

PYTHON
Learn Python in 24 Hours!

Python for Beginners

--UpSkill Learning

Copyright:
Copyright © 2016 by UpSkill Learning All rights reserved. No part
of this publication may be reproduced, distributed, or transmitted in
any form or by any means, including photocopying, recording, or

other electronic or mechanical methods, without the prior written
permission of the publisher, except in the case of brief quotations
embodied in critical reviews and certain other non-commercial uses
permitted by copyright law.

Dedication:
Dedicated to the ones who look at the world from a different
perspective, the ones who are restless, the ones who strive for
change, the ones who see things differently, the ones who don’t
accept the status quo, the ones who challenge current thinking
patterns, the ones who break down existing barriers, the ones who
make the impossible possible, the ones who build new things.....

Table Of Contents
Chapter 1: Introduction To Python
Chapter 2: Python – Features
Chapter 3: Setting Up The Environment
Chapter 4: Identifiers
Chapter 5: Variables
Chapter 6: Whitespaces
Chapter 7: Comments
Chapter 8: Strings
Chapter 9: Types Of Operations
Chapter 10: Data Types
Chapter 11: Flow Of Control/Decision Making
Chapter 12: Loops In Python
Chapter 13: Functions
Chapter 14: Modules
Chapter 15: File Handling
Chapter 16: Exception Handling
Chapter 17: Classes In Python
Chapter 18: Tips For Beginners

Welcome to Python for Beginners!

Delving into the world of coding can be intimidating. With so many
complex languages and implementation possibilities, it's easy to
become overwhelmed. By starting off with Python programming,
you'll learn a simple, versatile and highly readable code that you can
execute on a wide variety of systems quickly and easily.

Do you want to become a programmer? Is coding your new passion?
Do you want to be able to create games, parse the web and much
more?

Let's get started learning one of the easiest coding languages out
there right now. There's no need to fret if you haven't coded before.
By the time you finish this book, you'll be a pro at Python!

Python is a great and friendly language to use and learn. It’s fun, and
can be adapted to both small and large projects. Python will cut your
development time greatly and overall it’s much faster to write Python
than other languages. This book “Python for Beginners” will be a
quick way to understand all the major concepts of Python
programming. If you want to be a python wizard in no time, this is
the book for you!

This book is a one-stop-shop for everything you'll need to know to
get started with Python, along with a few incentives. We'll begin
with the basics of Python, learning about strings, variables, and
getting to know the data types. We'll soon move on to the loops and
conditions in Python. Once we're done with that, we'll learn about
functions and modules used in Python. We’ll also learn some real
life examples and applications and how to code in Python.

If you've never written a single line of code or if you're well-versed
in multiple program languages, Python Programming for Beginners

will enable you to better understand programming concepts.

Widely regarded as one of the most simple and versatile
programming languages out there, Python is used for web
programming, video game building, microchip testing, desktop apps,
and so much more.

Used by programmers, developers, designers and everyone in
between, it's one of the easiest programming languages to learn, and
definitely the best starting point for new coders. This book will not
only give you an understanding of the code, but will enable you to
create and run real world Python programs too.

Master one of the most popular programming languages in the
world

Understand and implement basic Python code

Create and run a real-world Python program

Gain a knowledge of basic programming concepts

Learn a simple, streamlined coding language quickly
and easily

We hope you're excited to dive into the World of Python. Well, what
are you waiting for? Let's get started!

What are the requirements?

Macintosh (OSX)/ Windows(Vista and higher)
Machine

Internet Connection

What am I going to get from this course?

Create your own Python Programs

Become an experienced Python Programmer

Parse the Web and Create your own Games

Target audience:
Even if you haven't touched coding before, it won't matter. The easy
step-to-step course material will quickly guide you through
everything you'll need to know about coding, mainly Python. This
course is here for you to get accustomed and familiar with Python
and its syntax. And above all, Python is one of the easiest coding
languages to learn, and there's a lot you can do with it.

What You’ll Learn From This Book?

You’ll have the opportunity to put your knowledge to practical use
by working with files and classes, importing syntax and making
modules, and most importantly, by building your own Python
program from scratch.

You'll walk away with detailed knowledge of one of the most widely

used programming languages in the world. You'd have gained a
foundation of skills that will enable you to progress to more complex
coding languages, as well as understanding the underlying principles
of all programming languages. In short, you'll have everything you
need to become a proficient programmer.

Chapter 1
Introduction To Python

Python is a high-level language. Python is interpreted, interactive
and also object oriented scripting language. Python was designed to
be highly reusable which uses English keywords frequently. It also
uses almost same punctuations which are used in the most
programming languages and it has fewer syntactical constructions
than other languages.

• Python is interpreted : This means that it is processed at runtime
by the interpreter and you do not need to compile your program
before executing it. This is similar to PERL and PHP.

• Python is Interactive : This means that you can actually sit at a
Python prompt and interact with the interpreter directly to write your
programs.

• Python is a Beginner's Language: Python is a great language for
the beginner programmers and supports the development of a wide
range of applications from simple text processing to WWW browsers
to games.

So far Python is matured with two major versions; they are Python
2.x and Python 3.x. While getting started, you may get confused
which language to use for learning and developing an application. To

put it in nutshell, Python 2.x is legacy and Python 3.x is future.
Whichever version you opt to learn or use, it is upto you because
both are almost same programmatically.

The last Python 2.x version was Python 2.7 released in mid-2010 but
quickly after that Python officially stopped support for that version.

History Of Python:
Python was developed by Guido van Rossum in the late eighties and
early nineties at the National Research Institute for Mathematics and
Computer Science in the Netherlands.

Python is derived from many other languages, including ABC,
Modula-3, C, C++, Algol-68, SmallTalk and UNIX shell and other
scripting languages. Python is copyrighted . Like Perl, Python
source code is now available under the GNU General Public
License (GPL) . Python is now maintained by a core development
team at the institute, although Guido van Rossum still holds a vital
role in directing its progress.

Chapter 2
Python – Features

Python's feature highlights include:

• Easy-to-learn : Python has relatively few keywords, simple
structure, and a clearly defined syntax. This allows the student to
pick up the language in a relatively short period of time.

• Easy-to-read: Python code is much more clearly defined and
visible to the eyes. Structure of codes is easy to understand and
implement.

• Easy-to-maintain: Python's success is that its source code is fairly
easy-to-maintain.

• A broad standard library: One of Python's greatest strengths is,
the bulk of the library is portable and importantly cross-platform
compatibility on UNIX, Windows and Macintosh.

• Interactive Mode: Support for an interactive mode in which you
can enter results from a terminal right to the language, allowing
interactive testing and debugging of snippets of code.

• Portable: Python can run on a wide variety of hardware platforms
and has the same interface on all platforms.

• Extendable: You can add low-level modules to the Python
interpreter. These modules enable programmers to add or customize
their tools to be more efficient.

• Databases: Python provides interfaces to all major commercial

databases.

• GUI Programming: Python supports GUI applications that can be
created and ported to many system calls, libraries and windows
systems, such as Windows MFC, Macintosh and the X Window
system of UNIX.

• Scalable: Python provides a better structure and support for large
programs than shell scripting.

Python has some special silent features:
• Support for functional and structured programming methods as well
as OOP.

• It can be used as a scripting language or can be compiled to byte-
code for building large applications.

• Very high-level dynamic data types and supports dynamic type
checking.

• Supports automatic garbage collection.

• It can be easily integrated with C, C++, COM, ActiveX, CORBA
and Java.

“Jython is the java implementation of python programming
language. But it is frequently called as JPython. The most popular
one is the C implementation of Python. You can call it CPython or
Python.”

If you are trying to learn Python, we presume that you are
already familiar with JAVA or C programming. If you are
accustomed to Java / C programming, then you know the pain of
leaving a semi-colon “;” at the end of the line. It is the programmer’s

nightmare and remember that IDE also won’t put the semicolon
automatically at the end of line. If you had this experience
frequently, then Python is a boon for you.

We’ve seen the complete history and introduction for Python in the
previous chapters, now we will move to setting up the environment
for Python.

Chapter 3
Setting Up The Environment

Python is an interpreted, object-oriented, high-level programming
language and it is a great place for beginners to start learning how to
program. Python comes installed on Macs and with Linux, but you'll
need to install it yourself if you're using Windows. If you're using
Mac or Linux computer, you can install the latest version to ensure
you have access to the latest features.

FOR WINDOWS:

To download the setup file, you need to go to the following
link.,
 https://www.python.org/downloads/

From this website, You can download every detail
pertaining to Python - like codes, snippets, plug-ins and you can read
blog articles and documents related to python.

STEP 1:
Once you open this website, it automatically detects that you

are using windows and it will go to the links of windows
installer.

