

ii

Python for Beginners

ii Python for Beginnersii

iiiiii

Python for Beginners

Alex Bowers

LearnToProgram, Inc.
Vernon, Connecticut

iv Python for Beginnersiv

LearnToProgram.tv, Incorporated
27 Hartford Turnpike Suite 206
Vernon, CT06066
contact@learntoprogram.tv
(860) 840-7090

©2013 by LearnToProgram.tv, Incorporated

ISBN-13: 978-0-9888429-7-7
ISBN-10: 0988842971

All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without prior written permission of
LearnToProgram.tv, Incorporated.

Limit of Liability/Disclaimer of Warranty: While the publisher and
author have used their best efforts in preparing this book, they make
no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any
implied warranties of merchantability or fitness for a particular purpose.
No warranty may be created or extended by sales representatives or
written sales materials. The advice and strategies contained herein may
not be suitable for your situation. You should consult with a professional
where appropriate. By following the instructions contained herein, the
reader willingly assumes all risks in connection with such instructions.
Neither the publisher nor author shall be liable for any loss of profit
or any other commercial damages, including but not limited to special,
incidental, consequential, exemplary, or other damages resulting in whole
or part, from the readers’ use of, or reliance upon, this material.

Mark Lassoff, Publisher
Kevin Hernandez, VP/ Production
Alison Downs, Copy Editor
Alexandria O’Brien, Book Layout
Ardit Sulce, Technical Writer
Jeremias Jimenez, Technical Editor

vv

Dedication

To the team at LearnToProgram: thank you for your trust and faith in
me. Working alongside you has been incredible.

A special thank you to Mark for his guidance and assistance throughout
the entire process.

Finally, a thank you to my parents, Caroline and Lee, and my brother
Jonathan, for putting up with my seclusion while I harbored and honed
my passion for programming.

vi Python for Beginnersvi

viivii

Table of ConTenTs

Getting Started ..11
1.1 Acquiring the Tools ..11
1.2 Hello World in Python ...19

The Basics ...23
2.1 Getting Started with Variables ...23
2.2 Data Types ..26
2.3 Arithmetic Operators ...34
2.4 Understanding the Order of the Operators36
2.5 Comments ...37
2.6 Variable Scope ..38
Chapter 2 Lab Exercise ..40

Conditionals ..43
3.1 If Statements ..43
3.2 Else Statements ..46
3.3 Elif Statements ...47
3.4 Switch Statements Workaround ..49
3.5 Inline if ...51
Chapter 3 Lab Exercise ..53
AND Truth Table: ...55
OR truth table: ..55
NOT truth table: ...56
Main Challenge: ..56

Looping ..60
4.1 While Loops ..60
4.2 For Loops ..64
4.3 Try, Except, Finally ...68
4.4 Break, Continue, and Else ...72
Chapter 4 Lab Exercise ..76

Lists ..80
5.1 A Closer Look at Lists ..80
5.2 Modifying Lists ..84
5.3 Sorting Lists ...89
Chapter 5 Lab Exercise ..93

Receiving Inputs ..98
6.1 “Press any key to continue” ..98
6.2 Data Input ..100
Chapter 6 Lab Exercise ..104

Predefined String Functions ..106
7.1 Using Strings as Objects ..106
7.2 Splitting and Joining Strings ...111
Chapter 7 Lab Exercise ..115

Custom Functions ...118

viii Python for Beginners

8.1 Syntax Overview ..118
8.2 More Parameters ..121
8.3 More on Returns ...124
Chapter 8 Lab Exercise ..127

Classes ..130
9.1 Overview of Classes and Objects ...130
9.2 Using “class” ...132
9.3 Using Methods ...136
9.4 Using Object Data ..141
9.5 Inheritance ...146
Chapter 9 Lab Exercise ..151

File Handling ..154
10.1 Opening Files ...154
10.2 Reading and Writing Text Files ..157
10.3 Reading and Writing Binary Files ..161
Chapter 10 Lab Exercise ..162

Database Handling ..166
11.1 Creating the Database ...166
11.2 Inserting and Updating Records ...170
11.3 Retrieving and Deleting Records ...173
Chapter 11 Lab Exercise ..177

Modules ..180
12.1 Using Standard Libraries ...180
12.2 Creating a Module ...185
Chapter 12 Lab Exercise ..188

Debugging ...190
13.1 Dealing with Syntax Errors...190
13.2 Dealing with Errors at Runtime ...196
Chapter 13 Lab Exercise ..201

Answer Key: Python for Beginners ...212
Appendix ..221

viii

ixix

About the Author

Alex Bowers’ programming career began when he learned PHP and
MySQL for a small project that he wanted to complete. Two years later,
the project was finished and Alex had become a bona fide PHP and
mySQL expert. He was hooked—he just couldn’t get enough of coding!
This was the beginning of a lifelong passion for programming.

Since then, Alex has dedicated his time to teaching others. In 2009,
he began teaching PHP and MySQL on YouTube under the name
“TheTutSpace.” He has since moved on to teach jQuery, Javascript and
HTML/CSS; manage a hugely successful forum, PHPacademy; and
author and produce content for various other educational sources all over
the web. Alex’s primary expertise is in web development, but he has also
dabbled in Android and iOS.

Alex’s style is very much compatible with LearnToProgram’s mission:
to provide easy-to-access technical education for students worldwide.
For Alex, traditional classroom teaching is passé: his goal is to teach
thousands of students he has never met from all countries and cultures.

x Python for Beginnersx

Courses Available from LearnToProgram, Inc.

AJAX Development
Android Development for Beginners
Become a Certified Web Developer
C Programming for Beginners
C# for Beginners
Creating an MP3 Player with Adobe Flash
CSS Development (with CSS3)
Design for Coders
HTML and CSS for Beginners (with HTML5)
HTML5 Mobile App Development with PhoneGap
iOS Development Code Camp
iOS Development for Beginners Featuring iOS5
iOS Development for Beginners Featuring iOS6/7
Java Programming for Beginners
Javascript for Beginners
jQuery for Beginners
Objective C for Beginners
Photoshop for Coders
PHP & MySQL for Beginners
Python for Beginners
SQL Database for Beginners
User Experience Design

Books from LearnToProgram, Inc.

HTML and CSS for Beginners
Javascript for Beginners
Create Your Own MP3 Player with HTML5

11

Chapter 1: Getting Started

11

geTTing sTarTeD

ChapTer obJeCTiVes:
• You will be able to set up the Python development environment.
• You will be able to set up Eclipse with PyDev as the platform where the
 Python code will be written.
• You will be able to write and run your first Python program.

1.1 aCQuiring The Tools

Before you begin working with and learning Python with this book, there
are a few tools you will need. In this chapter, we will show you how to
download and install the necessary tools: Python and Eclipse.

Python is a remarkably powerful dynamic programming
language that is used in a wide variety of application domains.

Eclipse is a platform where you can write, edit, debug and run
programming languages such as Python.

Before we can do anything, we need to set up our tools:

The first thing you will need is to install Python.

It can be downloaded for free from its official webpage at:
www.python.org/download

You will find many versions of Python in the “Download Python” section,
but you should always use the current production version. Versions that
are not yet in production may have undocumented errors, performance
problems or other minor issues. At the time this book is being written,
the current production versions are Python 2.7.4 and Python 3.3.1.

We are going to work with Python 3.3.1. It is
both more secure and faster than its previous
versions. The next step is to download one

CHAPTER 1

This book uses:
Python 3.3.1

1.1 Acquiring the Tools

12 Python for Beginners12

of the installers listed on the webpage. Which one you should choose
depends on your operating system. As my operating system is the 64
bit version of Windows 7, I would download the Python 3.3.1 Windows
X86-64 MSI Installer. Of course, you likely have a different combination
of hardware and operating system. That’s one of the nice things about
Python—it runs on practically any hardware and operating system.

After the Python installer file has been downloaded, double-click on it
and follow the prompts to install it.

Next, we’ll set up the Eclipse IDE (Integrated Development Environment)
where you can write, edit, debug and run the Python code.

Eclipse can be downloaded for free from its official webpage at:
www.eclipse.org/downloads

You will see many versions of Eclipse listed on the webpage. The one we
are going to use throughout this book is Eclipse
Standard (version 4.3 as of this writing) and
also known as Eclipse Kepler. Once the file has
been downloaded, double-click it to begin the
installation. (You may need to extract the file
from a compressed folder first.)

In general, Eclipse is a well-supported platform and can be used on many
operating systems. Eclipse is also designed to work with many different
programming languages. I’ve used Eclipse for Java, PHP, and C++
development. Eclipse Classic will allow us to install an add-on so that we
may use the Python interpreter within Eclipse.

Figure 1.1: The Eclipse executable appears in the extracted Eclipse folder downloaded from
the website.

This book uses:
Eclipse 4.3

13

Chapter 1: Getting Started

13

You might need the Java Runtime Environment installed on your system
before installing Eclipse. If you don’t have it, you will be prompted
accordingly during the installation process.

If this is the case, you can download the Java Runtime Environment
from:

Oracle’s official Java site located at:
http://java.com/en/download/index.jsp

Tip: For Windows users, if you install the Eclipse IDE 32-bit version
then you must install the Java Runtime Environment (JRE) 32-bit
version. The same is true if you are installing 64-bit versions.
Also, if you install Eclipse to, for example, folder C:\Eclipse, then
you must override the default installation folder of the JRE and
install the JRE to C:\Eclipse\jre because this is where the Eclipse
IDE installation program will expect to find the Java Runtime
Environment. You can go to:
http://stackoverflow.com/questions/2030434/eclipse-no-java-jre-jdk-
no-virtual-machine to view various user’s comments and solutions
to various problems you may encounter while installing the Eclipse
IDE and the Java Runtime Environment for Windows.

After you have installed Eclipse and run it for the first time, you will see
a window that looks like this:

Figure 1.2: The Eclipse window opens after installation

1.1 Acquiring the Tools

14 Python for Beginners14

From this window, go to Help > Install New Software.

Figure 1.3: Installing the PyDev module

Inside the Work with box, type the address http://pydev.org/updates,
which searches for the Python add-on for Eclipse. Hit Enter and then
select PyDev from the returned results. Press Next until the installation
is completed and accept any certificate you may be asked to during the
installation. Choose to restart Eclipse at the end of the installation
process.

When Eclipse restarts, it will ask you to choose a workspace. In order not
to show this window the next time you open Eclipse, check the Use this as
a default and do not ask again option.

The Eclipse window should now appear on your screen. We now will
configure Eclipse to make it work with Python. This can be done by
enabling the Python interpreter. To do this, go to Window > Preferences

15

Chapter 1: Getting Started

15

and expand PyDev as shown in the following image.

Figure 1.4: Enabling the Python interpreter

Now, we need to tell Eclipse where in the system the Python interpreter
is located. To do this, go to the New button.

Figure 1.5: Setting the interpreter path

Type a name for the interpreter. It does not matter what name you choose

1.1 Acquiring the Tools

16 Python for Beginners16

but you should choose something relevant. I’m using Python3.3. Click
Browse and locate the Python installation directory. Mine is located in
C:\Python33. Find your Python executable file and click Open and then
OK in the next window.

Now you are ready to start a new Python programming project inside
the Eclipse platform. You can do that by going to Project > New > PyDev
Project.

Figure 1.6: Creating a new Python project to start writing programs

17

Chapter 1: Getting Started

17

Type a name for the project, change the Grammar Version to 3.0 and
choose your Python interpreter from the Interpreter drop-down list.
Mine would be Python3.3 which is the interpreter name I created in the
previous step.

Click Next and then Finish to close the window.

Figure 1.7: The project environment interface

You should now see the PyDev project environment with its Package
Explorer window on the left-hand side as shown in the previous image.

1.1 Acquiring the Tools

18 Python for Beginners18

Questions for Review

1. Which of the following is needed to write and run a simple Python
program such as the one created in this chapter?

a. Java Runtime Environment.
b. Eclipse.
c. Python.
d. Linux.

2. Which of the following statements is true?
a. Python cannot work without Eclipse.
b. Eclipse cannot work without Python.
c. Eclipse is just an optional platform that helps users to work with

Python.
d. Python code can also be written somewhere else, but Eclipse is a

necessity when the code has to be run/executed.

Questions for Review

19

Chapter 1: Getting Started

19

1.2 hello worlD in pyThon

In this section, you will create your very first Python program. This
simple program will display some text on the screen. Before going ahead
and writing the Python code, we need to first create a folder and a file
where we will write our script. To create a folder, from the Package
Explorer tree view, right-click over the project and then go to New >
Folder as shown in the following screenshot:

Figure 1.8: Creating a new folder for storing Python script files

1.2 Hello World in Python

20 Python for Beginners20

Tip: I’m using a PC to create this book, which is why all the
screenshots are from Windows. Everything I am doing has an
equivalent procedure on the Mac operating system. You can easily
complete the book using a Mac—all the code will be identical.

Enter a name for the new folder and click OK to close the window. To
create a file inside the folder, right-click the folder you created and go to
New > File.

Figure 1.9: Creating a Python script file

Enter a name for the file. Since this is the file where we are going to write
our first “Hello World” program, I will name mine “Hello.py” where “py”
is the file extension indicating that particular file is a Python script. Once
we have created our empty Python file, we can start coding right away.
The area within the Eclipse environment where you are going to write

21

Chapter 1: Getting Started

21

the code is illustrated in the following image:

Figure 1.10: The programming environment

As we already mentioned, we are going to be creating a program that
displays some text on the screen. In Python, this can easily be done using
the print function. The whole code we need to write in the coding window
is as follows:

print("Hello, world")

The print phrase is a Python keyword, which means it is a special word
that is used and recognized by Python as a function. The quoted text—
Hello, world—is the text we are actually going to output. Notice that it is
surrounded by quotes and is known as a string.

After you write the code, you have to execute it in order to get the output
you want. To execute the code, go to the Run as button from the icons
menu and then to Python run and click OK. You should now see the
output printed at the bottom of the window. In our case the output should

1.2 Hello World in Python

22 Python for Beginners22

be the text “Hello, world”.

For Linux users, there is something else you have to do when writing
Python code—you’ll need to add an additional line before the code. A
Python program that is meant to be run on a Linux machine would look
like this:

#!/usr/local/bin/PythonDirectory
print("Hello, world")

The first line tells the interpreter where in your Linux machine the
Python installation directory is located. This line is often referred to as
the “Shebang line.” (Bonus: it’s fun to say “Shebang”!)

You’ve just created your first program, congratulations! We’ve kept it
simple to start off with, but you now have the basic knowledge of where to
write the code and how to run it in order to get your desired output. You’ll
be writing more complicated programs as we move on through the next
chapters.

Questions for Review

1. What does the print command do?
a. Initializes a Python program.
b. Displays some text on the screen.
c. Sends a command to the printer.
d. None of the above.

2. What is not meant by “running the program”?
a. Saving the written program inside Eclipse.
b. Trying to get the output of the written program.
c. Testing if the program is working.
d. Executing the program.

Questions for Review

23

Chapter 2: Th e Basics

2.1 Getting Started with Variables 23

The basiCs

ChapTer obJeCTiVes

• You will be able to understand what variables do and learn how to
assign values to them.

• You will be able to understand different data types and learn how to
get the type of a specific variable or value.

• You will learn how to quickly test single lines of code without having
to write the code inside Eclipse.

• You will learn to write simple arithmetic expressions, and learn the
order of the arithmetic operations for complex expressions.

• You will learn how to insert comments inside your code.
• You will learn the scope of variables.

2.1 geTTing sTarTeD wiTh Variables

We can define variables as containers that are used to store data such
as numbers, text, lists, and other similar
objects. Variables are fundamental in every
programming language as they give us a
way to store and manipulate information as
the program executes. As you practice using
variables in this chapter, I am sure their
application will become clearer.

Before we start coding again, we need to create an empty Python file like
we did when we created our first “Hello world” program. To create the
file, right-click above the folder you created and stored your “Hello world”
code in, and create a new file. I have named my file Variables.py.

Here is a first example of a variable with a sample value it might hold:

number =100

In this example we have assigned the value of 100 to the variable
number. In other words, our container is now filled with the value of 100.

CHAPTER 2

Variables:

Containers that are
used to store data

24 Python for Beginners

The following examples
are correct variable
name declarations in
Python:

• number
• Number
• Number_1
• numberOne
• _variableX
• etc

While the following
names would not be
allowed:

• 1_number
• +number
• *number

Camel Casing
Method

24

Note that the word number is just an arbitrary name we chose to give
to our variable. You have a lot of freedom when writing variable names.
However, there are a few things you should know about syntax rules of
writing variables. You will see that some variable names are not allowed.

As you can see, numbers and special characters (the only exception
being the underscore) are not allowed to begin a variable name. Besides
this important restriction, there is also a
convention on Python variable names. The
convention suggests that you use the camel
casing method. In camel casing, you start your
variable name with a lowercase letter and then you use capital letters if
your variable name is longer than one word. Here are some examples:

numberOne
thisIsAVariable
camelCasingWorks

Tip: While you have a lot of flexibility in how you name variables,
it’s important that you give the variables a name that has semantic

meaning. Name variables based on what they are representing.
If someone unfamiliar with your code were to read it, they should
have some idea of what a variable represents, just by the name.

25

Chapter 2: Th e Basics

2.1 Getting Started with Variables 25

Let’s take a look at a simple example of a variable in use in Python:

number = 100
print (number)

We just assigned a value to the variable number and then we displayed
the variable value using the print command. After you run the code, you
should get the value of 100 displayed on the screen.

If we modify the above code a bit, you will see a different result.
When you see parentheses in Python code, work from the inside of
the parentheses outward to interpret the code. In this case, we have
embedded the type() function inside the print command and sent the
value of the number variable as an argument to the function.

number = 100
print (type (number))

Running this code, you should get this result:

<class 'int'>

The result is declaring that the value of the variable is of the type integer.
You will learn more about different data types in the next chapter.

Tip: Variable names in Python are case-sensitive. The variable
named “number”, written in all lowercase letters, will be different

from the variable named “Number”, which has the first letter
capitalized. If you assign a value of 100 to “number” and then try to

retrieve that value from “Number”, you will get an error.

26 Python for Beginners26

2.2 DaTa Types

As is the case in many other computer programming languages, Python
recognizes and works with several different types of data. In the previous
chapter, we went through an example of viewing the data type of the
variable number. The following code will also output the data type, but
this time the result will indicate a floating point number:

number = 100.1
print (type (number))

Running this code, you should get this result:

Fig 2.1: Output of the type() method

In contrast to the value of 100 which was of type integer, in this case we
are dealing with a float type. Float is an approximation of real numbers
but does not include integers into its set. It is easiest to think of floats
(floating point numbers) as numbers with a decimal value at the end.
Float type values have a greater deal of precision than integers.

In Python it is possible to convert between different data types. This
conversion process is frequently called casting. Examine the following
code:

number = int(100.1)
print (type (number))

The result you get would be:

<class 'int'>

Look at the original assignment to the variable number. Before the value

27

Chapter 2: Th e Basics

2.2 Data Types 27

is actually assigned, the int() function is used to convert the value to an
integer. When the conversion occurs, the level of precision is reduced
and, effectively, the decimal part of the number is dropped. Since the
casting has taken place before the value is assigned to number, the type()
function now yields int or integer type.

Let’s alter the code again and see what happens:

number = int(100.1)
print (number)

The value displayed on the screen when the program is run is 100 instead
of 100.1. If we want to make the previous code more compact and have it
display both the converted value and its type at the same time, we would
write:

number = int(100.1)
print (type(number),number)

When run, this code would yield the following result:

<class 'int'> 100

Variables don’t always get assigned numbers as values. Variables may
also contain strings, lists, tuples or dictionaries. Here is an example of a
variable that is assigned a string value:

a = "This is a string"
print (type(a),a)

The output would be:

<class'str'> This is a string

The result of the type() function, Str, indicates that the value inside
the variable a is of type string. You can think of a string as a series of
characters. The characters included in a string can be letters, numbers
or punctuation marks. When the string is defined we surround it with

28 Python for Beginners28

double quotes to demarcate the beginning and end of the string.

If we wanted to write our sentence on more than one line, the approach
would be as follows:

a = """ This is
a string """
print (a)

or, alternatively:

a = "This is \na string"
print (a)

Running the last two examples would yield
similar results. In the first example, the
use of triple quotes allows the expansion
of the text in more than one line. In the
second example, the characters \n do the
work of shifting the characters to the second
line and can be considered a reserved word
in Python. Print is another example of a
reserved word.\n is very flexible as it can be written directly next to
strings without having to add a space, as shown previously. If you found
yourself in a situation where you would have to display the \n character
as printed text for some reason, you would write:

a = "This is \\na string"
print (a)

In this case, the \n part would not be recognized as a reserved word
anymore. The preceding slash is said to ‘escape’ the character sequence.

Take a look at the following code, paying special attention to variables a
and b:

a = "Hello"
b = "%s world" % a
print (b)

A reserved word
is a word that is part
of the programming

language and performs
an assigned action.

29

Chapter 2: Th e Basics

2.2 Data Types 29

The output of this code is simply:

Hello world

%s and % are both reserved words. %s is a container that is waiting to be
filled with a value. Then, the character % indicates that the container %s
should be filled with the value of variable a. You will realize later that
these containers will come to be very useful when formatting complex
strings. If you are familiar with C style languages, you have likely seen
this concept before where character sequences such as %s are used to
output variable values.

We could also create the same output in another way:

a = "Hello"
b = "{} world".format(a)
print (b)

In the code above, we assign the string value to variable a in the first
line. Then, in the second line we are dealing with a string method which
is str.format(). This method replaces the {} part with the value assigned to
a. The output is then printed in the last line.
So far, we have worked numbers (integers and floats) and strings in
terms of data types. Now, we are going to learn two other important data
types: tuples and lists.

This would be a tuple:

X = (1,2,3)

and this would be a list:

Y = [1,2,3]

To get the types of X and Y, you can use the type() function similar to how
you used it with numbers and strings:

type(X)
type(Y)

30 Python for Beginners30

Even though the tuple and the list look similar to
each other, they are designed to deal with different
tasks. Lists are mutable (changeable) while tuples
are immutable (not changeable). We can add, modify
or remove elements from lists, but we cannot do the
same with tuples. Tuples are designed only to store
data. To illustrate the mutability of lists, we will add
an element to our existing list, Y:

Y = [1,2,3]
Y.append(4)
print (Y)

If you run this short program, the result you will get is:

[1,2,3,4]

If you were to try the append() function with the tuple in the same way,
you would get an error:

Figure 2.2: Python responds with an error when the append() method is applied to a tuple

The append method tries to mutate the tuple—which is not allowed since
tuples are by definition immutable.

In addition to using append() to modify a list, you might also want to
access certain elements within a list or a tuple. Let’s say we want to print

Lists:
mutable

Tuples:
immutable

31

Chapter 2: Th e Basics

2.2 Data Types 31

out the third element of the list X.

X = [1,2,3]
print (X[2])

Executing the code above, you would display the value 3 because it is the
third member of the list. X[2], within the print() function picks the third
element of the list. You might expect X[3] to select the third member of
the list, however, in Python, indexing begins at zero. This means any
object that holds a list of subsequent values will enumerate the first
value as zero. So, if we wanted to display the first element from the list,
we would write:

X = [1,2,3]
print (X[0])

We can use the same notation to extract a range of numbers within
the list, for example, if we wanted to extract the third, fourth, and fifth
values we could write the following code:

X = ["a","b","c","d","e","f"]
print (X[2:5])

When executed, this code would yield the result:

['c','d','e']

These are the elements with index 2, 3, and 4, respectively. Notice that
when we request the list values 2:5, we don’t receive the fifth value. The
return stops before the second value in the request. 5:7 would return
elements with indexes 5 and 6. Similarly, just as we just did with lists,
we can access elements from tuples:

Y = (1,2,3,4,5,6)
print (X[2:5])

Now that you understand a bit about lists and tuples, we are going to

32 Python for Beginners

Dictionaries

Booleans

32

learn another important data type, dictionaries. Dictionaries also store
multiple elements as lists and tuples do, but with
the difference that these elements are stored in
key/value pairs. Here is an example of a dictionary
that stores a list of names and phone numbers:

D = {"Tim": 981244, "Tom": 897134, "John":
9809878}

The first element of each pair is called the key, while the second is the
value. Each value is tied to its key. If we want to know Tom’s phone
number, we would write:

D["Tom"]

We would get Tom’s phone number displayed on the screen. In addition
to the curly bracket syntax that you saw in the first example, dictionaries
can also be declared in another way:

D = dict (Tim = 981244, Tom = 897134,
John = 9809878)

Regardless of the declaration method, the result would be the same.
We could access any value in the dictionary using the notation above,
regardless of how the dictionary was created.

