UNIT-4 Python Programming
BACKGROUND AND ContexT
“Python has been an important part of Google since the beginning, and remains so as
the system grows and evolves. Today dozens of Google engineers use Python, and we’re
looking for more people with skills in this language.”

—Peter Norvig, Director of Search Quality at Google, Inc.

You can understand and appreciate the importance of Python as a language and
how much it is in demand globally. If you are well equipped in Python, a host
of opportunities open up for you and employability increases significantly. For
designing and implementing Artificial Intelligence and Machine Learning projects,
Python programming is a critical skill and you must master it.

We will start with the basics of Python language and explore how it can be
implemented in AI/ML projects.

Programming Language is a language to write programs. It is a set of
instructions that produces various outputs.

A high-level language (HLL) is a programming language that enables a
programmer to write programs that are independent of a particular type of
computer. Such languages are considered high-level because they are closer

to human languages and further from machine languages.

WHAT IS PYTHON
Python Programming Language is a high-level programming language created by

Guido van Rossum in 1989. It resulted in a great general-purpose language capable
of creating anything from desktop software to web applications and frameworks,

Why was Python created

In his own words, Guido revealed that he started working on it as a weekend
project utilizing his free time during Christmas of December 1989. He originally
wanted to create an interpreter which later turned out to be Python, gradually
evolving into a full-fledged programming language.

How the name Python came about

Guido initially believed that the UNIX/C hackers were the target users of his project,
Also, he was fond of watching the famous comedy series—The Monty Python’s
Flying Circus. The name Python captured his mind as not only did it appeal to his
taste but also his target users.

Page 1 of 18

Dell
Typewriter
UNIT-4

Dell
Rectangle

A general-purpose programming language is a programming language
designed to be used for writing software in the widest variety of
application domains. Conversely, a domain-specific programming
language is one designed to be used within a specific application domain.

PYTHON PROGRAMMING DOMAINS

» Web Application Development

Python is majorly used in the field of web development, being the preferred
language of many large projects. Key web application frameworks include
Django, Flask, CherryPy and Bottle, which are commonly used and have a large
developer community.

These frameworks are very handy when it comes to simplifying tasks related
to content management and configuration, accessing a database, and handling
network protocols like HTTP, SMTP, FTP and POP.

. Data Science and Machine Learning

As you have read in Chapter 1, Data Scientists are in so much demand globally
that 40% vacancies are still lying vacant in AI/ML jobs. Pattern Recognition using
sophisticated algorithms and making sense of data are hot skills in demand
today. Python makes it extremely easy to get started with readymade libraries

and large community support.

It has tools and models for web scraping, data cleaning and standard algorithms.

Page 2 of 18

PYTHON INSTALLATION

Let us now learn how to install Python in windows OS.

1. Go to www.python.org/downloads/

' G- hitpe Jivren python or Ay

vl
Doabsanen Lol u

o Go to python.org/downloads/ «—«—s—a—a-r b AT W o

e echunria 01
1! Appe () Computer Seionce Yo priame

* Q

Python

& python:
Download the latest version for Windows

9 Select the latest Python «— W

i i King for Python with a different OS? Python for Windows,
version for Windows Looking for Pyt
Linux/UNIX, Mac 0S8 X, Other

Want to help test development versions of Python? Pre-releases
Looking for Python 2.72 See below fof specific releases

Fig. 7.3: Python Download

2. After the application file is downloaded, we can install it by opening it. This
will open the Python 3.7.0 (32-bit) Setup window as shown below. Put check

on “Add Python 3.7 to PATH”.

o

S S PR AR SR S D RSt e i 155 2
Install Python 3.7.0 (32-bit)
Select Install Now to install Python with default settings. or choose
Customize to enable or disable features.

¥ Install Now
Ci\Users\preeti\AppData\Local\Programs\Python\Python37-32

0 Click on Install Now

Includes IDLE, pip and documentation
Creates shorteuts and file asseciations

= Customize installation
Choose location and festures

ded)
¥ Add Python 3.7 to PATH

Fig. 7.4: Install Python

Select ‘Add Python
3.7 to PATH’

Page 3 of 18

3. When the installation is complete, you will see a screen displayed as under.

Setup was successful

Special thanks to Mark Hammond, without whose years of
freely shared Windows experlise, Python for Windows vould
still be Python for DOS,

New to Python? Start with the online tutorial and
decumentation.

