60 that can be chosen from. How many different possibilities are there when
picking lottery numbers?
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Problem 23.20
Suppose you have a group of 10 children consisting of 4 girls and 6 boys.
(a) How many four-person teams can be chosen that consist of two girls and
two boys?
(b) How many four-person teams contain at least one girl?



Basics of Graph Theory

In this chapter we present the basic concepts related to graphs and trees such
as the degree of a vertex, connectedness, Euler and Hamiltonian circuits,
isomorphisms of graphs, rooted and spanning trees.
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24 Graphs and the Degree of a Vertex

An undirected graph G consists of a set VG of vertices and a set EG of
edges such that each edge e ∈ EG is associated with an unordered pair of
vertices, called its endpoints.
A directed graph or digraph G consists of a set VG of vertices and a set
EG of edges such that each edge e ∈ EG is associated with an ordered pair
of vertices.
We denote a graph by G = (VG, EG).

Example 24.1
Find the vertices and edges of the directed graph shown in Figure 24.1.

Figure 24.1

Solution.
The vertices are

VG = {0, 1, 2, 3, 4, 5, 6}

and the edges are

EG = {(0, 2), (0, 4), (0, 5), (1, 0), (2, 1), (2, 5), (3, 1), (3, 6), (4, 0), (4, 5), (6, 3), (6, 5)}

Two vertices are said to be adjacent if there is an edge connecting the two
vertices. Two edges associated to the same vertices are called parallel. An
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edge incident to a single vertex is called a loop. A vertex that is not incident
on any edge is called an isolated vertex. A graph with neither loops nor
parallel edges is called a simple graph.

Example 24.2
Consider the following graph G = (VG, EG).

Figure 24.2

(a) Find EG and VG.
(b) List the isolated vertices.
(c) List the loops.
(d) List the parallel edges.
(e) List the vertices adjacent to {3}.
(f) Find all edges incident on {8}.

Solution.
(a) We have

VG = {1, 2, 3, 4, 5, 6, 7, 8}

and
EG = {e1, e2, · · · , e14}.

(b) There is only one isolated vertex, {4}.
(c) There are two loops {e6, e14}.
(d) {e2, e3, e11, e12, e13}.
(e) {2, 3, 5, 8}.
(f) {e2, e3, e4, e7, e9, e11, e12, e13}
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Example 24.3
Which one of the following graphs is simple?

Figure 24.3

Solution.
(i) G is not simple since it has a loop and parallel edges.
(ii) and (iii) are simple graphs

A complete graph on n vertices, denoted by Kn, is the simple graph that
contains exactly one edge between each pair of distinct vertices.

Example 24.4
Draw K2, K3, and K4.

Solution.
K2, K4 and K5 are shown in Figure 24.4

Figure 24.4
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A graph in which the vertices can be partitioned into two disjoint sets V1
and V2 such that each edge connects a vertex of V1 to a vertex in V2 is called
bipartite graph.

Example 24.5
(a) Show that the graph G is bipartite.

Figure 24.5

(b) Show that K3 is not bipartite.

Solution.
(a) Clear from the definition and the graph.
(b) Any two sets of vertices of K3 will have one set with at least two vertices.
Thus, according to the definition of bipartite graph, K3 is not bipartite

A complete bipartite graph is a bipartite graph in which each vertex
in the first set is joined to each vertex in the second set by exactly one edge.
If the first set has m elements and the second set has n elements then we
denote the bipartite graph by Km,n.

Example 24.6
Draw K2,3 and K3,3.

Solution.
K2,3 and K3,3 are given in Figure 24.6
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Figure 24.6

The degree of a vertex v in an undirected graph, in symbol deg(v), is the
number of edges incident on it. By definition, a loop at a vertex contributes
twice to the degree of that vertex. The total degree of G is the sum of the
degrees of all the vertices of G.

Example 24.7
What are the degrees of the vertices in Figure 24.7.