STEP 2:

 As we’ve already discussed that there are two major versions of
python, you can download any version to engage with it. Currently
available versions of Python are: 3.x.x and 2.7.10. Python’s both
versions are available to download, but we advise new users to
choose the 3.x.x version. Download the 2.7.10 if you are going to be
working with legacy Python code or with programs and libraries that
haven't adopted 3.x.x yet.

STEP 3:

Now you have to run the installer, clicking the button for the
version you want. Run this installer after it has finished
downloading. Make sure you have checked the “ADD PYTHON 3.5
TO PATH” button before proceeding. By checking this you can run
python through command prompt itself.

STEP 4:

Now click install. This will install Python with all of its default
settings, which should be fine for most users. If you want to disable
certain functions, change the installation directory, or install the
debugger, click "Customize installation" instead and then check or
uncheck the boxes.

STEP 5:

It’s always good to check whether all went correctly, as a
programmer it is the important characteristic you need to have. To
verify Python is installed and working correctly, open the newly-
installed interpreter. Click the Start button and type "python" to
quickly open it. You will get something like this.

Python will open to a command line. Type the following command
and press ↵ Enter to display "Hello world!" on the screen:
print ('Hello world!')

Open the IDLE development environment. Python comes with a
development environment called IDLE. This allows you to run, test,
and debug scripts. You can quickly launch IDLE by opening the
Start menu and searching for "idle".

Now we are done! You are ready to start exploring the world of
programming with Python.

FOR MAC:

Ste 1 and 2 are same as above (like windows).

STEP 3:

 Visit www.python.org/download website and it will
automatically detects that you are using Mac OS or else just select
the “Mac OS X” link.

STEP 4:

Double-click the downloaded PKG file to start installing
Python. Follow the prompts to install Python. We recommend using
the default settings.

STEP 5:

 Launch Python in the terminal. To verify the installation went
correctly launch the terminal and type python3. This should start the
Python 3.x.x interface, and display the version.

STEP 6:

Open the IDLE development environment. This program
allows you to write and test Python scripts. You can find it in the

Applications folder.

STEP 7:

Try out a test script. IDLE will open an environment similar to a
terminal screen. Type the following command and press ↵ Enter to
display "Hello world!":
print ('Hello world!')
Now everything is set. Its time for your experimentation with
python!

TEXT EDITOR:

 Python shell is being used as a text editor for python.
Python Shell is an in-bulit feature available in the python package
but for a beginner we recommand Notepad++ text editor.

You can download it the below link:
https://notepad-plus-plus.org/download/v6.9.2.html

To run python program, we need to set the path and select .bat or .py
ile in python package. To select that follow the following steps.

Step 1:

After typing the program save it and press f5 key or click Run in
menu bar.
A small dialog box will appear as shown below:

Step 2:
 Now click the … button. Open dialog box will appear.

Step 3:

Go to the python folder in the program files under C drive or
the file location you select while installing the python in your
computer.

After opening the python file (name will be with python versions),
click Lib folder.
Under Lib folder you will find the folder name idlelib, click that.

We recommand you to try both and fix the one with which you are
comfortable. There is also idle.pyw i.e python file(no console) don’t
select that.
Now click Open button.

Step 4:

Once you selected the Open Button, it will look as shown
below:

If you save it and run the program, it will run and open python shell
but you may need to again do the program coding there or had to
paste. It is a double task, to avoid that add the following text along
the address.
-r"$(FULL_CURRENT_PATH)"

"C:\Program Files\Python35-32\Lib\idlelib\idle.bat" -
r"$(FULL_CURRENT_PATH)"

The above one is the address path in our system, it may vary in
yours.
We recommend you to use idle.bat file because it is handy and
comfortable compared to the idle.py

Chapter 4
Identifiers

If you have experience with programming then you should be
familiar with Identifies. It is the same in Python too.

Python identifiers is the name used to identify everythings like
variable , function,class,module, and any other objects. actually it
will be in alphanumeric i.e. with a letter A to Z or a to z or an
underscore (_) followed by zero or more letters, underscores and
digits (0 to 9). Python does not allow punctuation characters such as
@, $ and % within identifiers.

Important things to care about identifiers:

Python is a case sensitive programming language. Thus, USA and
usa are two different identifiers in Python. So you should handle the
identifiers carefully.

Identifier naming convention for Python:

• Class names start with an uppercase letter and all other identifiers
with a lowercase letter.
• Starting an identifier with a single leading underscore indicates by
convention that the identifier is meant to be private.
• Starting an identifier with two leading underscores indicates a
strongly private identifier.
• If the identifier also ends with two trailing underscores, the
identifier is a language-defined special name.
Every programming language have some reserved keywords i.e. it

can’t be used as variables or as identifiers . Following are some of
the reserved keywords:

and
assert
break
class
continue
def

del

elif

else

except
exec
finally
for
from
global
if

import

in

is

lambda
not
or
pass
print
raise
return

try

while

with

yield

Chapter 5
Variables

Programiming is not done with assigning the value.
Variables will have reserved memory location to store value. That is,
when we create a variable, we are reserving some space for it in our
system memory.

With respect to the datatype of variable ,the interpreter allocates
memory and will decide to be stored in the reserved memory.
Therefore, by assigning different data types to variables, you can
store integers, decimals or characters in these variables.

How to assign values to variables?

Python variables do not need explicit declaration to reserve memory
space. The declaration happens automatically, when you assign a
value to a variable. The equal sign (=) is used to assign values to
variables.

The operand to the left of the = operator is the name of the variable
and the operand to the right of the = operator is the value stored in
the variable.

For example:
my_variable = 9

If you notice the above example, we’ve given variable name and
assigned value to it. You may think it is wrong because we didn’t
delcare the datatype of variable but it is another advantage of
Python. You don’t need to assign variable type.

Lets look at the following example:

Eg., my_var_int = 9
my_var_float = 9.09
my_var_string = “nine”

Like other programming languages, we can do multiple assignment
in python too.

Eg., a = b = c = 9

We are done with assigning a variables now, at later stages we will
discuss how effectively we can use it in our program.

Chapter 6
Whitespaces

Whitespaces play a vital role in pyhton. In python we don’t
put curvely braces to make code blocks instead we use whitespaces.
Let’s give you an example. Take a look at the following snipets.,
 1-> def spam():

2-> eggs = 12
3-> return eggs
4-> print spam()

If you don’t understand the above snipet, don’t worry. Just look how
the snipet is written. The function spam() is defined and the block of
codes inside those i.e line 2 and 3 are moved some spaces. These
spaces are called whitespaces.

The above code is correctly done with whitespaces. So what will
happen if the code is incorrect? see the below example:

You will get the following error.,

IdentationError: excepted an indented block

Chapter 7
Comments

 It is always good practice to add comments in the
program. In most of the programming languages “ // ” and “ /* */ ”
are used. The things present inside the // symbol will be ignored by
the compiler or interpretor. In python programming, “ # “ symbol is
used for single line comment and ””” ””” symbol is used for
multiline comments. Comments make your program easier to
understand and read. Python won’t try to run those and it is for
human undersatnding.
Eg.,

GETTING OUTPUT:

 The end result of the program obtained must have to be

visible as a result. How to show that result in the screen? For that we
use print function . In the Python 2.6+ version, to make print
effective for using flush etc, it is need to be imported in your
program.
from __future__ import print_function from this package we can
do more operation in print function.
But in Python 3 there is no need for that, as print becomes function
in this version.
print “Hello Programmers!”

We learned variable assignment right? Now is the time to print the
value of variable.

Following snipets.,
 var1 = 9

print var1

So what will be the output?

The “ %s “ is used to insert or append the value of variable to the
string in the printing statement and “ % “ symbol is used to tell
which variable is needed to be placed.
Eg.,

Var1 = 10
print(“ Messi jersey number is %s” %

(Var1))
output will be.,

Messi jersey number is 10

Now we will see few simple tests:

var1 = “India”
var2 = “Pakistan”
print (‘ The final match is between %s

and %s ’ %(var1,var2))
guess the output for the above code., I will give three options for it.,
Option A:
The final match is between %s and %s
Option B:
‘The final match is between %s and %s’ %(var1,var2)
Option C:
The final match is between India and Pakistan
What is your answer? If you have guessed option c then you are
awesome.
If you guessed any other option, revise the above chapters once
again.

Chapter 8
Strings

Handling the strings is always important in Python prorgamming
language. String is the collection of the characters. Strings in Python
are identified as a contiguous set of characters represented in the
quotation marks either single ‘ ‘ or double “ “ . Python allows for
either pairs of single or double quotes.

Subsets of strings can be taken using the slice
operator ([] and [:]) with indexes starting at 0 in the beginning of
the string and working their way from -1 at the end. The plus (+) sign
is the string concatenation operator and the asterisk (*) is the
repetition operator.