Booleans are another important data type.
Booleans may contain only two values, True or
False. Try entering and running the following code
to get the idea:

Freedom = True
print (type (Freedom))

What you get as a result is this:

<class 'bool'>

33

Chapter 2: Th e Basics

Assignment Operator

=

Comparison Operator

==

2.2 Data Types 33

Where bool indicates that True is of type Boolean.
Next try running the following code to see what it does:

a, b = 0, 1
if a == b:
 print (True)
else:
 print (False)

In the first line of code above, we are assigning a value of zero for
variable a, and a value of 1 for variable b. The remaining block of code is
a conditional expression where we test if a is equal to b. If they are equal,
True will be displayed on the screen, otherwise False will be displayed. In
this case, the result would be:

False

The double equal sign “==” is a comparison operator that means
equivalency.

Tip: A common mistake made by those learning to program is
to confuse the = and the == operator. (Just be thankful Python

doesn’t have a === operator, like Javascript does!) Remember that
= is the assignment operator used to assign a value to a variable.

The == operator is a comparison operator used to compare two
values.

Try to carefully observe the syntax and the structure of the code block.
Besides the usage of columns which are easily visible, you can also
see that we have shifted two of the lines to the right. This is called
indentation and it is very important in Python. Statements such as
print should be indented in the code when being used inside blocks
such as conditionals. You will learn more about indentation in the next
chapters.

34 Python for Beginners34

2.3 ariThmeTiC operaTors

Until now, we have been writing our Python code examples inside
Eclipse. Now, it is time to try a slightly different way of writing and
running the code. In programming terminology, this is known as the
interactive way and it is generally done through the command line of
the operating system you are using.

Windows users will have to open the Command Prompt from the Start
menu. Linux and Mac users would open the Terminal. After you have
opened the command line specific to your system, type in python and hit
enter. You should come up with something like this:

Figure 2.3: The Python interpreter inside the Command Prompt in Windows

This window shows the interactive programming environment. This
method is primarily used for testing small single lines of code instead of
big blocks. Try this code inside the window and hit enter:

1+2

You just wrote and ran a line of code at the same time using only a few
clicks. However, notice that we are not saving the code inside a file as we
did in Eclipse, meaning that this method is just for testing purposes.

35

Chapter 2: Th e Basics

2.3 Arithmetic Operators 35

In the previous code you wrote an expression that contains a
mathematical operator (the addition operator (+)). Similarly, you can try
all other types of operators you have learned from mathematics such as
multiplication:

1*2

division:

1/2

Or exponentiation:

1**2

Try to understand what the following code does by observing its output:

round (3/4)

The program first divides four by three, and then rounds up the output
value to the nearest integer. To make things a bit more complex, try this
other expression which involves the modulus operator (%). The modulus
operator returns the remainder of the division.

round ((3/4) * (10%3))

In terms of its output, the expression above would be the same as:

round (0.75 * 1)

or:

round (0.75)

and the result would be zero in all three cases.

36 Python for Beginners36

2.4 unDersTanDing The orDer of The
operaTors

When using operators in expressions that involve more than one operator,
certain rules should be followed in terms of arithmetic operation order.
These rules are basically the same as in mathematics. Try to rewrite
the expression we used in section 2.3, but this time without some of the
parentheses:

round (3/4 * 10%3)

You will see that the result would be different. When you don’t use
brackets, the default operator execution order is applied to expression.
Therefore, you should always use brackets inside the sub-expressions to
tell the program how your operations are grouped:

round ((3/4) * (10%3))

Here is a simpler example:

1-2*3

Some would expect that the first operator (-) is executed first and
therefore, the output would be a value of “3”, but this is not true. As in
mathematics, the multiplication would be the first to be executed. If you
want the subtraction operator as the first operator, then you would have
to write:

(1-2) * 3

To sum it up, if you don’t use brackets, the default operation order will be
applied to your expression, which is: exponents and roots, multiplication
and division (performing whichever operation appears first from left to
right), and last addition and subtraction (again, performing whichever
comes first from left to right).

37

Chapter 2: Th e Basics

Active output when ran

Executable Code

Nonexecutable descriptions

Comments Code

2.5 Comments 37

2.5 CommenTs

So far we have written code that is executable, meaning that the code
does something and gives an output while being run. We can also write
code or descriptive text that we don’t want to be executed, but instead
be ignored. This kind of text is referred to as comments. Comments can
serve either as descriptive text, as code that we don’t want to execute,
or as code we want to execute at some later point. Try this example in
Eclipse and see what output you get:

print ("Hello world")
print ("Hello")

The first line is what we referred to as a comment while the second line is
normal code that does something when the code is executed. You can see
that we had to start with the “#” symbol to declare that we are actually
commenting instead of coding. If we want to run the first line of code, we
can simply remove the “#” symbol.
Another scenario where commenting would become useful is when we
want to describe what our code does:

print ("Hello world") # This code displays
the text inside the brackets

Describing what the code does might come in handy when we want to
give the code to someone else or even when we work with our code at a
later time.

38 Python for Beginners

Global Variables:
declared outside the

function body

Local Variables:
declared inside the

function body

38

2.6 Variable sCope

We have learned quite a few things about variables, such as what they
are for and how to assign values to them. A concept that you should also
know is the scope of the variables inside
a Python program. The variable scope is
a concept that tightly relates to functions,
which are used to perform some actions and
return an output, pretty much the same as
functions in math do. Functions can have
variables within them. When variables
are declared outside the function body, the
variables are called global, while if the
variables are declared inside the function,
they are called local. Global variables can be accessed both outside and
inside the functions while local variables can only be accessed inside the
functions they are declared in.

To illustrate what we just stated, try to understand and run the following
example in Eclipse or in your Python command line:

def f(x):
 y = x**2
 print y
print f(3)
print y
print x

In this code we create a function that calculates and prints out the square
of a number. Two variables (x and y) are declared inside the function.
Both are local variables. In line 4 we are printing out the output of the
function when the input is equal to 3.

If we try to access these variables outside the function, as we are doing
in the previous code in the two last lines with the print commands, we
will be prompted that these objects are not defined and not recognized
as variables by Python. You will learn more about variables and the
usefulness of functions as we move on.

39

Chapter 2: The Basics

2.6 Variable Scope 39

Questions for Review
1. Let’s say we have assigned a value to variable a as a = 1
Which of the following codes would print out the variable’s assigned
value?

a. print (“a”)
b. display (a)
c. print (a)
d. print “a”

2. Which of the following is not a data type in Python?
a. String.
b. Decimal.
c. Integer.
d. Float.

3. Which of the following is not a correct declaration in Python?
a. a = [1,2,3]
b. b= {1,2,3}
c. c = (1,2,3)
d. d = “d”

4. Which of the following would be a correct order of execution of
arithmetic operators, assuming there are no parentheses in the
expression?

a. Exponents, addition, division.
b. Roots, multiplication, addition.
c. Exponents, multiplication, roots.
d. Addition, subtraction, division.

5. What is not true about comments?
a. Comments are lines of code that automatically generate descriptions.
b. Comments help the programmer keep track of the code by describing

it.
c. Comments are lines of code that are not executed by the program.
d. Comments may be used as code that can be executed at a later time.

Questions for Review

40 Python for Beginners40

ChapTer 2 lab eXerCise

Using the following equation, let’s figure out the acceleration of a vehicle
in motion.

Where v is final velocity (25m/s), u is initial velocity (0 m/s) and t is time
taken (10 seconds).
Work out acceleration (a) and print it to the screen
Hint: Rearrange it, like so:

lab soluTion

a = 0
u = 0
v = 25
t = 10

a = (v - u) / t

print(a)

41

Chapter 2: The Basics

41

ChapTer 2 summary

In this chapter you were introduced to variables and we discussed
how to write them and how to assign values to them.
You learned the concept of data types and what data types are
available. You were also introduced to the basic syntax of assigning
values of different data types to variables.
Together with variables and data types, you were provided with
examples of basic mathematical operators and the rules of writing
them in the correct order.
You should been able to understand the usefulness of writing
comments and how to insert them into your code. You should now
know that comments can be written either for documenting your
code or for creating code that is to be executed at a later point.
Lastly, you gained a basic understanding of the variable scope
concept. You learned that the scope of the variables is either local
or global and you should understand what each of those terms
mean.
In chapter 3, you will be introduced to conditionals which are a
very important part of every programming language and allow
the performance of multiple actions depending on a wide range of
conditions.

42 Python for Beginners42

43

Chapter 3: Conditionals

43

ConDiTionals
ChapTer obJeCTiVes

• You will be able to use conditionals including if, elif, else and inlineif
statements.

• You will learn which statement to use depending on the scenario.
• You will learn a workaround of switch statements.
• You will be able to write conditionals on only one line using the inline

if statements.

3.1 if sTaTemenTs

In this chapter you will be learning about conditionals which are used
widely in every programming language.

Conditionals are statements that perform actions depending
on whether a condition evaluates as true or false. Here is an
example of a conditional statement:

a, b = 0, 1
if a == b:
 print (True)

In the previous example, we are first assigning 0 and 1 to a and b,
respectively, and then we write the condition statement in the second line
(i.e. “if a is equal to b”). The third line contains the action to be performed
if the condition in the second line is met. You will not get any result from
this code because in this case, the condition is not met—a is not equal to
b. So, nothing will happen. If we instead write:

a, b = 0, 1
if not a == b:
 print (True)

Chapter 3: Conditionals

CHAPTER 3
Chapter 3: Conditionals

CHAPTER 3CHAPTER 3CHAPTER 3
Chapter 3: Conditionals

CHAPTER 3
Chapter 3: Conditionals

CHAPTER 3CHAPTER 3
Chapter 3: Conditionals

CHAPTER 3
Chapter 3: Conditionals

CHAPTER 3CHAPTER 3CHAPTER 3CHAPTER 3CHAPTER 3CHAPTER 3CHAPTER 3
Chapter 3: Conditionals

CHAPTER 3
Chapter 3: Conditionals

CHAPTER 3CHAPTER 3CHAPTER 3CHAPTER 3CHAPTER 3CHAPTER 3CHAPTER 3CHAPTER 3CHAPTER 3CHAPTER 3CHAPTER 3CHAPTER 3CHAPTER 3
Chapter 3: Conditionals

CHAPTER 3
Chapter 3: Conditionals

CHAPTER 3
Chapter 3: Conditionals

CHAPTER 3
Chapter 3: Conditionals

CHAPTER 3CHAPTER 3CHAPTER 3CHAPTER 3CHAPTER 3CHAPTER 3CHAPTER 3CHAPTER 3CHAPTER 3CHAPTER 3CHAPTER 3CHAPTER 3

3.1 If Statements

44 Python for Beginners44

The output would be:

Figure 3.1: True is printed out because a is not equal to b

This is because the condition states that a is not equal to b, which is
actually true.

Similarly, instead of the equal operator “==” you can try other operators
inside the condition statement such as the comparison operators, >, <, <=,
etc. Here is an example of how you would use the “less than or equal to”
(<=) operator:

a, b = 0, 1
if a <= b:
 print ("Yes, a is equal or less than b")

This would give:

Figure 3.2: Text is printed out because the condition is met

Notice how the action to be performed (i.e. the print function) is indented.
How much it is indented it does not matter, but it should not be at the
same vertical alignment with the condition above.

Indentation is an integral part of conditional
blocks. You should always indent the code that
comes under the conditional statements, just as we did in the previous
code. Keeping this in mind, let’s try some more complex conditions. We
will write the previous code in another way and still get the same result
by using a bitwise operator.

Bitwise operators allow the evaluation and manipulation of
two or more input and are often used together with
conditionals. Or is an example of a bitwise operator.
It is used to evaluate if at least one input is true.

Indentation

Or

45

Chapter 3: Conditionals

45

Here is an example:

a, b = 0, 1
if a < b or a == b:
 print ("Yes, a is equal or less than b")

We could translate the second and the third lines into common language
in this way: “if a is either less than or equal to b, then print out the text
‘Yes, a is equal to or less than b’’”, which is actually true in our case.
Therefore, the output would be:

Figure 3.3: Text is printed out as a is less than b

Another important bitwise operator is and. The and operator
evaluates the condition by only performing the succeeding
action if both the conditions before and after and are true.
Here is an example:

a, b = 0, 1
if a < b and a == b:
 print ("Yes, a is equal or less than b")

We would read the code this way: “if a is at the same time less than and
equal to b, then print out the text ‘Yes, a is equal to or less than b’”, which
is not true in our case. Therefore, nothing would be printed out this time.

Please note the difference between the assign operator “=” and
the equal operator “==”. The former is used to assign values to

variables, while the latter is usually used for testing if something
is equal to something else.

Bitwise Operators:
• Or
 • And

And

3.1 If Statements

46 Python for Beginners46

3.2 else sTaTemenTs

You might have noticed that when we ran the following code:

a, b = 0, 1
if a == b:
 print (True)

Nothing happened, nothing was printed out. This is because the condition
in the second line was not met—a was not equal to b. We might
find it useful to also trigger an action when the condition is not
met. This is done through the else statement which is written
in the same structure inside the block as the if statement:

a, b = 0, 1
if a == b:
 print (True)
else:
 print (False)

In this case we would get False printed out:

Figure 3.4: False is printed out as part of the else clause

The else statement and its consequent action are properly indented and
aligned with the upper part of the conditional block, similar to the if
statement. Notice that the indentation before the first and the second
print has to be in the same amount. For example, if you used a four
space indentation for the first print command, you have to use the same
amount for the second one.

Else

47

Chapter 3: Conditionals

47

3.3 elif sTaTemenTs

So far, we have tested two condition scenarios, true and false. Sometimes
it becomes necessary to test multiple scenarios and perform actions
depending on whether each of the conditions are met or
not. Testing more than two conditions using the if and else
statements is not possible—this is where the elif statement
comes in. The elif statement is the abbreviation of “else if” and
is used to state a condition just like the if statement does. The difference
here is that the elif statement can be used multiple times inside a single
conditional block. Here is an example:

a, b = 0, 1
if a == b:
 print ("a is equal to b")
elif a < b:
 print ("a is less than b")
elif a > b:
 print ("a is less than b")

else:
 print ("a is greater than b")

You can include as many elif statements as you need inside the
conditional block depending on your needs. In the previous code, the text
that will be printed out is the one that meets the condition (i.e. a < b):

Figure 3.5: Text is printed out as part of an elif clause

Try to play around by changing the values of a and b in the first line and
see what output you get. For example, if we assign 1 to both a and b:

a, b = 1, 1
if a == b:
 print ("a is equal to b")

Elif

3.3 Elif Statements

48 Python for Beginners48

elif a < b:
 print ("a is less than b")
elif a > b:
 print ("a is less than b")
else:
 print ("a is greater than b")

We would get the first condition returned as true and therefore the
following text printed out:

Figure 3.6: Text is printed out as part of an elif clause

Also keep in mind that if none of the if or elif conditions are met, the
action under else will be the one that is performed.

49

Chapter 3: Conditionals

49

3.4 swiTCh sTaTemenTs worKarounD

Many languages have a functionality called switch statements.

Switch statements are used to test multiple conditions and
perform actions depending on them—the same thing that elif
does. However, Python does not have built-in switch statement
functionality, but it does have an easy workaround to that.

To illustrate the workaround of switch statements, we are
going to create a dictionary:

a = dict (
 one = 1,
 two = 2,
 three = 3
)
var = "two"
print (a[var])

The output of this code would be:

Figure 3.7: “2” is printed out as the value of variable “two”

This is because 2 is the value that is tied to key two which is assigned to
the variable var. If you assign “four” to the variable, you will get an error
because there is no “four” key in the dictionary.

Another slightly different workaround to the switch method is
to use the built-in get function: This function returns a value
for a given key.

a = dict (
 one = 1,
 two = 2,
 three = 3

Switch

Get

3.4 Switch Statements Workaround

50 Python for Beginners50

)
var = "two"
print (a.get(var, "default"))

This code would print out the value that the key assigned to variable
var holds in the case when this key exists in the dictionary. Otherwise,
“default” will be printed out. In this case, we would get:

Figure 3.8: “2” is printed out instead of “default”

If we assign to var a value other than the ones contained in the
dictionary:

a = dict (
 one = 1,
 two = 2,
 three = 3
)
var = "six"
print (a.get(var, "default"))

we would get:

Figure 3.9: “default” is printed out, as “six” does not exist in the dictionary

There is a lot of freedom for you to choose between working with elif
statements or using the switch statement workaround. However, these
were two examples that can be used as quick workarounds for the switch
method in Python in case you don’t want to use elif statements.

51

Chapter 3: Conditionals

51

3.5 inline if

In addition to the conditional blocks we previously learned, there is also
another quicker way of writing conditions. This is known as inline if. In
this case, the condition and the action are both written in
one line:

a, b = 0, 1
print (True if a == b else False)

This means that True will be printed if a is equal to b, otherwise False
will be displayed. In this case, the output would be:

Figure 3.10: True is printed out as part of the if clause inside the inline if statement

Similarly, you can include other types of expressions inside the inline if
and even assign the whole line to a variable:

a, b = 0, 1
var = "This is true" if a == b else "This
is not true"
print (var)

The output of this is:

Figure 3.11: Text is printed out as part of the else clause inside the inline if statement

The last code is a very commonly used case of the inline if functionality
as it allows variables to be assigned values depending on the conditions.
However, the inline if conditionals are restricted, meaning that they
cannot be used in complex expressions. When complex expressions are

Inline If

3.5 Inline If

52 Python for Beginners52

concerned, the standard if, else and elif statements, which you learned
in the previous sections, should be used. The multiline structure of the
standard conditionals allows us to write more advanced programs that
have conditional aspects at the core.

Questions for Review

1. Which of the following is a correctly written expression?
a. if a = b:
print (“Yes”)
b. if a == b:
print(“Yes”)
c. if a == b
 print(“Yes”)
d. if a == b:
 print(Yes)

2. What is not true about elif?
a. Elif is used when testing multiple statements.
b. Elif is a substitute of the switch function.
c. Elif is similar to the switch workaround method.
d. Elif initiates a condition, similar to how if does.

3. What happens when none of the conditions are true in a conditional
block?

a. The action under else is executed.
b. Nothing happens.
c. The program throws an error.
d. False is printed out.

4. How would you write a code that prints “Greater” if a is greater than
b, and “Less or equal” if a is less than or equal to b, using the inline if
statement?

a. a, b = 10, 20
print (“Greater” if a < b else “Less or equal”)
b. a, b = 10, 20
print (“Greater” if a > b elif”Less or equal”)
c. a, b = 10, 20
print (“Less or equal” if a <= b else “Greater”)
d. a, b = 10, 20
print (“Greater” if a >= b else “Less or equal”)

Questions for Review

53

Chapter 3: Conditionals

53

ChapTer 3 lab eXerCise

One key thing about conditional statements is their ability to create
something called a truth table which holds a certain number of input
(usually a minimum of two) with one exception –not. Truth tables run
using binary, which is what is happening behind the scenes within
Python. Your input is being converted to binary when you are doing a
comparison. There are six truth tables in total, however, we will only be
looking at three of them, And, Or and Not.

Take the following tables and try to convert them into if statements in
order to receive the correct output. Each row shows a different set of
input:

AND
|------------|
| A | B | Q |
|------------
| 1 | 1 | 1 |
| 0 | 0 | 0 |
| 1 | 0 | 0 |
| 0 | 1 | 0 |
|-----------|

The next two truth tables are as follows:

OR
|------------|
| A | B | Q |
|-----------
| 1 | 1 | 1 |
| 0 | 0 | 0 |
| 1 | 0 | 1 |
| 0 | 1 | 1 |
|----------|

In this case I would utilize the and operator in Python to show you
exactly what is happening behind the scenes for the or truth table.
Python also has this built-in using the or operator. We can use this
functionality later on to save us from having to write unnecessary code.

Final Lab Exercises

You can see that the only place where two ‘true’
statements get passed is 1 and 1. This is the only
output which is true, the rest being false.

As you can see with OR, any case having at
least one 1 is true. Try to represent this using if
statements as well.

54 Python for Beginners54

NOT
|--------|
| A | Q |
|--------|
| 1 | 0 |
| 0 | 1 |
|--------|

Now for the real challenge! Try to write the code for the following truth
table.

The equation for this truth table is as follows:

A and not B or C = Q

The equation is read from left to right and would appear like this if
written in mathematical terms:

((A&~B)|C) = Q

Using the above tables, create a program that will give you the correct
output for the following table:

|----------------|
| A | B | C | Q |
|---------------|
| 1 | 1 | 1 | |
| 1 | 0 | 1 | |
| 1 | 1 | 0 | |
| 1 | 0 | 0 | |
| 0 | 1 | 0 | |
| 0 | 0 | 1 | |
| 0 | 0 | 0 | |
| 0 | 1 | 1 | |
|--------------|

Good luck!

Note: The creation of the main challenge will involve using more
variables to store the current details in than shown above.

As you can see with not, it is the exception that
takes only one input. The way this works is that
it basically reverses the values.

55

Chapter 3: Conditionals

55

lab soluTion

anD TruTh Table:

a = 1
b = 0
if (a == 1 and b == 1):
print('1')
elif ((a == 1 and b == 0) or (a == 0 and b
== 1)):
print('0')
elif (a == 0 and b ==0):
print('0')
else:
print('Invalid Input')

or TruTh Table:

a = 1
b = 0
if (a == 1 and b == 1):
print('1')
elif ((a == 1 and b == 0) or (a == 0 and b
== 1)):
print('1')
elif (a == 0 and b ==0):
print('0')
else:
print('Invalid Input')

Final Lab Solutions

56 Python for Beginners56

noT TruTh Table:

a = 0
if(a == 1):
print('0')
elif(a == 0):
print('1')
else:
print('Invalid Input')

main Challenge:

a = 1
b = 0
c = 1

if(b == 1):
bHolder = 0
elif(b==0):
bHolder = 1

if(a == 1 and bHolder == 1):
¿�UVW%UDFNHW+ROGHU� ��
else:
¿�UVW%UDFNHW+ROGHU� ��
LI�¿�UVW%UDFNHW+ROGHU� ���RU�F� ����
print('Q = 1')
else:
print('Q = 0')

57

Chapter 3: Conditionals

57

ChapTer 3 summary

In this chapter you were introduced to conditionals, which are a
very important part of every programming language as they allow
conditioned programming.
We discussed how useful the if statement is when you want to
perform an action that is dependent on a certain condition. Along
with the if statement, you learned that the code block preceding
the if statement should be properly indented.
You experimented with the else statement and understood that it
can be used as an alternative condition when the if statement is
not satisfied.
You performed multiple actions that were dependent on multiple
conditions made possible by the elif statement.
We also discussed an alternative workaround of the switch
statements used in other programming languages. You should
know that the switch workaround is also an alternative to the elif
statements.
Lastly, you worked out another quick way of building if statements
using the inline if alternative which, even though it is more
restricted in terms of the complexity of actions it can perform, can
be a quicker solution on certain occasions.
In the next chapter you will be introduced to the looping concept.
Looping is crucial when working with large amounts of data.
Basically, looping is used to run repetitive actions until a condition
is specified. It has a number of methods which you will learn
throughout the chapter.

58 Python for Beginners58

59

Chapter 2: Looping

4.1 While Loops 59

looping
ChapTer obJeCTiVes

• You will be introduced to types of looping, including while loops and
for loops.

• You will learn more advanced functionalities to control flow.
• You will be introduced to the error handling issues and methods for

efficient spotting and displaying of occurring errors.

4.1 while loops

While loops are a type of looping in Python. They are a tool
that enables the performing of repetitive
actions until a certain condition is met. You can
think of them as repeating if statements. Here
is an example of a while loop:

a = 0
while a < 100:
 print (a)
 a += 1

Tip: += in the fourth line of the sample code above is known as the
Add and Assignment operator. It will add 1 to the current value

of a and then replace a with this new value.

Try to run the previous code in Eclipse. You will get a list of numbers
from zero to 99, partially shown in the following output screenshot:

CHAPTER 4

While

60 Python for Beginners60

Figure 4.1: Generated numbers from zero to 99 (shown up to five in the screenshot)

In the previous example, we started writing our code by assigning an
initial value of zero to variable a in the first line. The rest of the code
belongs to the while loop block. The first line of the while block makes up
the condition of the block which states that a should not go higher than
100. If the enumeration reaches 100, the action (i.e. printing out) will
stop.