See what's new In this release,

python

for

windows [Close

Fig. 7.5: Python Setup
4. Click Close to finish.
5. As you will see, the computer interface, IDLE (Python 3.7 32-bit), gets installed

(as shown in the figure below) and is ready to use now. You can now write
Python code in the newly installed Python Shell (Editor) or Script window.

= |
@ - OpenOffice Draw: & & IDLE (Python 3.7 32-bit) NEw

”’ OpenOffice Impress: [5 Python 3.7 (32-bit)

]

? OpenOffice Math B2 Python 3.7 Manuals (32-bit) NEw

! ' OpenOffice Writer & Python 3.7 Module Docs (3... NEw

Fig. 7.6: Start Python IDLE

Page 4 of 18

Working with Python
To write and run (execute) a Python program, we need to have a Python interpreter installed on our computer
or we can use any online Python interpreter. The interpreter is also called Python shell. A sample screen of
Python interpreter is shown in Figure. Here, the symbol >>> is called Python prompt, which indicates that the
interpreter is ready to receive instructions. We can type commands or statements on this prompt for execution.

| Pytian 3.7.0 5he - o
Fle Edit Shell Debog Opticns

do -

Python 3.7.0 (v3.7.0:1bf%cc5093, Jun 27 2018, 04:06:47) [MSC v.1914 32 hit (Intel)] on win32
Type "copyright™, "credits™ or "license()" for more information.

Execution Modes
There are two ways to run a program using the Python interpreter:
1. Interactive mode
2. Script mode
(A) Interactive Mode
In the interactive mode, we can type a Python statement on the >>> prompt directly. As soon as we press
enter, the interpreter executes the statement and displays the result(s), as shown in Figure

Lo Pytmans 3.7.0Shel o

File it Shell Debugy Opticrs Window Help

Python 3.7.0 (v3.7.0:1bf%cc5093, Jun 27 2018, 04:06:47) [MSC v.1914 32 bit (Intel)] on win32
Type "copyright", "credits" or "license()" for more information.

2> 1+ 2

> 4 - 2

Working in the interactive mode is convenient for testing a single line code for instant execution. But in the
interactive mode, we cannot save the statements for future use and we have to retype the statements to run
them again.
(B) Script Mode
In the script mode, we can write a Python program in a file, save it and then use the interpreter to execute the
program from the file. Such program files have a .py extension and they are also known as scripts. Python has
a built-in editor called IDLE which can be used to create programs. After opening the IDLE, we can click
File>New File to create a new file, then write our program on that file and save it with a desired name. By
default, the Python scripts are saved in the Python installation folder.
IDLE : Integrated Development and Learning Environment
To execute a Python program in script mode,

a) Open the program using an editor, for example IDLE as shown in Figure

L ™ CERTp
Formst Run Option: Window Halp
. t("Sa "y
r n T { Ll 1 1" }

Page 5 of 18

b) In IDLE, go to [Run]->[Run Module] to execute the prog3-1.py as shown in Figure

ij prog3-T1.py - CANCERT\prog3-1.py (3.7.0)
File Edit Format Run Options Window Help

print ("Save| Python Shell
print ('Pres| CheckModule Alt+X
Run Module F5

c¢) The output appears on shell as shown in Figure

[Pytien 3.7 Shen - 8 x
File [dit Shell Debug Optiors Window Help

Fython 3.7.0 (v3.7.0:1bf%cc5093, Jun 27 2018, 04:06:47) [MSC v.1914 32 bit (Intel)] on win32
Type "copyright™, "credits" or "license()" for more information.

>3

======================== RESTART: C:\NCERT\prog3-1.py ========================

Save Earth

Freserve Future

>2> |

PYTHON CHARACTER SET

Character set is a set of valid characters recognized by Python. A character represents any letter, digit or any
other symbol. Python uses the traditional ASCII character set. However, the latest version recognizes the
Unicode character set. The ASCII character set is a subset of the Unicode character set. Python supports the
following character sets:

Letters: A-Z, a-z

Digits: 0-9

Special Symbols: space + -/**() {}[]/[Fl===<>"",;: % #? $&"<=>= @

Whitespaces: Blank space (©) , tabs (\t), carriage return, newline, formfeed

Other Characters: All other 256 ASCII and Unicode characters

TOKENS
A token is the smallest element of a Python script that is meaningful to the interpreter.
The following categories of tokens exist:
Identifiers, keywords, literals, operators and delimiters/punctuators.

