
Page 1 of 18

Ch-8 Python Programming

Dell
Typewriter
UNIT-4

Dell
Rectangle

Page 2 of 18

Page 3 of 18

Page 4 of 18

Page 5 of 18

Working with Python
To write and run (execute) a Python program, we need to have a Python interpreter installed on our computer

or we can use any online Python interpreter. The interpreter is also called Python shell. A sample screen of

Python interpreter is shown in Figure. Here, the symbol >>> is called Python prompt, which indicates that the

interpreter is ready to receive instructions. We can type commands or statements on this prompt for execution.

Execution Modes
There are two ways to run a program using the Python interpreter:

 1. Interactive mode

 2. Script mode

(A) Interactive Mode
In the interactive mode, we can type a Python statement on the >>> prompt directly. As soon as we press

enter, the interpreter executes the statement and displays the result(s), as shown in Figure

Working in the interactive mode is convenient for testing a single line code for instant execution. But in the

interactive mode, we cannot save the statements for future use and we have to retype the statements to run

them again.

(B) Script Mode
In the script mode, we can write a Python program in a file, save it and then use the interpreter to execute the

program from the file. Such program files have a .py extension and they are also known as scripts. Python has

a built-in editor called IDLE which can be used to create programs. After opening the IDLE, we can click

File>New File to create a new file, then write our program on that file and save it with a desired name. By

default, the Python scripts are saved in the Python installation folder.

IDLE : Integrated Development and Learning Environment

To execute a Python program in script mode,

 a) Open the program using an editor, for example IDLE as shown in Figure

Page 6 of 18

 b) In IDLE, go to [Run]->[Run Module] to execute the prog3-1.py as shown in Figure

 c) The output appears on shell as shown in Figure

PYTHON CHARACTER SET

Character set is a set of valid characters recognized by Python. A character represents any letter, digit or any

other symbol. Python uses the traditional ASCII character set. However, the latest version recognizes the

Unicode character set. The ASCII character set is a subset of the Unicode character set. Python supports the

following character sets:

Letters: A-Z, a-z

Digits: 0-9

Special Symbols: space + -/**() { } [] //=l= == <>,"" , ;: % !# ? $&^ <= >= @

Whitespaces: Blank space (‘ ‘) , tabs (\t), carriage return, newline, formfeed

Other Characters: All other 256 ASCII and Unicode characters

TOKENS
A token is the smallest element of a Python script that is meaningful to the interpreter.

The following categories of tokens exist:

Identifiers, keywords, literals, operators and delimiters/punctuators.

Page 7 of 18

Python Keywords

Keywords are reserved words. Each keyword has a specific meaning to the Python interpreter. As Python is

case sensitive, keywords must be written exactly as given in Table

False class finally is return

None continue for lambda try

True def from nonlocal while

and del global not with

as elif if or yield

assert else import pass

break except in raise

Identifiers
In programming languages, identifiers are names used to identify a variable, function, or other entities in a

program. The rules for naming an identifier in Python are as follows:

1.The name should begin with an uppercase or a lowercase alphabet or an underscore sign (_). This may be

followed by any combination of characters a-z, A-Z, 0-9 or underscore (_). Thus, an identifier cannot start

with a digit.

2.It can be of any length. (However, it is preferred to keep it short and meaningful).

3.It should not be a keyword or reserved word given in Table 3.1.

4.We cannot use special symbols like !, @, #, $, %, etc. in identifiers.

Variables
Variable is an identifier whose value can change. For example variable age can have different value for

different person. Variable name should be unique in a program. Value of a variable can be string (for example,

‘b’, ‘Global Citizen’), number (for example 10,71,80.52) or any combination of alphanumeric (alphabets and

numbers for example ‘b10’) characters. In Python, we can use an assignment statement to create new variables

and assign specific values to them.

gender = 'M'

message = "Keep Smiling"

price = 987.9

Variables must always be assigned values before they are used in the program, otherwise it will lead to an

error. Wherever a variable name occurs in the program, the interpreter replaces it with the value of that

particular variable.

Literals/Constants
A fixed numeric or non-numeric value is called a literal. It can be defined as a number, text, or other data

that represents values to be stored in variables. They are also known as constants. Python supports the

following types of literals:

1. String Literals for example, a = "abc", b ="Independence", etc.

2. Numeric Literals for example, p = 2, a =1000, etc.

3. Floating Literals - for example, salary = 15000.00, area =1.2,etc.

4. Boolean Literals – for example, value = True, value2 = False, etc.

5. Collection Literals -for example, list1 = [1,2,3,4,5], group = (10,20,30,40,50), etc.

Therefore, literals are data items that have fixed value.

Operators
An operator is a symbol or a word that performs some kind of operation on the given values and returns the

result. Examples of operators are: +,**,/, etc. Python operators have been discussed briefly later in the

chapter.

Dell
Highlight

Dell
Typewriter
alphanumeric/ text values

Dell
Typewriter
decimal values

Dell
Typewriter
integer values

Page 8 of 18

Punctuators/Delimiters
Delimiters are the symbols which can be used as separators of values or to enclose some values.

