

	

	
	

PYTHON
PROGRAMMING

	

	

	

	

PYTHON	PROGRAMMING

A	Step-by-Step	Guide	for	Absolute	Beginners
	

	

	

B R I A N 	 J E N K I N S

	

Bestselling	Book	in	C#	programming	from	the	same	Author:

	

	

	

https://www.amazon.com/dp/B07M5BVCCH/

Edited	and	Published	by

ATS	Coding	Academy	and	Amazon	Kindle	Publishing

3.	Edition

©	Copyright	2019	by	Brian	Jenkins.

All	rights	reserved.

The	 contents	 of	 this	 book	 may	 not	 be	 reproduced,	 duplicated	 or	 transmitted
without	the	direct	written	permission	of	the	author.

Under	 no	 circumstances	will	 any	 legal	 responsibility	 or	 blame	be	 held	 against
the	 publisher	 for	 any	 reparation,	 damages,	 or	 monetary	 loss	 due	 to	 the
information	herein,	either	directly	or	indirectly.

Legal	Notice:

You	 cannot	 amend,	 distribute,	 sell,	 use,	 quote	 or	 paraphrase	 any	 part	 or	 the
content	within	this	book	without	the	consent	of	the	author.

Disclaimer	Notice:

Please	 note	 the	 information	 contained	within	 this	 document	 is	 for	 educational
and	 entertainment	 purposes	 only.	 No	 warranties	 of	 any	 kind	 are	 expressed	 or
implied.	Readers	acknowledge	that	the	author	is	not	engaging	in	the	rendering	of
legal,	 financial,	 medical	 or	 professional	 advice.	 Please	 consult	 a	 licensed
professional	before	attempting	any	techniques	outlined	in	this	book.

By	reading	this	document,	 the	reader	agrees	 that	under	no	circumstances	is	 the
author	 responsible	 for	 any	 losses,	 direct	 or	 indirect,	 which	 are	 incurred	 as	 a
result	of	 the	use	of	 information	contained	within	 this	document,	 including,	but
not	limited	to,	errors,	omissions,	or	inaccuracies.

	

	

	

	

Thank	you!

Thank	you	for	buying	this	book!	It	is	intended	to	help	you	to	start	coding	with
the	powerful	Python	language.

	

Book	Objectives

The	 author	 wrote	 this	 book	 with	 the	 goal	 of	 helping	 the	 readers	 learn	 every
aspect	of	Python	programming.

This	book	will	help	you:

Know	more	 about	 computer	 programming	 and	how	 to	get	 started	with	Python
programming	language.

Understand	the	various	features	of	Python	programming	language	and	appreciate
its	power.

Target	Users

The	 book	 designed	 for	 a	 variety	 of	 target	 audiences.	 The	 most	 suitable	 users
would	include:

Newbies	in	computer	programming	and	Python	Programming

Professionals	in	computer	programming	and	software	applications	development

Professors,	lecturers	or	tutors	who	are	looking	to	find	better	ways	to	explain	the
content	to	their	students	in	the	simplest	and	easiest	way

Students	and	academicians,	especially	those	focusing	on	computer	programming
and	software	development

Is	this	book	for	me?

If	you	want	 to	 learn	computer	programming	with	Python,	 this	book	is	 for	you.
Experience	in	computer	programming	is	not	required.	If	this	is	the	first	time	for
you	to	hear	about	computer	programming,	this	book	is	the	best	for	you.

About	the	Author

Dr.	 Brian	 Jenkins	 has	 a	 Ph.D.	 in	 computer	 science.	 He	 conducted	 coding
research	 for	 magnetic	 recording	 systems	 and	 long-haul	 fiber	 optic
communication	systems.	With	two	decades	experience	teaching	programming	to
newcomers,	 and	 one	 of	 the	most	 talented	 IT	 specialists	 of	 his	 generation,	 Dr.
Brian	 works	 as	 a	 Research	 Software	 Specialist	 and	 occasional	 as	 a
bioinformatician.	 Brian	 has	 been	 in	 the	 software	 field	 for	 over	 20	 years	 and
explored	 implementations	 of	 the	 Prolog	 language,	 and	 over	 his	 career	 has
worked	as	a	professional	software	developer	on	compilers,	programming	tools,
scripting	systems,	and	assorted	client/server	and	business	applications.

In	 addition,	Brian	worked	 as	 a	 research	 and	 teaching	 assistant	 at	 the	Chair	 of
Information	and	Coding	Theory	(ICT)	towards	his	Ph.D.	degree	at	the	Faculty	of
Engineering.

Since	2015	Brian	resides	in	Geneva,	in	Switzerland	with	his	wife,	and	daughter.
He	is	working	on	series	of	books	in	programming	and	data	science.

	

	

	

	

“Good	programmers	use	their	brains,	but	good	guidelines	save	us	having	to	think
out	every	case.”

Francis	Glassborow

Introduction

Python	 is	an	object-oriented	and	multi-purpose	programming	 language.	Python
can	 be	 used	 to	 develop	 different	 types	 of	 applications	 ranging	 from	 web
applications,	desktop	applications	and	even	game	applications.	The	language	is
popular	for	its	syntax	which	is	easy	for	one	to	grasp.	This	has	made	it	one	of	the
best	coding	languages	for	absolute	beginners	to	computer	programming.	This	is
the	 reason	 as	 to	 why	 Python	 is	 taught	 in	 junior	 and	 middle-aged	 students	 in
schools.	The	language	was	developed	with	the	goal	of	making	programing	easy
for	understanding.

Python	 is	 a	 cross-platform	 programming	 language.	 It	 can	 be	 used	 on	 various
systems	 including	 Windows,	 Unix,	 Mac	 etc.	 It	 also	 comes	 with	 numerous
modules	that	are	cross-platform.	However,	Python	has	maintained	a	uniform	user
interface.	 Python	 supports	 integration	 with	 different	 database	 management
systems	(DBMSs).	 This	means	 that	 you	 can	 access	 your	 data	 from	 a	 database
with	Python.	This	book	explores	every	aspect	of	Python	programming	language.
It	 will	 help	 you	 in	 preparing	 a	 solid	 computer	 programming	 foundation	 and
learning	any	other	coding	language	will	be	easy	to	you.

	

	

	

	

	

To	my	wife	Chelsea	and	my	daughter	Britany

You	are	the	happiness	of	my	days,	and	you	are	my	truest	love!

	

	

Table	of	Contents

Introduction

Chapter	1-	Getting	Started	with	Python
What	is	Python?
Installing	Python
Python
Installation	on	Windows
Installation	on	Linux

Installation	on	Mac	OS
Running	Programs
Interactive	Interpreter
Script	from	Command	Line
Python	IDE	(Integrated	Development	Environment)

Chapter	2-	Basic	Python	Syntax
Indentation
Quotes
User	Input

Chapter	3-	Python	Variables
Multiple	Variable	Assignment

Chapter	4-	Python	Data	Types
Python	Numbers
Python	Strings
Python	Lists
Python	Tuples
Python	Dictionaries
Datatype	Conversion

Chapter	5-	Control	Statements
If	Statement
If-Else	Statement
If	Elif	Else	Statement
Nested	If

Chapter	6-	Python	Functions
Function	Parameters
Function	Parameter	Defaults

Chapter	7-	Python	Loops
For	Loop
While	Loop
Loop	Control
Break	Statement
Continue	Statement
Pass	Statement

Chapter	8-	Python	Classes	and	Objects
Class	Definition
Built-in	Attributes
Garbage	Collection
Inheritance
Multiple	Inheritance
Python	Constructors
Overriding	Class	Methods
Operator	Overloading

Chapter	9-	Exception	Handling
Raising	Exceptions
Exception	Objects
Custom	Exception	Class

Chapter	10-	Python	Modules
Locating	Modules
Namespaces	and	Scope
global	VariableName
dir()	Function
locals	()	and	global()	Functions
reload	()	Function
reload(module_name)
reload(hello)

Chapter	11-	File	Handling

open()	Function
close()	Method
fileObject.close();
write()	Method
fileObject.write(string);
read	()	Method
fileObject.read([count]);
File	Positions
rename()	Method
remove()	Method
mkdir()	Method
chdir()	Method
getcwd()	Method
rmdir()	Method
Chapter	12-	Tkinter
TKinter	Buttons
TKinter	MenuButtons
Canvas
Slider
TKinter	Label
TKinter	Checkbutton
TKinter	Radiobutton

Chapter	13-	Python	Operators
Arithmetic	Operators
Comparison	Operators
Assignment	Operators
Membership	Operators
Identity	Operators

Chapter	14-	Accessing	MySQL	Databases
import	PyMySQL
Creating	a	Table
Inserting	Data

Conclusion

Chapter	1-	Getting	Started	with	Python

What	is	Python?
Python	 is	 a	 programming/coding	 language.	 It’s	 one	 of	 the	 programming
languages	 that	 are	 interpreted	 rather	 than	 compiled.	 This	 means	 the	 Python
Interpreter	works	 or	 operates	 on	Python	 programs	 to	 give	 the	 user	 the	 results.
The	Python	Interpreter	works	in	a	line-by-line	manner.	With	Python,	one	can	do
a	lot.	Python	has	been	used	for	development	of	apps	that	span	a	wide	of	fields,
from	 the	most	 basic	 apps	 to	 the	 most	 complex	 ones.	 Python	 can	 be	 used	 for
development	of	the	basic	desktop	computer	applications.	It	is	also	a	good	coding
language	for	web	development.	Websites	developed	with	Python	are	known	for
the	 level	of	security	and	protection	 they	provide,	making	 them	safe	and	secure
from	hackers	and	other	malicious	users.	Python	is	well	applicable	in	the	field	of
game	 development.	 It	 has	 been	 used	 for	 development	 of	 basic	 and	 complex
computer	games.	Python	is	currently	the	best	programming	language	for	use	in
data	science	and	machine	learning.	It	has	libraries	that	are	best	suitable	for	use	in
data	analysis,	making	it	suitable	for	use	in	this	field.	A	good	example	of	such	a
library	 is	scikit-learn	(sklearn)	which	has	proved	 to	be	 the	best	 for	use	 in	data
science	and	machine	learning.

