

RISHABH SHUKLA 1

Python Revision Tour

Python character set

The character set refers to the valid characters that are used in Python.

 Letters: a-z, A-Z

 Digits: 0-9

 Special Characters: +, -, *, /, =, <, >, etc.

 Whitespace: Space, tab, and newline (\n)

 Unicode Characters: Python supports Unicode from various languages.

Token in Python

The smallest unit in a Python program is called a token. In python all the instructions and

statements in a program are built with tokens. Different type of tokens in python are

keywords, identifier, Literals/values, operators and punctuators –

Keywords: Words with a special meaning in a programming language are known

as keywords. There are 33 keywords in Python True, False, class, break, continue,

and, as, try, while, for, or, not, if, elif, print, etc.

Identifiers: Identifier is a user-defined name given to a variable, function, class,

module, etc. Python has certain guidelines for naming identifiers, follow these

guidelines:

 Code in python is case – sensitive

 Always identifier starts with capital letter(A – Z), small letter (a – z) or an

underscore(_).

 Digits are not allowed to define in first character, but you can use between.

 No whitespace or special characters are allowed.

 No keyword is allowed to define identifier.

 Literals: Literals are the raw data that is assigned to variables or constants during

programming. There are five different types of literals string literals, numeric literals,

Boolean literals and special literals none.

 String literals: The string literals in Python are represented by text enclosed

in single, double, or triple quotations. Examples include “Computer Science,”

‘Computer Science’, ”’Computer Science”’ etc.

 Numeric Literals: Literals that have been used to storing numbers is known

is Numeric Literals. There are basically three numerical literals – Integer, Float

and Complex.

 Boolean Literal: Boolean literals have only two values True of False.

 Special literals none: The special literal “None” in Python used to signify no

values, the absence of values, or nothingness.

RISHABH SHUKLA 2

 Operators: Operators are specialized symbols that perform arithmetic or logical

operations. The operation in the variable is applied using operands. The operators

can be:

 Arithmetic operators (+, -, * /, %, **, //)

 Bitwise operators (&, ^, |)

 Shift operators (<<, >>)

 Identity operators (is, is not)

 Relational operators (>, <, >=, <=, ==, !=)

 Logical operators (and, or)

 Assignment operator (=)

 Membership operators (in, not in)

 Arithmetic-assignment operators (/=, +=, -=, %=, **=, //=).

 Punctuators: The structures, statements, and expressions in Python are organized

using these symbols known as punctuators. Several punctuators are in python [] { }

() @ -= += *= //= **== = , etc.

What is variable?

A variable is just like a container which helps to contain the values. It serves as an object

or element that uses memory space, which can contain a value, variable number,

alphanumeric or both. Example, name = “Python”

Use of comments in python

The statement ignored by the Python interpreter during the execution is known as a

comment. The comment starts with a hash symbol (#) in Python. It helps to add remarks

in the source code.

Data types in Python

In Python, data types define the type of data that a variable can store. The following chart

shows the different types of data types in Python.

RISHABH SHUKLA 3

Operators in python

An operator is used to perform a specific mathematical or logical operation on values.

The values that the operators work on are called operands. For example, in the

expression 10 + num, the 10 is a value, the num is a variable, and the + (plus) sign is an

operator.

 Arithmetic operators (+, -, * /, %, **, //)

 Bitwise operators (&, ^, |)

 Shift operators (<<, >>)

 Identity operators (is, is not)

 Relational operators (>, <, >=, <=, ==, !=)

 Logical operators (and, or)

 Assignment operator (=)

 Membership operators (in, not in)

 Arithmetic-assignment operators (/=, +=, -=, %=, **=, //=).

Expressions in Python

Expressions are representations of value, an expression is defined as a combination of

constants, variables, and operators. A value or a standalone variable is also considered

as an expression but a standalone operator is not an expression. Some examples of valid

expressions are:

Expressions

100 3.0 + 3.14

num 23/3 -5 * 7(14 -2)

num – 20.4 “Global” + “Citizen”

RISHABH SHUKLA 4

Statement in Python

In Python, a statement is a unit of code that the Python interpreter can execute.