The second line of the while block is the action, which orders the printing
out of the value of a. The third line of the block declares
the iteration step.

A step is the interval used by the loop to iterate
through a range or a set of numbers. In this case, the step is
one, meaning that the iteration would start from zero, go to
one, two and up to 99, incrementing by one each time. In each
pass, the value of a will be printed out, that is 0, 1, and so on.
You might also come upon cases when a step other than one
will be used.

To understand the previous code better, we will translate it into common
language like so: Print out the value of a starting from zero (a = 0) and
keep printing by incrementing upwards by one (a +=1). Do the printing
out as long as a is less than 100 (while a < 100), and stop when the
number has reached 100. When the loop reaches the limit, it is referred to
as exhaustion of the loop.

You could also try a
more simple code that
prints out text instead
of numbers:

Step

a = 0
while a < 100:
 print ("Hello, world")
 a +=1

61

Chapter 2: Looping

4.1 While Loops 61

This time we are repeatedly printing out some text until it reaches the
value of 100:

Figure 4.2: Text printed out 99 times until the loop is exhausted.

Tip: In the previous examples we used a step of one to iterate
from zero to 100. You can always use different steps and different

ranges for iterating.

Please notice that the lines under the while statement are indented
with the same amount of white space. The same amount of indentation
indicates that we are still inside the while loop block. If we want to
perform an action outside the while loop block, we would use a different
amount of indentation. Here is an example:

a = 0
while a < 100:
 print ("Hello, world")
 a +=1
print ("The end")

Tip: Keep in mind that the program interpreter executes the
code block by block, starting at the top and moving down. In the
previous example we have three blocks: the variable declaration
block, the while loop block, and the print block. The print block
will be executed only after the execution of the upper blocks has

finished. Therefore, the output of the last block will be displayed at
the very bottom of the output window.

62 Python for Beginners62

Code Block Breakdown:

1

2

3

a = 0

while a < 100:

 print (“Hello, world”)

 a +=1

print (“The end”)

Variable DeclarationÆ

while loop blockÆ

print loop blockÆ

Here is the output:

Figure 4.3: The bottom of the output showing that “The end” is printed out after the while
loop output

63

Chapter 2: Looping

4.2 For Loops 63

4.2 for loops

Another type of looping is a for loop. For loops are also used
to repeatedly execute multiple statements. The elements
that a for loop iterates through are more explicitly declared.
In the case of a while loop, the range was declared by stating
its least and greatest numbers (i.e. zero and 100). In the case of for loops,
the range is commonly declared through lists. Here is an example:

for i in [0,1,2,3,4,5]:
 print (i)

This code iterates through all the elements of the list and prints them out
one by one:

Figure 4.4: List elements printed out line by line.

Let’s try to use the for loop for writing the sample code we wrote in the
while loop section:

for i in range(0,100):
 print (i)

Even though it looks like a list is missing in the previous code, this is
not completely true. The list is generated via the range
function. The range function here builds a list from zero to
100. Then the print function prints out every value of the
list. Again, numbers from zero to 99 would be printed out
line by line just as they were in the while loop example.

For

Range

64 Python for Beginners64

Even though the results between the examples of the while loop and the
example of the for loop are the same, you can see that the for loop has a
different structure. For loops are primarily used when you want to iterate
through lists, tuples or strings as in the following example:

for i in "Hello":
 print (i)

In this case of string iteration we would get this output:

Figure 4.5: Looping through string characters

Here is a more advanced example that integrates an if statement inside
the for loop:

for key,i in enumerate("Hello"):
 if key % 2 == 0:
 print ("The letter {} is in an even
location ".format(i))

The output of this would be:

Figure 4.6: Printing out elements that have an even index inside the string

65

Chapter 2: Looping

4.2 For Loops 65

The variable key fetches the index of every string while the variable i
fetches the strings itself. Both are variables. Notice that we also have
a function called enumerate in the first line. This function makes
possible the extraction of the indices and their
assignment to variable key. Then, in the second
line, the condition filters only the even index
values fetched by variable key. Notice that
the way we filter the even numbers is by using an if statement. The
“%” character here is a modulus operator that returns the remainder
of a number. If the remainder of a number divided by two is zero, that
number is an even number.

The third line under the if statement prints out some text written by us,
together with the elements of the “Hello” string that have an even index
value. Notice that the string elements are being printed using the str.
format() utility which we have gone through before. The previous code is
a good example of how different functionalities (i.e. for loop, if statement,
and str.format() can be integrated together for more complex and useful
programs.

Similarly to the previous example, you could try fetching the letters that
have an odd index number. The only line you would have to change would
be the if statement. This time we would go for a remainder of one, as that
is what odd numbers yield:

for key,i in enumerate("Hello"):
 if key % 2 == 1:
 print ("The letter {} is in an even
location ".format(i))

Figure 4.7: Printing out elements that have an odd index inside the string

Similarly as you looped through lists and strings, you would also do it
with dictionaries but with some crucial differences that stand on the key-
value structure of the dictionaries:

Enumerate

66 Python for Beginners66

a = {"one":1,"two":2,"three":3}
for i in a:
 print (i, " corresponds to ", a[i])

In the first line, we declare the dictionary. Then in the second line
we start the for loop block. The variable i will fetch the keys of the
dictionaries. Remember that the key is the first element of a dictionary
pair. Then in the third line we repeatedly print out the value of i that is
the key. We also print out the phrase “corresponds to” and the value of the
dictionary. Remember that a value is the second element of a dictionary
pair. The output of this would be:

Figure 4.8: Printing out dictionary elements together with some text in between

As you can see, for loops and looping in general can be integrated into
different scenarios where different types of data are encountered.

67

Chapter 2: Looping

4.3 Try, Except, Finally 67

4.3 Try, eXCepT, finally

Let’s take a look at error handling in Python. As you master Python,
you will stumble upon many errors which might be caused by different
reasons. Many are syntax errors, meaning that they originate from typing
mistakes made by the programmer. There are also other errors such as
attribute errors, which are caused by inappropriate usage of commands.
Here is an example of an attribute error raised by the program:

tuple = (1,2,3,4)
tuple.append(5)

for i in tuple:
 print (i)

In the previous code, we are trying to append an element to the tuple, but
we know that tuples are immutable. Therefore, if you run the code, you
will get an error:

Figure 4.9: Generated attribute error message

This error states that the object tuple has no attribute append.

Tip: Strictly speaking, append is a method and not an attribute.
However, to simplify error handling procedures, accessing a non-

existent method or attribute is lumped under an AttributeError
exception as shown in the text in red in Figure 4.9.

These errors are encountered during execution and they are
called exceptions. There is a way of handling exceptions and
this is done through the try and except functionality.

68 Python for Beginners68

Try and except provides a structure for handling and
customizing error messages with the aim of
more comprehensive error troubleshooting.
Here is an example of try and except:

tuple = (1,2,3,4)
try:
 tuple.append(5)
 for i in tuple:
 print (i)
except:
 print ("This is an error")

This code would give this result:

Figure 4.10: Customized error message

In the previous code, after the program reads the first line where a tuple
is declared, it then executes the line under try. If the code of that line is
correct and does not contain any errors, it will be normally executed and
the line under except will be skipped. Otherwise, an exception will be
raised and the program will execute only the line under except instead of
the one under try.

There are different types of occurring errors. In the previous example you
were introduced to an attribute error, which inside the Python language
is known as an AttributeError.

An AttributeError occurs when the wrong attribute or method
is tied to an object. In the previous example, the append
method was tied to a tuple, but the tuple does not acknowledge
it as its method.

There might also be different types of errors such as an
IOError. An IOError is an error that occurs when the

Try and
Except

69

Chapter 2: Looping

4.3 Try, Except, Finally 69

execution fails due to input or output errors such as “file not
found” or “disk full”.

As there are different types of errors that may occur, this gives the need
to raise more than one possible exception. You will deal with more types
of errors as you gain experience in Python. Here is an example where we
handle an AttributeError and an IOError:

tuple = (1,2,3,4,5)
try:
 tuple.append(5)
 for i in tuple:
 print(i)
except AttributeError as e:
 print('Error formed: ' , e)
except IOError as e:
 print('File not found:', e)

As appending elements to a tuple causes an attribute error, in the
previous example, the line under the first exception will be executed and
the result would be:

Figure 4.11: Customized error message followed by an attribute error

Notice that the second exception inside the previous code was ignored
because the tuple appending error was not an IOError. The exception to
be executed was the first one. This is because the first exception conducts
an attribute error. Therefore, the execution of the first exception clause
printed out the custom message “Error formed” and an internal error
message embedded inside variable e. This error message is embedded
inside variable e using the as command.

Besides try and except, there is also a finally clause.
A finally clause is always executed before leaving the
try statement, whether an exception has occurred or not. The clause is

Finally

70 Python for Beginners70

written after the except statement:

tuple = (1,2,3,4,5)
try:
 tuple.append(5)
 for i in tuple:
 print(i)
except AttributeError as e:
 print('Error formed: ' , e)
except IOError as e:
 print('File not found:', e)
¿�QDOO\�
 print('The end')

In this case, the output of this code would be similar to the output of the
previous code but with the “The end” phrase added in the end. Here is the
output:

Figure 4.12: The output of the finally clause is added after the exception error message

These examples should give you a good start in handling different types
of errors. Using this try, except, and finally syntax, you will be able to
write more constructive and communicative code that can also be read
and used by other users.

71

Chapter 2: Looping

4.4 Break, Continue, and Else 71

4.4 breaK, ConTinue, anD else

The break statement is used to terminate a current loop and resume
execution at the next statement. It can be used in both for
and while loops. Here is an example of its use inside a for
loop:

list = [1,2,3,4,5,6,7,8,9]
for i in list:
 if i == 7:
 break
 else:
 print (i)

The output of this would be:

Figure 4.13: List element printed up to element six as break sets it.

As you can see from the output, the printing out of the list elements ends
at element six because we are telling the program to stop the execution
when the for loop reaches the element seven. We do this using the
break statement. In case there was no element seven in the list, the else
statement would be executed.

A break statement can also be used in the same way inside a while loop.
Here is an advanced example of its usage:

var = 10
while var > 0:
 print ("Current value :", var)
 var -= 1

Break

The list ‘breaks’
after number 6

72 Python for Beginners72

 if var == 5:
 break

Tip: -= in the fourth line of the sample code above is the Subtract
and Assignment operator. It will subtract 1 from the current
value of var and then assign this new calculated value to var.

Notice that here we are using a decrementing while loop that starts at 10
and ends at zero. The loop block prints out some text together with the
value of variable var for each iteration. Normally, the printing out would
go from 10 down to zero and then stop if there was no break clause inside
the loop, but in this case, this is not true. The break clause will terminate
the printing out at element six. Here is the output:

Figure 4.14: Numbers printed out from 10 down to six where the break clause terminates
the loop

On the other hand, the continue statement is used to return the control
to the beginning of the while loop. The continue statement rejects all the
remaining statements in the current iteration of
the loop and moves the control back to the top
of the loop. Simply put, the continue statement
continues the execution of the block. Here is the example:

list = [1,2,3,4,5,6,7,8,9]
for i in list:
 if i == 7:
 continue
 else:
 print (i)
else:
 print ("default ")

Continue

73

Chapter 2: Looping

4.4 Break, Continue, and Else 73

In this case we are telling the program to continue the expression even if
the enumeration reaches the element seven. The output of the previous
code would be:

Figure 4.15: Elements printed out from the for loop block

The else statement itself has its own role inside a loop. When else is used
inside a for loop, it is executed when the loop has exhausted iterating
through the list. When else is used inside a while loop, the else statement
is executed when the condition becomes false.

Both break and continue are useful functionalities that give more control
to the work flow.

74 Python for Beginners74

Questions for Review

1. What would the following code do when executed?

a = 0
while a < 100:
 print (a)
 a += 2

a. Print out numbers from zero to 100.
b. Print out zero and two.
c. Print out even numbers that fall between zero and 100.
d. Display an error message.

2. What does the range functionality do?
a. Generates a list.
b. Defines the looping method.
c. Generates a tuple.
d. None of the above.

3. The for loop is commonly used to:
a. Print out elements.
b. Execute some code until a condition is met.
c. Iterate through lists, tuples and strings.
d. Iterate through integers.

4. What is true about try and except?
a. The expression under try is executed when there is an exception.
b. The expression under except is executed when the expression under

try experiences an error.
c. Neither of the expressions under try or except are executed when an

IOError occurs.
d. All above are false.

5. What happens when the condition above the break code line is not met?
a. The continue part is executed.
b. The line under break is not executed.
c. The line under break is executed.
d. The whole program breaks.

Questions for Review

75

Chapter 2: Looping

Final Lab Exercises 75

ChapTer 4 lab eXerCise

You may have heard of the Fibonacci Sequence. It is a sequence of
numbers where the next number is found by adding the previous two
numbers together.

It follows this format:

Fn = Fn – 2 + Fn -1

with initial values of F0 = 0 and F1 = 1

This sequence is truly something amazing, and is found throughout
nature. By definition, the first two numbers in the Fibonacci sequence
are 0 and 1, and each subsequent number is the sum of the previous
two. There is also a geometrical representation of the sequence through
a spiral. The area of each of the squares is equal to a number of the
sequence.

Figure 4.16: A Geometric representation of the Fibonacci sequence

Your task is to create a sequence of numbers for the Fibonacci sequence
and stop at the first number that is greater than 100.

76 Python for Beginners76

lab soluTion

f0 = 0
f1 = 1
set = False
while True:
 fn = f0 + f1
 f0 = f1
 f1 = fn
 if (fn > 100):
 set = True
 else:
 set = False
 print(fn)
 if (set == True):
 break

77

Chapter 2: Looping

Final Lab Solutions 77

The above code was input and executed in Eclipse as file fibonacci22.py.
This is how the code and its output would look:

Figure 4.17: Lab solution (upper part) and the generated Fibonacci Sequence output

78 Python for Beginners78

ChapTer 4 summary

In this chapter you were introduced to the looping functionality.
We discussed how looping comes to be very important due to its
abilities to repeatedly execute multiple statements dependent on
some conditions.

We explained both the while and the for loop. You should know
that the for loop is specifically used when iterating through
elements of lists, tuples, or strings. The while loop is more
condition-oriented and less explicit in terms of the element it
iterates.

We also went further and learned about error handling in Python
in the sense of how to give better control to the encountered errors
via the try and except functionality.

Furthermore, you were introduced to the break and continue tools
that are used to better control the flow of the looping.

In the next chapter we will be talking about lists more in-depth.
We will discuss list manipulation issues such as modifying,
deleting, adding and sorting list elements and we will perform
actions between different lists. You will get a better overall
understanding of the usefulness of lists.

79

Chapter 5: Lists

CHAPTER 5

5.1 A Closer Look at Lists 79

lisTs
ChapTer obJeCTiVes:
• You will deepen your knowledge of lists and their usefulness.
• You will learn how to modify lists by using the list-supported methods

that add, modify or delete elements from a list.
• You will be introduced to the sorting functionality of the lists.

5.1 a Closer looK aT lisTs

We discussed lists in the second chapter of this book, and you should
already know how to create one by now. However, given the high
importance and usage of lists, we are now going to take a closer look at
them.

You already learned how to access list elements using the indexing
feature. Here is an example that reminds you how to do that:

a = ["a","b","c","d","e","f","g","h",
"i","j","k"]
print (a[2])

You would get the element “c” printed out because the index of “c” is “2”:

Figure 5.1: Element of list a with index “2”

Try to print out element “j” using its index. You will probably write this
code:

a = ["a","b","c","d","e","f","g","h",
"i","j","k"]
print (a[9])

80 Python for Beginners80

and get this result:

Figure 5.2: Element of list a with index “9”

This is correct, but not very efficient. You had to count the long way from
left to right in order to get the index of element “j”. Don’t worry—there is
a solution that is offered by negative indexing. Negative indexing starts
by accessing list elements from right to left or from the last to the first,
beginning at -1 and going backward. In our example, the “k” would be
indexed with “-1”, “j” with “-2”, and so on. To print out the element “j”
using negative indexing, we would write:

a = ["a","b","c","d","e","f","g","h",
"i","j","k"]
print (a[-2])

You will get:

Figure 5.3: Element of list a with index “-2”

You got the same output as you did previously, but this time you didn’t
have to count the long way.

While working with lists and programming in general, you will probably
come across tasks where you have to handle big lists. Counting their
elements would be an exhaustive task. Therefore, knowing
how many elements there are in a list can be very useful. The
len built-in function will return the number of the elements
that a list contains. Len stands for length. To find the length of list a, we
would write:

Len

81

Chapter 5: Lists

5.1 A Closer Look at Lists 81

a = ["a","b","c","d","e","f","g","h",
"i","j","k"]
print (len(a))

The output would be:

Figure 5.4: The length (number of elements) of list a.

This means that the list has 11 elements. Here is a more practical
example:

a = ["a","b","c","d","e","f","g","h",
"i","j","k"]
print (a[len(a)-1])

The output would be:

Figure 5.5: Element of list a with index “10”

As the length of the list is equal to 11, the “len(a)-1” will be equal to “10”
which is the index representing element “k”.

Besides accessing single elements from a list, you also learned how to
access a range of elements:

a = ["a","b","c","d","e","f","g","h",
"i","j","k"]
print (a[3:8])

82 Python for Beginners82

The output would be:

Figure 5.6: A range of elements of list a is printed out

You may want to print elements by iterating through indices with a step
other than one, for example two:

a = ["a","b","c","d","e","f","g","h",
"i","j","k"]
print (a[3:8:2])

In this case, you are ignoring index four and six which correspond to
elements “e” and “g”. The output of this would be:

Figure 5.7: Elements of list a with index “3”, “5” and “7”

Notice that elements “e” and “g” are missing in the output. This is
because we defined a step of two, rather than one. In this case, the
enumeration would start from index “3” but it would ignore index “4” by
overstepping to “5”.

Tip: Please notice that a step of one when accessing a range of
elements from a list does not have to be explicitly declared. A step

of two or more has to be explicitly declared. A step of two might
come in handy when you want to access only even or odd numbers

from a list whose elements are numbers.

83

Chapter 5: Lists

5.2 Modifying Lists 83

5.2 moDifying lisTs

Now we will go deeper into lists by learning how to modify them. With
list modification we mean adding new elements, editing or deleting the
existing ones. Each of these tasks is associated with a method or methods.

A method is a function that belongs to an object and that does
something to this object.

Objects are data and a list is an example of an object. Here is an
example of an object (list a) and a method (append) applied to the
object:

a = ["a","b","c","d","e","f","g","h",
"i","j","k"]
a.append("l")
print (a)

The output from this would be:

Figure 5.8: List with appended “l” element

Notice that a new element (l) has been added to the list.
This was done through the append method.

Sometimes, you might want to not just add one element
to a list, but an entire new list to a list- we can also refer
to this as merging lists. This merging or extending can be
done via the extend() method:

a = ["a","b","c","d","e"]
b = ["f","g","h","i","j"]
a.extend(b)
print (a)

Extend

Append

84 Python for Beginners84

The output of this would be:

Figure 5.9: Merged list which is the extended list a.

You learned how to append an element to the end of the list and how
to extend a list by appending another list to it. You might have asked
yourself how one would add an element somewhere between the elements
of the list. The answer is the insert method. The insert
method adds an element to a specified position in the list.

Here is the example:

a = ["a","b","c","d","e"]
a.insert(3,"pause")
print(a)

You can see that the insert method takes two arguments (“3” and
“pause”). The first argument defines the position index where the element
is to be inserted while the second argument is the inserted element itself.
The output of the previous code would be:

Figure 5.10: Inserted element in index “3”

As you can see, the element “pause” is the new element inserted in list a
at index 3. The other elements beginning at index 3 have been pushed to
the right. Sometimes, you might want to change the value of an element
of your list. This is done easily, again by utilizing the indexing utility:

a = ["a","b","c","d","e"]
a[1]="x"

List a List b

Insert

85

Chapter 5: Lists

5.2 Modifying Lists 85

print(a)

The output would be:

Figure 5.11: Altered list after an element is replaced

Notice that element “b” (having an index of
“1”) has been replaced by “x”.

There might also be other scenarios when you are dealing with lists that
contain numbers and you want to perform mathematical operations to
the list elements. Again, you need to access them through indexing:

a = [10,20,30,40,50]
a[1] = a[1]*5
print(a)

In the previous code, we are changing element “20” by multiplying it by
five.

The output is:

Figure 5.12: Altered list after an element is multiplied

Notice that the second value has changed to 100
 which is the product of the multiplication of five and
 twenty.

As you might be expecting, there is also a way to delete list elements.
A way to do this is through the del function. Here is an
example of deleting an element from a list: Del

86 Python for Beginners86

a = [10,20,30,40,50]
del a[1]
print (a)

The output would be:

Figure 5.13: Altered list after an element has been deleted

If the deletion of only one element is not enough, we can also delete more
than just one:

a = [10,20,30,40,50]
del a[1:4]
print (a)

In this case, the output would be:

Figure 5.14: Altered list after a range of elements has been deleted

The range 1:4 is the one that determines that the deleted items will be
the one with index “1”, “2”, and “3”.

While the del method deletes elements based on their index, it does not
look at their value. If you were to delete an item whose index you don’t
know, instead of del, you would use the remove method:

a = [10,20,30,40,50]
a.remove(30)
print (a)

87

Chapter 5: Lists

5.2 Modifying Lists 87

The output of this is:

Figure 5.15: Altered list after an element has been removed

And lastly, another method that modifies lists – reverse.
Simply put, the reverse method reverses the elements of
the list:

a = [10,20,30,40,50]
a.reverse()
print (a)

Here is the output:

Figure 5.16: Reversed list after applying the reverse() function

All these methods are continuously used when working with lists. They
are commonly used in integration with looping, especially with for
loops. This combination makes the data manipulation and processing a
powerful tool of the programming language.

Reverse

88 Python for Beginners88

5.3 sorTing lisTs

Sorting a list means rearranging the elements of the list
according to a sorting criterion such as alphabetic or numeric.
Like the other functionalities such as reverse or remove, sorting
is also a method that is applied after a list. Here is an example
of sorting list numbers from the least to the greatest:

a = [50, 30, 40, 20, 10]
a.sort()
print (a)

The resulted list from the sorting would be:

Figure 5.17: Sorted list from least to the greatest

You can see that list a has changed. Sometimes, you might want to retain
your original list. In this case we would assign the sorted list to a new
variable. This time we will use the sorted() method instead of sort():

a = [50, 30, 40, 20, 10]
b = sorted(a)
print (b)

The output would be the same:

Figure 5.18: Sorted list from least to the greatest

89

Chapter 5: Lists

5.3 Sorting Lists 89

Except this time the sorted list resulted from printing out list b.
You might have been thinking of a way to also sort the list from greatest
to the least. The reverse method, which we worked out in the previous
section, is the one that comes in handy:

a = [50, 30, 40, 20, 10]
b = sorted(a)
b.reverse()
print (b)

After the list has been sorted its default way (from the least to the
greatest) through the sorted() method, the order is then reversed through
reverse(). The output would be a reversed sorted list:

Figure 5.19: Sorted list from greatest to the least

You could also sort strings using the exact same methods. Here is an
example:

a = ["50", "30", "40", "20", "10"]
b = sorted(a)
print (b)

What you get from this is similar to the previous examples but this time
the elements are not numbers, but strings:

Figure 5.20: Alphabetically sorted list of string elements

90 Python for Beginners90

Tip: Notice that even though the elements of the last list, based
on our perception, look like numbers, for the program they are

just strings. Everything inside quotes is a string and is therefore
treated as a string. You cannot perform mathematical operations
with strings, no matter if the characters are letters, symbols or

numbers. Eventually, the elements will be sorted as strings.

Sorting can become very useful when storing data in lists. An example
would be a list of people’s names.

91

Chapter 5: Lists

5.3 Sorting Lists 91

Questions for Review
1. What is true about negative indexing?

a. It provides an easy method to enumerate list elements starting from
the end.

b. It provides a method to consider positive numbers when working
with lists.

c. It only works with lists.
d. It only works with number elements.

2. What would the code below do if executed?

if len(["a","b","c"]) == len(["abc"]):
 print (True)
else:
 print (False)

a. Nothing.
b. Print out True.
c. Print out False.
d. Print out the length of the lists.