Python	is	well	known	for	its	easy-to-use	syntax.	It	was	written	with	the	goal	of
making	coding	easy.	This	has	made	it	easy	the	best	language	even	for	beginners.
Its	semantics	are	also	easy,	making	it	easy	for	one	to	understand	Python	codes.
The	language	has	received	a	 lot	of	changes	and	improvements,	especially	after
the	 introduction	of	Python	3.	Previously,	we	had	Python	2.7	which	had	gained
much	stability.	Python	3	brought	 in	new	libraries,	 functions	and	other	features,
and	some	of	the	language	constructs	where	changed	significantly.	The	names	of
some	Python	libraries	were	also	changed,	especially	when	it	comes	to	case.

Installing	Python

To	 code	 in	 Python,	 you	 must	 have	 the	 Python	 Interpreter	 installed	 in	 your
computer.	You	must	 also	 have	 a	 text	 editor	 in	which	 you	will	 be	writing	 and
saving	 your	 Python	 codes.	 The	 good	 thing	 with	 Python	 is	 that	 it	 can	 run	 on
various	 platforms	 like	 Windows,	 Linux	 and	 Mac	 OS.	 Most	 of	 the	 current
versions	of	these	operating	systems	come	installed	with	Python.	You	can	check
whether	 Python	 has	 been	 installed	 on	 your	 operating	 system	 by	 running	 this
command	on	the	terminal	or	operating	system	console:

Python
Type	the	above	command	on	the	terminal	of	your	operating	system	then	hit	the
Enter/Return	key.	The	command	should	return	the	version	of	Python	installed	on
your	system.	If	Python	is	not	installed,	you	will	be	informed	that	the	command	is
not	recognized,	hence	you	have	to	install	Python.

Installation	on	Windows
To	install	Python	on	Windows,	download	Python	from	its	official	website	 then
double	click	 the	downloaded	setup	package	 to	 launch	 the	 installation.	You	can
download	the	package	by	clicking	this	link:

https://www.python.org/downloads/windows/

It	will	be	good	for	you	to	download	and	install	the	latest	package	of	Python	as
you	will	be	able	to	enjoy	using	the	latest	Python	packages.		Currently,	we	have
Python	3.6	being	the	latest	release	of	Python.

After	downloading	the	package,	double	click	it	and	you	will	be	guided	through
on-screen	instructions	on	how	to	install	Python	on	your	Windows	OS.

https://www.python.org/downloads/windows/

Installation	on	Linux
In	 Linux,	 there	 are	 a	 number	 of	 package	 managers	 that	 can	 be	 used	 for
installation	 of	 Python	 in	 various	 Linux	 distributions.	 For	 example,	 if	 you	 are
using	Ubuntu	Linux,	run	this	command	to	install	Python:

$	sudo	apt-get	install	python3-minimal

To	install	Python	3.6,	run	the	following	commands:

#	wget	https://www.python.org/ftp/python/3.6.3/Python-3.6.3.tar.xz

#	tar	xJf	Python-3.6.3.tar.xz

#	cd	Python-3.6.3

#.	/configure

#	make

#	make	install

This	may	take	a	while.	When	the	installation	is	complete,	use	which	to	verify	the
location	of	the	main	binary:

#	which	python3

#	python3	-V

The	output	of	the	above	command	should	be	like:

To	exit	the	Python	prompt,	simply	type:

quit()

or

exit()

Python	will	be	installed	on	your	system.	However,	most	of	the	latest	versions	of
various	 Linux	 distributions	 come	 installed	 with	 Python.	 Just	 run	 the	 “python”

command.	 If	 you	 get	 a	 Python	 version	 as	 the	 return,	 then	 Python	 has	 been
installed	on	your	system.	If	not,	go	ahead	and	install	Python.

Installation	on	Mac	OS
To	install	Python	in	Mac	OS,	you	must	first	download	the	package.	You	can	find
it	by	opening	the	following	link	on	your	web	browser:

https://www.python.org/downloads/mac-osx/

After	 the	setup	has	been	downloaded,	double	click	it	 to	 launch	the	installation.
You	will	 be	 presented	 with	 on	 screen	 instructions	 that	 will	 guide	 through	 the
installation	 process.	 Lastly,	 you	 will	 have	 Python	 running	 on	 your	 Mac	 OS
system.

https://www.python.org/downloads/mac-osx/

Running	Programs

One	can	run	Python	programs	in	two	main	ways:

Interactive	interpreter
Script	from	command	line

Interactive	Interpreter
Python	 comes	 with	 a	 command	 line	 which	 is	 commonly	 referred	 to	 as	 the
interactive	 interpreter.	 You	 can	 write	 your	 Python	 code	 directly	 on	 this
interpreter	and	press	the	enter	key.	You	will	instant	results.	If	you	are	on	Linux,
you	only	have	to	open	the	Linux	terminal	then	type	“python”.	Hit	the	enter	key
and	you	will	be	presented	with	the	Python	interpreter	with	the	>>>	symbol.	To
access	 the	 interactive	 Python	 interpreter	 on	 Windows,	 click	 Start	 ->	 All
programs,	then	identify	“Python	…”	from	the	list	of	programs.	In	my	case,	I	find
“Python	3.5” 	as	I	have	installed	 Python	3.5 .	Expand	this	option	and	click	 “Python	…”.

In	my	case,	I	click	 “Python	3.5(64-bit)” 	and	I	get	the	interactive	Python	interpreter.

Here,	you	can	write	and	 run	your	Python	scripts	directly.	To	write	 the	“Hello”
example,	type	the	following	on	the	interpreter	terminal:

print	("Hello")

Hit	the	enter/return	key	and	the	text	“Hello”	will	be	printed	on	the	interpreter:

Script	from	Command	Line
This	 method	 involves	 writing	 Python	 programs	 in	 a	 file,	 then	 invoking	 the
Python	 interpreter	 to	work	 on	 the	 file.	 Files	with	Python	 are	 saved	with	 a	 .py
extension.	This	is	a	designation	to	signify	that	 it	 is	a	Python	file.	For	example,
script.py,	myscript.py	etc.	After	writing	your	code	in	the	file	and	saving	with	the
name	 “mycode.py”, 	you	can	open	the	operating	system	command	line	and	invoke
the	 Python	 interpreter	 to	 work	 on	 the	 file.	 For	 example,	 you	 can	 run	 this
command	on	the	command	line	to	execute	the	code	on	the	file	mycode.py:

python	mycode.py
The	Python	interpreter	will	work	on	the	file	and	print	the	results	on	the	terminal.	

Python	IDE	(Integrated	Development	Environment)
	

If	you	have	a	GUI	(Graphical	User	Interface)	application	capable	of	supporting
Python,	you	can	 run	 the	Python	on	a	GUI	environment.	The	 following	are	 the
Python	IDEs	for	the	various	operating	systems:

UNIX-	IDLE
Windows-	PythonWin
Macintosh-	 this	 comes	 along	 with	 IDLE	 IDE,	 downloadable	 from	 the
official	website	as	MacBinary	or	BinHex'd	files.

Chapter	2-	Basic	Python	Syntax

As	stated	earlier,	Python	was	written	with	the	goal	of	making	programming	easy.
Its	syntax	is	closely	related	to	the	one	used	in	popular	coding	languages	like	C
and	Java.	In	our	previous	example,	we	wrote	the	following	statement:

print("Hello")

What	 we	 are	 doing	 is	 instructing	 Python	 interpreter	 to	 print	 Hello	 on	 the
terminal.	This	has	been	achieved	by	calling	 the	print()	 function.	Functions	 are
predefined,	so	the	Python	interpreter	will	understand	what	you	mean	when	you
call	 the	 function.	Python	 functions	 are	written	using	parenthesis	 (),	which	 is	 a
designation	to	mean	that	you	are	writing	a	function.

Indentation

Most	 programming	 languages	 rely	 on	 curly	 braces	 {}	 to	 group	 blocks	 of
statements	that	are	related	or	the	ones	that	are	to	perform	a	unit	task.	This	is	not
the	case	with	Python.	Python	relies	on	indentation	to	create	blocks	of	statements.
Statements	in	same	block	must	have	similar	indentation.	Example:

if	True:

				print	("Condition	True")

else:

		print	("Condition	False")

The	“if”	and	“else”	statements	have	same	level	of	indentation.

	Example	2:

if	True:

											print	("Condition	True")

						print	("Printing	True	")

else:

							print	("Condition	False")

print	("Printing	False")

In	the	above	code,	we	will	get	an	error	after	running	the	script.	The	last	two	print
statements	 belong	 to	 similar	 block,	 but	 they	 have	 not	 been	 indented	 to	 same
level.	They	should	be	indented	as	in	the	first	two	print	statements.