|dentifier/
Variable

Literal / Punctuation

St Constants /Separators

Operators

Page 6 of 18

Python Keywords
Keywords are reserved words. Each keyword has a specific meaning to the Python interpreter. As Python is
case sensitive, keywords must be written exactly as given in Table

False class finally IS return
None continue for lambda try
True def from nonlocal while
and del global not with
as elif if or yield
assert else import pass
break except in raise
Identifiers

In programming languages, identifiers are names used to identify a variable, function, or other entities in a
program. The rules for naming an identifier in Python are as follows:
1.The name should begin with an uppercase or a lowercase alphabet or an underscore sign (). This may be
followed by any combination of characters a-z, A-Z, 0-9 or underscore (_). Thus, an identifier cannot start
with a digit.
2.1t can be of any length. (However, it is preferred to keep it short and meaningful).
3.It should not be a keyword or reserved word given in Table 3.1.
4.We cannot use special symbols like !, @, #, $, %, etc. in identifiers.

Variables
Variable is an identifier whose value can change. For example variable age can have different value for
different person. Variable name should be unique in a program. Value of a variable can be string (for example,
‘b’, ‘Global Citizen’), number (for example 10,71,80.52) or any combination of alphanumeric (alphabets and
numbers for example ‘b10”) characters. In Python, we can use an assignment statement to create new variables
and assign specific values to them.
gender ='M'
message = "Keep Smiling”
price = 987.9
Variables must always be assigned values before they are used in the program, otherwise it will lead to an
error. Wherever a variable name occurs in the program, the interpreter replaces it with the value of that
particular variable.

Literals/Constants

A fixed numeric or non-numeric value is called a literal. It can be defined as a number, text, or other data
that represents values to be stored in variables. They are also known as constants. Python supports the
following types of literals:

1. String Literals for example, a = "abc", b ="Independence”, etc. alphanumeric/ text values

2. Numeric Literals for example, p = 2, a =1000, etc. integer values

3. Floating Literals - for example, salary = 15000.00, area =1.2,etc. decimal values

4. Boolean Literals — for example, value = True, value2 = False, etc.

5. Collection Literals -for example, listl =[1,2,3,4,5], group = (10,20,30,40,50), etc.
Therefore, literals are data items that have fixed value.

Operators
An operator is a symbol or a word that performs some kind of operation on the given values and returns the
result. Examples of operators are: +,**,/, etc. Python operators have been discussed briefly later in the
chapter.

Page 7 of 18

Dell
Highlight

Dell
Typewriter
alphanumeric/ text values

Dell
Typewriter
decimal values

Dell
Typewriter
integer values

Punctuators/Delimiters
Delimiters are the symbols which can be used as separators of values or to enclose some values.
Examples of delimitersare: () {}[1].;:
Note: # symbol used to insert comments is not a token. Any comment itself is not a token.

Data Types
Every value belongs to a specific data type in Python. Data type identifies the type of data which a variable
can hold and the operations that can be performed on those data. Following figure enlists the data types
available in Python.

| Data Types in Python |

Numbers Sequences Sets None Mappings
1 1 |-

Floatin | R .. .
Integer Point gl |Complex Strings Dictionaries
l H Lists
Boolean

4 Tuples
Number

Number data type stores numerical values only. It is further classified into three different types: int, float and
complex.
Numeric data types

Type/ Class | Description Examples

int integer numbers -12,-3,0,123,2
float floating point numbers | -2.04, 4.0, 14.23
complex complex numbers 3+4i,2-2i

Boolean data type (bool) is a subtype of integer. It is a unique data type, consisting of two constants, True and
False. Boolean True

Sequence

A Python sequence is an ordered collection of items, where each item is indexed by an integer value. Three
types of sequence data types available in Python are Strings, Lists and Tuples. A brief introduction to these
data types is as follows:

(A) String

String is a group of characters. These characters may be alphabets, digits or special characters including
spaces. String values are enclosed either in single quotation marks (for example ‘Hello’) or in double quotation
marks (for example “Hello”). The quotes are not a part of the string, they are used to mark the beginning and
end of the string for the interpreter. For example,

>>> strl = 'Hello Friend'

>>> str2 = "452"

We cannot perform numerical operations on strings, even when the string contains a numeric value. For
example str2 is a numeric string.