3. How would you delete an element with index a from list b?
a. b.remove(“a”)
b. b.delete(“a”)
c. del b[a]
d. remove b(“a”)

4. Number 3 is missing from list a = [1,2,4,5] we need to add it again.
There are different methods of adding number 3 to its proper position
(after number 2) inside the list. Which of these methods would be an
incorrect method of adding the number in its proper position?

a. a.append(3)
 a.sort()
b. a.insert(2,3)
c. a.insert(-2,3)
d. a.insert(3)
 a.sort()

Questions for Review

92 Python for Beginners92

ChapTer 5 lab eXerCise

There is an algorithm called Bubble Sort that is used to sort a list of
numeric values in ascending order. This algorithm compares two values
at a time to see which value is larger. If the value on the left is larger,
it will swap the two around. After looping through the
process it will have ordered the numbers properly. This
starts from the left and travels right. Once it reaches
the end, it starts again. This process will be repeated
until there is one complete pass through the set of
numbers without any changes, which means that the numbers are in the
right order, or until you have looped through N – 1 times, which is the
maximum number of times needed. N is the number of elements provided
in the set. The number list to rearrange is:

8 7 12 4 9 6 5

You will be dealing with nested loops here, so be careful with indenting.
The proposed steps for the exercise are:

1. Creating the list with the elements in the order given previously.
2. Assigning the number of elements to a variable N.
3. Consider assigning a Boolean value to a variable.
4. Use the while loop for the rest of the exercise.

Bubble
Sort

93

Chapter 5: Lists

Final Lab Solutions 93

lab soluTion

data = [8,7,12,4,9,6,5]
N = len(data)
swapped = True
while (swapped == True or N != 1):
 swapped = False
 position = 0

 while (position < N - 1):
 if (data[position] > data[position
+ 1]):
 temp = data[position]
 data[position] = data[position
+ 1]
 data[position + 1] = temp
 swapped = True
 position = position + 1
 N = N - 1

print(data)

94 Python for Beginners94

This is how the solution and its output would look in Eclipse:

Figure 5.21: Lab solution (upper part) script and the rearranged list (bottom part) after the
script is run

95

Chapter 5: Lists

95

ChapTer summary

Even though you were already introduced to lists in the
previous chapters, in this chapter you were able to expand your
understanding of how to work with lists. You worked on accessing
list elements using efficient methods such as negative indexing.
Besides accessing single elements, we also discussed how to extract
ranges of elements from a list.

You learned how to modify list elements by adding, deleting
and editing them. To accomplish these modifying tasks, you
were introduced to the append, insert, remove, and del methods.
Furthermore, we discussed the extend method which is used to
merge lists.

We also looked at the sorting aspect of the list elements. We went
through the different approaches to sorting: the sort(), sorted(), and
reverse() methods.

So far, you have encountered only static output that is read-only
and does not allow its reader to perform any action. In chapter 6
you will be learning about user input, how to receive it and how to
perform actions depending on it. You will see that input capability
creates a sense of interaction between the end user and the
program.

96 Python for Beginners96

97

Chapter 6: Receiving Inputs

CHAPTER 6

6.1 “Press any key to continue” 97

reCeiVing inpuTs

ChapTer obJeCTiVes:
• You will be introduced to the basic usage of the receiving input

functionality.
• You will learn how to receive, use, and process user data input and

give user-dependent output.

6.1 “press any Key To ConTinue”

In previous chapters you learned how to generate different output, but
so far, the user that reads your output could not interact with the output
other than to read it. In this chapter, you will be learning how to write
programs that make the relationship between the user and the code
output more interactive.

The proper tool here that allows the user to interact with
the program is the input() method. The input() method
keeps the program in a holding state, meaning that the
execution is suspended at the input() line and can only be
resumed by the user through certain actions. Here is an example:

print('Hello!')
input('Press any key to continue')
print('Thank you')

As you can see here, the first line will print out some text, and then we
prompt the user with a message (“Press any key to continue”) via the
second line. The text inside the input() parentheses is the message that
will be displayed to the user. You can write anything you want inside
those parentheses. After the message is displayed, program execution will
be suspended and will only resume when the user presses a key. When
the user presses a key, program execution will resume on the third line
which will print out some text. The first execution of the code will give
this output:

input()

98 Python for Beginners98

Figure 6.1: Output waiting for the user action

Notice that the third line was not executed because the input() method
suspends program execution at the second line and waits for the user to
resume by pressing a key on the keyboard. Besides pressing one or more
keys, you should also hit the return key to signal to the program that
you have finished pressing keys. After you press the return button, you
should get this updated output:

Figure 6.2: Output generated after the user has pressed a key

Tip: Notice that in the first example of this chapter we did not use
double quotes (“) but single ones (‘). This is just a matter of style
and there is no technical reason for choosing either way, as both of
the quote types play the same role.

However, there is a scenario where you would have to use proper
quotes. This is when your string contains quotes that have to be
part of the string. If the string contains single quote characters,
you would have to wrap it with double quotes and vice-versa.

An example of single quotes enclosed in double quotes:

“The boy cried ‘Foul!’ when he realized he had been cheated.”

Notice that a third
line has been added to
the output. This third
line shows that
the user has
interacted
with the
program
by allowing
its full execution.

99

Chapter 6: Receiving Inputs

6.2 Data Input 99

6.2 DaTa inpuT

In the previous section we learned the basic usage of the input() method.
The output we generated in the second example as shown in Figure 6.2
was very static in that no matter which key we pressed, the message to
be displayed was always “Thank you”. In this section we will learn a more
interactive way to use the input() method.

Until now, you have assigned numbers and strings to variables in a very
explicit way, such as:

a = 1

Besides this, there are also implicit assignments such as:

a = input("What is your name?")

Here, variable a will get a value depending on the text that the user types
on the keyboard after the line is executed. To make the previous example
more practical, we would add a print() command:

a = input("What is your name?")
print ("Hello" + a)

Tip: Notice that the addition operator does not work only with
numbers—it also works with strings, lists, tuples, and dictionaries.

However, when used with data types other than numbers,
the operator does not work as an addition operator but as a

concatenator. In other words, it merges strings with strings, lists
with lists, and so on.

Through the print function we are printing some text (“Hello”) together
with whatever the variable a contains.

When you first execute this block of code, you will be asked for your
name:

100 Python for Beginners100

Figure 6.3: Output waiting for the user to write a name

After you type in your name and press the return key, an updated
output will be displayed, depending on what text you typed in.

Figure 6.4: Output generated after the user has entered a name

By following these steps, you have been able to write a program that can
communicate with the user. However, there is still more you can do.

Now, let’s write a program that not only prints out the user input but also
processes it before displaying. Here is the example:

a = input("Give me a number, I will give
you its half: ")
b = int(a)/2
print ("Half of " + a + " is " + str(b))

In the first line, we are assigning the user input to variable a. In the
second line, we are calculating the half of the number that the user
enters. Keep in mind that the input entered by the user is recognized and
treated as a string by the program. If you want to use it as a number, you
have to convert it to a number. This is exactly what we are doing in the
second line. Using the int() function we are converting the user input to
a number and assigning the converted value to variable b. Then in the
third line, we use the print() function to print out three parts which are
concatenated via the “+” operator.

101

Chapter 6: Receiving Inputs

6.2 Data Input 101

Notice that in the third part (str(b)), we are again converting the value of
b, which is a number, to a string. This is because we want to concatenate
it with the first two parts which are strings. The output of this code after
you have typed in a number (e.g. five) would be:

Figure 6.5: Output generated after the user has entered a number

As you progress with Python, you will come upon many use cases of
the input() method and better understand its power in user interaction
scenarios.

102 Python for Beginners102

Questions for Review

1. When running the following code:

list = [1,2,3]
a = input('Add a number to the list: ')
list.append(a)
print (list)

the user is prompted to type in a number. If the user types in “4”, what
would the program generate?

a. 4
b. [1, 2, 3, 4]
c. [1, 2, 3]
d. [1, 2, 3, ‘4’]

2. When running the following code:

list = [1,2,3]
a = input('Add a number to the list: ')
list.append(int(a))
print (list)

the user is prompted to type in a number. If the user types in “4”, what
would the program generate?

a. 4
b. [1, 2, 3, 4]
c. [1, 2, 3]
d. [1, 2, 3, ‘4’]

3. Which of the following is true?
a. The two generated lists from question 1 and 2 were exactly the same.
b. The generated list in question 1 contains only string elements.
c. The generated list in question 2 contains only number elements.
d. The generated list in question 2 contains mixed element types.
.

Questions for Review

103

Chapter 6: Receiving Inputs

Final Lab Solutions 103

ChapTer 6 lab eXerCise

In this exercise we will be using loops to check the user input. We want
the user to input their gender. However, if it doesn’t follow the correct
format of being any of the possible replies below:
 m
 M
 f
 F
then we ask them to try again, and show the input option again. Once
they have completed it successfully, after one or more iterations, we show
a message telling them the gender they chose.

lab soluTion

while True:
 gender = input('Gender: ')
 if(gender == 'M' or gender == 'm' or
gender == 'f' or gender == 'F'):
 break
 else :
 print('Please try again')

print('You are: ',gender)

104 Python for Beginners104

This is how the code and the solution would look in Eclipse:

Figure 6.8: Lab solution code (upper part) and the generated output together with the user
input (lower part)

ChapTer summary

In this chapter you learned how to make your programs interact
with the end user.
You were introduced to the receiving input functionality and you
learned how to make the program execution dependent on the user
action by using the input() function.

You expanded your understanding of the input() function by
learning how to use the user input inside your program and how to
manipulate it.

In the next chapter you will be learning ways of manipulating
strings. These string manipulation procedures are referred to as
string formatting in Python.

105

Chapter 7: Predefi ned String Functions

7.1 Using Strings as Objects 105

preDefineD sTring funCTions

ChapTer obJeCTiVes:
• You will learn how to use strings as objects by applying methods that

alter them.
• You will learn how to access a full list of methods for every type of

object in Python.
• You will learn to split string objects into parts and vice-versa.

7.1 using sTrings as obJeCTs

Even though you already know what strings are, we haven’t done many
operations with strings. Strings are objects in Python and they are
constructed by elements which are the characters that build them up.
The string “Python” for example can be fragmented into six elements.
This fragmentation nature of the strings makes them mutable. Most
commonly, strings are modified using string methods, but there are also
cases when string operators are used—an example of this is the “%s”
operator, which is a placeholder that we have described in previous
chapters.

In this chapter we are going to concentrate on methods that are applied
to strings. However, before jumping into string methods, let’s give a
better illustration of the string fragmentation structure we mentioned
previously. Here is a code example that accesses each element of a string:

for i in "This is a string":
 print (i)

CHAPTER 7

106 Python for Beginners106

The output of this code would look like this:

Figure 7.1: String elements printed out one by one

As you can see, the string object has been divided into single objects that
are its elements.

Here is a more complicated example that you have encountered when
working with lists in the previous chapters:

a = "This is a string"
print (a[0:4:2])

Notice that we are using the same square bracket slicing syntax that we
use with lists. In the first line, we are assigning a string value to variable
a while in the second line we are printing a slice from the string. The
first parameter inside the square brackets indicates the first element
of the slice while the second indicates where the slicing ends. The third
parameter is the step that the slicing uses to pick elements of the string.

Start
End

Elements Picked

SLICE PARAMETERS

107

Chapter 7: Predefi ned String Functions

7.1 Using Strings as Objects 107

Here is the output:

Figure 7.2: Output after the string has been sliced

To come up with this output, the code first picked the element with an
index of zero from the string, which is the character “T”. Then it stepped
to the element with an index of two, which is the “i” character. Then it
would step to index four, but the syntax 0:4 defines that the range stops
at index four without including the element with index four. Therefore,
the elements picked out from the strings were “T” and “i”.

Let’s have a look at methods used with strings—string methods.

Methods are functions that are applied to objects such as
strings and that consequently alter or just use them for
different processing purposes.

Suppose we need to count how many occurrences of an element there are
in a string. There is a method that would come in handy in this case:

a = "This is a string"
c = a.count("s")
print (c)

You may have already guessed the answer:

Figure 7.3: The number of “s” characters inside the string

Simply enough, we use the count() method to get the number of a certain
character inside a string. In this case, we counted how
many “s” characters our string contained. count()

108 Python for Beginners108

Tip: Be aware that string characters are case sensitive. If you
counted for “S” instead of “s”, the program would give an output of

zero because “S” did not appear inside the text.

Here is another example of a method attached to a string object:

a = "this is a string"
c = a.capitalize()
print(c)

The capitalize() method is used to capitalize the
first character of the string. Here is the output:

Figure 7.4: The string after its first character has been capitalized

Tip: Some methods such as capitalize() work without having to
take any parameter inside the parentheses. Some other methods
such as count() would want at least one parameter given in order
to work. There can also be other cases when certain methods will
want exactly one, two or more parameters—this criteria always

depends on the method.

Sometimes, we might want to capitalize all the first characters of the
words contained inside the string. Here is a sample code that solves that:

a = "this is a string"
c = a.title()
print(c)

capitalize()

109

Chapter 7: Predefi ned String Functions

7.1 Using Strings as Objects 109

And here is the output:

Figure 7.5: The string after the characters of every word have been capitalized

Tip: Objects such as strings may be associated with so many
methods that it would be impossible to mention all of them here.
You can get a full list of methods for a particular type of object,

along with their definitions, while writing the code inside Eclipse.
The method list is automatically displayed just after you have

finished writing the instance name of the object and typed in the
period, signaling that a method is about to be written. Figure 7.6

shows an example.

Figure 7.6: A list of all methods associated with a string object pops up after the
programmer types in a period after the object instance name.

In the same way as described in Figure 7.6, you can access all the
methods of every object.

110 Python for Beginners110

7.2 spliTTing anD Joining sTrings

While working with strings, you might come across issues
where you have to organize, merge, or clean up certain
text. As already mentioned, these tasks are part of the
string formatting processes in Python. Splitting and joining strings are
very important processes of string formatting. Simply
enough, there are two methods that split and join strings,
the split() method and the join() method, respectively.

Sometimes you might write programs that deal with file handling such
as opening, modifying, or saving files that reside on your computer.
This brings up issues with file names and paths. When there are too
many files that need to be handled, looping in combination with string
formatting functionality is used.

Let’s take a look at a simple practical example of the string formatting
application in file handling. Suppose we need to create directory paths
using some initial information that we have inside a list:

foldersAndFiles = ["C:","Folder/Subfolder",
"picture.jpeg"]

As shown in the previous code, our list contains our computer drive name,
our folder path, and the name of the file that we need to access. Suppose
that the file picture.jpeg is contained inside the path generated by the
folder names. We now need to generate a full correct path that can be
used later to access the file. We need to get together all the list elements
and join them with a slash character (/). Here is the code that would do
that:

foldersAndFiles = ["C:","Folder/Subfolder",
"picture.jpeg"]
path = "/".join(foldersAndFiles)
print(path)

The output you get is a string:

split()

join()

111

Chapter 7: Predefi ned String Functions

7.2 Splitting and Joining Strings 111

Figure 7.7: Joined list elements using the join() method

This way, we have the whole path of the file named picture.jpeg. In the
next chapters when we discuss file handling, you will understand that
this path is used to access and process files that are identified with it.

Now, let’s look at the split() method which does the opposite of join().
The split() method will separate the string at each occurrence of a given
character.

Here is an example to illustrate what we are talking about:

print("This$text$contains$unwanted$symbols"
.split("$"))

Notice that the parameter that the split() method
takes is the character we want to split the text at.

This is the output:

Figure 7.8: List generated by splitting a string using the split() method

Notice that the output of the split() method is a list that contains the split
strings. If your intention was to clean up the text from the unwanted
characters without having a list output, we could extend our code like
this:

splitting =
"This$text$contains$unwanted$symbols".
split("$")
joining = " ".join(splitting)
print (joining)

112 Python for Beginners112

In the previous code, we are first splitting the string by removing the
“$” character from it and automatically converting the string to a list.
Then we generate spaces between the words where the “$” was residing
using the join() method and automatically convert the list to a string.
Eventually you will get this output:

Figure 7.9: Text cleaned up after the split() and the join() methods have been applied to the
string

Sometimes, you may want to split only a part of the string and leave the
rest as it is. You can do this by using a second parameter inside the split()
method:

print("This$text$contains$unwanted$symbols"
.split("$",2))

The second parameter indicates how many splits will be done starting
from left to right. A parameter of two, as given in the previous code,
would mean that only the first two occurrences will be split. This is what
the output would look like:

Figure 7.10: Generated list from a partly split string

The split() and the join() methods can be considered simple but very
important string methods.

113

Chapter 7: Predefi ned String Functions

7.2 Splitting and Joining Strings 113

Questions for Review
1. Which of the structures best represents the following code?

"String".title()

a. object.method()
b. method().object
c. object.title()
d. object.operator

2. What does the second line of the following code do?

a = "this is a string"
c = a.capitalize()

a. It changes the value of variable a.
b. It assigns the value of variable a to variable c.
c. It capitalizes the letter a.
d. It assigns the altered value of variable a to variable c.

3. What does the split() method return?
a. A split string.
b. Several strings.
c. A list.
d. A split tuple.

4. What does the join() method return?
a. A list.
b. A string.
c. Several joined strings.
d. A tuple.

Questions for Review

114 Python for Beginners114

ChapTer 7 lab eXerCise

Within APIs (Application Programming Interface) you usually are
provided with a username or id, and a secret key. Most of these are
provided together with a separator such as a colon (:). Here is an example:

82914656273523:a4edFea2786DGex

You should separate these into two separate variables, and then we will
do some validation on these. The format is id:key The id should always
contain only digits (numbers 0-9) and always be 14 digits long. Besides
digits, the key can also contain characters and can be any length over 10
characters and less than 20 characters. If all the credentials are okay,
then just print out ‘ID and Key are valid’, if they aren’t okay, display an
appropriate message.

Hint: Use the isdigit() method to check if the text
contained inside a string object is a digit or not.

115

Chapter 7: Predefi ned String Functions

Final Lab Solutions 115

lab soluTion

passed = '82914656273523:a4edFea2786DGex'

data = passed.split(':')

id = data[0]
key = data[1]
if(id.isdigit()):
 # Number is numeric.
 if(len(id) == 14):
 #Length of 14
 if(len(key) > 10 and len(key) <
20):
 print('ID and Key are valid')
 else:
 print('Key Length isn\'t
valid')
 else:
 print('ID wrong length')
else:
 print('ID isn\'t a digit')

116 Python for Beginners116

The solution and the output would look like this in Eclipse:

Figure 7.11: Code that validates some text (upper part) and prints out the validation result
(lower part)

ChapTer summary

In this chapter you were introduced to strings as objects
by learning how to apply methods that altered or extracted
information from them.
You were introduced to some of the methods applied to strings such
as count(), capitalize() and title().

You learned how to look for a full list of methods inside the Eclipse
platform, not only for string objects but for every type of object.
You worked with the join() and split() methods and you should
have an idea of their importance when working with tasks such as
file handling.

In the next chapter you will learn how to write your own functions
that return an output.

117

Chapter 8: Custom Functions

8.1 Syntax Overview 117

CusTom funCTions

ChapTer obJeCTiVes:
• You will be introduced to custom functions and their syntax.
• You will deepen your knowledge of custom functions by learning

how to write more advanced functions containing more than one
parameter.

• You will learn additional ways of using the returned output of the
custom functions.

8.1 synTaX oVerView

Throughout this book, we have gone through many functions used
in Python, but so far, all these have been built-in functions that are
predefined and cannot be customized by us. The print() function is an
example of a built-in function. Its predefined role is to print out some text
and we cannot change this behavior. The good news is that you can define
your own functions using certain syntax.

Custom functions are blocks of code that may take some
input, perform an action, and return some results accordingly.
After a function has been written by the programmer, it can be
reused in many situations inside the script.

Before going through examples, let’s take a look at a model depicting the
syntax used to write a custom function in Python:

def function_name(Parameter_1, Parameter_2,
Parameter_n):
 action
 return action_output

To begin defining a function, you will always have to use the def
keyword. The keyword is followed by a custom function
name and optional parameters. The first line of the block is
closed with a colon (:). Then in the second line, you write the

CHAPTER 8

def

118 Python for Beginners118

actions you want to perform. These can be any type of actions such as
mathematical operations, printing out text, manipulating
objects, etc. The last line contains the return statement
which passes the output that the function yields and also
notes the end of the function. To illustrate the model, we are going to
write a function that converts kilometers to miles using the convention
that one kilometer is equal to 0.621371 miles:

def dist_convertor(km):
 miles = km * 0.621371
 return miles

This is a function with one parameter. The parameter is the
input value given to the function. It is given inside parentheses
after the function name.

In this case we have only one parameter—the local variable km. In the
second line we are declaring another local variable, miles. The second
line is the action that the function performs, which in this case is
multiplication. Then, in the third line, we are returning the value of the
miles variable.

However, you may be disappointed when running this block of code
because you would get no output out of it. This is because that code
merely defines a function.

To get the output we will need to call the function. Calling
a function means executing it by inputting some values as
parameters.

Here is how we call the function we defined in the previous code:

print(dist_convertor(10))

Tip: Be aware that in order to call a function inside a script, the
function should reside in that script. In other words, the function

block and the calling line should be in the same script file.

return

119

Chapter 8: Custom Functions

8.1 Syntax Overview 119

Here we are printing out the output of the function by putting in a
parameter of 10, which are the number of kilometers we want to convert.
The output will be the calculated miles.

This is how the whole code and output would look:

Figure 8.1: Defining, calling and returning the output of a custom function

The output value indicates that 10 kilometers is equal to 6.21371 miles.
Once you define (write) the function, you can call it as many times as you
want inside the same script using different parameters. Any time you call
the function using different parameter values, the returned output will
change accordingly.

defined (def) Æ
returned Æ

called Æ

parameter

120 Python for Beginners120

8.2 more parameTers

In the previous section we went through an example of a custom function
with only one parameter. However, in the general model we explained in
that section, you saw that we had multiple parameters. That means you
and your needs determine how many parameters your function should
have. You can also create functions that take no parameters:

def printing():
 print ("This function simply prints out
some text")
printing()

Here the function is defined in the first and the second line, while
the third line is where we call it. In this case we don’t need to call the
function by using the print() built-in function because print() is contained
inside the action of the function. Executing the previous code gives this
output:

Figure 8.2: Output of a custom function that contains no parameters

Now, after having worked out a function with one parameter and another
one with no parameter, let’s have an example of a function with multiple
parameters. Calculating the travel distance of a vehicle that moves at a
certain velocity and acceleration at a given time would require a distance
function with three parameters: velocity v, acceleration a, and time t. The
formula that calculates the travel distance using these three variables is:

d = vt + (1/2)at2

Tip: You can easily write the formula directly in Python without
having to put it inside a function. However, you would have to do
extra work every time you wanted to calculate it using different

input values. Putting the formula inside a function has long-term
benefits—it allows you to reuse that formula very easily by just

calling the function.

121

Chapter 8: Custom Functions

8.2 More Parameters 121

Here is the function we would create to work out the distance formula:

def distance(v,a,t):
 d = v*t + 0.5*a*t**2
 return d

As you can see, we start the function using the def syntax and then we
write a name for the function and the three parameters separated by
commas inside the parentheses. The second line contains the formula,
while the last line indicates the value the function will return after it has
been called. So, let’s call it by adding this line under the function:

print ("The travel distance is
",distance(30,5,20))

Tip: Notice that when calling a function that has multiple
parameters, the order of the values of the parameters must be the

same order you used when defining the function.

Here we are printing some text and the returned value of the function
that corresponds with a velocity of 30, an acceleration of 10 and a time of
20. Here is the output you should get:

Figure 8.3: Printed text together with the returned value of the function

Notice that the returned value of the function is 1600.0. The function
can also be utilized for further operations inside your code. Here is an
example:

print(distance(30,5,20) - 600)

122 Python for Beginners122

Running this line you will get:

Figure 8.4: The returned value after an operation with the function output

As you see, the function here acted as a variable by using its underlying
value which is the value that the function returns as output. You will
learn more about this in the next section.

Tip: While dealing with functions, do not forget the variable
scope issues that we discussed in previous chapters. You should
remember that any variable that is defined inside a function is

a local variable and cannot be used outside that function. Global
variables are those variables that are defined outside a function

and can be used both inside and outside functions.