Quotes

Python	 accepts	 single,	 double	 and	 triple	 quotes.	 They	 help	 in	 enclosing	 string
literals.	In	our	previous	statement:

print("Hello")

We	have	opened	the	string	to	be	printed	with	double	quotes	and	closed	the	string
with	double	quotes.	If	you	open	with	a	particular	type	of	quote,	you	must	use	it
to	 close	 the	 string,	 otherwise,	 an	 error	will	 be	 generated.	We	 could	 also	 have
used	single	or	triple	quotes	to	enclose	the	string	and	the	result	would	have	been
the	same.	Example:

Using	single	quotes:

print('Hello')

Using	triple	quotes:

print('''Hello''')

However,	these	were	not	introduced	to	be	used	this	way.	Triple	quotes	should	be
used	when	 there	 is	a	need	 to	span	a	particular	 string	across	a	number	of	 lines.
Single	quotes	should	be	used	to	quote	a	word,	while	the	double	quotes	should	be
used	to	quote	a	sentence.	Example:

word	=	'hello'

sentence	=	"It’s	a	sentence."

paragraph	=	"""It’s	a	paragraph

in	Python	with	multiple	lines"""

User	Input

When	 writing	 your	 program	 or	 creating	 an	 application,	 you	 may	 require	 the
users	to	enter	an	input	such	as	their	username	and	other	details.	Python	provides
the	input()	function	that	helps	you	get	and	process	input	from	users.	Other	than
entering	input,	you	may	require	the	users	to	perform	an	action	so	that	they	may
go	to	the	next	step.	For	example,	you	may	need	them	to	press	the	enter	key	on
the	keyboard	to	be	taken	to	next	step.	Example:

Input	("\n\n	Press	Enter	key	to	Leave.")
Just	type	above	statement	on	the	interactive	Python	interpreter	then	hit	the	Enter
key	on	the	keyboard.	You	will	be	prompted	to	press	the	Enter	key:

The	program	waits	for	an	action	from	the	user	to	proceed	to	next	step.	Notice	the
use	of	\n\n	which	is	characters	to	create	a	new	line.	To	create	one	line,	we	use	a
single	one,	that	is,	\n.	In	this	case,	two	blank	lines	will	be	created.	That	is	how
Python	input()	function	works.

Chapter	3-	Python	Variables

	

Python	variables	preserve	a	location	in	memory	that	can	be	used	for	storage	of
values.	 Once	 a	 variable	 is	 created,	 some	 memory	 space	 is	 reserved	 for	 it.
Variables	 are	 of	 different	 types,	 and	 the	 type	 used	 to	 declare	 the	 variables
determines	the	amount	of	storage	space	assigned	to	the	variables	as	well	as	the
value	 that	 can	 be	 stored	 in	 that	 variable.	 The	 equal	 sign	 (=)	 is	 used	 for
assignment	 of	 a	 value	 to	 a	 variable.	 When	 a	 value	 has	 been	 assigned	 to	 a
variable,	that	variable	will	be	declared	automatically.

Example:

#!	/usr/bin/python3

age	=	26										#	Integer	variable	and	value

height			=	17.1							#	Floating	point	variable	and	value

name				=	"Nicholas"							#	String	variable	and	value

print	(age)

print	(height)

print	(name)

After	running	the	above	program,	you	will	get	the	following	result:

We	declared	 three	variables	namely	age,	height	and	name.	The	 three	were	also
assigned	 values.	We	 have	 then	 used	 the	 print	 function	 to	 access	 the	 values	 of
these	functions	and	print	them	on	the	terminal.	Note	that	the	variables	have	not
been	 enclosed	 within	 quotes	 in	 the	 print	 statement.	 This	 is	 because	 we	 are
accessing	variables	that	have	been	defined	already.

Multiple	Variable	Assignment

In	 Python,	 a	 single	 value	 can	 be	 assigned	 to	 a	 number	 of	 variables	 at	 once.
Example:

a	=	b	=	c	=	2
In	the	above	example,	the	value	2	has	been	assigned	to	three	different	variables
namely	a,	b	and	c.	This	means	each	of	these	variables	has	a	value	of	2.	The	three
will	also	be	kept	in	a	single	location.

It	 is	 also	 possible	 for	 you	 to	 assign	 multiple	 objects	 to	 different	 variables.
Example:

a,	b,	c	=	2,	3,	"nicholas"

In	the	above	example,	the	values	will	be	assigned	to	the	variables	according	to
their	order,	Variable	a	will	be	assigned	a	value	of	 2 ,	 b 	a	 3 	and	 c 	“nicholas”.

You	 can	 run	 this	 program	 to	 access	 the	 values	 of	 individual	 variables	 given
above:

#!	/usr/bin/python3

a,	b,	c	=	2,	3,	"nicholas"

print(a)

print	(b)

print	(c)

This	will	give	the	result	shown	below:

It	is	very	clear	that	the	values	were	assigned	to	the	variables	based	on	their	order.

Chapter	4-	Python	Data	Types

Python	supports	different	data	types.	Each	variable	should	belong	to	one	of	the
data	types	supported	in	Python.	The	data	type	determines	the	value	that	can	be
assigned	to	a	variable,	the	type	of	operation	that	may	be	applied	to	the	variable
as	well	as	amount	of	space	assigned	to	the	variable.	Let	us	discuss	different	data
types	supported	in	Python:

Python	Numbers

These	 data	 types	 help	 in	 storage	 of	 numeric	 values.	 .	 The	 creation	 of	 number
objects	in	Python	is	done	after	we	have	assigned	a	value	to	them.	Consider	the
example	given	below:

total	=	55
age=	26
You	are	familiar	with	this	as	we	had	discussed	it	earlier.	Also,	it	is	possible	for
you	 to	delete	a	 reference	 to	a	particular	number	variable.	This	can	be	done	by
use	of	the	del	statement.	This	statement	takes	the	following	syntax:
del	variable1[,variable2[,variable3[....,variableN]]]]

The	statement	can	be	used	for	deletion	of	a	single	or	multiple	variable.	This	 is
shown	below:

del	total
del	total,	age
In	 the	 first	 statement,	 we	 are	 deleting	 a	 single	 variable	 while	 in	 the	 second
statement,	we	are	deleting	two	variables.	If	the	variables	to	be	deleted	are	more
than	two,	separate	them	by	use	of	a	comma	and	they	will	be	deleted.

In	Python,	there	are	four	numerical	values	which	are	supported:

Int
Float
complex

In	Python	3,	all	integers	are	represented	in	the	form	of	long	integers.

The	Python	integer	literals	belong	to	the	int	class.	Example:

Run	the	following	statements	consecutively	on	the	Python	interactive	interpreter:

x=10
x

The	float	is	used	for	storing	numeric	values	with	a	decimal	point.

Example:

x=10.345x
You	 can	 run	 it	 on	 the	 Python	 interactive	 interpreter	 and	 you	will	 observe	 the
following

If	you	are	performing	an	operation	with	one	of	the	operands	being	a	float	and	the
other	being	an	integer,	the	result	will	be	a	float.	Example:

5	*	1.5

As	shown	above,	the	result	of	the	operation	is	7.5	which	is	a	float.

Complex	numbers	are	made	of	real	and	imaginary	parts,	with	the	imaginary	part
being	denoted	using	a	j.	They	can	be	defined	as	follows:

x	=	4	+	5j

	

In	above	example,	4	is	the	real	part	while	5	is	the	imaginary	part.

Python	with	a	 function	named	 type()	 that	can	be	used	 for	determination	of	 the
type	 of	 a	 variable.	You	only	 have	 to	 pass	 the	 name	of	 the	 variable	 inside	 that
function	as	the	argument	and	its	type	will	be	printed.	Example:

x=10
type(x)

	

The	variable	x	 is	of	 int	class	as	shown	above.	You	can	try	 it	 for	other	variable
types	as	shown	below:

name='nicholas'
type(name)

The	variable	is	of	the	string	class	as	shown	above.

Python	Strings

Python	strings	are	series	of	characters	enclosed	within	quotes.	Use	any	 type	of
quotes	to	enclose	Python	strings,	that	is,	either	single,	double	or	triple	quotes.	To
access	string	elements,	we	use	the	slice	operator.	String	characters	begin	at	index
0,	meaning	 that	 the	 first	 character	 string	 is	 at	 index	0.	This	 is	 good	when	you
need	 to	 access	 string	 characters.	 To	 concatenate	 strings	 in	 Python,	 we	 use	 +
operator,	the	asterisk	9*)	is	used	for	repetition.	Example:

#!/usr/bin/python3
thanks	=	'Thank	You'
print	(thanks)										#	to	print	the	complete	string
print	(thanks[0])							#	to	print	the	first	character	of	string
print	(thanks[2:7])					#	to	print	the	3rd	to	the	7th	character	of	string
print	(thanks[4:])						#	to	print	from	the	5th	character	of	string
print	(thanks	*	2)						#	to	print	the	string	two	times
print	(thanks	+	"\tAgain!")	#	to	print	a	concatenated	string
The	program	prints	the	following	once	executed:

	

Notice	 that	 we	 have	 text	 beginning	 with	 #	 symbol.	 The	 symbol	 denotes
beginning	 of	 a	 comment.	 The	 Python	 print	 will	 not	 act	 on	 the	 text	 from	 the
symbol	to	the	end	of	the	line.	Comments	are	meant	at	enhancing	the	readability
of	code	by	giving	explanation.	We	defined	a	string	named	thanks	with	the	value
Thank	You.	The	print	(thanks[0])	statement	helps	us	access	the	first	character	of
the	 string,	 hence	 it	 prints	 T.	 You	 also	 notice	 that	 the	 space	 between	 the	 two
words	is	counted	as	a	character.

Python	Lists

Lists	 consist	 of	 items	 enclosed	 within	 square	 brackets	 ([])	 and	 the	 items	 are
separated	using	commas	(,).	They	are	similar	to	the	C	arrays.	Although	all	array
elements	must	belong	to	similar	type,	lists	support	the	storage	of	items	belonging
to	different	types	in	a	single	list.	