String can be anything – words, numbers,
symbols...
 Eg., var_1 = “World”

var_2 = “09”
Var_1 = “!!!!”

Even white spaces inside quations will be considered as strings. For
cancatenation we use plus(+) symbol.
 Eg ., var_1=”hello”

Var_1=” world”
print var_1 + Var_1

output :
hello world

Symbols & Functionality:

Symbol
Functionality
*
argument specifies width or precision
-
left justification
+
display the sign
<sp>
leave a blank space before a positive number
#
add the octal leading zero ('0') or hexadecimal leading '0x' or
'0X', depending on whether 'x' or 'X' were used.
0
pad from left with zeros (instead of spaces)
%
'%%' leaves you with a single literal '%'
(var)
mapping variable (dictionary arguments)
m.n.
m is the minimum total width and n is the number of digits to
display after the decimal point (if appl.)

Format Symbol & Conversion Do you
remember we have used the %s during print section? Well there are
some other format symbols also available, they are

Format Symbol
Conversion

%c

character
%s
string conversion via str() prior to formatting

%i
signed decimal integer

%d
signed decimal integer

%u
unsigned decimal integer

%o
octal integer

%x
hexadecimal integer (lowercase letters)

%X
hexadecimal integer (UPPERcase letters)

%e
exponential notation (with lowercase 'e')

%E
exponential notation (with UPPERcase 'E')

%f
floating point real number

%g
the shorter of %f and %e

%G
the shorter of %f and %E

Now try to print this statement:
 print (‘ That is Tom’s car ‘)
The expected output is That is Tom’s car but python may have
thrown some error or the output may be - That is Tom . This is

because Python thinks apostrophe in Rama’s end as the code. So
how to overcome this problem?

ESCAPING SEQUENCE:

To overcome the above mentioned problem, we have to use escape
sequence. The escape sequence is the backslash \ symbol. You
should use it before apostrophe.
 print(‘ That is Tom\’s car ‘)
 now run it. The output will be as we’ve expected i.e. That is
Tom’s car .

Try to print this now:
 print (‘D:\\Movies’)
 The output will be D:\Movies. This is because the python takes
first backslash as escape sequence. For that we need to do print
r(’D:\\Movies’) now you will get output as you’ve expected. You’ve
got desired result because raw strings do not treat the backslash as a
special character.

STRING INDEX:
The string is a collection of characters. Its index i.e.

position of character stating from 0. See the below given example
program:

The above example clearly explains the string index concept.
Let’s try to write a code for obtaining ninth letter from word
“happiness”.

Code for above question is.,
A= “happiness”[8]
print A

output: s

Explicit Conversion:
Well sometimes we need to add something to the String

which is not a string content. To do that we need to change non-
string to string.
For this we use str() function which is the easiest way.
Try to concatenate the integer with string. Just print the following
code.,
 print 2 + "hello" + 3 + "world"

If you think 2hello3world is the output, you are wrong; we can’t
concatenate the integer with the string. It will throw error

To overcome that we use str() function. Now try this code
print str(2) + “hello” + str(3) + “world” , this time we will get the
expected output.

You may think instead of using str() function we can use double
quotes. Right?

Assign two variables with any integer value then concatenate
them with string. Try with and without str() functions. You will
get its usage. Try this on your own, answer will be revealed in
next page.

FIND LENGTH OF STRING:

We can find the total length of the string using len()
function. Let’s give an example so you can figure it out by yourself.,

Answer for the above question is puzzled by following examples,
just scan the following codes.,
First without using str() function. Let’s figure out what will be the
output.

Now by using str() function.

Got the answer? It’s that simple!

HOW TO GET INPUT FROM USER:

 So far we’ve assigned value and printed that value in screen
and did some operation from the assigned value. But what is the
motive of application development? It has to be user interactive.
Inorder for the program to be user interactive, the very first step is
we need to get inputs from user. How to do that? Python provides an
effective solution for this by the pre-defined function called
raw_input() and input().

PYTHON 2:

In python 2 raw_input() function takes exactly what user
types in an string format. input() function takes the raw_input() and
performs an eval() on it as well.

PYTHON 3:

In python 3 raw_input() is renamed as input() and old
input() function. But if you want to use the old input() in python 3,
you can use eval(input()).

Let’s look into some examples:

a=input("what is your name")
b=input("who is your inspiration")
c=input("what is your favourite color")
print ("your name is %s and it is great that your inspiration is
%s. your favourite color is %s" %(a,b,c))

Check out the above code and figure out what will be the
output!.
First Python asks for the user input. Like args[0] in java. You can tell
what is needed to give as input through message i.e. string between
brackets ("what is your name"). When user press the enter key
python moves to next command in program. Then it moves to print
statement which we’ve already discussed.

Whatever is entered by the user is taken as string by
Python.

For input check out the following example, try this code and notice
the output you are getting.
name = input("What's your name? ")
print("Nice to meet you " + name + "!")
age = input("Your age? ")

print("So, you are already " + age + " years old, " + name + "!")

If you are using python 2.x version while entering the input to
python interpreter key-in “ “ symbol while entering or giving input
to the python, well that’s what the difference between raw_input()
and input().
So what will happen if you missed “ “ while giving input. It will
throw an error message.

Chapter 9
Types Of Operations

Python has the following Operations:

Arithmetic Operations,
Relation operations,
Assignment operations,
Logical Operations,
Bitwise Operations,
Membership Operations,
Identity operations.

These operations are implemented using the operators. These
operators have the same name as of their operation’s name.

Arithmetic Operators
Comparison (Relational) Operators
Assignment Operators
Logical Operators
Bitwise Operators
Membership Operators
Identity Operators

ARITHMETIC OPERATORS:

Arithmetic operators perform arithmetic operations
like addition, subtraction, multiplication, divisions, exponent and
modulus among two operands.
 Operator

Description
Example

+ Addition
Adds values of the operands.
06 + 03 = 09
- Subtraction
Subtracts right hand operand from left hand operand.
12 – 03 = 09
*Multiplication
Multiplies values on either side of the operator
20 * 10 = 200

/ Division
Divides left hand operand by right hand operand.
10 / 5 = 2
// Floor Division
The division of operands where the result is the quotient in which
the digits after the decimal point are removed. But if one of the
operands is negative, the result is floored, simply rounded away
from zero.
11//2 = 5and11.0//2.0 = 5.0, -11//3 = -4, -11.0//3 = -4.0
% Modulus
Divides left hand operand by right hand operand and returns
remainder
10%3=1
** Exponent
Performs exponential (power) calculation on operators
5**2= 25 i.e. 5 * 5

Example:

The above example prints the values just like a calculator does. In
the next example we will a constant value to the variable.

RELATIONAL OPERATOR:

These operators compare the values on either sides of them and
decide the relation among them. They are also called comparison
operators.

Operator
Description

Example

==
If the values of two operands are equal, then the condition becomes true.
(8 == 7) is false.
!=
If values of two operands are not equal, then condition becomes true.

(8 != 8) is false
<>
If values of two operands are not equal, then condition becomes true.

(8 <> 7) is true. This is similar to != operator.
>
If the value of left operand is greater than the value of right operand, then condition becomes true.
(8 > 7) is true.
<
If the value of left operand is less than the value of right operand, then condition becomes true.
(8 < 7) is false.
>=
If the value of left operand is greater than or equal to the value of right operand, then condition
becomes true.
(8 >= 7) is true.
<=
If the value of left operand is less than or equal to the value of right operand, then condition becomes
true.
(8 <= 7) is false.

Example for relational operator is given below.,

ASSIGNMENT OPERATORS:

Assignment operators are the operators which will
assign values to the variable by implementing some operations.
Assume a=5, b=6

Operator
Description

Example
=
Assigns values from right side operands to left side operand
c = a + b assigns value of a + b into c.
Ans: 11
+= Add AND
It adds right operand to the left operand and assign the result to left operand
c += a is equivalent to c = c + a. (initially c=11)

Ans: 16
-= Subtract AND
It subtracts right operand from the left operand and assign the result to left operand

c -= a is equivalent to c = c – a
Ans= 11
*= Multiply AND
It multiplies right operand with the left operand and assign the result to left operand
c *= a is equivalent to c = c * a
Ans:55
/= Divide AND
It divides left operand with the right operand and assign the result to left operand
c /= a is equivalent to c = c / a
c /= a is equivalent to c = c / a
%= Modulus AND
It takes modulus using two operands and assign the result to left operand

c %= a is equivalent to c = c % a
**= Exponent AND
Performs exponential (power) calculation on operators and assign value to the left operand

c **= a is equivalent to c = c ** a
//= Floor Division
It performs floor division on operators and assign value to the left operand
c //= a is equivalent to c = c // a

Bitwise Operators

Bitwise operator works on bits and performs bit by bit operation.
Assume if a = 60; and b = 13; Now in binary format they will be as
follows −
a = 0011 1100
b = 0000 1101

a&b = 0000 1100
a|b = 0011 1101
a^b = 0011 0001
~a = 1100 0011

Operator
Description

Example
& Binary AND
Operator copies a bit to the result if it exists in both operands
(a & b) (means 0000 1100)

| Binary OR
It copies a bit if it exists in either operand.