(B) List

List is a sequence of items separated by commas and items are enclosed in square brackets []. Note that items
may be of different date types.

For example,

#To create a list

>>> |istl = [5, 3.4, "New Delhi", "20C", 45] #print the elements of the list listl

>>> |istl

[5, 3.4, 'New Delhi', '20C', 45]

Page 8 of 18

Dell
Highlight

Dell
Highlight

Dell
Highlight

Dell
Highlight

Dell
Typewriter
a

(C) Tuple

Tuple is a sequence of items separated by commas and items are enclosed in parenthesis (). This is unlike list,
where values are enclosed in brackets []. Once created, we cannot change items in the tuple. Similar to List,
items may be of different data types.

For example,

#create a tuple tuplel

>>> tuplel = (10, 20, "Apple", 3.4, 'a)

#print the elements of the tuple tuplel

>>> print(tuplel)

(10, 20, "Apple", 3.4, 'a")

Mapping
Mapping is an unordered data type in Python. Currently, there is only one standard mapping data type in
Python called Dictionary.

Dictionary

Dictionary in Python holds data items in key-value pairs and Items are enclosed in curly brackets { }.
dictionaries permit faster access to data. Every key is separated from its value using a colon (:) sign. The key
value pairs of a dictionary can be accessed using the key. Keys are usually of string type and their values can
be of any data type. In order to access any value in the dictionary, we have to specify its key in square brackets
[].

For example,

#create a dictionary

>>> dictl = {'Fruit":'Apple’, ‘Climate":'Cold', 'Price(kg)":120}

>>> print(dictl)

{'Fruit": 'Apple’, 'Climate": 'Cold', 'Price(kg)": 120}

Operators
An operator is used to perform specific mathematical or logical operation on values. The values that the
operator works on are called operands. For example, in the expression 10 + num, the value 10, and the variable
num are operands and the + (plus) sign is an operator.

Arithmetic Operators
E@ML‘»&"‘ :1| l|' anvindl : | ‘[,‘;-,":';3.'} g
B ~ = vescription | Exampl
+ Addition It adds values on either side of the operator A+ B =300

— Subtraction It subtracts the right-hand operator from the
left-hand operator

* Multiplication It multiplies values on either side of the operator A * B = 20000

/ Division It divides left-hand operand by right-hand operator A/ B =0.5

% Modulus It divides left-hand operand by right-hand operand
and returns the remainder

** Exponent It performs exponential (power) calculation on A ** B = 100 to
operators the power 200

A-B=-100

B%A=0

Page 9 of 18

Dell
Highlight

Comparison Operators/ RELATIONAL OPERATORS

These operators compare the values on either side of their function and then
decide the possible relation among them.

Assume A =100 and B = 8o.

Operator Description m

= |f thg_values of two operands are equal, then the (A == B) is not true
condition becomes true.

1= If values of two operands are not equal, then the (A 1=

s B) is true
condition becomes true.

> If the value of left operand is greater than the value of .
A>B)ist
right operand, then the condition becomes true. {5 & By B LS
< If the value of left operand is less than the value of right :
o (A < B) is not true
operand, then the condition becomes true.
>= If the value of left operand is greater than or equal to the As<B)is t
value of right operand, then the condition becomes true. e Lt
<= If the value of left operand is less than or equal to the

value of right operand, then the condition becomes true. (A <= B) i not true

Assignment Operators

An Assignment Operator is the operator used to assign a new value to a variape,

Assume A = 100 and B = 80 for the below table.

Operator | Description | Exam
= Assigns values from right-side operands to G = A + B assigns
left-side operand value of A+ Bto C
+= Add AND It adds right operand to the left operand and C += A is equivalent
assigns the result to left operand toC=C+A
—= Subtract It subtracts right operand from the left operand C —= A is equivalent
AND and assigns the result to left operand toC=C-A
*= Multiply It multiplies right operand with the left operand C *= A is equivalent
AND and assigns the result to left operand toC=C*A
/= Divide AND It divides left operand by right operand and C /= A is equivalent
assigns the result to left operand toC=C/A
%= Modulus It takes modulus using two operands and C %= A is equivalent
AND assigns the result to left operand toC=C%A
**= Exponent It performs exponential (power) calculation on G **= A is equivalent
AND operators and assigns value to the left operand toC=C**A