Figure 24.7

Solution.
deg(B) = 0, deg(A) = 5, deg(T ) = 3, deg(M) = 3, and deg(H) = 5

Theorem 24.1 (The Handshaking Theorem)
For any graph G = (VG, EG) we have

2|EG| =
∑
v∈VG

deg(v).
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Proof.
Suppose that VG = {v1, v2, · · · , vn}. Let e ∈ EG. If e is a loop then it con-
tributes 2 to the total degree of G. If e is not a loop then let vi and vj
denote the endpoints of e. Then e contributes 1 to deg(vi) and contributes
1 to the deg(vj). Therefore, e contributes 2 to the total degree of G. Since e
was chosen arbitrarily, this shows that each edge of G contributes 2 to the
total degree of G. Thus,

2|EG| =
∑

v∈V (G)

deg(v)

The following is easily deduced from the previous theorem.

Theorem 24.2
In any graph there are an even number of vertices of odd degree.

Proof.
Let G = (VG, EG) be a graph. By the previous theorem, the sum of all the
degrees of the vertices is T = 2|EG|, an even number. Let E be the sum of
the numbers deg(v), each which is even and O the sum of numbers deg(v)
each which is odd. Then T = E +O. That is, O = T −E. Since both T and
E are even, O is also even. This implies that there must be an even number
of the odd degrees. Hence, there must be an even number of vertices with
odd degree.

Example 24.8
Find a formula for the number of edges in Kn.

Solution.
Since G is complete, each vertex is adjacent to the remaining vertices. Thus,
the degree of each of the n vertices is n−1, and we have the sum of the degrees
of all of the vertices being n(n− 1). By Theorem 24.1, n(n− 1) = 2|EG|
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Review Problems

Problem 24.1
Find the vertices and edges of the following directed graph.

Problem 24.2
Consider the following graph G

(a) Find EG and VG.
(b) List the isolated vertices.
(c) List the loops.
(d) List the parallel edges.
(e) List the vertices adjacent to v3.
(f) Find all edges incident on v4.

Problem 24.3
Which one of the following graphs is simple?
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Problem 24.4
Draw K5.

Problem 24.5
Which of the following graph is bipartite?

Problem 24.6
Draw the complete bipartite graph K2,4.

Problem 24.7
What are the degrees of the vertices in the following graph
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Problem 24.8
The union of two graphs G1 = (V1, E1) and G2 = (V2, E2) is the graph
G1 ∪G2 = (V1 ∪ V2, E1 ∪E2). The intersection of two graphs G1 = (V1, E1)
and G2 = (V2, E2) is the graph G1 ∩G2 = (V1 ∩ V2, E1 ∩ E2).
Find the union and the intersection of the graphs

Problem 24.9
Graphs can be represented using matrices. The adjacency matrix of a graph
G with n vertices is an n×n matrix AG such that each entry aij is the number
of edges connecting vi and vj. Thus, aij = 0 if there is no edge from vi to vj.
(a) Draw a graph with the adjacency matrix

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0


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(b) Use an adjacency matrix to represent the graph

Problem 24.10
A graph H = (VH , EH) is a subgraph of G = (VG, EG) if and only if VH ⊆ VG
and EH ⊆ EG.
Find all nonempty subgraphs of the graph

Problem 24.11
When (u, v) is an edge in a directed graph G then u is called the initial
vertex and v is called the terminal vertex. In a directed graph, the in-
degree of a vertex v, denoted by deg−(v), is the number of edges with v as
their terminal vertex. Similarly, the out-degree of v, denoted by deg+(v),
is the number of edges with v as an initial vertex. Note that deg(v) =
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deg+(v) + deg−(v).
Find the in-degree and out-degree of each of the vertices in the graph G with
directed edges.

Problem 24.12
Show that for a digraph G = (VG, EG) we have

|EG| =
∑

v∈V (G)

deg−(v) =
∑

v∈V (G)

deg+(v).