>>> x = 4 #assignment statement

>>> cube = x ** 3 #assignment statement

>>> print (x, cube) #print statement

4 64

Input and output in Python

The Python program needs to interact with the user to get some input data or information.

This is done by using the input() function, and the print() function helps to give output on

the screen.

a. Input Function

fname = input("Enter your first name: ")

Enter your first name: Arnab

b. Output Function

fname = input("Enter your first name: ")

print(fname)

Enter your first name: Arnab

Arnab

Some more examples of Output function

Statement Output

print(“Hello”) Hello

print(10 * 2.5) 25.0

print(“I” + “love” + “my” + “country”) Ilovemycountry

print(“I’m”, 16, “years old”) I’m 16 years old

Type-conversion (explicit and implicit conversion)

Type conversion refers to converting one type of data to another type, and this data

conversion can be done using two different ways:

 Explicit conversion: Explicit conversion done by the programmer manually using

the cast operator.

 Implicit conversion: Implicit conversion is done automatically by the compiler; it is

also known as coercion.

RISHABH SHUKLA 5

a. Explicit conversion example

num1 = 11

num2 = 2

print(num1/num2) #output: 5.5

print(int(num1/num2)) #output: 5

Function Description

int(x) Converts x to an integer

float(x) Converts x to a floating-point number

str(x) Converts x to a string representation

b. Implicit conversion example

num1 = 10 #num1 is an integer

num2 = 20.0 #num2 is a float

sum1 = num1 + num2 #sum1 is sum of a float and an integer

print(sum1)

print(type(sum1))

Debugging in Python

A programmer can make mistakes while writing a program; the process of debugging,

which helps to identify and remove mistakes, it is also known as bugs or errors. Errors

are categorized as:

 Syntax errors: Every program has its own rules, and if a mistake is made in the

program like missing any punctuation, incorrect command, or mismatched

parentheses or braces, it can generate a syntax error.

 Logical errors: A logical error occurs when a program runs without errors but

generates incorrect output, for example, assigning a value to the wrong variable,

etc.

 Runtime errors: A runtime error occurs during the execution of a program or after

the code is compiled or interpreted. For example, subtraction of two variables that

hold string values, etc.

Statement Flow Control

Control flow refers to the sequence in which a program’s code is executed. Control flow

statements manage the order in which code is executed and help to create a dynamic

and flexible program.

Python has three types of control structures –

 Sequential – By default mode

 Selection – Used in decision making like if, switch etc.

RISHABH SHUKLA 6

 Repetition – It is used in looping or repeating a code multiple time

Conditional statements

The “IF-ELSE” conditionals help to check whether a condition is true or false; it is also

known as a conditional statement. An “IF” statement executes a block of code only if the

condition is true, while an “IF-ELSE” statement executes a block of code in both

conditions, if the condition is true or false.

Syntax of IF condition –

if <conditional expression>:

[statement 1]

[statement 2]

Syntax of IF-ELSE condition –

if <conditional expression>:

[statement 1]

[statement 2]

else:

[statement 1]

[statement 2]

Nested IF statement

Nested if statements in Python allow the placing of one if statement inside another.

Nested If is a powerful tool for building complex decision-making logic in your programs.

Syntax of Nested IF statement

if condition:

if condition:

[Statement]

else:

[Statement]

Looping Statement

In Python, looping statements are used to run a block of statements or code continuously

for as many times as the user specifies. Python offers us two different forms of loops for

The For loop

A “for” loop allows a block of code to be executed repeatedly until a condition is met. A for

loop is used when you want to execute code multiple times or used for iterating over

sequences like lists and arrays.

Syntax of FOR loop –

for <variable> in <sequence> :

statements_to_repeat

RISHABH SHUKLA 7

The range() based for loop

The range() function allows you to generate a sequence of numbers, which can be used

in a for loop to iterate a specific number of times. It helps to control the flow of loops and

can be used in several ways. By default range() function starts from 0.

Syntax –

range(stop)

range(start, stop)

range(start, stop, step)

The While loop

A while loop is a conditional loop that will repeat the instructions within itself as long as a

conditional remain true.