123

Chapter 8: Custom Functions

8.3 More on Returns 123

8.3 more on reTurns

You might have noticed that in sections 8.1 and 8.2 we used two different
ways to return the output for a function. Sometimes we used the return
syntax and other times we directly used the print() function. There is
a crucial difference between the two. Before explaining it, let’s give an
illustration through an example. First, let’s use the return syntax to
return an output of a function:

def triangle_area(base,height):
 return base*height/2

if triangle_area(10,3) >= 100:
 print ("Great triangle")
else:
 print ("Small triangle")

Here, we are first defining a function in the first two lines. Then, in the
following lines we are using the returned value of the function inside a
conditional block. In case the returned value of the function is greater
than 100 area units, a message will be displayed. If the returned value
of the function is less than 100 area units, another message will be
displayed. In case you didn’t notice, our function behaved just like a
variable inside the conditional block. This is made possible by the use of
the return syntax when defining the function.

Figure 8.5: Conditional output using the function returned value

You also know that if you want to print out the returned value of the
function, you can just add a line at the bottom of the previous code, like
so:

def triangle_area(base,height):
 return base*height/2

124 Python for Beginners124

if triangle_area(10,3) >= 100:
����SULQW���%LJ�WULDQJOH��
else:
 print ("Small triangle")
print (triangle_area(10,3))

And here is the output:

Figure 8.6: Conditional output using the function returned value also printed out on the
second line

Now, try to write the same code as before but instead of using return, use
the print() function as shown here.

def triangle_area(base,height):
 print (base*height/2)

if triangle_area(10,3) >= 100:
����SULQW���%LJ�WULDQJOH��
else:
 print ("Small triangle")

The output you will get is this:

Figure 8.7: Program causing an error because the function output is not a number

This is because the function is just printing out the output as text, and
not returning its actual value, which is a number. Using the print()
function can be a quick way to merely print out the output, but when you

125

Chapter 8: Custom Functions

8.3 More on Returns 125

want to use the output of the function in other operations as we did with
the conditional block, the return value is the standard way to go.

Questions for Review

1. Which of the following is a correct way of defining a custom function?
a. def function():
 return
b. function():
 return
c. def function()
 return
d.def function:
 return

2. What is not true about functions?
a. Functions can be used as variables after they have been defined as

far as the return syntax is used.
b. Function parameters given when defining a function are variables.
c. Function parameters given when calling a function are values.
d. Functions cannot contain other functions inside them.

3. What is not true about variable scope and functions?
a. Global variables cannot be used inside a function.
b. Global variables can be used both inside and outside functions.
c. Local variables cannot be used outside functions.
d. Function parameters are local variables.

Questions for Review

126 Python for Beginners126

ChapTer 8 lab eXerCise

In this lab exercise, your task is to create a function that will return a
string that indicates the type of data that is passed to the function. The
data types must be processed and checked as:

1. Alphanumeric
2. Digit only (this is number without decimal points)
3. Boolean

lab soluTion

def checkDataType(string):
 myString = str(string)
 if(myString.isdigit()):
 return 'String is numeric'
 elif(myString.isalnum()) and not
myString=="True" and not myString=="False":
 return 'String is alphanumeric'
 elif(myString == "True" or myString ==
"False"):
��������UHWXUQ�
6WULQJ�LV�%RROHDQ

 else:
 return 'unknown string type'

print(checkDataType("Sample"))
print(checkDataType(True))
print(checkDataType(960))

127

Chapter 8: Custom Functions

Final Lab Solutions 127

Notice that in the last line we are testing the function by calling it with a
sample data type that is the string “Sample”. This is how the code and its
output would look in Eclipse:

Figure 8.8: Lab solution (upper part) where the function is defined and called and the
output (lower part)

128 Python for Beginners128

ChapTer summary

In this chapter you were introduced to custom functions and you
learned how to define them. Going through examples, you practiced
writing functions with a different number of parameters.
You also learned how to call functions you have already defined by
inputting values as function parameters.
We discussed how functions can behave like variables and how
their values are used for further operations inside your script. You
should now know the difference between using the return and the
print statements.
You were also reminded of the variable scope concept which is
tightly related to the custom functions learned in this chapter.

In the next chapter, you will learn about classes, another critical
functionality of every programming language.

129

Chapter 9: Classes

CHAPTER 9

9.1 Overview of Classes and Objects 129

Classes

ChapTer obJeCTiVes:
• You will be given an overview of classes and their related concept

definitions.
• You will be introduced to a standard class sample and learn the

syntax used to write a class.
• You will learn how to call an instance of a previously-defined class.
• You will be able to access and run methods that are contained within

the classes you have created.
• You will be introduced to the class inheritance concept and you will

also work with examples of inheritance between classes.

9.1 oVerView of Classes anD obJeCTs

A class is a user-defined prototype or blueprint for an
object. An object contains and defines a set of attributes that
characterize it and other identical objects of its class. Classes
are an easy and efficient way of storing identical code together.

After a class has been created, objects (also called instances) of it can be
created and called. Classes come along with a set of concepts that you
need to learn. Therefore, we will start by describing those concepts. At
first, you might find it difficult to grasp all the details contained in the
following list of definitions. However, you will slowly master them as you
work with classes. Here are the definitions:

• Class variable
• Data member
• Instance variable
• Inheritance
• Instantiation
• Method
• Object

A class variable is a variable defined inside a class of which a
single copy exists, regardless of how many instances of the class
will occur.

130 Python for Beginners130

A data member is a class variable or an instance variable that
holds data associated with a class and its objects.

An instance variable is a variable that is defined inside a class, for
which each object of the class has a separate copy or instance.

Inheritance is a transfer of the characteristics of one class to
another class that was derived from it. (For example, the class
“dog” and “cat” would be derived or inherited from the class
“animal” as they would have some methods (eat, sleep, etc.) that
belong to the class “animal.”)

An instance is an individual object of a certain class.
Instantiation is the process that signals the creation of an
individual object from its class.

A method is a function that is contained inside a class. Methods
are run when a class instance or the method itself is called.

An object is a unique instance of a data structure that is defined
by its class. An object is comprised of data members which are
class variables and instance variables.

Questions for Review

1. Which of the following best describes a class?
a. A structure of categories and sub-categories used to store data.
b. A prototype dictionary used to store and return data passed to it.
c. A function that uses self as a parameter.
d. A prototype with methods within it.

2. What is a class method?
a. A method to return output generated from the class.
b. A function.
c. A built-in object.
d. An inherited function from an existing class.

Questions for Review

131

Chapter 9: Classes

9.2 Using “class” 131

9.2 using “Class”

After having defined the concepts that are related to classes, let’s now
create our first class. We are going to write a class called “Person”. From
our life experience, we know that a person has some attributes such as
gender, name etc. These attributes will be the variables that are going to
be passed to the class we will create. Here is the code block to create your
first class:

class Person:
def __init__(self,gender,name):
self.Gender = gender
self.Name = name
def display(self):
print("You're a ",self.Gender,", and your
name is ", self.Name)

Notice that this code is just the class creation part. As with functions, you
will not get any output if you run this code. You need to call an instance
of the class to get some results. Calling a class instance would be to run
the class by passing some attribute values to it. Before we do that, let’s
first go through the code and explain it.

We intentionally used the term “class” in the title of this section. Just
like the def keyword which we used to start writing a function, the class
keyword is used to start writing a class. This is what we do in the first
line of the code. Here, we decided to name this class “Person”.

The second line of the code block is also a routine when defining a class.
It is where the class is initialized through the __init__
method and where the class attributes are given. The self
attribute is obligatory and it is always given to the class.
The other two attributes, gender and name, are given by
us.

Tip: Even though the self parameter is given any time a class is
defined, it is not a keyword in Python—you can use any name for
it. However, self is a strong convention among programmers and

we suggest you use the same word.

init

132 Python for Beginners132

In the third and fourth lines of the previous code block we are connecting
all the attributes to self. In these lines, self is an object and Gender and
Name are variables within that object. We are capitalizing Gender and
Name here to make it visible that they are actually not the attributes we
passed to the __init__ method. Instead, they are local variables.

Then in the fifth and sixth lines, we define a custom method and call it
“display”. We pass self to this method. Because self now contains all the
attributes of the class, we can use them within the method. In this case,
we are printing out some text along with the attributes that will be given
to the class when being called.

To get an understanding of what this class does, we need to call an
instance of it. To do that, you need to add the following line under the
class you created:

Person("male","Me").display()

As you see here, you are calling an instance of the class using “male” as
gender and “Me” as name. In this case we are running the display method
contained within the class. Here is the output you will get:

Figure 9.1: Displayed text from the display method after the custom class has been called

Notice the syntax used to call the class. First, we wrote the class name
and two attribute instances inside the parentheses. Then, we called one
of the methods defined inside the class, which in this case is the function
display() which prints out some text along with the attributes of the class.

133

Chapter 9: Classes

9.2 Using “class” 133

Questions for Review

1. How do you start writing a class?
a. class classname:
b. class __init__
c. def class:
d. def class():

2. What would you do to get an output from a defined class?
a. Return a value within the class functions.
b. Call a class instance.
c. Print out the class.
d. Print out the class functions.

Lab Activity

Consider the previous class example:

class Person:
def __init__(self,gender,name):
self.Gender = gender
self.Name = name
def display(self):
print("You're a ",self.Gender,", and your
name is ", self.Name)

Add another attribute to this class such as “age”, incorporate it inside the
display() method, and call an instance of the class.

Questions for Review

Lab Activity

134 Python for Beginners134

lab soluTion

class Person:
 def __init__(self,gender,name,age):
 self.Gender = gender
 self.Name = name
 self.Age = age
 def display(self):
 print("You're a ",self.
Gender,", your name is ", self.Name, ", and
you are ", self.Age," year old")

Person("male","Me",25).display()

Here is how the solution and the output look in Eclipse:

Figure 9.2: A class with three attributes and an instance of it.

135

Chapter 9: Classes

9.3 Using Methods 135

9.3 using meThoDs

As you’ve learned in section 9.1, a method is a function that is contained
inside a class. However, methods are not exactly functions. Let’s look at
this example:

class Person:
def __init__(self,gender,name):
self.Gender = gender
self.Name = name

def display(self):
print("You're a ",self.Gender,", and your
name is ", self.Name)

What we have here is a class that has two methods. The first is the built-
in __init__ method which is used to initialize the class. More specifically,
we can refer to __init__ as a constructor when an instance of the class is
created. The second method of our “Person” class is the display method
which we created for printing out some text.

Once the class and its methods have been created, you can access them
using the object.method() syntax:

Person("male","Me").display()

In this example, the part before the period is the object, and the part after
that is the method. The period itself is used after the object to indicate
that a method of the object is to be applied.

Notice that when we defined the display method, we used some variables
such as self.Gender and self.Name within the body of the method.
However, these two variables were not included as parameters of the
display method. The key here is the use of the self variable and the __
init__ method. Using the __init__ method you can define all the variables
you want to use within the methods of a class.

Though, you are not restricted to adding new variables to the methods
you define after the __init__ method. Here is an example where we add

136 Python for Beginners136

another variable to the display method:

class Person:
 def __init__(self,gender,name):
 self.Gender = gender
 self.Name = name

 def display(self,lastName):
 print("You're a ",self.Gender,",
and your name is ", self.Name, lastName)

Notice that this time we are inputting a parameter to the display method.
To call an instance of this class, we would have to add the following line
under the previous code:

Person("male","Me").display("Pyto")

Here is how this example would look in Eclipse:

Figure 9.3: Defining a class and running an instance of it.

Try experimenting! Input your own variable instances such as name,
gender and last name to see how your output changes. Once a class has
been defined, class instances can also be assigned to global variables.
Here is the example:

137

Chapter 9: Classes

9.3 Using Methods 137

class Person:
 def __init__(self,gender,name):
 self.Gender = gender
 self.Name = name

 def display(self,lastName):
 print("You're a",self.Gender, "and
your name is",self.Name, lastName)

Person1=Person("male","Me")
Person2=Person("female","Anne")
Person3=Person("female","Frida")

Person1.display("Pyto")
Person2.display("Pyto")
Person3.display("Pyto")

Here is how the last example would look in Eclipse:

Figure 9.4: Defining a class: assigning class instances to global variables and running the
class associated methods.

138 Python for Beginners138

This way, we can call the same method, but with different
variables by getting different outputs. In programming, this is
called encapsulation.

Questions for Review

1. Which of the following is not a keyword in Python?
a. self
b. def
c. class
d. __init__

2. What is the correct method of calling a class instance method?
a. class().method()
b. class.method
c. class().method
d. class.method()

Lab Activity

Modify the previous example:

class Person:
 def __init__(self,gender,name):
 self.Gender = gender
 self.Name = name

 def display(self,lastName):
 print("You're a ",self.Gender,",
and your name is ", self.Name, lastName)

By including all the three attributes (i.e. gender, name, and lastName)
inside the __init__ method, we leave the display() method with only the
self default attribute. We then call an instance of the class. The output
has to be identical to the output of the original code.

Questions for Review

Lab Activity

139

Chapter 9: Classes

9.3 Using Methods 139

lab soluTion

class Person:
 def __init__
(self,gender,name,lastName):
 self.Gender = gender
 self.Name = name
 self.lastName = lastName
 def display(self):
 print("You're a ",self.Gender,\
 ", and your name is ", self.
Name, self.lastName)
Person("male","Me","Pyto").display()

This is how the solution and the output would look in Eclipse:

Figure 9.5: Class “Person” having all the attributes inside the __init__ method.

140 Python for Beginners140

9.4 using obJeCT DaTa

In the previous sections of this chapter you were introduced to an
example of a class. Even though we can have several class instances,
the data is stored within the objects and not the class. We worked with
some variables which we fetched using the display method. Here we are
going to have a similar example, but this time we are going to have some
scalability in our code. Let’s start writing our class example little by little.
Here is how we start writing the class which, as you already know, is by
defining the __init__ method:

class Example:
def __init__(self, **kwargs):
self.variables = kwargs

In the very first line, we define the name of our class, which is “Example”.
The __init__ method consists of the single third line which initializes the
class. Here is also where we write the variables. We have the self default
variable and another variable called **kwargs.
Like self, **kwargs is also not just a user-defined
variable. In Python, kwargs is referred to as a
keyword argument. Any parameter that you pass
to the __init__ method will be stored in a dictionary
named kwargs. If there is only one asterisk placed before kwargs (such as
*kwargs) the parameters would be passed in the form of a tuple. In the
last line of the code, we are assigning the dictionary to a variable inside
our class. There is no need to use asterisks in this assignment statement.

Let’s write the next part of the class. Paying attention to the indentation
aspect, you will have to add these lines under the previous code:

def set_vars(self,k,v):
 self.variables[k] = v

Here we are creating another method which we have named set_vars.
This method will populate the kwargs dictionary with keys and values.
In this case, the k variable will hold the keys and v will hold the values.
In the first line, the parameters (self, k and v) of the set_vars method
are defined. The second line should be familiar to you. It is where the
dictionary is being populated with keys and values. In this case, self.

Keyword
Argument

141

Chapter 9: Classes

9.4 Using Object Data 141

variables is the variable that contains the dictionary kwargs.

Now, let’s define a method that gets and returns the data that has
already been stored in the dictionary. You will have to add this block of
code under the previous one:

def get_vars(self,k):
 return self.variables.get(k, None)

This method will return the data of the dictionary based on the key we
pass in. In the first line, we start defining the method and pass the self
and k variables as arguments.

Then, in the second line we use the predefined function get
which is a dictionary method used to return dictionary values
based on their corresponding key.

When we call this method later, using a key instance that does exist
inside the dictionary, we will get the corresponding value; otherwise,
if the key instance is not contained within the dictionary, we will get
“None”.

Putting all the previous parts together wraps up the creation of the class
Example:

class Example:
 def __init__(self, **kwargs):
 self.variables = kwargs
 def set_vars(self,k,v):
 self.variables[k] = v
 def get_vars(self,k):
 return self.variables.get(k, None)

Now we can call some class instances. To do that, you need to add other
lines of code under the class you defined and showed previously:

var = Example(age=25, location='AL')
var.set_vars('name','Me')
print(var.get_vars('name'))
print(var.get_vars('age'))

142 Python for Beginners142

In the first line here, we are assigning an instance of the class to variable
var. This class instance is passed with two parameters that are the two
key-value pairs that will populate the dictionary.

Then, in the second line we populate the dictionary with one more pair
of key and value. At this point, the dictionary within the class has three
pairs.

In the last two lines of code, we are calling the get_vars() method which
returns the corresponding value of a given key. In the first case, the
given key is “name” and in the second one the key is “age”. If these keys
are within the dictionary of our class, their corresponding values will be
displayed, otherwise None will be printed out.

The following figure gives the big picture of the whole example that we
used throughout this section:

Figure 9.6: Defining a class that fetches the values of the keys from a dictionary.

This is how you use the data stored inside an object created and stored
inside a custom class. This class can be used inside the program
whenever you need it.

143

Chapter 9: Classes

9.4 Using Object Data 143

Questions for Review

1. What would “*kwargs” indicate when passed as a parameter of a class?
a. Method parameters will be stored in a dictionary called “kwargs”.
b. Method parameters will be stored in a tuple called “kwargs”.
c. Method parameters will be stored in a list called “kwargs”.
d. Method parameters will be stored in a keyword argument database.

2. In the previous example, what does the get_vars() method do?
a. It gets the variables of the class.
b. It returns the age of the user.
c. It returns the corresponding value of a dictionary key.
d. It returns the corresponding key of a dictionary value.

Lab Activity
Modify the previous code example:

class Example:
 def __init__(self, **kwargs):
 self.variables = kwargs
 def set_vars(self,k,v):
 self.variables[k] = v
 def get_vars(self,k):
 return self.variables.get(k, None)

var = Example(age=25, location='AL')
var.set_vars('name','Me')
print(var.get_vars('name'))
print(var.get_vars('age'))

so that you get this output:

Figure 9.7: The expected output after the original code has been modified.

Questions for Review

Lab Activity

144 Python for Beginners144

lab soluTion

class Example:
 def __init__(self, **kwargs):
 self.variables = kwargs
 def set_vars(self,k,v):
 self.variables[k] = v
 def get_vars(self,k):
 return self.variables.get(k, None)

var = Example(age=25, location='AL')
var.set_vars('name','Me')
print(var.get_vars('Name'))
print(var.get_vars('Age'))

Note: As you can see, one solution would be to simply look for two
keys that do not exist in the dictionary such as “Name” and “Age”.
We populated our dictionary with the keys “age” and “name” and
because strings are case-sensitive in Python, the program could

not match the given keys “Name” and “Age” with the ones that the
dictionary contained.

Here is the solution and the output as shown in Eclipse:

Figure 9.8: Class that fetches values from a dictionary and an instance of it returning no
matched keys.

145

Chapter 9: Classes

9.5 Inheritance 145

9.5 inheriTanCe

As we already defined, inheritance is a transfer of the attributes of a class
to another class that was derived from it. Inheritance makes it possible to
use the methods of a class within another class. This way, you don’t have
to define the same methods again in another class when writing large
programs. To illustrate inheritance, we are going to use two different
classes: the “animals” class and the “dogs” class. Animals share some
similar actions such as eating, breathing, and sleeping. A dog is part
of the animal kingdom and performs the same actions that an animal
does. Therefore, the “dogs” class can inherit the
actions from the “animals” class. The class that the
methods are inherited from is called a superclass.
In our example, the superclass will be “animals”.
Let’s write the superclass:

class animals:
 def eat(self):
 print ("I can eat.")
 def breath(self):
 print ("I can breathe.")
 def sleep(self):
 print ("I can sleep.")

What we have here is a class with three simple methods that simply print
out some text. Now we want to create another class that summarizes
what a dog can do. Instead of rewriting the list of actions that animals
perform, we can just inherit them:

class dogs(animals):
 def bark(self):
 print("I can bark.")
 def guard(self):
 print("I can guard.")

The first line of the code block is where the class “dog” is declared to be
inherited from the class “animals”. This means that the class “dog” has
now all the same methods that the class “animals” has. This is simply
done by putting the superclass “animals” inside the parentheses. The

Superclass

146 Python for Beginners146

next lines are other normal methods that are appropriate for the “dogs”
class. These methods are contained only by the class “dog”. Try to add the
following lines to see the output:

animals().eat()
dogs().sleep()

Notice that even though the sleep method was not explicitly defined
inside the “dogs” class, it is a method of that class. Here is what the
complete code example would look like in Eclipse:

Figure 9.9: Defining a superclass and an inherited class, and calling their methods.

Tip: It is possible that in the inherited class you might define a
method that was already defined in the superclass. In this case,

the new method in the inherited class will supersede the method in
the superclass meaning that the new method is the one that will be

executed when the class is called.

su
pe

rc
la

ss
in

h
er

it
ed

 c
la

ss

147

Chapter 9: Classes

9.5 Inheritance 147

Questions for Review
1. When would you use inheritance?

a. When you want to use the parameters of a function in another
function.

b. When working with identical classes.
c. When a class you want to create is a “subset” of another class.
d. When some of the methods of a class you want to create are

contained in an existing class.

2. How would you start writing the class child that is inherited from the
class parent?

a. class child():
b. class child.parent()
c. class child:
 extend parent;
d. class child(parent)

Lab Activity

Add another class called “hound” to the previous code example:

class animals:
 def eat(self):
 print ("I can eat.")
 def breath(self):
 print ("I can breathe.")
 def sleep(self):
 print ("I can sleep.")
class dogs(animals):
 def bark(self):
 print("I can bark.")
 def guard(self):
 print("I can guard.")

animals().eat()
dogs().sleep()

The “hound”
class will represent

the hound type
of dog which can
perform all the
actions that an

animal and a dog
can. In addition, a

hound can also hunt.

Lab Activity

Questions for Review

148 Python for Beginners148

lab soluTion

class animals:
 def eat(self):
 print ("I can eat.")
 def breath(self):
 print ("I can breathe.")
 def sleep(self):
 print ("I can sleep.")
class dogs(animals):
 def bark(self):
 print("I can bark.")
 def guard(self):
 print("I can guard.")
class hound(dogs):
 def hunt(self):
 print ("I can hunt")

animals().eat()
dogs().sleep()
hound().hunt()

149

Chapter 9: Classes

9.5 Inheritance 149

This is how the solution and its output look in Eclipse:

Figure 9.10: Three classes having inheritance connections among them.

150 Python for Beginners150

ChapTer 9 lab eXerCise

We will create a class that calculates a person’s payroll. We will pass in
an employee’s name, how much they earn per hour, and how many hours
they have worked that week. This will then generate a value that we will
output.

Let’s also create an optional method that will determine whether they
worked overtime or not. If they did, for the hours they worked overtime,
they get time and a half—their normal hourly rate, plus half of their
hourly rate. After these figures have been calculated, print out the
employee’s name, how many normal hours they work at what wage, and
how much money they earned for that. Do the same for the overtime.
Finally, print out a total for both added together.

lab soluTion

class Payroll:
 def __init__(self, name):
 self.name = name
 self.hours = 0
 self.overHours = 0
 self.wage = 0
 def setEarnings(self, wage):
 self.wage = wage
 def setHours(self,hours):
 self.hours = hours
 def setOvertime(self,hours = 0):
 self.overHours = hours
 def calculate(self):
 print(self.name , ' worked:')
 print(self.hours , ' normal hours @
' , self.wage , ' for $' , self.hours *
self.wage)
 print(self.overHours , ' overtime
hours @ ' , self.wage * 1.5 , ' for $' ,
self.overHours * 1.5 * self.wage)
 print('Totaling: $' , ((self.
wage*1.5*self.overHours)+ (self.wage*self.

151

Chapter 9: Classes

Final Lab Solutions 151

hours)) , ' for One Weeks work')

person = Payroll('Me')
person.setEarnings(14.20)
person.setHours(4.2)
person.setOvertime(1)
person.calculate()

Running this code using my own sample values you would get this result:

Figure 9.11: The output shows the name of the person and the normal and overtime hours
worked and their respective rates together with the total.

152 Python for Beginners152

ChapTer summary

In this chapter you were introduced to classes and the concepts
related to them.

You learned the syntax of defining a class and you defined your
own class samples and ran them using different instances.

You now know that methods are at the core of a class structure
and you know how to access class methods after a class has been
defined.
You should have an understanding of the use of keyword
arguments and how to store and return data from objects such as
dictionaries or tuples within classes.

You learned the inheritance concept and you should now know
that inheritance is the functionality you need to use when defining
classes that are inherited from larger classes.

In the next chapter, you will learn about file handling by learning
how to open, read, and write files that reside in your computer
using Python scripting.