(a | b) = 61 (means 0011 1101)
^ Binary XOR
It copies the bit if it is set in one operand but not both.
(a ^ b) = 49 (means 0011 0001)
~ Binary Ones Complement
It is unary and has the effect of 'flipping' bits.
(~a) = -61 (means 1100 0011 in 2's complement form due to a signed binary number.
<< Binary Left Shift
The left operands value is moved left by the number of bits specified by the right operand.
a << = 240 (means 1111 0000)
>> Binary Right Shift
The left operands value is moved right by the number of bits specified by the right operand.

a >> = 15 (means 0000 1111)

LOGICAL OPERATOR:

Logical operators are the operators which perform
the logical operations on variables either side.

Operator
Description

Example
and Logical AND

If both the operands are true then condition becomes true.
(a and b) is true.
or Logical OR
If any of the two operands are non-zero then condition becomes true.
(a or b) is true.
not Logical NOT
Used to reverse the logical state of its operand.
Not (a and b) is false.

TRUTH TABLE for NOT , AND, OR is given below.,

MEMBERSHIP OPERATOR:

 Python’s membership operators test for
membership in a sequence, such as strings, lists, or tuples. There are
two membership operators, they are in and not in.

Operator

Description

Example
in
Evaluates to true if it finds a variable in the specified sequence or false otherwise.
x in y, here in results in a 1 if x is a member of sequence y.
not in
Evaluates to true if it does not finds a variable in the specified sequence or false otherwise.
x not in y, here not in results in a 1 if x is not a member of sequence y.

Chapter 10
Data Types

We’ve already discussed in previous chapters that in
Python there is no need to define a datatype of variable while
assigning values. Python will take that load for you. The common
datatypes are:

✓ INTEGERS
✓ FLOAT
✓ STRING
✓ BOOLEAN

Data types are having two major divisions, they are
❖ Mutable
❖ Immutable

MUTABLE:

 Mutable type: The values in the objects can be changed.

IMMUTABLE:

 Immutable type: The values in the objects are not changeable.
The content in the object under immutable couldn’t be changed once
they are created.

It is important to understand that variables in Python are really just
references to objects in memory. Feeling stuck? You will definitely
learn and understand this concept in this and upcoming chapters.

Now let’s learn few concepts in data types.

Some mutable types:

byte array

list

set

dict

LIST:

 A list is a container which holds comma separated values (items or
elements) between square brackets where Items or elements need not
to have the same type.

SET:

 A set is an unordered collection of unique elements. Basic uses
include dealing with set theory (which support mathematical
operations like union, intersection, difference, and symmetric
difference) or eliminating duplicate entries.

DICT: (DICTIONARY)
 Python dictionary is a container of unordered set of objects like
lists. The objects are surrounded by curly braces { }. The items in a
dictionary are comma-separated list of key:value pairs where keys
and values are Python data type. Each object or value accessed by
key and keys are unique in the dictionary. As keys are used for
indexing, they must be immutable type (string, number, or tuple).

You can create an empty dictionary using empty curly braces.
Some IMMUTABLE types are

Numbers-int, float, long, complex

str

bytes

tuples

frozen set

Numbers:

Numbers are created by numeric literals. Numeric objects
are immutable, which means when an object is created its value
cannot be changed.

Python has three numeric types:

integers ,
floating point numbers
complex numbers .

Integers represent negative and positive integers without fractional
parts. (eg. 3, 8, 9) Floating point numbers represents
negative and positive numbers with fractional parts. (eg.3.0)
Complex numbers are combination of the real and imaginary
numbers representing both positive and negative numbers. (eg. 3-5j,

2+4j). first one is real number and the number with the j is imaginary
number.

Str:

Str is string. We have already dedicated a chapter for discussing this
topic.

Tuples:

A tuple is container which holds a series of comma
separated values (items or elements) between parentheses. Tuples are
immutable (i.e. you cannot change its content once created and can
hold mix data types).

Example:
Tup1 = (“social”, “science”, 1997, 2000);
Tup2 = (1, 2, 3, 4, 5);

To create the empty tuple, just put tuple name with empty
parentheses,
Example:
Tupe = ()
While writing a single value tuple, you need to add comma after the
single value inside the parentheses.

Example:
Tups = (1,)

There are some built-in functions available, they are given below.
S.no

Function name
Description

1
cmp(tuple1, tuple2)
Compares elements of both tuples.
2
len(tuple)
Returns total length of the tuple.
3
max(tuple)
Returns maximum value item from the tuple.
4
min(tuple)
Returns minimum value item from the tuple.
5
tuple(seq)
Converts list into tuple.
6
del tuple
Deletes the tuple.

Indices in tuple:

 Indices in tuple is same as the indices in the string. Starting
position is zero then last position will be (n-1)th position.[n is total
number of values]
Example,
Tup1 = (‘rick’ , ’danny’ , ‘maddy’)
To make sure you learned indices concept thoroughly try to answer
the following questions on your own, the answer will be revealed a
bit later.
Tup1[1] returns which value?
Tup1[3] returns which value?
Tup1[-3] returns which value?
Tup1[-1] returns which value?

Some basic operations in Tuple.

There are some basic tuple operations available - like in
strings /concatenation and length also other operations like
repetition, membership, iteration with symbols like +, *.

Expression
Results

Description
len((1, 2, 3, 4, 5, 5))
6

Length of tuple
(1, 2, 3,4) + (5, 6, 7, 8)
(1, 2, 3, 4, 5, 6, 7, 8)
Concatenation
('YES!',) * 5
('YES!', 'YES!', 'YES!', 'YES!', 'YES!')
Repetition
1 in (1, 2, 3,4)
True
Membership
for x in (1, 2, 3, 4, 5): print x
1 2 3 4 5
Iteration

To learn about tuple more thoroughly, let’s try an exercise: Create a
tuple and put four random values to it. Then print it. Now print the
first and last value only. Then delete the tuple.

Answers:

Tup1 = ("rick" , "danny" , "maddy" , "jimmy")
print(Tup1[0])
print(Tup1[-1])
print("after printing this, now delete")
del Tup1

List:

The list is a most versatile datatype available in Python like
tuples which can be written as a list of comma-separated values
(items) between square brackets. There is no need to have same data
type values in the list.

Creating a list is very simple by putting different comma-
separated values between square brackets.

Example:

List1 = [1, 2, 3, ‘a’, ‘b’, ‘c’]
List2 = [‘red’ , ‘black’, ‘blue’]

The built-in functions and operations in the list are as same as the
tuple. There is no difference between them.

Indices in list is also like tuple and string. Accessing the values in
the list can be done by matrix.

Example:
 To retrieve value 2 from list1 expression is List1[1] .
 To retrieve value a,b,c only from list1 expression is

List1[3:5] .

UPDATING LIST:

Updating the single or multiple elements of lists by
giving the slice on the left-hand side of the assignment operator, and
you can add to elements in a list by using the append() method.

List1 = [1, 2, 3, 'a', 'b', 'c']
print("Value available at index 2 : %s" % (List1[2]))
List1[2] = 4
print("New value available at index 2 : %s " % (List1[2]))
Output:
Value available at index 2 : 3

New value available at index 2 : 4

It seems both tuple and list looks similar, but both are different.
List is mutable and tuples is immutable. The main difference
between mutable and immutable is memory usage when you are
trying to append an item. When you create a variable, some fixed
memory is assigned to the variable. If it is a list , more memory is
assigned than actually used.

Now you have learned operations and data types in Python, let’s
move on to learn a new concept called Typecasting.

What is Type casting?

Typecasting is nothing but changing one variable’s
datatype into another datatype. Consider a scenario where you want
to add the two variables that is user entered. Can you add two
strings? No you can only concatenate two variables. So how to do it?
Typecasting comes handy here!

Think a scenario: You are getting two inputs from user and that is in
string data type. Now you need to add it. How will you add it?
If the following program comes to your mind, then you have learned
the concept but didn’t observe it properly. The following method is
a wrong approach, let’s look into it.

a = input(‘enter the value of a’)

b = input(‘enter the value of b’)
c = a + b

print (c)

If you think this is the correct program for above scenario
then you have to revisit the String chapter and study the string
concatenation.