Problem 24.13
Another useful matrix representation of a graph is known as the incidence
matrix. It is constructed as follows. We label the rows with the vertices
and the columns with the edges. The entry for row v and column e is 1 if e
is incident on v and 0 otherwise. If e is a loop at v we assign the value 2. It
is easy to see that the sum of entries of each column is 2 and that the sum
of entries of a row gives the degree of the vertex corresponding to that row.
Find the incidence matrix corresponding to the graph



24 GRAPHS AND THE DEGREE OF A VERTEX 205

Problem 24.14
If each vertex of an undirected graph has degree k then the graph is called a
regular graph of degree k.
How many edges are there in a graph with 10 vertices each of degree 6?

Problem 24.15
Find the vertices and edges of the directed graph shown below.

Problem 24.16
Consider the following graph G = (VG, EG).
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(a) List the isolated vertices.
(b) List the loops.
(c) List the parallel edges.
(d) List the vertices adjacent to {b}.
(e) Find all edges incident on {b}.

Problem 24.17
Which one of the following graphs is simple?

Problem 24.18
Draw the complete graph K6.

Problem 24.19
Show that each of the following graphs is bipartite.

Problem 24.20
Graph the complete bipartite graphs K3,2 and K2,5.

Problem 24.21
Find the dgree of each vertex of the graph below.
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25 Paths and Circuits

In an undirected graph G, a sequence of n non-repeated edges connecting
two vertices is called a path of length n. A circuit, a cycle, or a closed
path is a path which the first and last vertices are the same. A path or
circuit is simple if no vertex is repeated. A graph that does not contain any
circuit is called acyclic.

Example 25.1
In the graph below, determine whether the following sequences are paths,
simple paths, circuits, or simple circuits.

Figure 25.1

(a) v0e1v1e10v5e9v2e2v1.
(b) v3e5v4e8v5e10v1e3v2.
(c) v1e2v2e3v1.
(d) v5e9v2e4v3e5v4e6v4e8v5.

Solution.
(a) a path (no repeated edge), not a simple path (repeated vertex v1), not a
circuit
(b) a simple path
(c) a simple circuit
(d) a circuit, not a simple circuit (vertex v4 is repeated)

Example 25.2
Give an example of an acyclic graph with three vertices.
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Solution.
One such an example is shown in Figure 25.2

Figure 25.2

An undirected graph is called connected if there is a path between every
pair of distinct vertices of the graph. A graph that is not connected is said
to be disconnected. Basically, a graph that is in one piece is said to be
connected, whereas one which splits into several pieces is disconnected. Each
piece in a disconnected graph is called a component.

Example 25.3
Determine which graph is connected and which one is disconnected.

Figure 25.3

Solution.
(I) is connected whereas (II) and (III) are disconnected

A path that contains all edges of a graph G is called an Euler path. If
this path is also a circuit, it is called an Euler circuit. Note that an Euler
path starts and ends at different vertices whereas an Euler circuit starts and
ends at the same vertex.
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Example 25.4
Consider the graph in Figure 25.4.

Figure 25.4

(a) Is the circuit ABCDEFA an Euler circuit? Explain.
(b) Is the circuit ABCDEFBDFA an Euler circuit? Explain.

Solution.
(a) The circuit ABCDEFA is not an Euler circuit since it does not uses the
edges BD,DF, FB.
(b) The circuit ABCDEFBDFA is an Euler circuit since it uses all the
edges of the graph

How can we tell if a graph has an Euler circuit or an Euler path? The
following theorem whose proof is omitted provides criteria for the existence
of either Euler path or Euler circuit.

Theorem 25.1 (Euler’s Theorem)
Let G be a connected graph.
(a) If a vertex has odd degree, then G has no Euler circuit.
(b) If every vertex has even degree, then G has an Euler circuit.
(c) If there are exactly two vertices of odd degree, then G has an Euler path
that starts at one of these vertices and ends at the other.
(d) If there are more than two vertices of odd degree, then G has no Euler
path.

Example 25.5
Show that the following graph has no Euler circuit.
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Figure 25.5

Solution.
Vertices v1 and v3 both have degree 3, which is odd. Hence, by Theorem
25.1, this graph does not have an Euler circuit

Example 25.6
Show that the following graph has an Euler path.