153

Chapter 10: File Handling

CHAPTER 10

Open

153

file hanDling

ChapTer obJeCTiVes:
• You will learn how to open the content of a text file inside the Python

programming environment.
• You will learn how to read and write the content of a text file into

another text file.
• You will learn how to read and write the content of bigger text files.
• You will learn how to read and write different types of files in

addition to text files.

10.1 opening files

So far, we have only been writing programs that process internal
information contained within the programming script. We have not been
interacting with objects that reside outside the script. In this chapter, we
will take an important step and learn how to handle files that reside in
your computer file system using Python.

Basically, the two main actions we need to perform when
we want to handle files are reading and writing. Both these
actions are implemented via the open function. In this section
we will learn the first action – reading files.

Before we go through some examples to see how the open
function works, we need to create a sample file in our
computer. For this, let’s create a new text file. In my case, I created a
text file and inserted the section titles of this chapter and saved it in a
folder. You are free to save it in any folder you want, but be sure to keep
track of the folder path because that is crucial for Python to locate the
file. Another thing you need to keep note of is the file name. Here is a
screenshot of my file and its location:

10.1 Opening Files

154 Python for Beginners154

Figure 10.1: Sample text file located in a folder in Windows operating system

Now we will try to open (read) the text contained inside the file in
Python. Here is the code that does that:

¿�OH� �RSHQ��&��)LOH+DQGOLQJ�6HFWLRQV�W[W��
IRU�OLQH�LQ�¿�OH�
 print (line)

What the function open does, is fetch the data contained inside a file. This
fetched data is then assigned to a variable. This is exactly what we do in
the first line of our code block—we are assigning the data of the Section.
txt file to our variable named file. Notice that you should specify the
complete path directory of your file so that Python can locate it.

Tip: If the file you are trying to open resides in the same directory
with the Python script you are writing, you do not have to declare

the whole path of the directory. In this case, only the file name
would be enough for Python to locate the file.

155

Chapter 10: File Handling

155

Then, in the second and the third line, we use the print function via a for
loop to display the data contained inside our text file. Notice that we are
using the print function in the same manner we used to print out lines
from an array. The output of the previous code would be this one:

Figure 10.2: Displayed data from an opened text file using the open function.

The code we wrote was very basic without having any advanced
functionality. You may have noticed that the text lines we displayed are
separated by empty lines. To remove these empty lines, we
would add an end parameter to the print function, like this:

¿�OH� �RSHQ��&��)LOH+DQGOLQJ�6HFWLRQV�W[W��
IRU�OLQH�LQ�¿�OH�
 print (line, end = "")

This time, the output would be slightly different:

Figure 10.3: The spaces between the text lines are removed using the end parameter.

The end parameter specifies how the lines contained inside the text file
will be separated when displayed via the print function. In this case, we
set that the lines will not be separated by blank lines. You could put any
character you want inside the quotes and the lines will be separated by
that character. In this case we did not input any character separator.

End

10.1 Opening Files

156 Python for Beginners156

10.2 reaDing anD wriTing TeXT files

In the previous section you were given an introduction explaining how
to interact with files via Python scripting. We used the open function
in the previous section using only one parameter, the file location path.
In that default one-parameter mode, the function worked as a reader of
the text file. So, it read and printed out the text that the file contained.
In this section you will learn how to write text inside a text file. This is
done by adding a second parameter to the open function. Before we write
the code that does that, we need to create an empty text file where text
will be written. I will create one, name it New.txt and put it in the same
directory where I have the Sections.txt file that I used in the previous
section. You also need to have your sample file which you used along with
me in section 10.1.

The idea here is that we are going to fetch the text contained inside the
Section.txt file and put it inside the New.txt file. Here is the code that
does that:

input = open("C:/FileHandling/Sections.
txt","r")
output = open("C:/FileHandling/New.
txt","w")
for line in input:
� SULQW��OLQH��¿�OH� �RXWSXW��HQG� ����

In the first line we are fetching the text from Sections.txt and assigning it
to the variable input. The parameter r indicates that we are reading the
content of the file. This is the same thing we did in the examples of the
previous section. The use of r is optional. The default action that the open
function does when used with one parameter is reading the file. However,
in this case we decided to use the r parameter as just a matter of style.

You do not have this freedom when you want to write inside a file. In
this case you have to use the w parameter to let the program know
what you want to write inside the file. This is exactly what we do in the
second line of our code. Then, in the third and fourth lines we complete
the writing process. Notice the similarity of these lines with the lines we
used to print out the text in the examples from the previous section. The
crucial difference here is the insertion of another parameter inside the

157

Chapter 10: File Handling

157

print function, which is file = output. This parameter tells the program
to insert the content inside a file. This file is represented by the variable
output which contains the New.txt file path location. After running this
code, go to the folder where your New.txt file resides and open it to see if
the content has been written inside. You will have something similar to
this:

Figure 10.4: Text file after the content has been written using
the open function with the w parameter.

Tip: If you want to add the content of a text file below some
existing content of another text file, you must use the a parameter
instead of w. The a parameter stands for append and it will append

the content instead of overwriting it.

In the example we just used, we had to deal with only three lines of text
and the code we used does the job perfectly. However, if the number of
text lines inside the text file was significantly higher, our code would
have trouble processing it because the for loop we are using would have
to go through every line one by one. If you were to handle bigger text
files having a considerable amount of lines, we would suggest another
approach. Let’s go through this and handle a real life text file that
contains more than 30 thousand lines of text. This is how a part of the file
looks:

Figure 10.5: A big text file that has to be read and written using a buffer

10.2 Reading and Writing Text Files

158 Python for Beginners158

You can create your own big text file by simply copying some big text
inside an empty text file. Give a name such as BigFile.txt and save it in a
folder. You do not need to create an empty new file (where the text will be
written) manually because this will be created by the code.

To work with this big file in Python, this time we will be using a buffer
instead of the for loop. A buffer provides a faster way to
read and write a text file because it reads and writes the
data by big groups of text. This technique works on a
byte basis—it reads and writes the content of the file by
accessing groups of bytes. In our case, the code we would use to write all
the text from one file to another is:

buffersize = 1000000
LQSXW� �RSHQ�
����&��)LOH+DQGOLQJ�%LJ)LOH�
txt','r')
output = open('C:/FileHandling/New.txt',
'w')
buffer = input.read(buffersize)

while len(buffer):
output.write(buffer)
print('.', end='')
buffer = input.read(buffersize)

First, we create a variable and assign it the number of bytes that the
reading algorithm will be stepping through. In this case, the algorithm
will access groups of 1 million bytes of data. The whole file has a size of
9,351,168 bytes.

Then, in the second and third lines, we create one file input and one file
output variable with the respective read and write capabilities. In the
fourth line, we create a buffer object that will store the output based on
the buffer size we specified previously.

Then we move on to the next block which is a while loop. This loop
will iterate through text buffers and write them to the output file. As
the writing continues, we are printing out some dots where every dot
represents a written buffersize of 1,000,000 bytes:

Buffer

159

Chapter 10: File Handling

159

Figure 10.6: Reading and writing a text file using a buffer and a while loop

The number of dots is the number of written buffers. In this case, we
had 10 dots because 9,351,168 bytes make up nine groups of one million
bytes each and one last group with the rest of the bytes. Notice that it
processed very quickly. Reading and writing all the lines one by one
would take a considerable amount of time. After you run the code, check
the New.txt to see if the text has been written inside. The two text files
must have the same content.

10.2 Reading and Writing Text Files

160 Python for Beginners160

10.3 reaDing anD wriTing binary files

In the two previous sections we worked
with reading and writing text files only.
In this section, we will learn how to read
and write files that are not of text type.
No matter what type a file is, it is always
made up of bytes. Therefore, we will use
the buffer technique we used previously,
but this time we will work with a .jpg
picture file such as this:

The code is mostly the same with some
minor changes:

buffersize = 1000000
input = open('C:/
FileHandling/Python.jpg','rb')
output = open('C:/FileHandling/NewPython.
jpg', 'wb')
buffer = input.read(buffersize)

while len(buffer):
output.write(buffer)
print('.', end='')
buffer = input.read(buffersize)

Here, again we are using a buffer size of one million bytes. So, the
reading and writing will be done every one million bytes. In the second
and third lines we set the input location and file name. Notice here that
we are using the rb and wb parameters where rb stands for read binary
and wb for write binary. These are the parameters to be used when
the files are not text files. The while block is the same block we used in
the example of section 10.2. So, the only conceptual difference of this
code from the previous one we used with text files, is the use of binary
parameters for the open function rb and wb.

Figure 10.7: Picture file to be read and
written using the buffer technique.

161

Chapter 10: File Handling

161

Questions for Review

1. What does the following code do?

¿�OH� �RSHQ��6HFWLRQV�W[W��
IRU�L�LQ�¿�OH�
 print (i)

a. Prints out the i character contained inside the Sections.txt file.
b. Prints out the content of Sections.txt on a line by line basis.
c. Creates a file called Sections.txt.
d. The code will not work due to syntax errors.

2. Why do we set a big buffer size number?
a. To have the code run more quickly.
b. To have a big number of iterations.
c. To have a consistent number of lines.
d. To have the bytes printed out correctly.

3. What is not true about the buffer technique?
a. It is used to have a quicker execution of the code.
b. It works with all types of files.
c. It accesses the content on a byte basis.
d. It works better with text files.

ChapTer 10 lab eXerCise

Your task is to create a class called LogMessage. This class will have
three functions. The first function is the initial __init__() method, which
will take one parameter—the filename for the file. The second is the
read() method, which will output all of the content from that text file.
The third is the write() method, which will take one input—the message
that you wish to write in append mode to the text file.

Your read() and write() should use appropriate settings to either read or
write (write should append to the text file) to make sure that you don’t
receive errors.

Questions for Review

Final Lab Exercises

162 Python for Beginners162

lab soluTion

class LogMessage:
GHI�BBLQLWBB�VHOI�¿�OHQDPH��
VHOI�¿�OHQDPH� �¿�OHQDPH
def read(self):
��������I� �RSHQ�VHOI�¿�OHQDPH�
U
�
lines = f.readlines()
for each in lines:
print(each, end='')
def write(self,message):
��������I� �RSHQ�VHOI�¿�OHQDPH��
D
�
f.write(message)

log = LogMessage('test.txt')
log.write('Testing…' + '\n')
log.write('test123' + '\n')
log.read()

163

Chapter 10: File Handling

163

This is how the solution would look in Eclipse:

Figure 10.8: Lab solution with the output after the sample file has been processed.

Final Lab Solutions

164 Python for Beginners164

ChapTer summary

In this chapter you were introduced to the concepts of file handling.
You learned how to access text files from the Python programming
environment.

You worked with reading and writing text files using the open
function and the for loop by accessing the content line by line.

You also worked with the while loop by accessing the content on a
byte basis and you understood when to use the for loop and when
to use the while loop.

We discussed the buffer technique and you learned how to read
and write file types that are not text files and you should now know
how to use the proper parameters for reading and writing binary
files.
In the next chapter, you will learn about database handling, which
is a similar file handling.

165

Chapter 11: Database Handling

11.1 Creating the Database 165

DaTabase hanDling

ChapTer obJeCTiVes:
• You will learn how to interact with a database from within Python

by creating database files, database tables, and building table
structures.

• You will learn how to insert and update records in database tables.
• You will learn how to query database data by retrieving records and

using their values for various operations in Python.
• You will learn how to delete existing table records.

11.1 CreaTing The DaTabase

Python, like many other computer languages, is able to interact with
a database, which is a collection of information organized to provide
efficient access by computer programs. Python can access a database
through its specialized libraries. While there
are a few libraries that enable the interaction
between Python and databases, in this book we
will work with the SQLite3 library. SQLite3
is a set of Python scripts that contain already-
made functions which enable the interaction with a database. This
library must have been automatically installed along with Eclipse, so you
don’t have to install it separately.

The first thing we will do in Python is create an empty database file. This
is a very easy task accomplished by the following code:

import SQLite3
db = SQLite3.connect('database1.db')

First, we need to import the SQLite3 library in Python. This is done using
the import command along with the name of the library. Once we import
it inside our program, we can use the library and its built-
in functions as many times as we want. In the second line
we make a connection to a database. In this example, the
name of the database is database1.db. If this database

CHAPTER 11

This chapter uses:
SQLite3

import

166 Python for Beginners166

file exists in your system, a connection will be established. Otherwise,
a new empty database file named database1.db will be created and
simultaneously a connection with it will be established. After you run this
code, try to locate the newly created database file on the PyDev package
explorer panel by refreshing it first:

Figure 11.1: Database file created using the SQLite3 library.

All we did so far was create an empty database file and established a
connection with it. Now, we are going to create a table inside the created
database that is constructed by fields. To do that, we need to write some
code inside Python, using the SQL language.

SQL is a programming language designed to manage data held
in databases. Through the slqlite3 library, Python allows SQL
code to be written inside its environment.

Here is the complete code that creates two tables with three fields each:

import SQLite3
db = SQLite3.connect('database.db')

GE�H[HFXWH�
FUHDWH�WDEOH�SHUVRQ��¿�UVWQDPH�
text, secondname text, age int)')
db.execute('create table book (title text,
author text, genre text)')

Notice that the first two lines remain the same. Then, in the second and
the third lines we create the tables person and book respectively. The key
tool to create the tables here is the execute() method which is attached
after the database object (db) we created earlier. The execute() method
executes SQL code inside Python. Therefore, all the code
we write inside the parenthesis following execute() is SQL
code.

Let’s take a closer look at the first SQL statement contained within the
execute() method:

execute()

167

Chapter 11: Database Handling

11.1 Creating the Database 167

FUHDWH�WDEOH�SHUVRQ��¿�UVWQDPH�WH[W��
secondname text, age int)'

Here we tell the program to create a table named person. Then we create
three fields, one named firstname that will hold text values, one named
secondname that will again hold text values, and another one named age
that holds integer values. This way, the table and its structure is created.
Similarly, the other execute() method creates the table called book. After
you run the whole code, try to open the “database1.db” file inside eclipse
to see how it looks.

Tip: If you do not have any database system installed on your
computer, you might not see any meaningful result when you open

the database file. However, the database is stored in the correct
structure.

The code we just wrote runs without problem if the database file is empty
(free of tables), but if this is not the case, you may run into overwriting
problems. To avoid this, we should add two other lines inside our code.

Therefore a safer code to create the tables would be this one:

import SQLite3
db = SQLite3.connect('database1.db')

db.execute('drop table if exists person')
GE�H[HFXWH�
FUHDWH�WDEOH�SHUVRQ��¿�UVWQDPH�
text, secondname text, age int)')
db.execute('drop table if exists book')
GE�H[HFXWH�
FUHDWH�WDEOH�SHRSOH��¿�UVWQDPH�
text, secondname text, age int)')

The lines we added will overwrite the existing tables within the database
file with the new ones as created by the code. In the next section, we will
populate the tables with sample data.

168 Python for Beginners168

Questions for Review

1. What does the import SQLite3 command do?
a. Imports tables inside Python.
b. Imports SQL methods inside Python.
c. Imports a library that is able to handle interactions with a database.
d. Imports a library that creates a database system.

2. What argument does the execute() method take?
a. Python executable commands.
b. Table fields.
c. SQL data types.
d. SQL code.

Lab Activity

Create a new table within the existing database. Name the table
“triangle”, and add three fields, “type”, “area” and “rightTriangle”. Try to
assign the appropriate types for each of the fields.

lab soluTion

import SQLite3
db = SQLite3.connect('database1.db')
db.execute('create table triangle (type
WH[W��DUHD�À�RDW��ULJKW7ULDQJOH�ERROHDQ�
�

Questions for Review

Lab Activity

169

Chapter 11: Database Handling

11.2 Inserting and Updating Records 169

11.2 inserTing anD upDaTing reCorDs

In the previous section, we created two empty tables. In this section, we
are going to insert some records into one of these tables.

A record- also called a row or tuple in the database domain,
is a set of data that have the same structure in the table. In
order to insert records, we need an existing
table. Therefore, make sure you have the tables
we created previously inside the database file.
They provide the structure for the records that are about to be
inserted.

Now, we will insert a record inside the table person that consists of three
table cells. Each cell will fill one occurrence for each of the three fields –
firstname, secondname and age. Here is the code that inserts the record:

import SQLite3

db = SQLite3.connect('database1.db')
GE�H[HFXWH�
LQVHUW�LQWR�SHUVRQ��¿�UVWQDPH��
secondname, age) values ("John",
"Smith",25)')
db.commit()

Running this, a first record will be inserted inside the “database1.db” file.
You should be familiar with the first two lines which are identical to the
code example from the previous section. Then, in the third line, we have
the execute() method with its SQL code arguments inside its parentheses.
In this line we insert the values “John” in the firstname field, “Smith”
in the secondname field, and “25” in the age field. To execute the whole
process, you need to add a commit() method at the end of the code. If
you now open the “database1.db” file, you should see that some values
have been added. To have a structured view, you would need a database
management software which is specialized to handle database files.

record

170 Python for Beginners170

You might come across scenarios where you want to alter some particular
records. Here is an example where we change the age of John Smith from
25 to 35:

import SQLite3

db = SQLite3.connect('database1.db')
db.execute('update person set age = 35
where secondname = "Smith"')
db.commit()

Notice how the argument inside the execute() method changes. In this
case, we used the update SQL keyword instead of insert. We may have
many records within a table, therefore, we have to include a reference
of the record we want to update. In this case the reference is the
secondname field. That means we are updating only the record where the
secondname field is equal to “John”.

In the same way, you can insert and update other records from any
existing table that resides inside your database file. In the next section,
you will be learning querying operations such as retrieving and deleting
records.

Questions for Review

1. Which of the following is not a SQL keyword?
a. set
b. insert
c. update
d. execute()

2. What would you do to change an existing record from a table?
a. Use the update keyword.
b. Add a new record.
c. Use the commit() command.
d. A record cannot be changed.

Questions for Review

171

Chapter 11: Database Handling

11.2 Inserting and Updating Records 171

Lab Activity

Insert a new record inside the existing table “book” using the information
from your favorite book.

lab soluTion

import SQLite3

db = SQLite3.connect('database1.db')
db.execute('insert into book (title,
author, genre) values ("Gulliver\'s
Travels", "Jonathan Swift","Fantasy")')
db.commit()

Lab Activity

172 Python for Beginners172

11.3 reTrieVing anD DeleTing reCorDs

In the first part of this section we will retrieve or fetch data from the
database we have created. This retrieved data will be the records we
added previously to our tables. By fetching this data, we are able to use it
inside our Python script for various operations. In the following example
we will fetch all the data that table person contains and we will print it
out using the Python print command. Here is the example:

import SQLite3

db = SQLite3.connect('database1.db')
table = db.execute('select * from person')
for i in table:
 print(i)

Again, whenever we need to interact with a database, the appropriate
library has to be called using the import command. Then, a connection
with the database is established. In the third line, we
create a variable called table that will hold the table data.
This is called a cursor object and it holds data that has
a database format. As with the previous examples, inside
the execute() method, we had to write SQL code. This time using SQL we
select all (*) the data from table person.

At this point, we have fetched that data and stored it inside the table
variable. Now, we can do whatever we want with it. In this case, we are
printing it out using a for loop. The for loop will access the data on a
record basis—it will print out the records one by one. When you run this
code, you shall get this result:

Figure 11.2: Fetching all the records from a database table.

This way, we have retrieved the data from a database and used it within
Python. In this example we retrieved all the data, but sometimes you
might want to select only the records of some specific fields within a table

cursor

173

Chapter 11: Database Handling

11.3 Retrieving and Deleting Records 173

such as firstname and secondname for example, and not the age. In this
case, you would not use the asterisk (*) symbol:

import SQLite3

db = SQLite3.connect('database1.db')
WDEOH� �GE�H[HFXWH�
VHOHFW�¿�UVWQDPH��
secondname from person')
for i in table:
 print(i)

Notice that this time we explicitly declared what fields we want to fetch
the records from. Here is the result:

Figure 11.3: Fetching specific field records from a database table.

Sometimes, you might want to have the table field names attached to
every record value. In this case, we would go for a dictionary approach in
Python. To do that, you need to activate row_factory which is a function
of slqite3 that enables the retrieval of the data in
form of a dictionary. Here is the code that fetches
and displays the records with their field names
attached in a dictionary format:

import SQLite3

db = SQLite3.connect('database1.db')
db.row_factory = SQLite3.Row
table = db.execute('select * from person')
for i in table:
 print(dict(i))

row_factory

174 Python for Beginners174

And the result is this:

Figure 11.4: Fetching table records in form of a dictionary.

One more database operation that is important to learn
is the delete operation, which is used to delete records
from a database table. Delete is used in a similar fashion
as with the other commands. Here is an example where we
delete a record from the database:

import SQLite3

db = SQLite3.connect('database1.db')
table = db.execute('delete from person
where secondname = "Smith"')
db.commit()
for i in table:
 print(i)

Notice that the code is mostly the same as the previous ones. The only
thing that changes is the SQL part. Here we are telling the program
to delete the row that meets the criteria after the where clause, which
consists of the record where the second name is “Smith”.

Learning these commands enables you to have a clear understanding of
the interaction between Python and a database.

Questions for Review

1. What command do we use to retrieve database records?
a. select
b. *
c. get()
d. execute()

delete

Questions for Review

175

Chapter 11: Database Handling

11.3 Retrieving and Deleting Records 175

2. Why would we use a dictionary when retrieving records from a
database?

a. Because there is no other way.
b. To keep a copy of the records within Python.
c. For no specific reason.
d. To have the record values attached to their field names.

Lab Activity

Retrieve and print out the record you inserted into table book in the lab
activity from section 11.2.

lab soluTion

import SQLite3

db = SQLite3.connect('database1.db')
table = db.execute('select * from book')
for i in table:
 print(i)

In my case, the result would look like this in Eclipse:

Figure 11. 5: Retrieving a record from table book.

Lab Activity

176 Python for Beginners176

ChapTer 11 lab eXerCise

Your task is to recreate the class from the previous chapters’ lab, and use
a database instead of a flat file. This will then have three functions. The
first is the initial __init__() method, which will take one parameter of the
name of the database. The second is a read() method, which will output
all of the content from that database in ascending order. The third is a
write() method, which will take one input, which is the message that you
wish to write to the database.

Your read() and write() should use appropriate SQLite3 commands to
write or read from a database. Remember, a database needs a name and
a table inside of it with one field for the message.

After this is done, you can import this into any previous task, and where
we output an error message, you can also store that in the database.

lab soluTion

import SQLite3
class LogMessage:
 def __init__(self,dbname):
 self.dbname = dbname
 db = SQLite3.connect(self.dbname)
 db.execute('create table if not
exists LogMessage (message)')
 db.commit()
 db.close()
 def read(self):
 db = SQLite3.connect(self.dbname)
 data = db.execute('select * from
LogMessage')
 for each in data:
 print(each)
 db.close()
 def write(self,message):
 db = SQLite3.connect(self.dbname)
 db.execute('insert into LogMessage

177

Chapter 11: Database Handling

Final Lab Solutions 177

(message) values (?)', (message,))
 db.commit()
 db.close()

log = LogMessage('test.db')
log.write('Testing')
log.write('Test')
log.read()

This is how the solution and the output look in Eclipse:

Figure 11.6: Creating a class that interacts with a database.

178 Python for Beginners178

ChapTer summary

In this chapter, you learned how to interact with a database from
within Python and how to create a database file where database
structured data can be stored.

Using examples, you practiced creating new tables within the
database and structured those tables with new fields with
appropriate data types, while also learning how to insert new
records inside an existing table and also how to update existing
records inside a table.

You were introduced to the technique of retrieving data from a
database table in order to use them within Python. You were able
to store these data within various Python data types such as tuples
and dictionaries.
You also learned how to delete existing records from a table.

In the next chapter, you will learn about modules, how to use and
create them.

179

Chapter 12: Modules

179

moDules

ChapTer obJeCTiVes:
• You will learn what standard libraries are.
• You will learn how to use standard libraries within your programs

and how to get information about all Python standard libraries.
• You will learn how and when to use the datetime and sys libraries.
• You will learn how to create modules and use them in your programs.

12.1 using sTanDarD libraries

Python has many importable libraries which are a collection of modules
designed to be used in different programming
scenarios and tasks. Some of these libraries are
distributed along with Python—that means you
do not have to install them separately. These
libraries are referred to as standard libraries.

Standard libraries contain built-in modules that provide many
additional components to the language.

An example of a standard library is sqlite3 which we mastered in
chapter 11. For a full list of the standard libraries along with their
documentations, see http://docs.python.org/2/library/.