Let’s see why you should use Typecasting:

 a = int (input(‘enter the value of a’))
 b = int (input(‘enter the value of b’))

c = a + b
print (c)

The input function returns string, so the c = a + b line concatenates
by the symbol “+”. After typecasting the string into int(integer) the
third line of code will perform the addition operation.

a = float(input(‘enter the value of a’))
b = float(input(‘enter the value of b’))

c = a + b
print (c)

It changes the string into float. Do you remember the str() in the
string section. It changes or typecast the integer or float to the string.

Chapter 11
Decision Making

Decision making, it is the most important topic in both life
and programming. The right decision at the right time will make the
life better, it rings true in programming concepts too. While making
a decision the most common possible answer is either true (yes) or
false (no).

The above diagram is the basic representation of the
decision making.

The statements used for the decision making are:

if statement
if….else statement
nested if statement

IF STATEMENT:

 The if statement of Python is similar to that of other
languages. The if statement contains a logical expression using
which data is compared and a decision is made based on the result of
the comparison.

Syntax:
if (expression):

statement(s)

If the boolean expression evaluates to true, then the block of
statements inside the if statement will be executed. If boolean
expression evaluates to false, then the first set of code after the
end of the if statements will be executed.

Python programming language assumes any non-zero and non-
null values as true, and if it is either zero or null, then it is
assumed as false value.

We’ve already discussed whitespaces and its usage and its needs in
python. So let’s get ahead and directly see an example program.

Write a program to find whether the given number is whole number
or not.

A = int(input(‘Enter the value’))
if A == 0:

print (“The number is whole
number”)

IF ELSE STATEMENT:

 Like other languages in Python too we can
combine else statement with if statement. An else statement
contains the block of code that executes if the conditional
expression in if statement resolves to 0 or a false value.
 The else statement is an optional statement and there
could be at most only one else statement following if .

Syntax:
if (expression):

statement(s)
else:

statement(s)

Let’s move to an example: Get an input from a user and check
whether it is even or odd.

A = int(input(“Enter the number”))
if A %2==0:

print “The number is even”
else:

print “The number is odd”

elif Statement

 The elif statement allows you to check multiple

expressions for truth value and execute a block of code as soon as
one of the conditions evaluates to true.

Like else , the elif statement is optional. However, unlike else , for
which there can be at most one statement, there can be an arbitrary
number of elif statements following if .

SYNTAX:
if expression1:

statement(s)
elif expression2:

statement(s)
elif expression3:

statement(s)
else:

statement(s)

The main reason to use the elif statement is, in python we don’t have
switch case like we have in other object oriented programming
languages like java or c++. So instead of using some confusing user-
defined functions to implement switch case you can use elif
statement. {This advice is only for Python beginners}

Nested if statements

 There may be a situation when you want to check for
another condition after a condition resolves to true. In such situation,
you can use the nested if construct.
In a nested if construct, you can have if...elif...else construct inside
another if...elif...else construct.

Syntax:
if expression1:

statement(s)
if expression2:

statement(s)
elif expression3:

statement(s)
else:

statement(s)
elif expression4:

statement(s)
else:

statement(s)

Example:

Get the user mark and return the grade for that mark.

score = int(input('Enter your mark'))
if score >= 90:

print('your grade is A')
else:

grade must be B, C, D or F
if score >= 80:

print ('your grade is B')
else:

grade must be C, D or F
if score >= 70:

print ('your grade is C')
else:

grade must D or F
if score >= 60:

print ('your grade is D')
else:

print ('your grade is F')
output:

Chapter 12
Loops In Python

There are more chances for a programmer to
face implementation of same expression or operation repeatedly for n
number of times. To handle that problem effectively we have loops
in programming languages. In Python too we have loop concepts.
The 2 loops in Python are listed below:

1. while loop
Repeats a statement or group of statements while a

given condition is true. It tests the condition before executing the
loop body.

2. for loop
Executes a sequence of statements multiple times and

abbreviates the code that manages the loop variable.

3. nested loops

You can use one or more loop inside any other loop.

While loop

 A while loop statement in Python programming language
repeatedly executes a target statement as long as a given condition is
true.

Syntax:
while expression:

statement(s)

Here, statement(s) may be a single statement or block of
statements.

The condition may be any expression, and true is any non-zero
value. The loop iterates while the condition is true.

When the condition becomes false, program comes out of
loops.

Example:
count = 0
while (count < 5):

print ('The count is:', count)
count = count + 1

print("LOOP EXPIRED")
Output:
The count is: 0
The count is: 1
The count is: 2
The count is: 3
The count is: 4
LOOP EXPIRED

There is one unique facility available in Python which is not
available in the other programming languages i.e. you can use else
statement in the looping statement.

If the else statement is used with for loop, the else statement is
executed when the loop has exhausted iterating the list.

If the else statement is used with a while loop, the else statement is
executed when the condition becomes false.

Example:
count = 0
while count < 3:

print(count, " is less than 3")
count = count + 1

else:
print(count, " is not less than 3")

Output:
0 is less than 3
1 is less than 3

2 is less than 3
4 is not less than 3

FOR LOOP:

 The for loop in Python has ability to iterate over the items of any
sequence, such as a list or a string until the condition is true.

SYNTAX:
for iterating_var in sequence :
 statements (s)
simple example is
for x in range(0, 3):

print("We're on time %d" % (x))

Nested for loop example,
for x in range(1, 5):

for y in range(1, 5):
 print('%d * %d = %d' % (x, y, x*y))

For loop are used in the list and tuple to print the content one by
one.

Example,
colors = ['red', 'yellow', 'green']
for color in colors:

print('Current color :', color)

Loop Control Statements:

Loop control statements change execution from its normal
sequence. When execution leaves a scope, all automatic objects that
were created in that scope are destroyed.

Python supports the following control statements.

BREAK STATEMENT
CONTINUE STATEMENT
PASS STATEMENT

1. break statement

Terminates the loop statement and transfers execution to the
statement immediately following the loop.

2. continue statement

Causes the loop to skip the remainder of its body and
immediately retest its condition prior to reiterating.

3. pass statement

The pass statement in Python is used when a statement is
required syntactically but you do not want any command or
code to execute.

Break is used to exit for loop or a while loop , whereas continue is

used to skip the current block, and return to the "for" or "while"
statement.

Example for break statement:
for letter in 'Helloworld':

print ('Current Letter :', letter)
if letter == 'o':

break
OUTPUT:

EXAMPLE FOR CONTINUE STATEMENT:
 for letter in 'Helloworld':

print('Current Letter :', letter)
if letter == 'o':

continue
print('Current Letter :', letter)

OUTPUT:

Chapter 13
Functions

A function is a block of organized, reusable code that is used to
perform a single and many related action. Functions provide better
modularity for your application and a high degree of code reusing.
We have already seen many built-in functions like print(), str(),
input() etc in python in previous sections and also you can create
your own functions .

In all the programming languages, functions need to be defined,
declared with or without parameters with set of codes. Actually,
functions are a convenient way to divide your code into useful
blocks, allowing us to order our code, make it more readable, reuse it
and save some time. Also functions are a key way to define
interfaces so programmers can share their code.

Defining a Function

The very basic and first step is defining the functions. We
can define functions to provide the required functionality. There are
some simple rules to define a function in Python.
1) Function blocks always begin with the keyword def followed by
the function name and parentheses (()).
2) Any input parameters or arguments should be placed within these
parentheses. We can also define parameters inside these parentheses.
The first statement of a function can be an optional statement - the
documentation string of the function or docstring.
3) The code block within every function starts with a colon (:) and is
indented. [Again remember white spaces needs and usage].
4) The statement return [expression] exits a function, optionally
passing back an expression to the caller. A return statement with no

arguments is the same as return none or null.
{Remember you don’t have to use the keywords i.e. reserved words
as functions name}

Example:
def my_function():

print ("Hello This is printing from my_function!")

*) function with arguments or parentheses:
def my_function_with_args(name, color):

print ("Hello, %s , your favourite color is %s"%(username,
color))

Here name and color are the arguments or parentheses where the
variables passed from the user by either programmer or user.
*) Functions may return a value to the caller, using the keyword-
'return'. For example:
def sum_two_numbers(a, b):

print a + b
return a + b

HOW TO CALL THE FUNCTION:

We already saw that function need to be called in the
program to implement or to use or to take actions in the program. So
how to implement it?
Let’s see few examples.

def my_function():
print("Hello This is printing from my_function!")

def my_function_with_args(name, color):
print("Hello, %s , your favourite color is %s"%(name,

color))
def sum_two_numbers(a, b):

print a + b
return a + b

my_function()
my_function_with_args("Jimmy", "red")
x = sum_two_numbers(5,4)

OUTPUT:
Hello This is printing from my_function!
Hello, Jimmy , your favourite color is red
9

The above picture showcases clear example of all the function /
facilities in one roof. But it is necessary for a programmer and
especially for a beginner to learn about each and every important
concept so let’s look into some more definitions and pertaining
examples. You also have to solve some logical problem in this
section so it will be useful for you to understand the concepts.