Figure 25.6

Solution.
We have deg(A) = deg(B) = 3 and deg(C) = deg(D) = deg(E) = 4. Hence,
by Theorem 25.1, the graph has an Euler path

A path is called a Hamiltonian path if it visits every vertex of the graph
exactly once. A circuit that visits every vertex exactly once except for the
last vertex which duplicates the first one is called a Hamiltonian circuit.
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Example 25.7
Find a Hamiltonian circuit in the graph

Solution.
vwxyzv

Example 25.8
Show that the following graph has a Hamiltonian path but no Hamiltonian
circuit.

Solution.
vwxyz is a Hamiltonian path. There is no Hamiltonian circuit since no cycle
goes through v
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Review Problems

Problem 25.1
Consider the graph shown below.

(a) Give an example of a path of length 4 connecting the vertices A and
C.
(b) Give an example of a simple path of length 4 connecting the vertices A
and B.
(c) Give an example of a simple circuit of length 5 starting and ending at A.

Problem 25.2
Give an example of an acyclic graph with four vertices.

Problem 25.3
Determine which graph is connected and which one is disconnected.
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Problem 25.4
Show that the following graph has an Euler circuit.

Problem 25.5
Show that the following graph has no Hamiltonian path.

Problem 25.6
Which of the graphs shown below are connected?

Problem 25.7
If a graph is disconnected then the various connected pieces of the grapg
are called the connected components. Find the number of connected
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components of each of the given graphs.

Problem 25.8
Find the connected components of the graph shown below.

Problem 25.9
Show that the graphs given below do not have an Euler circuit.

Problem 25.10
Show that the graphs given below do not have an Euler path.
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Problem 25.11
Show that the graph given below has an Euler path.

Problem 25.12
Does the graph shown below have a Hamiltonian circuit?

Problem 25.13
Does the graph shown below have a Hamiltonian circuit?
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Problem 25.14
Does the graph shown below have a Hamiltonian circuit?

Problem 25.15
Given the graph below.

Determine which of the following sequences are paths, simple paths, cir-
cuits, or simple circuits:
(a) (i) v2e3v3e5v4e7v6
(ii) e2e3e9e7e7e5e6
(iii) v3v4v2v3
(iv) v5v3v4v2v3v5.
(b) Give an example of a path of length 4.

Problem 25.16
Draw an acyclic graph with five vertices.
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Problem 25.17
Determine which of the following graphs are connected?

Problem 25.18
Consider the graph shown below.

(a) Is the path BBADCDEBC an Euler path?
(b) Is the path CDCBBADEB an Euler path?
(c) Is the path CDCBBADEBC an Euler circuit?
(d) Is the path CDEBBADC an Euler circuit?

Problem 25.19
Show that the following graph has no Euler circuit and no Euler path.



25 PATHS AND CIRCUITS 219

Problem 25.20
Show that the following graph has an Euler circuit.

Problem 25.21
Show that the following graph has an Euler path.

Problem 25.22
Find a Hamiltonian circuit and a Hamiltonian path in the graph
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26 Trees

An undirected graph is called a tree if each pair of distinct vertices has
exactly one path between them. Thus, a tree has no parallel edges or loops.
Trees are examples of connected acyclic graphs.

Example 26.1
Which of the following graphs are trees?

Figure 26.1

Solution.
(a) and (c) satisfy the definition of a tree whereas (b) does not

A vertex of degree 1 in a tree is called a leaf. A vertex of degree 2 or
more in a tree is called a branch.
Next, we want to show that the number of edges in a tree is one fewer than
the number of vertices. In order to prove this result, we establish first the
following lemma.

Lemma 26.1
Let T be a graph with more than one vertex. If T is a tree then one vertex
must be of degree 1.