We	use	 the	slice	operator	 ([]	and	[:])	 for	accessing	 the	elements	of	a	 list.	The
indices	 start	 from	 0	 and	 end	 at	 -1.	 Also,	 the	 plus	 symbol	 (+)	 represents	 the
concatenation	operator	while	 the	 asterisk	 (*)	 represents	 the	 repetition	operator.
Example:

#!/usr/bin/python3

listA	=	['john',	3356	,	8.90,	'sister',	34.21]

listB	=	[120,	'sister']

print	listA						#	will	print	the	complete	list

print	listA[0]			#	will	print	the	first	element	of	the	list

print	listA[1:3]	#	will	print	the	elements	starting	from		the	2nd	till	3rd

print	listA[2:]		#	will	print	the	elements	starting	from	the	3rd	element

print	listB	*	2		#	will	print	the	list	two	times

print	listA	+	listB	#	will	print	a	concatenated	lists

There	is	no	much	difference	in	what	is	happening	in	the	above	code	compared	to
the	previous	one	for	strings.	When	executed,	the	program	outputs:

In	 the	 statement	 “print	 listA”,	 we	 print	 the	 contents	 of	 listA.	 Note	 that	 each

element	is	treated	to	be	at	its	own	index	as	a	whole,	for	example,	element	‘john’
is	treated	as	a	single	element	of	a	list	at	index	0.

Python	Tuples

Python	tuples	are	similar	to	lists	with	the	difference	being	after	creating	a	tuple,
you	cannot	add,	delete	or	change	the	tuple	elements.	Tuple	elements	should	be
enclosed	within	parenthesis	().	Example:

#!/usr/bin/python3

t1	=	()	#	creating	an	empty	tuple,	that	is,	no	data

t2	=	(22,34,55)

t3	=	tuple([10,23,78,110,89])	#	creating	a	tuple	from	an	array

t4	=	tuple("xyz")	#	creating	tuple	from	a	string

print	t1

print	t2

print	t3

print	t4

The	values	of	the	4	tuples	will	be	printed:

There	are	a	number	of	functions	that	can	be	applied	on	tuples.	Example:

#!/usr/bin/python3

t1	=	(23,	11,	35,	19,	98)

print("The	minimum	element	in	the	tuple	is",	min(t1))

print("The	sum	of	tuple	elements	is",	sum(t1))

print("The	maximum	element	in	the	tuple	is",	max(t1))

print("The	tuple	has	a	length	of",	len(t1))

When	executed,	it	gives	this	result:

	

First,	 we	 called	 the	min()	 function	 which	 returns	 the	 smallest	 element	 in	 the
tuple.	We	 then	called	 the	sum()	 function	which	 returned	 the	 total	 sum	of	 tuple
elements.	The	max()	 function	 returned	 the	maximum	element	 in	 the	 tuple.	The
len()	function	counted	all	elements	in	the	tuple	and	returned	their	number.

You	 can	 use	 the	 slice	 operator	 to	 access	 some	 of	 the	 tuple	 elements,	 not	 all.
Example:

#!/usr/bin/python3

t	=	(23,	26,	46,	59,	64)

print(t[0:2])

When	executed,	it	prints:

We	have	used	the	slice	operator	to	access	elements	from	index	0	to	index	2	in	the
tuple.	Note	that	tuple	elements	begin	at	index	0.

Python	Dictionaries

Python	 dictionaries	 are	 used	 for	 storage	 of	 key-value	 pairs.	With	 dictionaries,
you	 can	 use	 a	 key	 to	 retrieve,	 remove,	 add	 or	modify	 values.	Dictionaries	 are
also	mutable,	meaning	you	can’t	their	values	once	declared.

To	create	dictionaries,	we	use	curly	braces.	Every	dictionary	item	has	a	key,	and
then	followed	by	colon,	then	a	value.	The	items	are	separated	using	a	comma	(,).
Example:

#!/usr/bin/python3

classmates	=	{

'john'	:	'234-221-323',

'alice'	:	'364-32-141'

}

We	have	 created	 a	 dictionary	 named	 classmates	with	 two	 items.	Note	 that	 the
key	 must	 be	 of	 a	 type	 that	 is	 hashable,	 but	 you	 may	 use	 any	 value.	 Each
dictionary	key	must	be	unique.	 I	 first	element,	 john	 is	 the	key	followed	by	 the
value.	In	second	element,	alice	is	the	element.	To	access	dictionary	elements,	use
the	dictionary	name	and	the	key.	Example:

#!/usr/bin/python3

classmates	=	{

'john'	:	'234-221-323',

'alice'	:	'364-32-141'

}

print("The	number	for	john	is",	classmates['john'])

print("The	number	for	alice	is",	classmates['alice'])

The	last	two	statements	help	us	access	the	dictionary	values.	It	prints:

To	know	the	dictionary	length,	run	the	len()	function	as	follows:
len(classmates)

The	above	will	return	2	as	the	dictionary	has	only	two	elements.

Datatype	Conversion

Python	 allows	 you	 to	 convert	 data	 from	 one	 type	 to	 another.	 The	 process	 of
converting	from	one	datatype	to	another	is	known	as	typecasting.

If	you	need	to	convert	your	int	datatype	into	a	float,	you	call	the	float()	function.

Example:

#!/usr/bin/python3

height=20

print("The	value	of	height	in	int	is",	height)

print("The	value	of	height	in	float	is",	float(height))

In	above	example,	height	has	been	 initialized	 to	20.	We	have	called	 the	 float()
function	and	passed	height	 to	 it	as	 the	parameter.	The	integer	value,	 that	 is,	20
has	 been	 converted	 into	 a	 float	 value,	 that	 is,	 20.0.	 The	 program	 prints	 the
following:

	

To	convert	a	float	into	an	int,	you	call	the	int()	function.	Example:

#!/usr/bin/python3

height=20.0

print("The	value	of	height	in	float	is",	height)

print("The	value	of	height	in	int	is",	int(height))

The	program	prints	the	following:

We	have	 called	 the	 int()	 function	 and	 passed	 the	 parameter	height	 to	 it.	 It	 has

converted	20.0	to	20,	which	is	a	float	to	an	integer	conversion.

If	 you	 need	 to	 convert	 a	 number	 to	 a	 string,	 you	 call	 the	 str()	 function.	 The
number	will	then	be	converted	into	a	string.

Example:

#!/usr/bin/python3

num=20

print("The	value	of	num	in	int	is",	num)

print("The	value	of	num	in	string	is",	str(num))

The	program	outputs:

Although	the	value	is	the	same,	it	is	treated	differently	by	Python	interpreter.	The
conversion	of	a	float	to	a	string	can	also	be	done	similarly.

Chapter	5-	Control	Statements

Sometimes,	 you	may	 need	 to	 run	 certain	 statements	 based	 on	 conditions.	 The
goal	 in	 control	 statements	 is	 to	 evaluate	 an	 expression	 or	 expressions,	 then
determine	the	action	to	perform	depending	on	whether	the	expression	is	TRUE
or	FALSE.	There	are	numerous	control	statements	supported	in	Python:

If	Statement

With	this	statement,	the	body	of	the	code	is	only	executed	if	the	condition	is	true.
If	 false,	 the	statements	after	 If	block	will	be	executed.	 It	 is	a	basic	conditional
statement	in	Python.	Example:

#!/usr/bin/python3

ax	=	7

bx	=	13

if	ax	>	bx:

				print('ax	is	greater	than	bx')

The	 above	 code	 prints	 nothing.	 We	 defined	 variables	 ax	 and	 bx.	 We	 then
compare	their	values	to	check	whether	ax	is	greater	than	bx.	This	is	false,	hence
nothing	happens.	The	>	is	“greater	than”	sign.	Let	us	change	it	to	>,	that	is,	less
than	sign:

#!/usr/bin/python3

ax	=	7

bx	=	1

if	ax	<	bx:

				print('ax	is	greater	than	bx')

This	prints	the	following:

The	 condition/expression	was	 true,	 hence	 the	 code	 below	 the	 If	 expression	 is
executed.	Sometimes,	you	may	need	to	have	the	program	do	something	even	if
the	condition	is	false.	This	can	be	done	with	indentation	in	the	code.	Example:

#!/usr/bin/python3

ax	=	10

if	ax	<	5:

			print	("ax	is	less	than	5")

			print	(ax)

if	ax	>	15:

			print	("ax	is	greater	than	15")

			print	(ax)

print	("No	condition	is	True!")

In	the	above	code,	the	last	print()	statement	 is	at	 the	same	level	as	 the	 two	Ifs.
This	 means	 even	 any	 of	 the	 two	 is	 true,	 this	 statement	 will	 not	 be	 executed.
However,	the	statement	will	be	executed	if	both	Ifs	are	false.

Running	the	program	outputs	this:

The	last	print()	statement	as	executed	as	shown	in	result	above.

If-Else	Statement

This	statement	helps	us	specify	a	statement	to	execute	in	case	the	If	expression	is
false.	If	the	expression	is	true,	the	If	block	is	executed.	If	the	expression	is	false,
the	Else	block	will	run.	The	two	blocks	cannot	run	at	the	same	time.	It’s	only	one
of	that	can	run.	It	is	an	advanced	If	statement.

Example:

#!/usr/bin/python3

ax	=	10

bx	=	7

if	ax	>	30:

				print('ax	is	greater	than	30')

else:

				print('ax	isnt	greater	than	30')

The	code	will	give	this	result	once	executed:

	

The	value	of	variable	ax	is	30.	The	expression	if	ax	>	30:	evaluates	into	a	false.
As	 a	 result,	 the	 statement	 below	 If,	 that	 is,	 the	 first	 print()	 statement	 isn’t
executed.	The	else	part,	which	is	always	executed	when	the	If	expression	is	false
will	be	executed,	that	is,	the	print()	statement	below	the	else	part.

Suppose	we	had	this:

#!/usr/bin/python3

ax	=	10

bx	=	7

if	ax	<	30:

				print('ax	is	less	than	30')

else:

				print('ax	is	greater	than	30')

This	will	give	this	once	executed:

	

In	 the	 above	case,	 the	print()	 statement	within	 the	 If	 block	was	 executed.	The
reason	is	because	the	If	expression	as	true.	Another	example:

#!/usr/bin/python3

ax	=	35

if	ax	%	2	==0:

			print("It	is	eve")

else:

			print("It	is	odd")

The	code	outputs:

The	If	expression	was	false,	so	the	else	part	was	executed.