Tip: Remember that in order to access the functionality of a library
you should first import it inside your script using the import

command along with the library name.

In this chapter, we will work with two standard libraries. The
first one is the datetime library. datetime is a collection of
modules that support manipulation of date and time data.

Let’s now take a look at an example of the functionality provided by the
datetime library. As you write your new programs, for various reasons
you might need to have a current date and time that will be incorporated

CHAPTER 12

This chapter uses:
Database & Sys

180 Python for Beginners180

with your other data. Here is the code that would provide the date and
time of every given moment:

import datetime
dt = datetime.datetime.now()
print (dt)

As you already know, in the first line, we first have to import the library
in order to use its functionality. Then, in the second line we create a
variable called dt. The dt variable contains the output
value of the now() function which is the function that
generates the current date and time. Function now() is
contained inside a class called datetime. Therefore, the way we call this
function is datetime.now(). The datetime class itself is contained within
the datetime library. So, the complete expression is datetime.datetime.
now(). To sum it up we can say that function now() belongs to the
datetime class which belongs to the datetime library.

Here is the expected result:

Figure 12.1: Current (at the time of the code execution) date and time

Notice that the timestamp you get back is very precise. This may come
in handy sometimes. A very general example of the time functionality,
no matter what kind of program you are building, would be when you
want to test different blocks of your code to see which runs slower than it
should.

Suppose you had a big program that takes a lot of time to run and you
want to know which part of it is causing the delay. In this case, the
datetime library functionality would become very useful.

In such a case, you would wrap blocks of your code within current time
functions and calculate the difference from the time the block of code
starts running to the time the running ends. Suppose one of the code
blocks inside your program is a while loop. In this case, we would use the
current time function like this:

now()

181

Chapter 12: Modules

181

import datetime
i=0
start = datetime.datetime.now()

while i<1000000:
 i=i+1

end = datetime.datetime.now()
print (end-start)

Tip: Remember that the code in Python is executed starting from
the top of the script and going down to the bottom line, executing

every line one by one.

In our code, we start by importing the datetime library. We also create a
variable with an initial value of zero. Then, we create another variable
that will store the current time which coincides with the time the while
loop block will be executed. The next two lines are the while loop block.
The action that the while loop will perform is adding one to variable i
starting from zero and up to one million. Immediately after the while loop
execution ends, another variable called end will store the current time,
which is the time the while loop execution finishes. Then we just need to
print out the difference between the end and the start time to see how
much time it took for the while loop to finish its action.

Depending on your computer parameters, you might get a different value
than mine:

Figure 12.2: Time needed for the while loop to be executed.

In my case, the time interval was around 0.31 seconds. You can try to
experiment and test the execution time of other codes you have learned
throughout this book.

182 Python for Beginners182

Another library we will be looking up today is the sys library.
It provides access to some variables used or maintained by the
interpreter and also to functions that interact strongly with
the interpreter. You can find it in the list of Python libraries
from the link we provided previously.

Like every library, the sys library has many functions. Here we will work
with one of them – path, which returns a list of strings
that specifies the search path for modules. The list also
contains the directory path of the current project. Here is
how we use it:

import sys
print (sys.path)

First we import the library and then we access one of its functions – path
by printing out its output. Simple enough, right?

In my case, I get this result:

Figure 12.3: A list of strings of different project relevant paths.

You might use this function when you need to know or use the directory
of your project or the modules.

These were just a few standard library functions. As you program with
Python, new needs may arise for other functions. In that case, the
standard library list under http://docs.python.org/2/library/ is a good
place to look for information.

path

183

Chapter 12: Modules

183

Questions for Review

1. What is the first step when you want to use a library inside Python?
a. Import the sys.path.
b. Import the library.
c. Print out the library.
d. Assign the library to a variable.

2. Which of the following would correctly print out the current date and
time?

a. print (datetime)
b. print (datetime.datetime(now))
c. print datetime.now()
d. print (datetime.datetime.now())

Lab Activity

Try to print out the day of the week using the datetime library.

Hint: Use the weekday() function and be aware that the days in
Python are defined with numbers starting from zero for Monday, to
six for Sunday.

lab soluTion

import datetime
dt = datetime.datetime.now()
print (datetime.datetime.weekday(dt))

Here is the output I received from it:

Figure 12.4: Three printed out indicating that the day of the week is Thursday.

Lab Activity

Questions for Review

184 Python for Beginners184

12.2 CreaTing a moDule

In Python, every script that you write can also be used as a module. This
module can be imported using the import command just as you did with
libraries. To create a module and import it into an empty script file, we
first need to create two empty Python scripts in Eclipse. You should
create both of them under the same Eclipse project. I will call one of them
“SampleModule.py” and start writing some code inside it:

def greeting():
 print (“Hello, this is a module
function”)
x = “This is a module variable”

You should be able to easily understand this code. We have just written
a function that prints out some text when called, and we have assigned a
string to a variable.

Save the “SampleModule.py” file and open the other Python file you
created. You can name this file “SampleModuleTest.py”. In this empty
file, you can now import the new module whose name is defined by the
script name, SampleModule. Then you are free to use all its functionality.
In this example we can use its variable and function:

import SampleModule
SampleModule.greeting()
print(SampleModule.x)

First, we imported the module, and then in the second line we called its
function. In the third line we print out the value held by variable x.
The result of the execution would be:

Figure 12.5: Generated output after content of the module is called.

185

Chapter 12: Modules

185

The module functionality enables better organization when writing big
programs as it allows the programmer to separate the code into different
modules making it more readable and organized.

Questions for Review

1. What is not true about modules?
a. Collections of modules can form libraries.
b. Modules are script files.
c. Modules can be called from other modules.
d. Choosing to work with modules is just a matter of style.

2. What does the following line of code from the previous example do?

SampleModule.greeting()

a. It executes the module SampleModule.greeting().
b. It creates the function greeting() within the module.
c. It creates an instance of the greeting() function.
d. It calls the function greeting() contained in SampleModule.

Lab Activity

While in an empty string, import all the components of the module
SampleModule in such a way that you will not have to reference the
module name any time you want to call an object.

Tip: Make use of an asterisk. (*)

lab soluTion

from SampleModule import *
greeting()
print(x)

Questions for Review

Lab Activity

186 Python for Beginners186

Here is how the solution and the output look in Eclipse:

Figure 12.6: Calling all module components waives the need to reference the module name
every time.

187

Chapter 12: Modules

187

ChapTer 12 lab eXerCise

We have created two versions of logging messages: first we created
a database, and then a file system. With the use of modules, we can
combine these two together and have them accessible both at the same
time, so we can choose which to use in a program. To do this, combine
them both into one file.

To import one or the other, you can do the following:

from modulename import classname

That will import the relevant class and will allow you to use the class as
it is written inside the script. If you need to use the other class, you can
simply change classname to the other class, and the database name to the
filename, and everything should work.
To test this, create the module LogMessage and then import it into a
previous lab exercise and test them both out. They should both work.

lab soluTion

import sqlite3
FODVV�/RJ0HVVDJH'%�

 def __init__(self,dbname):
 self.dbname = dbname
 db = sqlite3.connect(self.dbname)
 db.execute(‘create table if not
exists LogMessage (message)’)
 db.commit()
 db.close()
 def read(self):
 db = sqlite3.connect(self.dbname)
 data = db.execute(‘select * from
LogMessage’)
 for each in data:
 print(each)

188 Python for Beginners188

 db.close()
 def write(self,message):
 db = sqlite3.connect(self.dbname)
 db.execute(‘insert into LogMessage
(message) values (?)’, (message,))
 db.commit()
 db.close()

class LogMessageFile:
����GHI�BBLQLWBB�VHOI�¿�OHQDPH��
��������VHOI�¿�OHQDPH� �¿�OHQDPH
 def read(self):
��������I� �RSHQ�VHOI�¿�OHQDPH�¶U¶�
 lines = f.readlines()
 for each in lines:
 print(each, end=’’)
 def write(self,message):
��������I� �RSHQ�VHOI�¿�OHQDPH��µD¶�
 f.write(message)

ChapTer summary

In this chapter, you were introduced to standard libraries that
Python offers to expand the programming functionality. You
now know that when you need extended functionality beyond the
built-in modules that Python offers by default, you should look for
standard libraries and import them inside your program.

You worked with the datetime library and learned how to use it
to test the execution time of your programs allowing you to find
delaying obstacles inside your big programs.
You learned about the sys library which provided information
about directory paths.
You created your own module and used its functionality inside
script files.

In the next chapter you will learn about debugging your programs.

189

Chapter 13: Debugging

189

Debugging

ChapTer obJeCTiVes:
• You will learn how to detect syntax errors and be able to understand

where they occur in the script.
• You will learn how to debug detected errors and free your code from

them.
• You will learn how to detect errors at run time that suspend the

program from completely executing and debug them for getting the
expected output.

13.1 Dealing wiTh synTaX errors

It is very common to run into different types of errors while writing
programs. The Python interpreter does its best to let you know the type of
the error and where it is located.

In this final chapter, we will discuss the most common type of errors:
syntax errors.

Syntax errors are errors that emerge due to language and
expression syntax that was written incorrectly by the
programmer. To see an example of syntax errors, run the
following code inside Eclipse:

name = 'John'
if name = 'John'
print('Your name is John')

i = 5
j = 15
k = ((i*j) + (j+i)

 print(k)

CHAPTER 13

13.1 Dealing with Syntax Errors

190 Python for Beginners190

First we assign the string ‘John’ to the variable name and then we make
a test using the if statement to see if the variable’s value is equal to
“John” and print out some text if the test succeeds. Then, we create two
variables, i and j, assign values to them, do some math operations and
print out the returned output.

However, running this code returns an error:

Figure 13.1: A syntax error detected at the second line around the assignment operator.

Read the issued error carefully. In the first line of the error (displayed in
blue), the interpreter lets you know that there is an error in the second
line of your code. This corresponds to the line if name = ‘John’. Moreover,
you notice an arrow marker (^) which is pointing towards the assignment
sign (=). This arrow means that you should review your code at that part.
The job of the interpreter ends here, and now it is your turn to look at the
part of the code as guided by the interpreter.

If you remember from previous chapters, the assignment operator (=)
is actually used to assign a value to a variable—it is not an equal sign.
If you want to test whether something is equal to something else, you
should use the equal sign (==) which is a like a double assignment
operator. Keeping this in mind, we correct our code as follows:

name = 'John'
if name == 'John'
print('Your name is John')

i = 5
j = 15
k = ((i*j) + (j+i)

 print(k)

invalid syntax

191

Chapter 13: Debugging

191

Even though we corrected the error that was pointed out, we still get
another error when we run this code:

Figure 13.2: A syntax error is detected at the end of the second line.

Notice that we still have an error at the second line, but this time at
the end of it. The interpreter does its best and gives us the approximate
location of the error. Now, you need to take another cautious look at the
code, and you should be able to realize that a colon (:) meant to be at the
end of an if statement is missing. After you add the colon, the code should
look like this:

name = 'John'
if name == 'John':
print('Your name is John')

i = 5
j = 15
k = ((i*j) + (j+i)

 print(k)

Running the code again, you will come across another syntax problem:

Figure 13.3: A syntax error is detected at the ninth line around the print function.

13.1 Dealing with Syntax Errors

192 Python for Beginners192

This time, the error occurred at the ninth line. Here is where you have
to be more cautious because this time the interpreter is giving a rough
estimation—the error is not exactly on the line where the arrow marker
is pointing. This time, you should look at the expression that comes before
the print command. This corresponds to this line:

k = ((i*j) + (j+i)

Notice that a bracket is missing at the end of the line. Go ahead and add
it:

name = 'John'
if name == 'John':
print('Your name is John')

i = 5
j = 15
k = ((i*j) + (j+i))

 print(k)

Once you have added the missing bracket and
ran the code, you should get this result:

Figure 13.4: An indentation error is detected at the last line before the print command.

This time the Python interpreter detected an indentation
error. An indentation error is another kind of syntax error
that happens due to the incorrect usage of blank space. In this
case, the print command is not part of any loop, conditional,
class or function. Therefore, it should not be indented.

Correct this error by finding and deleting the improper blank space,

unexpected
indents

193

Chapter 13: Debugging

193

and finally you have managed to correct the whole block which looks as
follows.

name = 'John'
if name == 'John':
 print('Your name is John')

i = 5
j = 15
k = ((i*j) + (j+i))

print(k)

Finally, we get an output free of errors:

Figure 13.5: Generated output after correcting all syntax errors.

At this point, you have made sure that the code doesn’t have any syntax
errors.

Tip: An output that is generated without errors is an indication
that there are no syntax error in the code. However, there may be
a different kind of errors that cannot be detected by computers, but
instead need to be noticed by a human being.

Questions for Review

1. What is the order that the interpreter checks for syntax errors?
a. Checking classes, functions, and then variables.
b. Checking from bottom lines to top.
c. Checking from top lines to bottom.
d. There is no specific order.

Questions for Review

13.1 Dealing with Syntax Errors

194 Python for Beginners194

2. What is true about blank space in Python?
a. It is always crucial.
b. It is always ignored.
c. It is ignored only if no more than four blank spaces are used.
d. It is only crucial for indentation purposes.

Lab Activity

The following code is supposed to print all the elements of the string
“John” one by one:

for i inside "John":
print i

However, the code contains two syntax errors. Try to debug them and
provide the correct code.

lab soluTion

for i in "John":
 print(i)

And here is the output:

Figure 13.6: String elements printed out after the code has been debugged.

Lab Activity

195

Chapter 13: Debugging

195

13.2 Dealing wiTh errors aT runTime

In this section we will be looking at how to find and debug runtime
errors.

A runtime error is an error in programming logic or arithmetic
that is detected during the execution or running time of
the code. The run time itself is the period during which the
program is executing.

To better understand the concept, we will be looking at an example:

¿�UVW� ��
second = 2
third = 3
more = input("What is the extra value? ")

WRWDO� �¿�UVW�VHRFQG�WKLUG�PRUH
print(total)

In this code, we are assigning some number values to the first three
variables. Then we create another user input variable that gets whatever
values the user inputs when the program runs. In the last line, we
calculate the sum of all the four values and print it out.

At first sight, the code looks correct. Even if you run it, everything will
look in place and you will get this initial output:

Figure 13.7: Output waiting for the user input.

At this point the last two lines of the code have not been run yet because
the program is waiting for the user to input a value. We are still at run
time. If we input a number value after the question, we are going to get
an error:

13.2 Dealing with Errors at Runtime

196 Python for Beginners196

Figure 13.8: Error occurring at run time highlighting a not
defined variable.

The type of the run time error here
is NameError which indicates that the code contains a name
that has not been defined.

In this case, this undefined name is “seocnd” which has been intentionally
mistyped. Now, you should trace the error by looking up the line (line 6,
in this case) where it has occurred. Then correct it as follows and run the
code again:

¿�UVW� ��
second = 2
third = 3
more = input("What is the extra value? ")

WRWDO� �¿�UVW�VHFRQG�WKLUG�PRUH
print(total)

You will again be prompted to input the extra value. After you do so, you
will get another run time error:

Figure 13.9: Error occurring at run time highlighting an unsupported operand type.

In this case, you have run into another type
of run time error: a TypeError. When the

NameError

TypeError

197

Chapter 13: Debugging

197

program is trying to make the sum of the four variables, it encounters a
problem.

The TypeError is letting you know that an integer and a string
cannot be added together.

If you are wondering where the string came from, remember that the
input() function takes a string input by default. Therefore, even if you
type in a number (4 in this case), that number will be used as a string by
Python. You should explicitly declare that the input be taken as a number
such as an integer. To do that, correct the code as follows:

¿�UVW� ��
second = 2
third = 3
more = int(input("What is the extra value?
"))

WRWDO� �¿�UVW�VHFRQG�WKLUG�PRUH
print(total)

Notice that we added the int() function before input(). This will convert
any number input to an integer. If you run the code this time, you will get
a result that is free of errors:

Figure 13.10: Generated output after all run time errors have been debugged.

As you see, this time you got what you were looking for. After you input 4,
the program returned the total sum of (1+2+3+4) which is 10.

At this point, assisted by the interpreter, you have debugged all the run
time errors that occurred as you were running your code.

13.2 Dealing with Errors at Runtime

198 Python for Beginners198

Questions for Review

1. What is a run time error?
a. An error in programming logic or arithmetic that is detected at run

time.
b. An error in programming logic or arithmetic that is detected after

run time.
c. An error in programming logic or arithmetic that is detected before

run time.
d. None of the above.

2. Why does a run time error occur when the user enters a number as
defined by the input() function?

a. The number has to be defined first.
b. The number is too big.
c. The number has to be put inside quotes.
d. The number is actually a string.

Lab Activity

The following code is supposed to ask the user for their first and last
names. Then it will store that data into a dictionary and print out the
dictionary content. However, the code contains run time errors that
prevent it from running successfully. Try to debug it.

names = {}
¿UVW� �LQSXW��(QWHU�\RXU�¿UVW�QDPH����
last = input("Enter your last name: ")
QDPHV�DSSHQG�¿UVW��ODVW�
print (names)

Lab Activity

Questions for Review

199

Chapter 13: Debugging

199

lab soluTion

names = {}
¿�UVW� �LQSXW��(QWHU�\RXU�¿�UVW�QDPH����
last = input("Enter your last name: ")
QDPHV>¿�UVW@ �ODVW
print (names)

And this is the output:

Figure 13.11: Data stored successfully inside the dictionary after the code has been
debugged.

13.2 Dealing with Errors at Runtime

200 Python for Beginners200

ChapTer 13 lab eXerCise

In this lab, your task is to debug a basic shell of a program.

You will find below this text three blocks of code named “create_database.
py”, “guestbook.py” and “users.py”. Copy each of the three blocks into
three separate Python scripts and name them using their respective
names. The “create_database.py” has no issues within it, just run the
code first to create the database. There are some bugs and problems
within the other two scripts, and your task is to discover and eliminate
those bugs.

“Users.py” is included in the “guestbook.py” script via the import
command. Running “users.py” will do absolutely nothing. The important
thing is to run “guestbook.py” and see the errors.

This is just a shell of a program, and currently only supports logging in
and registering. If you wish to, you can build on this shell and continue
with your programming, and keep learning based on what is provided
within this lab.

#create_database.py

import sqlite3
db = sqlite3.connect('guestbook.db')
db.execute('create table users (id INTEGER
PRIMARY KEY autoincrement, username text,
password text, date_joined int)')
db.execute('create table posts (id INTEGER
PRIMARY KEY autoincrement, poster_id int, title
text, body text, time_posted int)')
db.commit()
db.close()
import users
def display_menu():
 print('1: Login')
 print('2: Register')
 if users.is_logged_in == True:
 print('3: Post Comment')
 print('9: Exit')

201

Chapter 13: Debugging

201

 choice = input('Enter the number of where
you want to go: ')
 check_choice(choice)

#guestbook.py
def check_choice(choice):
 if choice.isdigit():
 choice = int(choice)
 if choice == 1:
 users.login()
 display_menu()
 elif choice == 2:
 users.register()
 display_menu()
 elif choice == 3:
 pass
 elif choice == 9:
 pass
 else:
 print('Please choose a correct
option')
 display_menu()
 else:
 print('Please choose a correct option')
 display_menu()
display_menu()

#users.py
import sqlite3
db = sqlite3.connect('guestbook.db')
is_logged_in = False
user_id = 0 # 0 means not set / not logged in.

def register():
 username = input('Please enter a username:
')
 if username_available(username) == True :
 import hashlib, time
 password = input('Please enter a
password: ').encode('utf_8')
 encrypted = hashlib.sha256()

Final Lab Exercises

202 Python for Beginners202

 encrypted.update(password)
 newpass = encrypted.hexdigest()

 currenttime = int(time.time())
 db.execute('insert into users
(username, password, date_joined) values
(?,?,?)',(username,newpass, currenttime))
 db.commit()
 print('You have been added to the user
database')
 return True
 else:
 print('Unfortunately, that username is
already taken. Please try again')
 register()
def login():
 username = input('Please enter your
username: ')
 if username_available(username) == False:
#if it is taken, then it must exist.
 import hashlib
 password = input('Please enter your
password: ').encode('utf_8')
 encrypted = hashlib.sha256()
 encrypted.update(password)
 newpass = encrypted.hexdigest()

 db.row_factory = sqlite3.Row
 row = db.execute('select id from
users where username = ? and password = ?',
(username, newpass))
 if row is None:
 print('Sorry, that password doesn\'
match the username')
 else:
 user_id = row.fetchone()['id']
 is_logged_in = True
 else:
 print('That user doesn\'t exist.
Register it?')
def logout():

203

Chapter 13: Debugging

203

 pass
def username_available(username):
 db.row_factory = sqlite3.Row
 row = db.execute('select id from users
WHERE username = ?',(username,))

 if row.fetchone() is None:
 return True
 else:
 return False

Lab Solution

The debugged and corrected code for the three
scripts is as follows:

#create_database.py

import sqlite3
db = sqlite3.connect('guestbook.db')
db.execute('create table if not exists users
(id INTEGER PRIMARY KEY autoincrement, username
text, password text, date_joined int)')
db.execute('create table if not exists posts
(id INTEGER PRIMARY KEY autoincrement, poster_
id int, title text, body text, time_posted
int)')
db.commit()
db.close()

#guestbook.py

import users
def display_menu():
 print('1: Login')
 print('2: Register')
 if users.is_logged_in == True:
 print('3: Post Comment')
 print('9: Exit')
 choice = input('Enter the number of where

Final Lab Exercises

204 Python for Beginners204

you want to go: ')
 check_choice(choice)

def check_choice(choice):
 if choice.isdigit():
 choice = int(choice)
 if choice == 1:
 users.login()
 display_menu()
 elif choice == 2:
 users.register()
 display_menu()
 elif choice == 3:
 pass
 elif choice == 9:
 pass
 else:
 print('Please choose a correct
option')
 display_menu()
 else:
 print('Please choose a correct option')
 display_menu()
display_menu()

#users.py

import sqlite3
db = sqlite3.connect('guestbook.db')
is_logged_in = False
user_id = 0 # 0 means not set / not logged in.

def register():
 username = input('Please enter a username:
')
 if username_available(username) == True :
 import hashlib, time
 password = input('Please enter a
password: ').encode('utf_8')
 encrypted = hashlib.sha256()
 encrypted.update(password)

205

Chapter 13: Debugging

205

 newpass = encrypted.hexdigest()

 currenttime = int(time.time())
 db.execute('insert into users
(username, password, date_joined) values
(?,?,?)',(username,newpass, currenttime))
 db.commit()
 print('You have been added to the user
database')
 return True
 else:
 print('Unfortunately, that username is
already taken. Please try again')
 register()
def login():
 username = input('Please enter your
username: ')
 if username_available(username) == False:
#if it is taken, then it must exist.
 import hashlib
 password = input('Please enter your
password: ').encode('utf_8')
 encrypted = hashlib.sha256()
 encrypted.update(password)
 newpass = encrypted.hexdigest()

 db.row_factory = sqlite3.Row
 row = db.execute('select id from
users where username = ? and password = ?',
(username, newpass))
 if row is None:
 print('Sorry, that password doesn\'
match the username')
 else:
 user_id = row.fetchone()['id']
 is_logged_in = True
 else:
 print('That user doesn\'t exist.
Register it?')
def logout():
 pass

Final Lab Exercises

206 Python for Beginners206

def username_available(username):
 db.row_factory = sqlite3.Row
 row = db.execute('select id from users
WHERE username = ?',(username,))

 if row.fetchone() is None:
 return True
 else:
 return False

After you run the correct code, by executing “create_database.py” first,
and then “guestbook.py”, you will get this output:

Figure 13.12: Output after running the corrected code of “create_database.py” and
“guestbook.py”.

ChapTer summary

In this chapter you learned how to detect syntax errors, how to
find their exact or approximate location in the lines of code of the
script, and how to correct the errors using the interpreter hints as
a guide.

You were introduced to run time errors, when and where they
occur and how to free your code of them.

This brings you to the end of our Python for Beginners book. If
before reading this book, you had never programmed before in

207

Chapter 13: Debugging

207

your life, you should now feel confident enough to do so. With some
effort, you can start building your own programs that go beyond
the examples and the exercises we have gone through this book in
terms of size and complexity.

If before reading this book, you were an already experienced
programmer who wanted to expand your programming skills
with Python, you should now understand the advantages of this
language as compared to other languages. Compared to other
languages, Python code is much more readable, mainly boosted
by its indentation feature. This readability is complemented by
Python’s brevity. Python requires fewer lines of code to solve a
programming problem than other languages.