Arguments in Functions:

You can call a function by using the following types of formal
arguments:
• Required arguments
• Keyword arguments
• Default arguments
• Variable-length arguments

REQUIRED ARGUMENTS:

Required arguments are the arguments passed to a function in correct
positional order. Here, the number of arguments in the function call
should match exactly with the function definition. To call the
function myfunction(), you definitely need to pass one argument,
otherwise it would give a syntax error as follows:

def myfunction(str):
"This prints a passed string into this function"
 print (str)

return

myfunction(“hello world”)
OUTPUT:

hello world

Keyword arguments:
Keyword arguments are related to the function calls. When

you use keyword arguments in a function call, the caller identifies
the arguments by the parameter name.

This allows you to skip arguments or place them out of order
because the Python interpreter is able to use the keywords provided

to match the values with parameters.

def myfunction(str):
"This prints a passed string into this function"

print (str)
return

myfunction(str = "hello world")

output:
hello world

In the above program we passed the argument defining variable
itself.

To understand this we are providing another example which may
give you a clear understanding about it.

def myfunction(str, str1):
"This prints a passed string into this function"

print (str)
print (str1)
return

myfunction(str = "hello world", str1=”programmer”)

output:
hello world

 programmer

Default arguments:

A default argument is an argument that assumes a default

value if a value is not provided in the function call for that argument.
Following example gives an idea on default arguments, it would
print default age if it is not passed:
def myfunction(name, age = 30):

"This prints a passed info into this function"
print("Name: ", name)
print ("Age ", age)
return

myfunction(age=50, name="Jim");
myfunction(name="carry");

OUTPUT:
Name: Jim
Age: 50
Name: carry
Age: 30

The return Statement:

The statement return [expression] exits a function, optionally passing
back an expression to the caller. A return statement with no
arguments is the same as return None.

def sum_two_numbers(a, b):
return a + b

x = sum_two_numbers(5,4)
print(“Sum= “ , a + b)
OUTPUT:
Sum= 9

Scope of Variables:

All variables in a program may not be accessible at all locations in
that program. This depends on where we have declared a variable.
The scope of a variable determines the portion of the program where
you can access a particular identifier.

There are two basic scopes of variables in Python:
• Global variables
• Local variables

Variables that are defined inside a function body have a local scope,
and those defined outside have a global scope. This means that local
variables can be accessed only inside the function in which they are
declared, whereas global variables can be accessed throughout the
program body by all functions. When you call a function, the
variables declared inside it are brought into scope.

Example:

We’ll give you a same program in two ways, check out how the
output differs:

PROGRAM 1:
i = 0
count = 0
#global variable
while (i < 5):

print ('count=', count)
count= count + 1
i = i + 1

else:
print ('i greater than 5, out of loop')

Output:

PROGRAM 2:

i = 0
while (i < 5):

#local variable
count = 0
print ('count=',count)
count = count+1
i = i + 1

else:
 print ('i greater than 5, out of loop') output:

Analyzing the output of both the programs, you may get some clear
picture about the scope of the variable. For your better
understanding, let’s look into the following example that gives even
more detailed picture.

var1 = 1
def my_function1():

var2 = 5
print (var1 + var2)

def my_function2():
var2 = 5

print (var1 - var2)
my_function1()
my_function2()
output:

Chapter 14
Modules

Grouping the related codes into modules make
the program easier, understandable and also paves way to the
reusability of program. Simply put, a module is a file consisting of
Python code. A module can define functions, classes and variables.
A module can also include runnable code.

Import Statement:

You can use any Python source file as a module by
executing an import statement in some other Python source file.
syntax:
import module1[, module2[,... moduleN]
 When the interpreter encounters an import statement, it
imports the module if the module is present in the search path. A
search path is a list of directories that the interpreter searches before
importing a module.
Example:
def my_function(name):

print (“value passed and printed by import” , name)
return

save the above program as printimport .py
Now to use it in another program, just include import statement in
the next program.

import printimport
printimport .my_function(“Jimmy”)

While you execute the second program, the output will be
value passed and printed by import Jimmy

Let’s explain what happened here, while python interpreter
encounters the import statement it will bring all functions, classes,
variables into its stack and in the second line we call my_function()
function by object then all happened like actual pass by value
argumented function.
Well before going to the next statements in the modules, we will
elaborate the previous example program for understanding.

Program 1:

def my_function(name):
print (“value passed and your name is” , name)
return

def my_function1(num):
print (“value passed and your age is”, num)

return
def my_function2(color):

print (“vaue passed and your favourite color is”,
color)

return
save it has printimport.py

Program 2:

import printimport
printimport .my_function(“Jimmy”)

output :

value passed and your name is Jimmy

from…. Import statement:

Python's from statement lets you import specific attributes from a
module into the current namespace.

Example:
 from printimport import my_function1
 By this program, the my_function1() from program 1 only
imported to the second program.

from…. import* statement:
symbol * means ALL - it will import all modules into

the current workspace.

Chapter 15
File Handling

FILE HANDLING:

So far you’ve learned giving input to
the program by getting user input or by passing values in program.
There is also another way i.e. by connecting the files to the program.
The output of the program also can be printed in the output. In java it
is simple and in python it is even simpler because mostly there is no
need to import any python file. File can be any type - text, audio,
video or image. It can open, write, read, alter or delete.

File opening

 To open a file we use open() function. It requires two
arguments, first the file path or file name, second in which mode it
should open.

Modes are like

r -> open with read only, you can read the file but
can’t edit / delete anything in the file.
w -> open with write power, i.e. if the file exists then
we can delete all content, delete certain contents and
open it to write.
a -> open in append mode, i.e. opening the file in
write mode and adding content at the end of the file.

If you didn’t provide any mode, it will automatically open the file as
read only. Which means read mode is the default mode.

Example:
File1 = open(“world.txt”)

File closing

 To close a file we use close() function. It is
necessary to close the file after its use because you can only be able
to open some amount of file, if it reached its limit; there is a high
chance of crashing the application or program. So make sure you
properly close the file after its use.

Example:
File1.close()

Reading a file:

 To read a file, read() function is used. This
function reads the whole file. We can read the file line by line, for
that we use readline() function and readlines() function. The
readline() function read one line after another whereas readlines()
function is used to read multiple lines.

Example:
File1.read()

Writing a file:

 To write a content in the file, use write() function. We
can write any number of lines in the file. To use write function don’t
forget to open the file in either write mode or append mode.
Example:

File1.write(“anything”)

Thinks to remember

If you opened the file in write mode, you can’t use
read() function. If you opened the file in read mode, you can’t
use write() function.

While opening a file by giving full path or address of
the file, don’t forget to put directory.

 Also use \\ because \ inside the double quotes or single
quotes will make it as escaping tag.

 Always properly/fully close the file after its use.
Don’t forget to do that, because being a programmer it is your
duty to take care of all things and avoid the things that may mess
the application or program.

To learn the file handling in depth, try for yourself the following
exercise:

Task: Write a code to do the following tasks.

Create a file, read its content and print it. Now update the file and
again print it.

Sounds easy right, just try by yourself first then check out the below
code.

The answer for the above task is,

file = open('C:\\Users\\Desktop\\world.txt')
print("real file content\n")
s=file.read()
print(s)
file = open('C:\\Users\\Desktop\\world.txt','a')
file.write('\n earth\n')
file.write('mars\n')
print("updated content\n")

file = open('C:\\Users\\Desktop\\world.txt')
d=file.read()
print(d)
file.close()

The output for this program is:

Now replace read() function with readline() function, readlines()
function in the above program to see the varying output inorder to
thoroughly learn those functions.

Output when using readline() function

Output when using readlines() function

Chapter 16
Exception Handling

EXCEPTION HANDLING:

As per dictionary definition, exception means
abnormal condition. Handling exception is one of the most powerful
features that every programming language gives and python is no
exception for it. So far you have faced some syntax errors while
coding, or you might face some truncation error or white space error.
 When your program / coding is wrong, it is okay to
get error but you will get some error even when the program is
syntactically correct. These errors can be solved by yourself with
little more practice but there are some errors which occurs
unexpectedly like less memory, connection failure, resource
unavailability or may be due to the error occurred by the operating
system. How these errors can be solved while your client or
customer is using the application or program that are not
programmed to handle the situation by you. This exception or error
can’t be solved by you at the time of occurrence. For tackling this,
exception handling is used.

There are many type of error occurs. Some of them
are:

EXCEPTION NAME
DESCRIPTION

Exception
Base class for all exceptions

StopIteration
Raised when the next() method of an iterator does not point to any object.

SystemExit
Raised by the sys.exit() function.