If	Elif	Else	Statement

This	statement	helps	us	test	numerous	conditions.	The	block	of	statements	under
the	elif	statement	that	evaluates	to	true	is	executed	immediately.	You	must	begin
with	If	statement,	followed	by	elif	 statements	 that	you	need	 then	 lastly	 the	else
statement,	which	must	only	be	one.

Example:

#!/usr/bin/python3

ax	=	6

bx	=	9

bz	=	11

if	ax	>	bx:

				print('ax	is	greater	than	bx')

elif	ax	<	bz:

				print('ax	is	less	than	bz')

else:

				print('The	else	part	ran')

The	code	outputs	the	following:

We	 have	 three	 variables	 namely	 ax,	 bx	 and	 bz.	 The	 first	 expression	 for	 If
statement	 is	 to	 check	 whether	 ax	 is	 greater	 than	 bx,	 which	 is	 false.	 The	 elif
expression	checks	whether	ax	is	less	than	bx,	which	is	true.	The	print()	statement
below	this	was	executed.

Suppose	we	had	this:

#!/usr/bin/python3

ax	=	6

bx	=	9

bz	=	11

if	ax	>	bx:

				print('ax	is	greater	than	bx')

elif	ax	>	bz:

				print('ax	is	less	than	bz')

else:

				print('The	else	part	ran')

The	code	will	output:

In	the	above	case,	both	the	If	and	elif	expressions	are	 false,	hence	 the	else	part
was	executed.	Another	example:

#!/usr/bin/python3

day	=	"friday"

if	day	==	"monday":

			print("Day	is	monday")

elif	day	==	"tuesday":

			print("Day	is	tuesday")

elif	day	==	"wednesday":

			print("Day	is	wednesday")

elif	day	==	"thursday":

			print("Day	is	thursday")

elif	day	==	"friday":

			print("Day	is	friday")

elif	day	==	"saturday":

			print("Day	is	saturday")

elif	day	==	"sunday":

			print("Day	is	sunday")

else:

			print("Day	is	unkown")

The	value	of	day	if	friday.	We	have	used	multiple	elif	expressions	 to	check	for
its	 value.	The	elif	 expression	 for	 friday	 will	 evaluate	 to	 true,	 hence	 its	print()
statement	will	be	executed.

Nested	If

An	 If	 statement	can	be	written	 inside	another	 If	statement.	That	 is	how	we	get
nested	If.	Example:

#!/usr/bin/python3

day	=	"holiday"

balance	=	110000

if	day	==	"holiday":

		if	balance	>	70000:

						print("Go	for	outing")

		else:

						print("Stay	indoors")

else:

			print("Go	to	work")

We	have	two	variables	day	and	balance.	The	code	gives	the	following	result:

The	first	if	expression	is	true	as	its	holiday.	The	second	if	expression	is	also	true
since	balance	is	greater	than	70000.	The	print()	statement	below	that	expression
is	 executed.	The	 execution	of	 the	program	 stops	 there.	Suppose	 the	balance	 is
less	than	70000	as	shown	below:

#!/usr/bin/python3

day	=	"holiday"

balance	=	50000

if	day	==	"holiday":

		if	balance	>	70000:

						print("Go	for	outing")

		else:

						print("Stay	indoors")

else:

			print("Go	to	work")

The	value	of	balance	is	50000.	The	first	if	expression	is	true,	but	the	second	one
is	false.	The	nested	else	part	is	executed.	We	get	this	result	from	the	code:

Note	 that	 the	 nested	 part	 will	 only	 be	 executed	 if	 and	 only	 if	 the	 first	 if
expression	is	true.	If	the	first	if	is	false,	then	the	un-nested	else	part	will	run.

Example:

#!/usr/bin/python3

day	=	"workday"

balance	=	50000

if	day	==	"holiday":

		if	balance	>	70000:

						print("Go	for	outing")

		else:

						print("Stay	indoors")

else:

			print("Go	to	work")

The	 value	 for	 day	 is	 workday.	 The	 first	 if	 expression	 testing	 whether	 it’s	 a

holiday	is	false,	hence	the	Python	interpreter	will	move	to	execute	the	un-nested
else	part	and	skip	the	entire	nested	part.	The	code	gives	this	result:

Chapter	6-	Python	Functions

Python	 functions	 are	 a	 good	way	 of	 organizing	 the	 structure	 of	 our	 code.	The
functions	can	be	used	for	grouping	sections	of	code	that	are	related.	The	work	of
functions	 in	 any	 programming	 language	 is	 to	 improve	 the	modularity	 of	 code
and	make	it	possible	to	reuse	code.

Python	comes	with	many	in-built	functions.	A	good	example	of	such	a	function
is	the	“print()”	function	which	we	use	for	displaying	the	contents	on	the	screen.
Despite	 this,	 it	 is	 possible	 for	 us	 to	 create	 our	 own	 functions	 in	 Python.	 Such
functions	are	referred	to	as	the	“user-defined	functions”.

To	define	a	function,	we	use	the	“def”	keyword	which	is	 then	followed	by	the
name	of	the	function,	and	then	the	parenthesis	(()).

The	parameters	or	the	input	arguments	have	to	be	placed	inside	the	parenthesis.
The	parameters	can	also	be	defined	within	parenthesis.	The	function	has	a	body
or	the	code	block	and	this	must	begin	with	a	colon	(:)	and	it	has	to	be	indented.
It	 is	 good	 for	 you	 to	 note	 that	 the	default	 setting	 is	 that	 the	 arguments	 have	 a
positional	behavior.	This	means	that	they	should	be	passed	while	following	the
order	in	which	you	defined	them.

Example:

#!/usr/bin/python3

def	functionExample():

				print('The	function	code	to	run')

				bz	=	10	+	23

				print(bz)

We	 have	 defined	 a	 function	 named	 functionExample.	 The	 parameters	 of	 a
function	are	like	the	variables	for	the	function.	The	parameters	are	usually	added
inside	the	parenthesis,	but	our	above	function	has	no	parameters.	When	you	run

above	 code,	 nothing	 will	 happen	 since	 we	 simply	 defined	 the	 function	 and
specified	what	it	should	do.	The	function	can	be	called	as	shown	below:

#!/usr/bin/python3

def	functionExample():

				print('The	function	code	to	run')

				bz	=	10	+	23

functionExample()

It	will	print	this:

That	is	how	we	can	have	a	basic	Python	function.

Function	Parameters

You	can	dynamically	define	arguments	for	a	function.	Example:

#!/usr/bin/python3

def	additionFunction(n1,n2):

				result	=	n1	+	n2

				print('The	first	number	is',	n1)

				print('The	second	number	is',	n2)

				print("The	sum	is",	result)

additionFunction(10,5)

The	code	returns	the	following	result:

	

We	defined	a	 function	named	addFunction.	The	 function	 takes	 two	parameters
namely	n1	and	n2.	We	have	another	variable	named	result	which	is	 the	sum	of
the	 two	 function	parameters.	 In	 the	 last	 statement,	we	have	called	 the	 function
and	 passed	 the	 values	 for	 the	 two	 parameters.	 The	 function	will	 calculate	 the
value	 of	 variable	 result	 by	 adding	 the	 two	 numbers.	We	 finally	 get	 the	 result
shown	above.

Note	that	during	our	function	definition,	we	specified	two	parameters,	n1	and	n2.
Try	to	call	the	function	will	either	more	than	two	parameters,	or	1	parameter	and
see	what	happens.	Example:

#!/usr/bin/python3

def	additionFunction(n1,n2):

				result	=	n1	+	n2

				print('The	first	number	is',	n1)

				print('The	second	number	is',	n2)

				print("The	sum	is",	result)

additionFunction(5)

In	the	last	statement	in	our	code	above,	we	have	passed	only	one	argument	to	the
function,	that	is,	5.	The	program	gives	an	error	when	executed:

The	 error	message	 simply	 tells	 us	 one	 argument	 is	missing.	What	 if	we	 run	 it
with	more	than	two	arguments?

#!/usr/bin/python3

def	additionFunction(n1,n2):

				result	=	n1	+	n2

				print('The	first	number	is',	n1)

				print('The	second	number	is',	n2)

				print("The	sum	is",	result)

additionFunction(5,10,9)

We	also	get	an	error	message:

The	 error	 message	 tells	 us	 the	 function	 expects	 two	 arguments	 but	 we	 have
passed	3	to	it.

In	most	programming	languages,	parameters	 to	a	function	can	be	passed	either
by	reference	or	by	value.	Python	supports	parameter	passing	only	by	reference.

This	means	if	what	the	parameter	refers	to	is	changed	in	the	function;	the	same
change	will	also	be	reflected	in	the	calling	function.	Example:

#!/usr/bin/python3

def	referenceFunction(ls1):

			print	("List	values	before	change:	",	ls1)

			ls1[0]=800

			print	("List	values	after	change:	",	ls1)

			return

#	Calling	the	function

ls1	=	[940,1209,6734]

referenceFunction(ls1)

print	("Values	outside	function:	",	ls1)

The	code	gives	this	result:

What	we	have	done	in	this	example	is	that	we	have	maintained	the	reference	of
the	objects	which	are	being	passed	and	 then	values	have	been	appended	 to	 the
same	function.

In	next	example	below,	we	are	passing	by	reference	then	the	same	reference	will
be	overwritten	inside	the	same	function	which	has	been	called:

#!/usr/bin/python3

def	referenceFunction(ls1):

			ls1	=	[11,21,31,41]

			print	("Values	inside	the	function:	",	ls1)

			return

ls1	=	[51,91,81]

referenceFunction(ls1)

print	("Values	outside	function:	",	ls1)

The	code	gives	this	result:

	

Note	that	the	“ls1”	parameter	will	be	local	to	the	function	“referenceFunction”.
Even	if	this	is	changed	within	the	function,	the	“ls1”	will	not	be	affected	in	any
way.	As	the	output	shows	above,	the	function	helps	us	achieve	nothing.