Page 10 of 18

Dell
Typewriter
/ RELATIONAL OPERATORS

Logical Operators
The following are the Logical Operators present in Python:

and True, if both the operands are true XandY Eg'?rCENDENCE
or True, if either of the operands is true XorY AND
OR

not True, if operand is false (complements the operand) not X

Membership Operators

These operators are used to test whether a variable is fou
Tuples, Sets, Strings, Dictionaries) or not. The following are the types of Membership

nd in a sequence (Lists,

Operators:

Deseription.
in True, if value/variable is found in the sequence 5inix
5 not in x

not in True, if value/variable is not found in the sequence

Flow of Control and Conditions

In the programs we have seen till now, there has always been a series of statements faithfully executed by
Python in exact top-down order. What if you wanted to change the flow of how it works? For example, you
want the program to take some decisions and do different things depending on different situations, such as

printing 'Good Morning' or ‘Good Evening' depending on the time of the day?
As you might have guessed, this is achieved using control flow statements. There are three control flow

statements in Python - if, for and while.

Flow of
Control and
Conditions
|

If Statement (SELECTION STATEMENTYS)
On the occasion of World Health Day, one of the schools in the city decided to take an initiative to help
students maintain their health and be fit. Let’s observe an interesting conversation happening between the

students when they come to know about the initiative.

Page 11 of 18

Dell
Typewriter
PRECENDENCE

NOT

AND

OR

Dell
Line

o Noll What is From World Hea'"‘\
/ Hey, guys '\ tha dcut 3 Day onwards , Each ‘
students will have to \

{ digyou

[hear the I \\ / run extra rounds after
\ amazing N\ f the morming assembly, /
\ nows ? P o i, - \on the basis of his/her

S~ o

BMI. /

/",—;’\‘mn s 27 and IV\‘\ (
7 will not have to | My BMI is 20, But | don't know how
o | S r— many rounds #l have to run. ?
|‘ un any rounds ‘l) / y J v w
\ What about / \ 2
\ you? g g

That's great |

™~

~- —
\

-
N, |bheord the news too!
Mine s 31 and Hl have
| to run 2 rounds daily

There come situations in real life when we need to make some decisions and based on these decisions, we
need to decide what should we do next. Similar situations arise in programming also where we need to make
some decisions and based on these decisions we will execute the next block of code.

Decision making statements in programming languages decide the direction of flow of program execution.
Decision making statements available in Python are:

e if statement

e if..clse statements

o if-elif ladder

If Statement

The if statement is used to check a condition: if the condition is true, we run a block of statements (called the
if-block).

Syntax:

if test expression:
statement(s)

Here, the program evaluates the test expression and will execute statement(s) only if the text expression is
True.
If the text expression is False, the statement(s) is not executed.

Page 12 of 18

Note:

1) In Python, the body of the if statement is indicated by the indentation. Body starts with an indentation and the
first unindented line marks the end.

2) Python interprets non-zero values as True. None and 0 are interpreted as False.

Python if Statement Flowchart

Test False
Expression

True
'

Body of if |

l.

Fig: Operation of If statement

Example :

#Check if the number is positive, we print an appropriate message
num = 3
if num > 0:
print(num, “is a positive number.”)
print(“this is always printed’)
num = -1
if num > 0:
print(num, “is a positive number.”)
print(“this is always printed”)

When you run the program, the output will be:

3 is a positive number
This is always printed
This is also always printed.

In the above example, num > 0 is the test expression. The body of if is executed only if this evaluates to
True.

When variable num is equal to 3, test expression is true and body inside body of if is executed.

If variable num is equal to -1, test expression is false and body inside body of if is skipped.

The print() statement falls outside of the if block (unindented). Hence, it is executed regardless of the test
expression.

Page 13 of 18

Python if...else Statement

Syntax of if...else
if test expression:
Body of if
else:

Body of else

The if..else statement evaluates test expression and will execute body of if only when test condition is True.
If the condition is False, body of else is executed. Indentation is used to separate the blocks.