Proof.
We use contrapositive to prove the lemma. Suppose that graph T has no
vertex of degree 1. Starting at any vertex v, follow a sequence of distinct
edges until a vertex repeats; this is possible because the degree of every ver-
tex is at least two, so upon arriving at a vertex for the first time it is always
possible to leave the vertex on another edge. When a vertex repeats for the
first time, we have discovered a cycle. Hence, T is not a tree
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The following result shows that trees have one fewer edge than they have
vertices. Thus, it can be used as a criterion for showing that a graph is not
a tree.

Theorem 26.1
A tree with n vertices has exactly n− 1 edges. That is, if G = (VG, EG) is a
tree then |EG| = |VG| − 1.

Proof.
The proof is by induction on n ≥ 1. Let P (n) be the property: Any tree with
n vertices has n− 1 edges.
Basis of induction: P (1) is valid since a tree with one vertex has zero edges.
Induction hypothesis: Suppose that P (n) holds up to n ≥ 1.
Induction Step: We must show that any tree with n+ 1 vertices has n edges.
Indeed, let T be any tree with n + 1 vertices. Since n + 1 ≥ 2, by the
previous lemma, T has a vertex v of degree 1. Let T0 be the graph obtained
by removing v and the edge attached to v. Then T0 is a tree with n vertices.
By the induction hypothesis, T0 has n− 1 edges and so T has n edges

Example 26.2
Which of the following graphs are trees?

Figure 26.2

Solution.
The first graph satisfies the definition of a tree. The second and third graphs
do not satisfy the conclusion of Theorem 26.1 and therefore they are not
trees

The following is the converse to Theorem 26.1.
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Theorem 26.2
Any connected graph with n vertices and n− 1 edges is a tree.

Proof.
We prove the result by contradiction. Let G be a connected graph with
n vertices and n − 1 edges. Suppose that G is not a tree. Then G has a
circuit or a cycle. Let G1 be the connected graph obtained by removing
an edge of the cycle. We continue this process until we reach a connected
graph Gk with no cycles, where k is the number of edges removed. Thus, Gk

is a tree with n vertices and n−1−k edges. This contradicts Theorem 26.1

Rooted Trees
A rooted tree is a tree in which a particular vertex is designated as the
root. The level of a vertex v is the length of the simple path from the
root to v. The height of a rooted tree is the largest level number that occurs.

Example 26.3
Find the level of each vertex and the height of the following rooted tree.

Figure 26.3

Solution.
v1 is the root of the given tree.

vertex v2 v3 v4 v5 v6 v7
level 1 1 2 2 2 2
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The height of the tree is 2

Let T be a rooted tree with root v0. Suppose (v0, v1, · · · , vn) is a simple
path in T and x, y, z are three vertices of a tree. Then
(a) vn−1 is the parent of vn.
(b) v0, v1, · · · , vn−1 are the ancestors of vn.
(c) vn is the child of vn−1.
(d) If x is an ancestor of y then y is a descendant of x.
(e) If x and y are children of z then x and y are siblings.
(f) If x has no children, then x is a leaf.
(g) The subtree of T rooted at x is the graph with vertex set V and edge
set E, where V is x together with the descendants of x and

E = {e|e is an edge on a simple path from x to some vertex in V }.

Example 26.4
Consider the rooted tree of Figure 26.4.

Figure 26.4

(a) Find the parent of v6.
(b) Find the ancestors of v13.
(c) Find the children of v3.
(d) Find the descendants of v11.
(e) Find an example of a siblings.
(f) Find the leaves.
(g) Construct the subtree rooted at v7.
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Solution.
(a) v2.
(b) v1, v3, v7.
(c) v7, v8, v9.
(d) None.
(e) {v2, v3, v4, v5}.
(f) {v4, v5, v6, v8, v9, v10, v11, v12, v13}.
(g)

Figure 26.5

Binary Trees
A binary tree is a rooted tree such that each vertex has at most two children.
Moreover, each child is designated as either a left child or a right child. A
full binary tree is a binary tree in which each vertex has either two children
or zero children.

Example 26.5
Consider the binary tree shown in Figure 26.6.

Figure 26.6
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(a) Find the left child and the right child of vertex T.
(b) Construct a full binary tree with root at W.