There are many ways you can use Python. Python can be used
in web development along with frameworks like Django and
TurboGears, to name a few.

Python can be used as a tool to access databases such as MySQL,
Oracle, and PostgreSQL.

Even though in this chapter we learned only scripting, it is worth
mentioning that you can build your own graphical user interface
program using Python libraries such as the built-in Tkinter. With
a bit of learning you can easily associate your scripts with buttons,
text boxes and other tools of desktop graphical programs.

Its powerful scripting capabilities make Python a widely used
language for scientific calculations in areas such as physics and
bioinformatics. Python also provides support for low-level network
programming via Twisted Python, a network programming
framework designed to work with Python.

Python is also often used as a support language for software
developers, for build control and management, testing, and in
many other ways. Gaming is not left behind. Through PyGame or
PyKyra frameworks, you can create many types of commercial and
hobby games.

No matter what the area of your interest is, you should now be able
to kick-start your own real program using the skills you learned in
this book.

Chapter 13 Summary

208 Python for Beginners208

Final Questions for Review

1. What data types are designed to store sequences?
a. Classes and functions.
b. Libraries.
c. Lists, tuples and dictionaries.
d. Strings.

2. Which expression will generate a syntax error?
a. if
b. else
c. else if
d. elif

3. What is at the core of a loop?
a. Iteration.
b. Condition.
c. Modification.
d. Encapsulation.

4. What is not true about the range() function?
a. It generates a list.
b. It is used to iterate over sequences of numbers.
c. It allows the programmer to define the step of a for loop.
d. Range (10) is a sequence from one to 10.

5. What tool allows the interaction between an end user and a program?
a. A cautious object-oriented programming.
b. A friendly graphical interface.
c. An input() function.
d. PyDev module of Eclipse.

6. What is true about splitting and joining strings?
a. A string can be split through several strings using the split()

function.
b. Several strings can be joined using the join() function.
c. Several lists can be joined to a string using the join() function.
d. List elements can be joined to a string using the join() function.

7. What is not true about custom functions?
a. Functions are used when an action is meant to be performed

multiple times.

Final Questions for Review

209

Chapter 13: Debugging

209

b. You can define a function in any Python script.
c. You can call a function that has been defined in another script.
d. The number of arguments has to be the same as the number of

parameters.

8. What would be the best scenario for using classes?
a. When you want to repeat the same calculations, but using different

values.
b. When you want to create a prototype object and call object instances

afterwards.
c. When the actions you want to perform are too many for one function

to handle.
d. When you want to keep your custom functions organized.

9. What is not true about class methods?
a. A method is an initializer of a class.
b. A method is a function defined within a class.
c. A method can be called by referencing it to its class.
d. A method can take parameters and arguments just like a function.

10. What would you use to write data to a binary file?
a. The file handling library.
b. An open() function with a wb parameter.
c. An open() function with a w parameter.
d. The sqlite3 library.

11. What is true about the sqlite3 library?
a. It is the only available library that enables database interaction.
b. It enables SQL operations within Python.
c. It is a built-in Python module.
d. It is used to pop up database tables in the form of windows.

12. What is an incorrect way of enabling the use of the function called
custom() in the module sample.py?

a. import sample
b. import sample.py
c. from sample import *
d. from sample import custom

13. Which of the following is not a module/library?
a. slqite3
b. os
c. datetime
d. path

Final Questions for Review

210 Python for Beginners210

14. Which of the following statements is wrong?
a. Using a good interpreter can help detect errors.
b. Using a Python interpreter extension may enable Python code

debugging.
c. Using try and except is a way to handle errors.
d. There is no specific way to handle errors.

15. What is not an error type in Python?
a. IOError
b. NameError
c. TypeError
d. IterationError

211

Answer Key

211

answer Key: pyThon for beginners

Chapter 1.1 Acquiring the tools

1. Which of the following is needed to write and run a simple Python
program such as the one created in this chapter?

 Answer: c. Python.

2. Which of the following statements is true?
 Answer: c. Eclipse is just an optional platform that helps users to

work with Python.

Chapter 1.2 Hello World in Python

1. What does the print command do?
 Answer: b. Displays some text on the screen.

2. What is not meant by “running the program”?
 Answer: a. Saving the written program inside Eclipse.

Chapter 2: The Basics

1. Let’s say we have assigned a value to variable a as a = 1
Which of the following codes would print out the variable’s assigned

value?
 Answer: c. print (a)

2. Which of the following is not a data type in Python?
 Answer: b. Decimal

3. Which of the following is not a correct declaration in Python?
 Answer: b. b={1,2,3}

4. Which of the following would be a correct order of execution of
arithmetic operators, assuming there are no parentheses in the
expression?

 Answer: b. Roots, multiplication, addition

5. What is not true about comments?
 Answer: a: Comments are lines of code that automatically generate

descriptions.

212 Python for Beginners212

Chapter 3: Conditionals

1. Which of the following is a correctly written expression?
 Answer: b. if a == b:
 Print(“Yes”)

2. What is not true about elif?
 Answer: b. Elif is a substitute of the switch function.

3. What happens when none of the conditions are true in a conditional
block?

 Answer: a. The action under else is executed.

4. How would you write a code that prints “Greater” if a is greater than
b, and “Less or equal” if a is less than or equal to b, using the inline if
statement?

 Answer: c. a, b = 10,20
 print (“Less or equal ” if a <= b else “Greater”)

Chapter 4: Looping

1. What would the following code do when executed?
 Answer: c. Print out even numbers that fall between zero and 100.

2. What does the range functionality do?
 Answer: a. Generates a list.

3. The for loop is commonly used to:
 Answer: c. Iterate through lists, tuples and strings.

4. What is true about try and except?
 Answer: b. The expression under except is executed when the

expression under try experiences an error.

5. What happens when the condition above the break code line is not
met?

 Answer: b. The line under break is not executed.

Chapter 5: Lists

1. What is true about negative indexing?
 Answer: a. It provides an easy method to enumerate list elements

starting from the end.

213

Answer Key

213

2. What would the code below do if executed?
 Answer: c. Print out false.

3. How would you delete element a from list b?
 Answer: c. del b[a]

4. Number 3 is missing from list a = [1,2,4,5] we need to add it again.
There are different methods of adding number 3 to its proper position
(after number 2) inside the list. Which of these methods would be an
incorrect method of adding the number in its proper position?

 Answer: d. a.insert(3)
 a.sort()

Chapter 6: Receiving Inputs

1. When running the following code:

list = [1,2,3]
a = input(‘Add a number to the list: ‘)
list.append(a)
print (list)

the user is prompted to type in a number. If the user types in “4”, what
would the program generate?

 Answer: d. [1, 2, 3, ‘4’]

2. When running the following code:

list = [1,2,3]
a = input(‘Add a number to the list: ‘)
list.append(int(a))
print (list)

the user is prompted to type in a number. If the user types in “4”, what
would the program generate?

 Answer: b. [1,2,3,4]

3. Which of the following is true?
Answer: c. The generated list in question 2 contains only number

elements.

214 Python for Beginners214

Chapter 7: Predifined String Functions

1. Which of the structures best represents the following code?
Answer: a. object.method()

2. What does the second line of the following code do?
 Answer: d. It assigns the altered value of variable a to variable c.
3. What does the split() method return?
 Answer: c. A list.

4. What does the join() method return?
 Answer: b. A string.

Chapter 8: Custom Functions

1. Which of the following is a correct way of defining a custom function?
 Answer: a. def function():
 return

2. What is not true about functions?
 Answer: d. Functions cannot contain other functions inside them.

3. What is not true about variable scope and functions?
 Answer: a. Global variables cannot be used inside a function.

Chapter 9.1: Overview of classes and objects.

1. Which of the following best describes a class?
 Answer: d. A prototype with methods within it.

2. What is a class method?
 Answer: b. A function.

Chapter 9.2: Using “class”

1. How do you start writing a class?
 Answer: a. class classname:

2. What would you do to get an output from a defined class?
 Answer b: call a class instance.

215

Answer Key

215

Chapter 9.3: Using Methods

1. Which of the following is not a keyword in Python?
 Answer: a. self

2. What is the correct method of calling a class instance method?
 Answer: a. class().method()

Chapter 9.4: Using Object Data

1. What would “*kwargs” indicate when passed as a parameter of a
class?

 Answer: a. Method parameters will be stored in a dictionary called
“kwargs”.

2. In the previous example, what does the get_vars() method do?
 Answer: c. It returns the corresponding value of a dictionary key.

Chapter 9.5: Inheritance

1. When would you use inheritance?
 Answer: d. When some of the methods of a class you want to create

are contained in an existing class.

2. How would you start writing the class child that is inherited from
the class parent?

 Answer: d. class child(parent)

Chapter 10: File Handling

1. What does the following code do?

file = open(“Sections.txt”)
for i in file:
 print (i)

 Answer: b. Prints out the content of “Sections.txt” on a line by line
basis.

2. Why do we set a big buffer size number?
 Answer: a. To have the code run more quickly.

3. What is not true about the buffer technique?
 Answer: d. It works better with text files.

216 Python for Beginners216

Chapter 11.1: Creating the Database

1. What does the import sqlite3 command do?
 Answer: c. Imports a library that is able to handle interactions with a

database.

2. What argument does the execute() method take?
 Answer: d. SQL code.

Chapter 11.2: Inserting and Updating Records

1. Which of the following is not a SQL keyword?
 Answer: d. execute()

2. What would you do to change an existing record from a table?
 Answer: a. Use the update keyword.

Chapter 11.3: Retrieving and Deleting Records

1. What command do we use to retrieve database records?
 Answer: a. select

2. Why would we use a dictionary when retrieving records from a
database?

 Answer: d. To have the record values attached to their field names.

Chapter 12.1: Using Standard Libraries

1. What is the first step when you want to use a library inside Python?
 Answer: b. Import the library

2. Which of the following would correctly print out the current date and
time?

 Answer: d. print (datetime.datetime.now())

Chapter 12.2: Creating a module

1. What is not true about modules?
 Answer: d. Choosing to work with modules is just a matter of style.

2. What does the following line of code from the previous example do?
 Answer: d. It calls the function greeting() contained in

SampleModule.

217

Answer Key

217

Chapter 13.1: Dealing with Syntax Errors

1. What is the order that the interpreter checks for syntax errors?
 Answer: c. Checking from top lines to bottom.

2. What is true about blank space in Python?
 Answer: d. It is only crucial for indentation purposes.

Chapter 13.2: Dealing with Errors at Runtime

1. What is a run time error?
 Answer: a. An error in programming logic or arithmetic that must be

detected at run time.

2. Why does a run time error occur when the user enters a number as
defined by the input() function?

 Answer: d. The number is actually a string.

Final Quiz

1. What data types are designed to store sequences?
 Answer: c. Lists, tuples and dictionaries.

2. Which expression will generate a syntax error?
 Answer: c. else if

3. What is at the core of a loop?
 Answer: a. Iteration

4. What is not true about the range() function?
 Answer: d. Range(10) is a sequence from one to 10

5. What tool allows the interaction between an end user and a
program?

 Answer: c. An input() function.

6. What is true about splitting and joining strings?
 Answer: d. List elements can be joined to a string using the join()

function.

7. What is not true about custom functions?
 Answer: d. The number of arguments has to be the same as the

number of parameters.

218 Python for Beginners218

8. What would be the best scenario for using classes?
 Answer: b. When you want to create a prototype object and call object

instances afterwards.

9. What is not true about class methods?
 Answer: a. A method is an initializer of a class.

10. What would you use to write data to a binary file?
 Answer: b. An open() function with a wb parameter.

11. What is true about the sqlite3 library?
 Answer b. It enables SQL operations within Python.

12. What is an incorrect way of enabling the use of the function called
custom() in the module sample.py?

 Answer: b. import sample.py

13. Which of the following is not a module/library?
 Answer: d. path

14. Which of the following statements is wrong?
 Answer: d. There is no specific way to handle errors.

15. What is not an error in Python?
 Answer d. IterationError

219

Answer Key

219

220

Appendix

220

Appendix

Terminology Description

API This abbreviation means Application Programming
Interface. It is a software-to-software interface that
specifies how programmers can make their own
software access and interact with the features and
capabilities of another software. For example, by
using an API to interact with an established email
software platform, programmers can build email
capabilities into any software they develop.

Append() A method that adds an object to the end of a
container-type object.

Argument A value passed to the function when the function is
called. Arguments are passed by assignment (object
reference).

AttributeError An error raised when an attribute reference or
assignment fails.

Bitwise
operator

An operator that evaluates two or more expressions.

Break A program statement that breaks out of the smallest
enclosing of a for or while loop.

Boolean A data type with only two possible values: “true” or
“false”.

Buffer A technique to access text files based on groups of
text instead of bits.

Casting The process of converting one data type to another.

Class A construct that is used to define a distinct type of
data structure.

class A keyword that precedes the name of the class that is
being created.

Class variable A variable defined inside a class of which a single
copy exists regardless of the number of instances of
that class.

221 Python for Beginners221

Terminology Description

Collection Python collections are a group of specialized container
objects that are alternatives to Python’s general
purpose built-in containers – dict, list, set, and tuple.
Some examples of Python colections are ChainMap,
OrderedDict, UserList, UserString, etc.

Command
prompt

An interface for users of an operating system to
access the services of a kernel (such as Windows).

Comment Descriptive text wrapped using certain syntax
with the aim to be ignored by the interpreter while
executing.

Conditional A statement block performing actions dependent on
the evaluation of certain conditions.

connect() A sqlite3 library method that establishes a connection
with a database and allows the execution of SQL
statements on that database.

Constructor A special type of function called to create an object
and initialize its member variables.

container A data structure that holds or stores objects. (A
container is itself an object.) Generally, containers
provide a way to access the contained objects and to
iterate over them. Python has two generic container
type objects – mappings and sequences.

continue A statement that continues the next iteration of the
loop.

Cursor An object that holds data that has a database format.

Data member A class variable or an instance variable that holds
data associated with a class and its objects.

Database A system of an organized collection of information
that can be accessed quickly by computer programs.

datetime A library that supports manipulations of time and
date variables.

Debug The process of finding and removing program errors.

def A keyword used in a statement that creates a function
object, assigns it a name and, optionally, lists the
arguments that are to be passed to the function.

222

Appendix

222

Terminology Description

Dictionary A Python built-in container of unordered values
accessed by key rather than by index.

Dictionary key One of two elements of a dictionary pair that is used
to find its corresponding value.

Dictionary
value

One of two elements of a dictionary pair that is
accessed through its corresponding key.

Django A Python Web framework that encourages rapid
development and clean, pragmatic design.

Encapsulation In programming, this is a mechanism for restricting
access to some of the object's components.

Eclipse A platform where you can write, edit, debug and run
code such as Python.

Elif A keyword similar to else with the difference that
it can be used multiple times. Else can only be used
once.

Else A keyword that triggers execution of the indented
block of code following the keyword if the previous
conditional clauses are not met.

Enumerate A method that returns a sequence, an iterator, or
some other object which supports iteration.

except A clause that displays an error if the execution of the
code under the try clause results in an error.

execute() A sqlite3 library method that enables the execution of
SQL code inside Python.

Exception An error detected during execution that is not
unconditionally fatal.

finally A clause that is executed before leaving the try
statement, whether an exception has occurred or not.

Float A numeric data type that stores decimal values.

For loop A loop commonly used to iterate through container
data types.

Function A named section of a program that performs a specific
task using different inputs.

getattr() A function used to fetch an attribute from an object,
using a string object instead of an identifier.

223 Python for Beginners223

Terminology Description

Global variable Variable declared outside a function and that can be
used anywhere inside the script.

Hash value A unique number generated by a formula from a
string of text. It is generated in such a way that it
is highly unlikely that some other text will produce
the same hash value. A hash value is also called a
message digest or simply a hash.

hashable An object is hashable if it has a hash value which
never changes during its lifetime. Hashable objects
which compare equal must have the same hash value.
Hashability makes an object usable as a dictionary
key and a set member, because dictionaries and sets
use the hash value internally.

If A keyword introducing a conditional clause.

import A command preceded by a library name that enables
the functionality of that library within the current
script.

Indentation Blank spacing used to identify where blocks of code
begin and end.

Inheritance A transfer of the characteristics of one class (the base
or superclass) to another class (the derived class or
the subclass).

Initiation The process that signals the creation of a class.

Inline if A method for writing conditional blocks in a single
line.

input() A built-in or library function that stores user input.

int() A built-in or library function that converts a number
or a string to an integer.

Instance A specific realization of any object.

Instance
variable

A variable that is defined inside a class, for which
each object of the class has a separate copy or
instance.

Integer A set of negative and positive whole numbers and
zero.

Interpreter A computer program that performs instructions
written in a programming language.

224

Appendix

224

Terminology Description

IOError An error raised when an I/O operation fails for an I/O-
related reason.

iterable An object capable of returning its objects (sometimes
referred to as its members or its elements) one at a
time.

Iteration A general term for successively taking each item
of a container, one after another. It also refers to
repeatedly executing, a fixed number of times or until
a certain condition is met.

Indentation
error

An error caused by improper or incorrect indentation.

Java Runtime
Environment

A software development environment that provides
the libraries and components to run applets and
applications written in the Java programming
language.

join() A method that forms a string from the elements of a
container.

Keyword A word that cannot be used by a programmer to name
variables, functions, etc. because that word is already
used by the programming language.

kwargs A special function parameter enabling an arbitrary
number of arguments to be passed to a function.

len A method that returns the number of objects in a
container.

Library A set of Python scripts or modules that contain
already-made functions used for specialized
operations.

Linux An open source computer operating system modeled
on Unix.

List One of the six sequence data types of Python. A list
stores a sequence of comma-separated objects (items)
between square brackets. Lists are mutable.

Local variable Variable declared inside a function and meant to be
used only inside that function.

Loop A block of indented instructions that is continually
repeated until a certain condition is reached.

225 Python for Beginners225

Terminology Description

Mapping One of Python’s two generic container type objects
(the other being sequences). Mapping objects map
hashable values to the arbitrary objects contained in
it. Mappings are mutable objects. The only mapping
object in Python is the dictionary.

Method A function that is attached to and acts upon a specific
object. Methods are triggered by a call expression.

Module A file of scripts that can be imported into other
scripts.

MySQL An open-source relational database management
system that runs as a server providing multi-user
access to a number of databases.

NameError An error caused when the name of a variable,
function, class, etc. has not been defined is used
inside the script.

Negative
indexing

Indexing of members of a container object starting
with an index of -1 (for the last or rightmost element)
and increasing from right to left.

now() A datetime library function that returns the current
date and time.

Object A location in memory having a value and referenced
by an identifier.

open() A function used to access disk files from within
Python.

Operand A quantity on which an operation is performed.

Oracle
Database

An object-relational database management system
produced and marketed by Oracle Corporation.

Parameter A special kind of variable, used in a function to refer
to one of the pieces of data provided as input to the
function.

path A sys module method that returns the search path for
modules.

Positive
indexing

Indexing of object elements starting with zero (for the
first element) and increasing from left to right.

226

Appendix

226

Terminology Description

PostgreSQL An open source object-relational database
management system with an emphasis on
extensibility and standards compliance.

Print A built-in function that evaluates expressions and
writes the resulting object to standard output.

PyDev A third-party Integrated Development Environment
plug-in for Eclipse used for programming in Python
and which supports code refactoring, graphical
debugging, code analysis and many other features.

PyGame A cross-platform set of Python modules designed for
writing video games

PyKyra A game development framework for Python.

Python A powerful dynamic programming language that is
used in a wide variety of application domains.

range A built-in function that generates arithmetic
progressions. It does not generate a list object. It is
simply an object which returns the successive items of
the desired sequence when you iterate over it.

record Also called a row or a tuple, a record is a set of data
that has the same structure in the table.

return A command that passes the output of the function to
the calling function.

row Also called a record or a tuple, this is a set of data
that has the same record structure as the table.

row_factory A sqlite3 library method that enables the retrieval of
the database data in form of a Python dictionary.

Run A command to execute a computer program.

Runtime The period during which a program is executing.

self The instance object automatically passed to the class
instance's method when called.

227 Python for Beginners227

Terminology Description

sequence A positionally ordered collection of other objects.
Sequences maintain a left-to-right order among its
members. The members of a sequence are stored and
fetched by their relative positions. The six sequence
types of Python are: strings, Unicode strings, lists,
tuples, buffers, and xrange objects. A sequence is also
one of Python’s two generic container types, the other
being mappings.

slice notation A method of indicating a portion (substring) of a
string. In its most common form, slice notation
requires two integers separated by a colon [a:b]
where the leftmost integer is a starting index and the
rightmost integer is the ending index. The substring
begins with the character at index a and continues
up to but does not include the character at position b.
The length of the substring is b-a.

split() A method of the string object that splits a string and
generates a list whose members are the split parts of
the string.

SQL Structured Query Language. A special-purpose
programming language designed for managing data
in relational database management systems.

sqlite3 A C library that allows Python programs to interact
with a light-weight disk-based database. No server
separate process is required. A non-standard variant
of the SQL is used to access the database.

Statement An instruction in a computer program.

Step (iteration) A number that defines the intensity at which the
iteration loop accesses sequence elements.

str() A built-in function that converts numbers to strings.

String One of the six sequence data types of Python. A
string stores an ASCII or UTF-8 sequence of comma-
separated objects (items) between single or double-
quotation marks. Strings are mutable.

String
formatting

A set of procedures for manipulating strings.

Superclass A class whose characteristics have been inherited by
another class, the subclass.

228

Appendix

228

Terminology Description

Syntax Grammatical rules and structural patterns governing
the ordered use of appropriate words and symbols for
writing code.

Syntax error An error caused due to incorrectly used syntax.

sys A module that supports functions that interact with
the interpreter.

Terminal An interface for users of an operating system to
access the services of a kernel (Linux).

Tkinter A library that supports the creation of standard
graphical user interfaces within Python.

Truth table A diagram in rows and columns showing how the
truth or falsity of a proposition varies with that of its
components.

try A clause that allows the execution of its indented
statement block if no errors occur.

Tuple
(databases)

Also called a record or a row, a tuple is a set of data
that has the same structure in the table.

Tuple (Python) One of the six sequence data types of Python. A tuple
stores a sequence of comma-separated objects (items)
between parentheses. Tuples are immutable.

Turbo Gears Web framework integrating several Python projects.

Twisted
Python

An event-driven network programming framework
written in Python.

TypeError An error caused when an operand is applied to an
inappropriate data type. For example, concatenating
a string and a number.

Variable A symbolic name associated with a memory storage
location which contains a value.

Variable scope A quality of a variable that determines if a variable is
global or local.

While loop A loop commonly used to execute statements until a
condition is met.

__init__ A constructor when an instance of a class is created.

229 Python for Beginners229

You’ve Read the Book -

Now Take the Online Course From the Author

To all of our readers, we’re offering our LearnToProgram
courses at 50% off. These are courses that include hours
of video instruction, various code samples and applicable
lab exercises. You’ll watch as the author develops the code right in front
of you while you gain skills you can immediately apply to your projects.

All courses are available at: https://academy.learntoprogram.tv/directory/.

To apply your Reader’s Discount, go to any course of your choosing, click
to enroll and then select “Redeem Coupon.”

Use coupon code: READ50

Courses:
Direct Link:
https://academy.learntoprogram.tv/ ...

AJAX Development course/ajax-tutorial-training/

Android for Beginners course/android-programming-
development-for-beginners/

C Prgm. for Beginners course/learn-c-programming/

CSS Dev. (with CSS3!) course/learn-css-development/

Design for Coders course/photoshop-cs6-training-for-coders/

HTML5 Mobile App Dev.
with PhoneGap

course/html5-mobile-app-development-
phonegap/

HTML & CSS for Beginners course/html-css-for-beginners/

iOS5 Dev. for Beginners course/ios-iphone-ipad-development-for-
beginners/

Javascript for Beginners course/javascript-for-beginners/

jQuery for Beginners course/learn-jquery-for-beginners/

Objective C for Beginners course/objective-c-for-beginners/

Photoshop for Beginners course/photoshop-cs6-training-for-coders/

PHP/MySQL for Beginners course/learn-php-mysql-for-beginners/

Python for Beginners course/python-for-beginners/

SQL DB for Beginners course/sql-database-for-beginners/

User Exp. Design course/user-experience-design-
fundamentals/

50%
DISCOUNT