Function	Parameter	Defaults

There	are	default	parameters	for	functions,	which	the	function	creator	can	use	in
his	 or	 her	 functions.	 This	means	 that	 one	 has	 the	 choice	 of	 using	 the	 default
parameters,	or	even	using	the	ones	they	need	to	use	by	specifying	them.	To	use
the	 default	 parameters,	 the	 parameters	 having	 defaults	 are	 expected	 to	 be	 last
ones	written	in	function	parameters.	Example:

#!/usr/bin/python3

def	myFunction(n1,	n2=6):

				pass

In	 above	 example,	 the	 parameter	 n2	 has	 been	 given	 a	 default	 value	 unlike
parameter	n1.	The	parameter	n2	has	been	written	as	the	last	one	in	the	function
parameters.	The	values	for	such	a	function	may	be	accessed	as	follows:

#!/usr/bin/python3

def	windowFunction(width,height,font='TNR'):

				#	printing	everything

				print(width,height,font)

windowFunction(245,278)

The	code	outputs	the	following:

The	parameter	font	had	been	given	a	default	value,	that	is,	TNR.	In	the	last	line
of	the	above	code,	we	have	passed	only	two	parameters	to	the	function,	that	is,
the	values	for	width	and	height	parameters.	However,	after	calling	the	function,
it	returned	the	values	for	the	three	parameters.	This	means	for	a	parameter	with
default,	we	don’t	need	 to	specify	 its	value	or	even	mention	 it	when	calling	 the
function.

However,	it’s	still	possible	for	you	to	specify	the	value	for	the	parameter	during
function	call.	You	can	specify	a	different	value	to	what	had	been	specified	as	the
default	and	you	will	get	the	new	one	as	value	of	the	parameter.	Example:

#!/usr/bin/python3

def	windowFunction(width,height,font='TNR'):

				#	printing	everything

				print(width,height,font)

windowFunction(245,278,'GEO')

The	program	outputs	this:

Above,	 the	 value	 for	 parameter	 was	 given	 the	 default	 value	 “TNR”.	 When
calling	the	function	in	the	last	line	of	the	code,	we	specified	a	different	value	for
this	 parameter,	which	 is	 “GEO”.	 The	 code	 returned	 the	 value	 as	 “GEO”.	 The
default	value	was	overridden.

Chapter	7-	Python	Loops

Loops	 are	 applicable	 in	 situations	when	we	need	 to	perform	 tasks	 repetitively.
This	applies	to	both	when	the	number	of	times	the	task	is	to	be	performed	and
when	the	number	of	times	is	not	known.	Python	supports	a	number	of	loops:

For	Loop

This	loop	is	used	for	iterating	over	something.	It	will	perform	something	based
on	each	item	in	the	block.	The	loop	is	the	best	if	you	are	aware	of	the	number	of
times	you	need	the	task	to	be	executed.
“RANGE()”	function

This	 function	 is	 used	when	we	need	 to	 iterate	 through	 a	 sequence	of	 numbers
which	 we	 specify.	 The	 result	 of	 the	 function	 is	 an	 iterator	 for	 arithmetic
progressions.	Open	the	Python	terminal	then	type	the	following:

As	shown	above,	when	you	list	range(9),	it	will	print	the	values	between	0	and
9,	with	9	excluded.	If	the	number	specified	is	n,	then	the	function	usually	returns
up	 to	 n-1	 items,	meaning	 that	 the	 list’s	 last	 item	 is	 not	 included.	 This	 can	 be
combined	with	the	for	loop.	Example:

#!/usr/bin/python3

for	ax	in	list(range(9)):

print	(ax)

The	code	outputs:

Although	9	is	the	range	specified,	it	is	not	included	in	result.

Note	 that	 other	 than	 combining	 for	 loop	with	range()	 function,	 it	 can	 be	 used
alone.	In	such	a	case,	you	can	iterate	thought	items	with	the	loop.	Example,	you

can	iterate	through	elements	of	a	list	with	for	loop:

#!/usr/bin/python3

ls1	=	[11,21,31,41]

for	ax	in	ls1:

				print(ax)

We	created	the	list	named	 ls1	with	4	elements.	The	 for	 loop	has	been	used	for
iterating	through	these	elements.	The	code	prints	the	following:

A	for	 loop	 involves	definition	of	a	parameter	 that	will	be	used	for	purposes	of
iteration	through	elements.	 In	above	example,	 the	variable	ax	has	been	defined
and	used	for	iterating	through	list	elements.

The	Range()	 function	makes	 the	 tasks	 of	 specifying	 the	 range	 to	 be	 executed
very	easy.	You	can	use	the	syntax	given	below:
range(a,b)

The	 above	 function	will	 execute	 and	 print	 items	 between	 a	 and	 b.	 practically,
considers	the	example	given	below:

#!/usr/bin/python3

for	ax	in	range(5,	9):

				print(ax)

The	code	prints:

The	 code	 printed	 values	 between	 5	 and	 9.	Although	 5	 are	 included,	 9	 are	 not

included.	 This	 means	 the	 initial	 value	 is	 included	 while	 the	 last	 value	 is
excluded.	 Also,	 the	 range	 ()	 function	 takes	 another	 parameter	 that	 allows	 us
specify	the	steps	by	which	an	increment	is	to	be	done.	Example:

#!/usr/bin/python3

for	ax	in	range(5,	15,	2):

				print(ax)

The	code	prints	the	following:

We	are	printing	between	5	and	15,	and	each	iteration	will	be	incremented	by	2.
Note	that	15	is	not	part	of	the	output.

The	for	loop	may	also	be	combined	with	else	part.

Example:

#!/usr/bin/python3

number	=	[21,33,53,39,37,75,92,21,12,41,9]

for	ax	in	number:

			if	ax%2	==	0:

						print	('There	are	even	numbers	in	list')

						break

else:

			print	('There	are	no	even	numbers	in	list')

The	code	will	print:

We	used	 the	modulus	 (%)	operator	 to	 check	whether	 there	 are	 even	 numbers.
The	operator	returns	the	remainder	after	division.	If	there	are	numbers	in	the	list
in	 which	 we	 remain	 with	 0	 after	 dividing	 by	 2,	 then	 the	 list	 has	 some	 even
numbers.	Try	to	create	 the	list	without	even	numbers	and	see	the	else	part	will
run:

#!/usr/bin/python3

number	=	[21,33,53,39,37,75,93,21,11,41,9]

for	ax	in	number:

			if	ax%2	==	0:

						print	('There	are	even	numbers	in	list')

						break

else:

			print	('There	are	no	even	numbers	in	list')

The	code	will	print:

While	Loop

In	while	 loop,	we	specify	a	condition	 to	be	evaluated	after	every	 iteration,	and
the	code	will	always	run	provided	 the	condition	 is	 true.	The	execution	of	code
halts	immediately	the	condition	becomes	false.	The	loop	evaluates	the	condition
after	every	iteration	and	the	moment	it	finds	itself	violating	the	loop	condition,	it
stops	execution	of	the	code.	Example:

#!/usr/bin/python3

number	=	20

while	number	<	30:

				print("Value	of	number	is",	number)

				number	+=	1

The	 value	 of	 variable	number	 was	 initialized	 to	 20.	 The	while	 condition	 tests
whether	this	value	is	below	30.	As	long	as	the	value	of	number	is	less	than	30,
the	loop	will	be	executed.	The	code	prints:

	

As	shown,	the	code	counted	until	the	value	of	number	was	29.	When	it	reached
30,	it	found	itself	violating	the	loop	condition,	that	is,	number	must	be	less	than
30.	The	execution	stopped	immediately.

Note	that	30	is	not	part	of	the	output.	To	include	it,	we	can	use	less	than	or	equal
to	sign	(<=)	as	shown	below:

#!/usr/bin/python3

number	=	20

while	number	<=	30:

				print("Value	of	number	is",	number)

				number	+=	1

The	code	prints	the	following:

	

The	use	of	the	symbol	has	included	30	in	the	output.	However,	the	execution	of
the	program	cannot	go	past	that,	but	it	halts	immediately	it	finds	itself	violating
the	loop	condition.	Another	example:

#!/usr/bin/python3

age	=	15

while	(age	<	18):

			print	("You	are	still	young,	you	can't	get	a	personal	identity	card",	age)

			age	=	age	+	1

print	("AFTER	THIS	YEAR,	GO	GET	A	PERSONAL	IDENTITY	CARD.	YOU
WILL	BE	18	YEARS	OLD")

We	have	specified	a	default	statement	 to	run	when	the	loop	condition	becomes
false.

Loop	Control

It’s	possible	 to	 change	 the	normal	 execution	of	 a	 loop	 to	 something	else.	This
can	be	done	using	some	statements.	Once	execution	has	 left	scope,	 the	objects
within	 that	 scope	will	be	destroyed.	Python	supports	a	number	of	 loop	control
statements:

Break	Statement
This	 statement	 helps	 us	 terminate	 execution	 of	 a	 loop	 prematurely.	 The
execution	 then	begins	at	 the	next	statement	after	 the	 loop.	 It’s	 similar	 to	break
statement	in	C.	When	executing	a	loop,	an	external	condition	may	arise	that	may
require	instant	termination	of	the	loop.	The	break	statement	can	help	you	in	this
case.	The	statement	can	be	used	both	with	for	and	while	loop.	Example:

#!/usr/bin/python3

for	alphabet	in	'Nicholas':					#	Example	1

			if	alphabet	==	'l':

						break

			print	('Current	letter	is	:',	alphabet)	

number	=	5																				#	Example	2

while	number	>	0:													

			print	('Current	variable	value	:',	number)

			number	=	number	-1

			if	number	==	2:

						break

print	("The	End!")