Examples of delimiters are: () { } [] , ; :

Note: # symbol used to insert comments is not a token. Any comment itself is not a token.

Data Types
Every value belongs to a specific data type in Python. Data type identifies the type of data which a variable

can hold and the operations that can be performed on those data. Following figure enlists the data types

available in Python.

Number
Number data type stores numerical values only. It is further classified into three different types: int, float and

complex.

 Numeric data types
Type/ Class Description Examples

int integer numbers -12, -3, 0, 123, 2

float floating point numbers -2.04, 4.0, 14.23

complex complex numbers 3 + 4i, 2 - 2i

Boolean data type (bool) is a subtype of integer. It is a unique data type, consisting of two constants, True and

False. Boolean True

Sequence
A Python sequence is an ordered collection of items, where each item is indexed by an integer value. Three

types of sequence data types available in Python are Strings, Lists and Tuples. A brief introduction to these

data types is as follows:

(A) String
String is a group of characters. These characters may be alphabets, digits or special characters including

spaces. String values are enclosed either in single quotation marks (for example ‘Hello’) or in double quotation

marks (for example “Hello”). The quotes are not a part of the string, they are used to mark the beginning and

end of the string for the interpreter. For example,

>>> str1 = 'Hello Friend'

>>> str2 = "452"

We cannot perform numerical operations on strings, even when the string contains a numeric value. For

example str2 is a numeric string.

(B) List
List is a sequence of items separated by commas and items are enclosed in square brackets []. Note that items

may be of different date types.

For example,
#To create a list

>>> list1 = [5, 3.4, "New Delhi", "20C", 45] #print the elements of the list list1

>>> list1

[5, 3.4, 'New Delhi', '20C', 45]

Dell
Highlight

Dell
Highlight

Dell
Highlight

Dell
Highlight

Dell
Typewriter
a

Page 9 of 18

(C) Tuple
Tuple is a sequence of items separated by commas and items are enclosed in parenthesis (). This is unlike list,

where values are enclosed in brackets []. Once created, we cannot change items in the tuple. Similar to List,

items may be of different data types.

For example,
#create a tuple tuple1

>>> tuple1 = (10, 20, "Apple", 3.4, 'a')

#print the elements of the tuple tuple1

>>> print(tuple1)

(10, 20, "Apple", 3.4, 'a')

Mapping
Mapping is an unordered data type in Python. Currently, there is only one standard mapping data type in

Python called Dictionary.

Dictionary
Dictionary in Python holds data items in key-value pairs and Items are enclosed in curly brackets { }.

dictionaries permit faster access to data. Every key is separated from its value using a colon (:) sign. The key

value pairs of a dictionary can be accessed using the key. Keys are usually of string type and their values can

be of any data type. In order to access any value in the dictionary, we have to specify its key in square brackets

[].

For example,

#create a dictionary

>>> dict1 = {'Fruit':'Apple', 'Climate':'Cold', 'Price(kg)':120}

>>> print(dict1)

{'Fruit': 'Apple', 'Climate': 'Cold', 'Price(kg)': 120}

Operators
An operator is used to perform specific mathematical or logical operation on values. The values that the

operator works on are called operands. For example, in the expression 10 + num, the value 10, and the variable

num are operands and the + (plus) sign is an operator.

Arithmetic Operators

Dell
Highlight

Page 10 of 18

Dell
Typewriter
/ RELATIONAL OPERATORS

Page 11 of 18

Flow of Control and Conditions

In the programs we have seen till now, there has always been a series of statements faithfully executed by

Python in exact top-down order. What if you wanted to change the flow of how it works? For example, you

want the program to take some decisions and do different things depending on different situations, such as

printing 'Good Morning' or 'Good Evening' depending on the time of the day?

As you might have guessed, this is achieved using control flow statements. There are three control flow

statements in Python - if, for and while.

If Statement (SELECTION STATEMENTS)
On the occasion of World Health Day, one of the schools in the city decided to take an initiative to help

students maintain their health and be fit. Let’s observe an interesting conversation happening between the

students when they come to know about the initiative.

Dell
Typewriter
PRECENDENCE

NOT

AND

OR

Dell
Line

Page 12 of 18

There come situations in real life when we need to make some decisions and based on these decisions, we

need to decide what should we do next. Similar situations arise in programming also where we need to make

some decisions and based on these decisions we will execute the next block of code.

Decision making statements in programming languages decide the direction of flow of program execution.

Decision making statements available in Python are:

● if statement

● if..else statements

● if-elif ladder

If Statement
The if statement is used to check a condition: if the condition is true, we run a block of statements (called the

if-block).

Syntax:

Here, the program evaluates the test expression and will execute statement(s) only if the text expression is

True.

If the text expression is False, the statement(s) is not executed.

if test expression:

statement(s)

Page 13 of 18

Python if Statement Flowchart

Example :

When you run the program, the output will be:

In the above example, num > 0 is the test expression. The body of if is executed only if this evaluates to

True.