Solution.
(a) The left child is P and the right child is N.
(b) The full binary tree with root at W is shown in Figure 26.7.

Figure 26.7

Spanning Tree
Let T be a subgraph of a graph G such that T is a tree containing all of the
vertices of G. Such a tree is called a spanning tree.

Example 26.6
Find a spanning tree of the following graph.

Figure 26.8
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Solution.

Figure 26.9

The following theorem provides an algorithm for creating a spanning tree of
any connected graph.

Theorem 26.3
(a) Every connected graph G has a spanning tree.
(b) Any two spanning trees of G have the same number of edges.

Proof.
(a) If G is circuit-free it is a tree and hence its own spanning tree. If G has
a circuit. Remove an edge of this circuit to get a new graph G1. If G1 has a
circuit remove an edge from the circuit to obtain a new graph G2. Continue
until we reach a circuit-free graph, Gk for some k. Gk is a spanning tree for
G.
(b) Any spanning tree of G has |V | − 1 edges, where |V | is the number of
vertices of G

Example 26.7
Find four spanning trees of the graph shown in Figure 26.10.

Figure 26.10
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Solution.
The four spanning trees are shown in Figure 26.11

Figure 26.11
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Review Problems

Problem 26.1
Which of the following four graphs is a tree?

Problem 26.2
Find the number of edges in a tree with 58 vertices.

Problem 26.3
Can a graph with 41 vertices and 40 edges be a tree?

Problem 26.4
Find the level of each vertex and the height of the following rooted tree.

Problem 26.5
Consider the rooted tree
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(a) Find the parent of v6.
(b) Find the ancestors of v10.
(c) Find the children of v4.
(d) Find the descendants of v1.
(e) Find all the siblings.
(f) Find the leaves.
(g) Construct the subtree rooted at v1.

Problem 26.6
A binary search tree is a binary tree T in which data are associated with
the vertices. The data are arranged so that, for each vertex v in T, each data
item in the left subtree of v is less than the data item in v and each data item
in the right subtree of v is greater than the data item in v. Using numerical
order, form a binary search tree for a number in the set {1, 2, · · · , 15}.

Problem 26.7
Procedures for systematically visiting every vertex of a tree are called traver-
sal algorithms. In the preorder traversal, the root r is listed first and
then the subtrees T1, T2, · · · , Tn are listed, from left to right, in order of their
roots. The preorder traversal begins by visiting r. It continues by travers-
ing T1 in preorder, thenT2 in preorder, and so on, until Tn is traversed in
preorder. In which order does a preorder traversal visit the vertices in the
following rooted tree?
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Problem 26.8
A forest is a simple graph with no circuits. Which of the following graphs
is a forest?

Problem 26.9
What do spanning trees of a connected graph have in common?

Problem 26.10
Find three spanning trees of the graph below.
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Problem 26.11
Which of the following four graphs is a tree?

Problem 26.12
What is the number of edges in a tree with 49 vertices?

Problem 26.13
Prove that a tree with n vertices has at least two leaves.

Problem 26.14
Consider the rooted tree shown below.

(i) Find the parent of g.
(ii) Find the ancestors of k.
(iii) Find the children of c.
(iv) Find the descendants of b.
(v) Find an example of a siblings.
(vi) Find the leaves.
(vii) Construct the subtree rooted at c.

Problem 26.15
Are the following binary trees different?
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Problem 26.16
Find a spanning tree of the following graph.

Problem 26.17
The binary tree below gives an algorithm for choosing a restaurant. Each
internal vertex asks a question. If we begin at the root, answer each ques-
tion, and follow the appropriate edge, we will eventually arrive at a terminal
vertex that chooses a restaurant. Such a tree is called a decision tree.