Syntax –

while <logical expression> :

loop-body

Jump Statement (break and continue)

Python offers two jump statement – break and continue – to be used within loops to jump

out of loop-iterations.

a. The break Statement

A break statement is used to terminate the loop based on the condition; a break loop is

generally associated with an if statement. This loop termination can be used in a for loop,

a do loop or a while loop.

Example:

a = b = c = 0

for i in range(1, 11) :

a = int(input("Enter number 1 :"))

b = int(input("Enter number 2 :))

if b == 0 :

print("Division by zero error! Aborting")

break

else

c=a/b

print("Quotient = ", c)

print("program over!")

b. The continue statement

Unlike break statement, the continue statement forces the next iteration of the loop to

take place, skipping any code in between.

RISHABH SHUKLA 8

Loop else statement

Python supports combining the else keyword with both the for and while loops. In a loop

else statement, the else statement is used after the loop. The loop else statement will be

executed once when the loop is completed without encountering a break statement.

Example,

for i in range(5):

print(i)

if i == 3:

break

else:

print("Loop completed without breaking.")

Nested Loops

A loop may contain another loop in its body. This form of a loop is called nested loop. But

in a nested loop, the inner loop must terminate before the outer loop.

The following is an example of a nested loop :

for i in range(1,6) :

for j in range(1, i) :

print("*", end =' ')

print()

String in Python

The combination of characters is known as a string. A string is a fundamental data type in

Python; it is immutable. Immutable means once a string is created, its value cannot be

changed. Strings are enclosed in either single quotes (‘ ‘), double quotes (” “), or triple

quotes (“”” “””). Triple quotes are basically used for multiple lines.

Basic Operation

Operation/
Method Description Example

Concatenation Combine strings using + operator “Hello ” + “World” (Output:
Hello World)

Repetition Repeat strings using * operator “Hi ” * 3 (Output: Hi Hi Hi)

Membership Check substring presence using in
or not in

“a” in “apple” (Output: True)

Slicing Extract parts of the string using
index ranges

“Hello”[0:4] (Output: Hell)

RISHABH SHUKLA 9

List in Python

In Python, Multiple values (example, Number, Character, Date etc.) can be stored in a

single variable by using lists., a list is an ordered sequence of elements that can be

changed or modified. A list’s items are any elements or values that are contained within it.

Lists are defined by having values inside square brackets [] just as strings are defined by

characters inside quotations.

Example 1,

>>> list1 = [2,4,6,8,10,12]

>>> print(list1)

[2, 4, 6, 8, 10, 12]

Tuples in Python

An ordered collection of components of various data kinds, such as integer, float, string,

list, is known as a tuple. A tuple’s components are denoted by parenthesis (round

brackets) and commas. A tuple’s elements can be retrieved using index values beginning

at 0 just like list and string members can.

Example 1,

>>> tuple1 = (1,2,3,4,5)

>>> tuple1

(1, 2, 3, 4, 5)

Example 2,

>>> tuple2 =('Economics',87,'Accountancy',89.6)

>>> tuple2

('Economics', 87, 'Accountancy', 89.6

Dictionary in Python

Maps include the data type dictionary. A collection of keys and a set of values are

mapped in this situation. Items are keys and values pairs. Consecutive entries are

separated by commas, and a colon (:) separates a key from its value. Dictionary entries

are unordered; thus, we might not receive the data in the same order that we entered it

when we first placed it in the dictionary.

Example,

>>> dict3 = {'Mohan':95,'Ram':89,'Suhel':92,'Sangeeta':85}

>>> dict3

{'Mohan': 95, 'Ram': 89, 'Suhel': 92,'Sangeeta': 85}

	Python character set
	Token in Python
	What is variable?
	Use of comments in python
	Data types in Python
	Operators in python
	Expressions in Python
	Expressions
	Statement in Python
	Input and output in Python
	Statement Output
	Type-conversion (explicit and implicit conversion)
	Function Description
	Debugging in Python
	Statement Flow Control
	Conditional statements
	Syntax of IF condition –
	Syntax of IF-ELSE condition –
	Syntax of Nested IF statement
	Syntax –
	Syntax – (1)
	Example:
	Example,
	String in Python
	Example 1,
	Example, (1)