When variable num is equal to 3, test expression is true and body inside body of if is executed.

If variable num is equal to -1, test expression is false and body inside body of if is skipped.

The print() statement falls outside of the if block (unindented). Hence, it is executed regardless of the test

expression.

Note:

1) In Python, the body of the if statement is indicated by the indentation. Body starts with an indentation and the

first unindented line marks the end.

2) Python interprets non-zero values as True. None and 0 are interpreted as False.

#Check if the number is positive, we print an appropriate message

num = 3

if num > 0:

 print(num, “is a positive number.”)

print(“this is always printed”)

num = -1

if num > 0:

 print(num, “is a positive number.”)

print(“this is always printed”)

3 is a positive number

This is always printed

This is also always printed.

Page 14 of 18

Python if...else Statement

Syntax of if...else

The if..else statement evaluates test expression and will execute body of if only when test condition is True.

If the condition is False, body of else is executed. Indentation is used to separate the blocks.

Python if..else Flowchart

Example of if...else

In the above example, when if the age entered by the person is greater than or equal to 18, he/she can vote.

Otherwise, the person is not eligible to vote.

Python if...elif...else Statement
Syntax of if...elif...else

The elif is short for else if. It allows us to check for multiple expressions.

If the condition for if is False, it checks the condition of the next elif block and so on.

If all the conditions are False, body of else is executed.

Only one block among the several if...elif...else blocks is executed according to the condition.

The if block can have only one else block. But it can have multiple elif blocks.

if test expression:

Body of if

else:

Body of else

#A program to check if a person can vote

age = input(“Enter Your Age”)

if age >= 18:

print(“You are eligible to vote”)

else:

print(“You are not eligible to vote”)

if test expression:

Body of if

elif test expression:

Body of elif

else:

Body of else

Page 15 of 18

Flowchart of if...elif...else

Example of if...elif...else

Python Nested if statements

We can have an if...elif...else statement inside another if...elif...else statement. This is called nesting in

computer programming.

Any number of these statements can be nested inside one another. Indentation is the only way to figure out

the level of nesting. This can get confusing, so must be avoided if it can be.

Python Nested if Example

#To check the grade of a student

Marks = 60

if marks > 75:

 print("You get an A grade")

elif marks > 60:

 print("You get a B grade")

else:

 print("You get a C grade")

In this program, we input a number

check if the number is positive or

negative or zero and display

an appropriate message

This time we use nested if

num = float(input("Enter a number: "))

if num >= 0:

 if num == 0:

 print("Zero")

 else:

 print("Positive number")

else:

 print("Negative number")

Page 16 of 18

When you run the above program

Output 1

Output 2

Output 3

LOOPING STATEMENTS

The For Loop

The for..in statement is another looping statement which iterates over a sequence of objects i.e. go through

each item in a sequence. A sequence is just an ordered collection of items.

Syntax of for Loop

Here, val is the variable that takes the value of the item inside the sequence on each iteration.

Loop continues until we reach the last item in the sequence. The body of for loop is separated from the rest

of the code using indentation.

Flowchart of for Loop

Enter a number: 5

Positive number

Enter a number: -1

Negative number

Enter a number: 0

Zero

for val in sequence:

 Body of for

Page 17 of 18

Example: Python for Loop

when you run the program, the output will be:

The while Statement
The while statement allows you to repeatedly execute a block of statements as long as a condition is true. A

while statement is an example of what is called a looping statement. A while statement can have an optional

else clause.

Syntax of while Loop in Python

In while loop, test expression is checked first. The body of the loop is entered only if the test_expression

evaluates to True. After one iteration, the test expression is checked again. This process continues until the

test_expression evaluates to False. In Python, the body of the while loop is determined through indentation.

Body starts with indentation and the first unindented line marks the end. Python interprets any non-zero

value as True. None and 0 are interpreted as False.

Flowchart of while Loop

Program to find the sum of all numbers stored in a list

List of numbers

numbers = [6, 5, 3, 8, 4, 2, 5, 4, 11]

variable to store the sum

sum = 0

iterate over the list

for val in numbers:

 sum = sum+val

Output: The sum is 48

print("The sum is", sum)

The sum is 48

while test_expression:

 Body of while

Page 18 of 18

Example: Python while Loop

When you run the program, the output will be:

In the above program, the test expression will be True as long as our counter variable i is less than or equal

to n (10 in our program).

We need to increase the value of the counter variable in the body of the loop. This is very important (and

mostly forgotten). Failing to do so will result in an infinite loop (never ending loop).

Finally, the result is displayed.

Program to add natural

numbers upto

sum = 1+2+3+...+n

To take input from the user,

n = int(input("Enter n: "))

n = 10

initialize sum and counter

sum = 0

i = 1

while i <= n:

sum = sum + i

i = i+1 # update counter

print the sum

print("The sum is", sum)

Enter n: 10

The sum is 55

	Untitled