StandardError
Base class for all built-in exceptions except StopIteration and SystemExit.

ArithmeticError
Base class for all errors that occur for numeric calculation.

OverflowError
Raised when a calculation exceeds maximum limit for a numeric type.

FloatingPointError
Raised when a floating point calculation fails.

ZeroDivisonError
Raised when division or modulo by zero takes place for all numeric types.

AssertionError
Raised in case of failure of the Assert statement.

AttributeError
Raised in case of failure of attribute reference or assignment.

EOFError
Raised when there is no input from either the raw_input() or input() function and the end of
file is reached.

ImportError
Raised when an import statement fails.

KeyboardInterrupt
Raised when the user interrupts program execution, usually by pressing Ctrl+c.

LookupError

Base class for all lookup errors.

IndexError
Raised when an index is not found in a sequence.

KeyError
Raised when the specified key is not found in the dictionary.

NameError
Raised when an identifier is not found in the local or global namespace.

UnboundLocalError
Raised when trying to access a local variable in a function or method but no value has been
assigned to it.

EnvironmentError
Base class for all exceptions that occur outside the Python environment.

IOError
Raised when an input/ output operation fails, such as the print statement or the open()
function when trying to open a file that does not exist.

OSError
Raised for operating system-related errors.

SyntaxError
Raised when there is an error in Python syntax.

IndentationError
Raised when indentation is not specified properly.

SystemError
Raised when the interpreter finds an internal problem, but when this error is encountered
the Python interpreter does not exit.

SystemExit
Raised when Python interpreter is quit by using the sys.exit() function. If not handled in the
code, causes the interpreter to exit.

TypeError
Raised when an operation or function is attempted that is invalid for the specified data type.

ValueError
Raised when the built-in function for a data type has the valid type of arguments, but the
arguments have invalid values specified.

RuntimeError
Raised when a generated error does not fall into any category.

NotImplementedError
Raised when an abstract method that needs to be implemented in an inherited class is not
actually implemented.

NameError

When one starts writing code, this will be one of the
most common exception they will find. NameError happens when
someone tries to access a variable which is not defined.
>>> print (var)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'var' is not defined

The last line contains details of the error message, the rest of the
lines show the details of how it happened or what caused that
exception and where it happened.

TypeError

TypeError is also one of the most found exception. This
happens when someone tries to do an operation with different kinds
of incompatible data types. A common example is to do addition of
Integers and a string.
>>> print (1 + "a")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'int' and 'str'

 Syntax Errors

Syntax errors are also known as parsing errors, and they
are the most common error you may incur while learning Python:
>>>
>>> while True print('Hello world')

File "<stdin>", line 1, in ?
while True print('Hello world')

^
SyntaxError: invalid syntax
The parser repeats the offending line and displays a little ‘arrow’
pointing at the earliest point in the line where the error was detected.
The error is caused by (or at least detected at) the
token preceding the arrow: in the example, the error is detected at the

function print(), since a colon (':') is missing before it. File name and
line number are printed so you know where to look in case the input
came from a script.

Exceptions

Exception means abnormal condition - which is also
called as error or bug.

The following are some of the exception and the reply message from
python

>>> 9 * (9/0)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ZeroDivisionError: division by zero
“””anything divided by zero is infinity by mathematical rule. So
python can’t answer it which is turned as ZeroDivisionError””””
>>> 4 + var*3
Traceback (most recent call last):

File "<stdin>", line 1, in ?
NameError: name 'var' is not defined
>>> '3' + 3
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: Can't convert 'int' object to str implicitly

How to handle exceptions?

We use try...except blocks to handle any exception. The basic
syntax looks like:

try:
statements to be inside try clause
statement2
statement3
...

except ExceptionName:
statements to be evaluated in case of ExceptionName happens

It works in the following way,

First all lines between try and except statements will
be considered and try block will be executed.

If ExceptionName happens during execution of the
statements then except clause statements execute

If no exception happens then the statements
inside except clause does not execute.

If the Exception is not handled in except block then it
goes out of try block.

The above points explain the step by step execution of exception
handling mechanism. The exception handling in python is almost
similar as other OOPs languages like JAVA, C++. So understanding
it is easy, only the keywords are different here.
Now we will see some example in exception handling by solving a
scenario.
You need to take the integer input from user and throw or ping him,

if any other datatype input like string or float is entered by user.
def int_number():

"Returns int number"
number = int(input("Enter any number: "))
return number

while True:
try:

print(int_number())
print("this is from the try block")

except ValueError:
print("You entered a wrong value. this is from except

block")

Output:

In the above example, 9 is integer value so python takes it to execute
in try block. While user enters 7.0 (a float value) python takes it to
except block.
The try ... except statement has an optional else clause, which,
when present, must follow all except clauses.

Raising Exceptions

The raise statement allows the programmer to force a specified
exception to occur. For example:
raise NameError('this is sparta')
Traceback (most recent call last):

File "<stdin>", line 1, in ?
NameError: this is sparta
 The sole argument to raise indicates the exception to be
raised. This must be either an exception instance or an exception
class (a class that derives from Exception). If you need to determine
whether an exception was raised but don’t intend to handle it, a
simpler form of the raise statement allows you to re-raise the
exception:
try:

raise NameError('this is sparta')
except NameError:

print('An exception came by')
raise

Output:
An exception came by
Traceback (most recent call last):

File "<stdin>", line 2, in ?
NameError: this is sparta

FINALLY:

This is being used in the socket, file programs. Commonly they will
be used while closing the file or socket connections.
A finally clause is always executed before leaving the try statement,

whether an exception has occurred or not. When an exception has
occurred in the try clause and has not been handled by except clause
(or it has occurred in except or else clause), it is re-raised after the
finally clause has been executed. The finally clause is also executed
“on the way out” when any other clause of the try statement is left
via a break, continue or return statement.
Example:
try:

file1 = open("world.txt", "w")
result = 9/ 0

except ZeroDivisionError:
print("We have an error in division")

finally:
file1.close()
print("Closing the file object.")

We have an error in division
Closing the file object.

In this example we are making sure that the file object we open, gets
closed in the finally clause.

USER-DEFINED EXCEPTION:

A programmer can’t always encounter built in errors, sometimes he
may also face some exception which are not predefined by any
language. To overcome that, the programmer will create some user
defined exception which will help him solving the problem – this is
usually done by the exception class. Programs may name their own
exceptions by creating a new exception class. Exceptions should
typically be derived from the Exception class, either directly or

indirectly.

For example:
class MyError(Exception):

def __init__(self, value):
self.value = value

def __str__(self):
return repr(self.value)

try:
raise MyError(2*2)

except MyError as e:
print('My exception occurred, value:', e.value)

OUTPUT:
My exception occurred, value: 4
raise MyError('oops!')
Traceback (most recent call last):

File "<stdin>", line 1, in ?
__main__.MyError: 'oops!'

In this example, the default __init__() of Exception has been
overridden. The new behaviour simply creates the value attribute.
This replaces the default behaviour of creating the args attribute.

Exception classes can be defined as which does anything that other
classes can do, but they are usually kept simple, often only offering a
number of attributes that allow information about the error to be
extracted by handlers for the exception. When creating a module that
can raise several distinct errors, a common practice is to create a base
class for exceptions defined by that module, and subclass to create

specific exception classes for different error conditions.

class Error(Exception):
"""Base class for exceptions in this module."""
pass

class InputError(Error):
"""Exception raised for errors in the input.
Attributes:

expression -- input expression in which the error occurred
message -- explanation of the error """

def __init__(self, expression, message):
self.expression = expression
self.message = message

class TransitionError(Error):
"""Raised when an operation attempts a state transition that's not

allowed.
Attributes:

previous -- state at beginning of transition
next -- attempted new state
message -- explanation of why the specific transition is not

allowed """
def __init__(self, previous, next, message):

self.previous = previous
self.next = next
self.message = message

Most exceptions are defined with names that end in “Error,” similar
to the naming of the standard exceptions. Many standard modules

define their own exceptions to report errors that may occur in
functions they define.

Exception hierarchy:

Below given are some of the exceptions available in Python and its
hierarchy.