Python if..else Flowchart

l

Test False
Expression

|
T’! ue
'

\J

Body of if Body of else

-

J

Fig: Operation of if, . .else statement
Example of if...else

#A program to check if a person can vote
age = input(“Enter Your Age”)

if age >=18:

print(“You are eligible to vote”)

else:

print(‘“’You are not eligible to vote”)

In the above example, when if the age entered by the person is greater than or equal to 18, he/she can vote.
Otherwise, the person is not eligible to vote.

Python if...elif...else Statement
Syntax of if...elif...else

if test expression:
Body of if

elif test expression:
Body of elif

else:

Body of else

The elif is short for else if. It allows us to check for multiple expressions.
If the condition for if is False, it checks the condition of the next elif block and so on.
If all the conditions are False, body of else is executed.

Only one block among the several if...elif...else blocks is executed according to the condition.
The if block can have only one else block. But it can have multiple elif blocks.

Page 14 of 18

Flowchart of if...elif...else

Test

False
Expression
of if
|
True
Test False
' Expression
Body of if of elif
True
Y)
Body of elif Body of else
A s
Fig: Operation of if_elf _ else statement

Example of if...elif...else

#To check the grade of a student
Marks = 60
if marks > 75:

print("'You get an A grade")
elif marks > 60:

print("You get a B grade™)
else:

print("'You get a C grade™)

Python Nested if statements

We can have an if...elif...else statement inside another if...elif...else statement. This is called nesting in
computer programming.

Any number of these statements can be nested inside one another. Indentation is the only way to figure out
the level of nesting. This can get confusing, so must be avoided if it can be.

Python Nested if Example

In this program, we input a number
check if the number is positive or

negative or zero and display

an appropriate message

This time we use nested if

num = float(input("Enter a number: "))

if num>=0:
if num==0:
print("Zero™)
else:
print("Positive number")
else:

print(*Negative number")

Page 15 of 18

When you run the above program
Output 1

Enter a number: 5
Positive number

Output 2

Enter a number: -1
Negative number

Output 3

Enter a number: 0
Zero

LOOPING STATEMENTS
The For Loop

The for..in statement is another looping statement which iterates over a sequence of objects i.e. go through

each item in a sequence. A sequence is just an ordered collection of items.

Syntax of for Loop

for val in sequence:
Body of for

Here, val is the variable that takes the value of the item inside the sequence on each iteration.

Loop continues until we reach the last item in the sequence. The body of for loop is separated from the rest

of the code using indentation.

Flowchart of for Loop

for each
item in

sequence
v

Last
- item
reached?

No

4

Body of for

Exit loop

Yes

Fig: operation of for loop

Page 16 of 18

Example: Python for Loop

Program to find the sum of all numbers stored in a list
List of numbers
numbers = [6, 5, 3, 8, 4, 2,5, 4, 11]

variable to store the sum
sum=0

iterate over the list
for val in numbers:
sum = sum-+val

Output: The sum is 48
print("The sum is", sum)

when you run the program, the output will be:

The sum is 48

The while Statement

The while statement allows you to repeatedly execute a block of statements as long as a condition is true. A
while statement is an example of what is called a looping statement. A while statement can have an optional
else clause.

Syntax of while Loop in Python

while test_expression:
Body of while

In while loop, test expression is checked first. The body of the loop is entered only if the test_expression
evaluates to True. After one iteration, the test expression is checked again. This process continues until the
test_expression evaluates to False. In Python, the body of the while loop is determined through indentation.
Body starts with indentation and the first unindented line marks the end. Python interprets any non-zero
value as True. None and 0 are interpreted as False.

Flowchart of while Loop

Enter while loop

L 4

Test False

Expression

True
L 4
Body of
while

Exit loop

Fig: operation of while loop

Page 17 of 18

Example: Python while Loop

Program to add natural

numbers upto

#sum = 1+2+3+...+n

To take input from the user,
n = int(input("Enter n: "))
n=10

initialize sum and counter
sum =0

i=1

while i <=n:

sum =sum + i

i = i+1 # update counter

print the sum

print("The sum is", sum)

When you run the program, the output will be:

Enter n: 10
The sum is 55

In the above program, the test expression will be True as long as our counter variable i is less than or equal

to n (10 in our program).

We need to increase the value of the counter variable in the body of the loop. This is very important (and

mostly forgotten). Failing to do so will result in an infinite loop (never ending loop).

Finally, the result is displayed.

Page 18 of 18

	Untitled