The	code	prints:

First,	 the	 loop	 is	 iterating	 through	 the	 letters	 of	 name	 Nicholas.	 Once	 it

encounters	 letter	 l,	 it	should	break	or	halt	 iterating	through	the	name	letters.	 In
the	second	example,	we	are	iterating	through	numbers	5	downwards	to	0.	When
the	loop	encounters	2,	it	should	break	as	specified	in	the	condition.	Example	2:

In	 this	 example,	 we	will	 be	 searching	 through	 elements	 of	 a	 list.	 The	 user	 is
prompted	to	enter	a	number	which	if	found,	the	user	will	get	found	message.	If
not,	the	user	will	get	the	not	found	message:

#!/usr/bin/python3

userInput=	int(input('Enter	number	to	search:	'))

listValue	=	[11,23,44,39,13,9,8,4,68,21,87]

for	ax	in	listValue:

			if	ax	==	userInput:

						print	('Found')

						break

else:

			print	('Not	found')

After	running	the	code,	search	for	number	9.	You	will	get	this:

It’s	true	number	9	is	in	the	list.	Search	for	a	number	which	is	not	part	of	the	list.
Observe	the	result:

Continue	Statement
With	 this	 statement,	 execution	 us	 returned	 to	 the	 start	 of	 current	 loop.	Once	 a
loop	encounters	it,	it	will	begin	the	next	iteration	and	leave	remaining	statements
in	current	iteration.	It	is	applicable	to	both	while	and	for	loops.	Example:

#!/usr/bin/python3

for	alphabet	in	'Nicholas':					#	First	Example

			if	alphabet	==	'l':

						continue

			print	('The	current	Letter	is:',	alphabet)

number	=	5																				#	Second	Example

while	number	>	0:													

			number	=	number	-1

			if	number	==	2:

						continue

			print	('The	current	number	is	:',	number)

print	("The	End!")

The	code	prints	the	following	after	execution:

What	happened	is	that	the	interpreter	skipped	l	in	the	first	example	and	2	in	the

second	example.	This	is	different	from	break	statement.

Pass	Statement
This	 statement	 is	 applicable	where	 a	 statement	 is	needed	 syntactically	but	you
don’t	want	to	execute	any	statement	on	that	part.	It	can	be	seen	as	null	operation
as	nothing	happens	after	it’s	executed.	Example:

#!/usr/bin/python3

for	alphabet	in	'Nicholas':

			if	alphabet	==	'l':

						pass

						print	('The	pass	block')

			print	('The	current	letter	is	:',	alphabet)

print	("The	End!")

The	code	gives	the	following	when	executed:

The	code	 just	 skipped,	but	 execution	 resumed	 to	normal	 after	 that.	You	notice
that	the	letter	l	is	now	part	of	the	output.	This	is	not	what	happened	in	previous
two	statements.

Chapter	8-	Python	Classes	and	Objects

Python	 is	an	object-oriented	programming	 language.	This	means	 that	a	Python
programmer	 is	 able	 to	 take	 advantage	 of	 the	 object-oriented	 programming
features	such	as	classes.

A	class	can	be	defined	as	a	grouping	of	data	and	methods	which	operate	on	that
data.	This	means	 that	 a	 class	has	date	 and	methods,	whereby,	 the	methods	 are
used	for	manipulation	of	the	data.	The	access	to	the	methods	of	a	class	is	done
by	use	of	the	dot	notation.

Class	Definition

To	define	classes	in	Python,	we	use	the	class	keyword.	This	should	be	followed
by	a	colon.	Example:
class	testClass():

Once	the	class	has	been	defined,	you	can	create	methods	and	functions	inside	it.
These	will	help	in	data	manipulation.	Example:

#!/usr/bin/python3

class	pythonMaths:

				def	add(ax,bx):

								addition	=	ax	+	bx

								print(addition)

				def	subtract(ax,bx):

								subt	=	ax	-	bx

								print(subt)

				def	multiply(ax,bx):

								multiplication	=	ax	*	bx

								print(multiplication)

				def	division(ax,bx):

								div	=	ax	/	bx

								print(div)

We	have	defined	a	class	named	pythonMaths.	The	class	a	number	of	methods.	To
access	any	of	these	methods,	you	must	use	class	name,	the	dot	(.)	and	the	method
name.	Example:

To	 access	 the	 add	method	 in	 above	pythonMaths	 class,	 type	 the	 following	 on

Python	terminal:
pythonMaths.add(2,3)

Note	 that	 the	 class	 name	 comes	 first,	 followed	 by	 the	method	 name	 then	 the
parameters	 inside	parenthesis.	The	 function	expects	 two	parameter	values,	 that
is,	 values	 for	 parameters	 ax	 and	 bx.	 If	 you	 pass	 values	 for	 more	 than	 two
parameters,	or	even	one	parameter,	then	an	error	will	be	returned.

Note	 that	everything	 in	 the	class	has	been	 indented.	This	should	always	be	 the
case.	If	you	don’t,	an	error	message	will	be	generated.

The	class	methods	may	also	be	called	from	within	the	class	itself.	This	calls	for
us	 to	create	an	 instance	of	 the	class	which	will	be	used	for	accessing	 the	class
methods.	Example:

#!/usr/bin/python3

class	class2():

		def	firstMeth(self):

						print("The	first	method")

		def	secondMeth(self,aString):			

						print("Second	method,	string	alongside:"	+	aString)	

def	main():										

		#	instantiate	class	and	call	methods

		c	=	class2	()

		c.firstMeth()

		c.secondMeth("	We	are	now	testing")

if	__name__==	"__main__":

		main()

The	code	prints	the	following	when	executed:

The	 argument	 self	 is	 normally	 to	 refer	 to	 object	 itself.	 That’s	why	we	 use	 the
word,	and	it’s	a	keyword	in	Python.	When	used	inside	a	method,	self	refers	to	a
specific	instance	of	the	object	being	operated	on.	Whenever	you	see	the	keyword
self	 in	 Python,	 know	 it	 refers	 to	 first	 parameter	 of	 the	 instance	methods.	 It	 is
used	for	accessing	member	objects.	However,	you	notice	 that	when	calling	 the
two	 methods	 in	 our	 code,	 that	 is,	 firstMeth()	 and	 secondMeth(),	 we	 never
specified	the	self-keyword	as	Python	does	 this	for	us.	After	calling	an	instance
method,	Python	knows	how	 to	automatically	pass	 the	self-argument	whether	 it
has	been	provided	or	not.	This	means	you	may	choose	to	provide	it	or	not.		We
created	an	instance	of	the	class	class2	and	the	instance	was	named	c.	This	was
done	in	the	following	line:

		c	=	class2	()

The	c	is	an	object	of	class	class2.	This	means	we	can	use	the	object	to	access	all
methods	and	properties	of	 the	class.	You	only	have	 to	care	about	 the	non-self-
arguments.	Notice	how	a	string	was	appended	to	initial	text	in	secondMeth.

Built-in	Attributes

There	 are	 some	 built-in	 attributes	which	 are	 kept	 by	 all	 classes	 and	 to	 access
them,	we	use	 the	dot	operator	similar	 to	 the	other	attributes.	These	 include	 the
following:

__dict__:	This	is	a	dictionary	with	the	namespace	for	the	class.

__doc__:	The	class	documentation	string	or	none,	in	case	it	is	not	defined.

__name__:	The	name	of	the	class.

__module__:	The	name	of	 the	module	 in	which	 the	class	has	been	defined.	 In
the	interactive	mode,	the	attribute	becomes	"__main__".

__bases__:	 This	 is	 a	 tuple,	 possibly	 empty,	 having	 base	 classes,	 added	 in	 the
order	that	they	occur	in	your	base	class	list.

Example:

#!/usr/bin/python3

class	Worker:

			'The	base	class.	Its	common	to	all	instances'

			workerCount	=	0

			def	__init__(self,	name,	age):

						self.name	=	name

						self.age	=	age

						Worker.workerCount	+=	1

			def	showCount(self):

					print	("The	total	number	of	workers	is	%d"	%	Worker.workerCount)

			def	showWorker(self):

						print	("Name	:	",	self.name,		",	Age:	",	self.age)

worker1	=	Worker("Gishon",	26)

worker2	=	Worker("Esther",	24)

print	("Worker.__doc__:",	Worker.__doc__)

print	("Worker.__name__:",	Worker.__name__)

print	("Worker.__module__:",	Worker.__module__)

print	("Worker.__bases__:",	Worker.__bases__)

print	("Worker.__dict__:",	Worker.__dict__)

The	code	prints	the	following	when	executed:

Garbage	Collection

Sometimes,	the	memory	may	be	occupied	by	objects	that	are	no	longer	needed.
Python	clears	them	from	the	memory	automatically,	a	process	known	as	garbage
collection.	 This	way,	 Python	 is	 able	 to	 reclaim	 blocks	 of	memory	 that	 are	 no
longer	 in	 use.	The	 garbage	 collector	 is	 launched	when	 a	 program	 is	 executed,
and	it	runs	once	a	reference	count	to	an	object	has	reached	a	zero.	The	reference
count	to	an	object	changes	with	change	in	the	number	of	aliases	pointing	to	it.

The	reference	count	to	an	object	increases	when	a	new	name	is	assigned	or	when
it’s	added	into	a	container	such	as	tuple,	list	or	dictionary.	Once	the	del	statement
is	used	to	delete	the	object,	the	value	of	count	will	decrease,	or	once	its	reference
has	gone	out	of	scope	or	once	the	reference	is	reassigned.