Construct a decision tree that sorts three given numbers a1, a2, a3 in as-
cending order.
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De Morgan’s Laws, 112
De Morgan’s laws, 10
Decision tree, 233
Definition, 56
Degree of a vertex, 198
Descendant, 224
Descriptive form, 100
Digraph, 128, 194
Direct method of proof, 59
Directed edge, 128
Directed graph, 194
Disconnected graph, 209
Disjoint sets, 104
Disjunction, 7
Disjunctive addition, 38
Disjunctive syllogism, 39
Divisible, 88
Division Algorithm, 86
Domain, 127
Domain of discourse, 46

Edges, 194
Empty set, 100
Equal sets, 102
Equivalence classes, 138
Equivalence relation, 136
Equivalent circuits, 20
Equivalent propositions, 10
Euclidean Algorithm, 93
Euler circuit, 209
Euler path, 209
Exclusive or, 8
Existential quantifier, 48

Factorial, 179
Fibonacci, 161
Finite set, 113
Floor function, 67

Forest, 231
Free variable, 46
Full binary tree, 225
Function, 128
Fundamental Theorem of Arithmetic,

88

Generating rule, 161
Geometric progression, 78
Geometric sequence, 162
Greatest common divisor, 89

Handshaking Theorem, 198
Hasse diagram, 144
Height, 223
Hupothetical syllogism, 40
Hypothesis, 29

In-degree, 203
Incidence matrix, 204
Indirect proof method, 72
Inference, 35
Infinite set, 113
Initial condition, 161
Injective, 150
Intermediate Value Theorem, 59
Intersection of sets, 104
Invalid argument, 36
Inverse, 30
Inverse relation, 129
Inverter, 17
Isolated vertex, 195
Iteration, 161

Jumping to a conclusion, 61

Leaf, 221, 224
Least element, 146
Left child, 225
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Lemma, 56
Level of a vertex, 223
Logic, 56
Logic gate, 17
Loop, 128, 195

Mathematical induction, 77
Mathematical system, 56
Method of exhaustion, 59
Modus ponens, 37
Modus Tollens, 37
Multiplication rule of counting, 172

Naive set theory, 100
Natural numbers, 46
Negation, 9
Nonconstructive proof, 58

One’s complement, 22
One-to-one, 150
One-to-one correspondence, 151
Onto function, 150
Ordered pair, 126
Out-degree, 203

Paradox, 100
Parallel edges, 194
Parent, 224
Partial order, 143
Partition of sets, 113
Pascal’s identity, 186
Pascal’s triangle, 188
Path of length n, 208
Permutation, 151, 179
Pierce arrow, 17
Pigeonhole principle, 157
Poset, 143
Power set, 113
Predicate, 46

Premises, 35
Preorder traversal, 230
Prime number, 88
Projection function, 151
Proof, 56
Proof by cases, 66
Proof by contradiction, 72
Proof by contrapositive, 73
Proper subset, 102
Proposition, 6
Propositional functions, 7
Propositional variables, 7

Quantifier, 47

Range, 127
Recurrence, 161
Reflexive, 135
Regular graph, 205
Relative complement, 103
Relatively prime, 90
Right child, 225
Rooted tree, 223
Rule of contradiction, 40
Russell’s Paradox, 100

Scheffer stroke, 17
Set, 99, 100
Set-builder form, 100
Siblings, 224
Simple graph, 195
Simple path, 208
Spanning tree, 226
Subgraph, 203
Subset, 101
Subtree, 224
Surjective, 150
Symbolic connectives, 7
Symmetric, 135
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Symmetric difference, 104

Tabular form, 100
Tautology, 10
Theorem, 56
Total degree, 198
Total order, 145
Transitive, 136
Tree, 221
Tree diagram, 172
Trichotomy Law, 143
Trivial proof, 66
Truth set, 46
Truth table, 8
Truth Value, 6
two’s complement, 22

Undirected graph, 194
Unioin of sets, 103
Unique Factorization Theorem, 88
universal conditional proposition, 48
Universal quantifier, 47
Universal set, 103

Vacuous proof, 66
Vacuously true, 29
Valid argument, 36
Venn diagrams, 102
Vertex, 128
Vertices of a graph, 194

Well order, 146
Well-Ordering Principle, 86
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