The class hierarchy for built-in exceptions is:
BaseException
+-- SystemExit
+-- KeyboardInterrupt
+-- GeneratorExit
+-- Exception

+-- StopIteration
+-- StopAsyncIteration
+-- ArithmeticError
| +-- FloatingPointError
| +-- OverflowError
| +-- ZeroDivisionError
+-- AssertionError
+-- AttributeError
+-- BufferError
+-- EOFError
+-- ImportError
+-- LookupError
| +-- IndexError
| +-- KeyError

+-- MemoryError
+-- NameError
| +-- UnboundLocalError
+-- OSError
| +-- BlockingIOError
| +-- ChildProcessError
| +-- ConnectionError
| | +-- BrokenPipeError
| | +-- ConnectionAbortedError
| | +-- ConnectionRefusedError
| | +-- ConnectionResetError
| +-- FileExistsError
| +-- FileNotFoundError
| +-- InterruptedError
| +-- IsADirectoryError
| +-- NotADirectoryError
| +-- PermissionError
| +-- ProcessLookupError
| +-- TimeoutError
+-- ReferenceError
+-- RuntimeError
| +-- NotImplementedError
| +-- RecursionError
+-- SyntaxError
| +-- IndentationError
| +-- TabError

+-- SystemError
+-- TypeError
+-- ValueError
| +-- UnicodeError
| +-- UnicodeDecodeError
| +-- UnicodeEncodeError
| +-- UnicodeTranslateError
+-- Warning

+-- DeprecationWarning
+-- PendingDeprecationWarning
+-- RuntimeWarning
+-- SyntaxWarning
+-- UserWarning
+-- FutureWarning
+-- ImportWarning
+-- UnicodeWarning
+-- BytesWarning
+-- ResourceWarning

The total number of exceptions is being updated in each and every
version update of Python. It is somehow not important to know all
these exceptions as a beginner, but for the advanced level of
programming and debugging, knowing these exceptions will help
you in getting better programming results.

We have covered all the important concepts of Python programming
language till now. Let’s get ahead to learn one of the most important
concepts in almost every programming language which evolved from
the normal procedural language to the superpower object oriented

programming language.

Chapter 17
Classes In Python

 Python is an object oriented programming language.
Unlike procedure oriented programming or procedural language, in
which the main emphasis is on functions, object oriented
programming stresses on objects . Object is simply a collection of
data (variables) and methods (functions) that act on those data.
Python’s class mechanism adds classes with a minimum of new
syntax and semantics. It is a mixture of the class mechanisms found
in C++ and Modula-3.

Python classes provide all the standard features of Object Oriented
Programming: the class inheritance mechanism allows multiple base
classes - a derived class can override any methods of its base class or
classes, and a method can call the method of a base class with the
same name.

In python the class structure is simple and compared to the other
languages it has less number of line of codes.

Syntax:
class nameoftheclass(parent_class):

statement1
statement2
statement3

Defining a Class in Python

 As function definitions begin with the keyword def , in
Python, we define a class using the keyword class . The first string is
called docstring and has a brief description about the class. Although
not mandatory, this is recommended. Here is a simple class
definition.

class Firstclass:
'''This is a docstring. We have created a new class'''
pass

A class creates a new local namespace where all its attributes are
defined. Attributes may be data or functions. There are also special
attributes in it that begins with double underscores (__). For
example, __doc__ gives us the docstring of that class.

Now defining object for a class is another important concept to learn.
We hope you do remember the file object we used during while
learning the chapter file handling .

Example:
class Secondclass(object):
This is the second class.

a = 90 #attribute
b = 88 #attribute

p = Secondclass() #p is object
print(p.a)

In the above program, class name is Secondclass , a and b are the
class variables. p is class object.
After initialising the class object, in the next line we are printing the
variable value of a by having class object.

Output for the above program:

Here’s another example. Try to get an explanation for it by yourself.

class ThirdClass:
"This is my third class"
a = 9
def func1(self):

print('Hello')
m = ThirdClass()
print(m.a)
m.func1()
print(m.__doc__)

Output for the above program is

__init__ METHOD:

 __init__ is a special method in Python classes, it is the
constructor method for a class.

In the following example you can learn how to use it.

class contact(object):
""” Returns a ```contact``` object with the given name, number

and address."""
def __init__(self, name, number, address):

self.name = name
self.number = number
self.address = address
print("A Contact object is created.")

def print_details(self):
"""Prints the details of the student."""
print("Name:", self.name)
print("Number:", self.number)
print("Address:", self.address)

__init__ is called whenever an object of the class is constructed.
That means whenever we create contact object we will see the
message “A Contact object is created ” in the prompt. You can see
the first argument to the method is self. It is a special variable which
points to the current object (like this in C++). The object is passed
implicitly to every method available in it, but we have to get it
properly in every method while writing the methods.

Example:

std1 = contact()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: __init__() takes exactly 4 arguments (1 given)
con1 = contact('Jim',98888,'walls street')
A Contact object is created

In this example, at first we tried to create a Contact object without
passing any argument and Python interpreter complained that it takes
exactly 4 arguments but received only one (self). Then we created an
object with proper argument values and from the message printed,
one can easily understand that __init__ method was called as the
constructor method.

Now we are going to call print_details() method.

con1.print_details()
Name: Jim
Number: 98888
Address: walls street

Deleting an object

As we already learned how to create an object, now we are going to
see how to delete Python object. We use del for this.

del con1
If you try to see object you will get an error:

Example
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'con1' is not defined

INHERITANCE:

Inheritance is a powerful feature in object oriented
programming. It refers to defining a new class with little or no
modification to an existing class. The new class is called derived (or
child) class and the one from which it inherits is called the base (or

parent) class. Derived class inherits features from the base class,
adding new features to it. This helps in re-usability of code.

Classes can inherit from other classes. A class can
inherit attributes and behaviour methods from another class, called
the superclass. A class which inherits from a superclass is called a
subclass, also called heir class or child class.

Python Inheritance Syntax

class DerivedClass(BaseClass):
body_of_derived_class

Example:
class Car(object):

"""Returns a car name. """
def __init__(self, name):

self.name = name

def get_details(self):
"Returns a string containing name of the car"
return self.name

class model(Car):
"""Returns a model object, takes name, modelid, price"""
def __init__(self, name, modelid, price):

Car.__init__(self,name)
self.modelid = modelid
self.price = price

def get_details(self):

"Returns a string containing model deatils."
return "%s , %s value is %s." % (self.name, self.modelid,

self.price)

OUTPUT:

Above example is a single level inheritance example, where Car is
super class and model is derived class.

We are inheriting the name attribute i.e. car name and made it
available in the derived class.

We will now see syntax for multiple inheritance:

class Base1:
pass

class Base2:
pass

class MultiDerived(Base1, Base2):
pass

syntax for multi-level inheritance is
class Base:

pass
class Derived1(Base):

pass
class Derived2(Derived1):

pass

Method overriding

 In Python method overriding occurs when defining in
the child class a method with the same name of a method in the
parent class. When you define a method in the object you make this
latter able to satisfy that method call, so the implementations of its
ancestors do not come into play i.e. base class method will not be
implemented.

class base1(object):
def __init__(self):

self.value = 9

def get_value(self):
return self.value

class derive1(base1):
def get_value(self):

return self.value + 1

Output:

Inheritance delegation occurs automatically, but if a method is
overridden the implementation of the ancestors i.e. base class is not
considered at all. So, if you want to run the implementation of one or
more of the ancestors of your class, you have to call them
properly/clearly.

Chapter 18
Tips For Beginners

Now we’ve almost come to the end and for a beginner level you have
learned all the important concepts in Python. What we’ve taught you
in this tutorial is the fundamental of Python Programming and it is
the base for the higher concepts like Implementing Python in
networking, CGI, Application development and Server scripting etc.,
.

While debugging the program definitely you will have errors. Here
we are talking about syntax error, it may be because of syntax
missing or IndentationError problem. We advise you not to give up
and loose hope – keep learning and keep trying, you will get ahead
with Python Programming very shortly.

IndentationError is an error which can be easily solved if you focus
on the left most corner of the text editor.

Check out the line 5 to 6, new sub line occurs in line 7 right? so if
you adjust that you will get the correct output. It is very common that
while typing program quickly we may press enter . If you press that
in between block or module, sub branch will be created inside that. It
will show like in line 5 and 9. This also creates IndentationError.

If you can’t solve the error, simply copy the error and paste it in
google and find solution. Stackoverflow members are experts in it so
try that website.

ADVANTAGES OF LEARNING PYTHON:

➢ Easy to learn
➢ High efficiency compared to other languages
➢ Faster than c, c++, java and slightly slower than perl,
php, which makes it an average speed language. Though the
speed is lesser comparatively, Python is highly efficient with
latest hardware which makes it a favourite language.
➢ Python gained quick publicity and many communities
are developing the language.
➢ It is an open source
➢ Whatever the field may be, Python can be used.
➢ Less lines of code compared to others.
➢ Best suitable for start-ups looking for quick profit.

Dear Reader, if you liked what you read, please leave an honest

review in Amazon.

If you want to tell us about the quality or improvement areas in
this book, please write to upskillpublishing@gmail.com

We read all your comments, feedback and inputs and ensure to
make reading this book a pleasant experience by constantly

updating it.
This guide is developed to help you to get started with Python

Programming. If we served this purpose, we consider it a
success.

---The End---

	Content