Example:

ax	=	5						#	object	created

bx	=	ax							#	Increase	the	ref.	count		for	<5>

bz	=	[bx]					#	Increase	the	ref.	count	for	<5>

del	ax							#	Decrease	the	ref.	count		for	<5>

bx	=	70					#	Decrease	the	ref.	count	for	<5>

bz[0]	=	-1			#	Decrease	the	ref.	count		for	<5>

One	 is	 not	 capable	 of	 noticing	 once	 the	 garbage	 collector	 has	 destroyed	 an
orphaned	instance.	However,	in	Python,	it	is	possible	for	a	class	to	implement	a
destructor	named	“__del__()”	which	will	be	invoked	when	a	particular	object	is
almost	destroyed.	Any	non-memory	 resources	which	are	not	being	used	by	an
instance	 can	 be	 cleaned	 by	 use	 of	 this	 method.	 The	 __del__()	 	 destructor
normally	shows	the	class	name	for	the	instance	that	is	almost	being	destroyed.

Example:

#!/usr/bin/python3

class	Region:

			def	__init__(self,	ax=0,	bx=0):

						self.ax	=	ax

						self.bx	=	bx

			def	__del__(self):

						class_name	=	self.__class__.__name__

						print	(class_name,	"already	destroyed")

rg1	=	Region()

rg2	=	rg1

rg3	=	rg1

print	(id(rg1),	id(rg2),	id(rg3));			#	to	print	object	IDs.

del	rg1

del	rg2

del	rg3

The	code	prints:

The	best	 idea	 for	you	 is	 to	create	your	classes	 in	 some	separate	 files.	You	can
then	 use	 the	“import”	 statement	 so	 as	 to	 import	 these	 classes	 into	 your	main
program.	Suppose	the	code	given	above	was	created	in	the	file	“Region.py”	and
it	has	no	executable	code,	then	we	can	do	this	as	follows:

#!/usr/bin/python3

import	region

rg1=region.Region()

Inheritance

In	Python,	you	don’t	have	to	create	your	class	from	scratch	but	you	can	inherit
from	ma	certain	 class,	 normally	known	as	 the	 “parent”	class.	The	 parent	 class
should	be	place	in	parenthesis	after	the	definition	of	the	new	class.

Since	the	parent	class	has	some	attributes,	the	new	class,	which	is	the	child	class,
will	 be	 allowed	 to	 use	 these	 attributes	 in	 such	 a	 manner	 that	 they	 have	 been
defined	 in	 the	child	class.	 It	 is	 also	possible	 for	 the	child	class	 to	override	 the
methods	and	the	data	members	from	the	parent	class.

Python	inheritance	takes	the	following	syntax:

class	DerivedClassName(BaseClassName):

				derived_class_body

Example:

#!/usr/bin/python3

#	Example	file	for	working	with	classes

class	parentClass():

		def	firstMeth(self):

						print("The	first	method	in	parentClass")			

		def	secondMeth(self,aString):			

						print("We	are	testing"	+	aString)			

class	childClass(parentClass):

		#def	firstMeth(self):

								#parentClass.firstMeth(self);

								#print	"firstMeth	for	Child	Class"			

		def	secondMeth(self):

								print("childClass	secondMeth")								

def	main():										

		#	exercising	class	methods

		c	=	childClass()

		c.firstMeth()

		c.secondMeth()

if	__name__==	"__main__":

		main()

The	code	prints	the	following	when	executed:

In	the	childClass,	we	have	not	defined	the	 firstMethod	but	we	have	obtained	 it
from	parent	class.	That	is	how	inheritance	works	in	Python.	The	child	class	has
inherited	a	method	from	the	parent	class.

Another	Example:

#!/usr/bin/python3

class	Worker:

			'A	common	class	to	all	the	workers'

			workerCount	=	0

			def	__init__(self,	name,	wage):

						self.name	=	name

						self.wage	=	wage

						Worker.workerCount	+=	1

			def	showCount(self):

					print	("Total	Workers	%d"	%	Workers.workerCount)

			def	showWorker(self):

						print	("Name	:	",	self.name,		",	Wage:	",	self.wage)

#Creating	first	object	of	Worker	class"

worker1	=	Worker("Bosco",	2500)

#Creating	second	object	of	Worker	class"

worker2	=	Worker("June",	3000)

worker1.showWorker()

worker2.showWorker()

print	("Total	Workers	%d"	%	Worker.workerCount)

The	above	code	clearly	demonstrates	how	you	can	create	an	instance	of	a	class
and	 use	 it	 to	 access	 members	 or	 methods	 of	 the	 parent	 class.	 It	 gives	 the
following	result	once	executed:

We	have	created	two	instances	of	the	class	Worker,	that	is,	worker1	ad	worker2.
Each	of	these	instances	is	a	worker,	the	first	one	Bosco	and	the	second	one	June.
We	have	used	these	instances	to	access	 the	showWorker	method	defined	in	 the
class.	This	method	returns	the	name	and	the	wage	for	the	worker.

Multiple	Inheritance

In	Python,	one	can	inherit	from	more	than	one	class	at	once.	This	is	not	the	case
with	other	 languages	like	Java	and	C#.	Python’s	multiple	 inheritance	takes	this
syntax:

Class	Childclass(ParentClass1,	ParentClass2,	...):

			#	the	initializer

			#	the	methods

Example	of	Python	multiple	inheritance:

#!/usr/bin/python3

class	ParentClass1():

def	superMethod1(self):

		print("Calling	superMethod1")

class	ParentClass2():

def	superMethod2(self):

		print("Calling	superMethod2")

class	ChildClass(ParentClass1,	ParentClass2):

def	childMethod(self):

		print("The	child	method")

ch	=	ChildClass()

ch.superMethod1()

ch.superMethod2()

The	code	will	print:

	

We	defined	two	methods,	one	in	first	Super	Class	ad	the	second	one	in	second
Super	Class.	 The	 child	 class	 has	 then	 inherited	 from	 these	 two	 classes.	 It	 has
accessed	 the	methods	 that	have	been	defined	 in	 these	 two	classes.	That	 is	how
we	can	inherit	from	more	than	one	class	in	Python.

Python	Constructors

A	 constructor	 refers	 to	 a	 class	 function	 for	 instantiating	 an	 object	 to	 some
predefined	 values.	 It	 should	 begin	 with	 a	 double	 underscore	 (__).	 It	 is	 the
__init__()	method.	Example:

#!/usr/bin/python3

class	Worker:

				workerName	=	""

				def	__init__(self,	workerName):

								self.workerName	=	workerName

				def	sayHello(self):

								print("Welcome	to	our	company,	"	+	self.workerName)

Worker1	=	Worker("June")

Worker1.sayHello()

The	code	prints	the	following	when	executed:

What	we	have	done	 is	 that	we	have	used	a	 constructor	 to	get	 the	name	of	 the
user.

Overriding	Class	Methods

When	coding	in	Python,	we	are	allowed	to	override	methods	that	are	defined	in
parent	 class.	You	may	need	 to	have	a	different	 functionality	 in	 the	child	class,
and	this	is	a	good	reason	for	overriding	a	parent	method.	To	override	the	method,
we	only	have	to	pass	different	arguments	to	it	as	demonstrated	below:

#!/usr/bin/python3

class	ParentClass:								#	define	the	parent	class

			def	firstMethod(self):

						print	('A	call	to	parent	method')

class	ChildClass(ParentClass):	#	define	the	child	class

			def	firstMethod(self):

						print	('A	call	to	child	method')

c	=	ChildClass()										#	An	instance	of	the	child	class

c.firstMethod()									#	The	child	calls	the	overridden	method

The	code	will	print	the	following	once	executed:

The	 method	 named	 firstMethod	 had	 been	 defined	 in	 the	 parent	 class.	 The
function	has	been	redefined	in	the	child	class	but	 this	 time,	 it	prints	a	different
text	 than	 what	 it	 was	 printing	 in	 parent	 class.	 We	 have	 achieved	 method
overriding.

Example	2:

#!/usr/bin/python3

class	AB():

def	__init__(self):

		self.__ax	=	2

	def	method1(self):

		print("method1	from	class	AB")

class	BC(AB):

def	__init__(self):

		self.__bx	=	2

def	method1(self):

		print("method1	from	class	BC")

bc	=	BC()

bc.method1()

The	code	prints	the	following	once	executed:

Operator	Overloading

As	you	know,	the	+	operator	can	be	used	for	addition	of	numbers	as	well	as	for
concatenation	of	strings.	The	reason	is	that	the	operator	has	been	overloaded	by
both	the	str	and	int	classes.	The	operators	are	methods	that	have	been	defined	in
their	respective	classes.	Definition	of	methods	for	the	operators	is	referred	to	as
operator	 overloading.	 For	 the	 +	 operator	 to	 be	 used	with	 custom	 objects,	 the
method	__add__	should	be	defined.

Example:

#!/usr/bin/python3

import	math

class	CircleClass:

def	__init__(self,	circleRadius):

		self.__circleRadius	=	circleRadius

def	setRadius(self,	circleRadius):

		self.__circleRadius	=	circleRadius

def	getCircleRadius(self):

		return	self.__circleRadius

def	area(self):

		return	math.pi	*	self.__circleRadius	**	2

def	__add__(self,	another_circle):

		return	CircleClass(self.__circleRadius	+	another_circle.__circleRadius)

circle1	=	CircleClass(2)

print(circle1.getCircleRadius())

circle2	=	CircleClass(3)

print(circle2.getCircleRadius())

circle3	=	circle1	+	circle2	#	The	+	operator	has	been	overloaded	by	adding	the
method	__add__

print(circle3.getCircleRadius())

The	code	prints	the	following	once	executed:

What	we	have	done	is	that	we	have	added	the	__add__	method	that	has	helped
us	add	some	two	circle	objects.	Inside	the	method,	a	new	object	was	created	then
returned	to	the	caller.	There	are	numerous	special	methods	just	like	the	__add__.
They	include:

+	 		__add__(self,other)	 For	Addition
-	 		__sub__(self,other)	 Subtraction
*	 		__mul__(self,other)	 Multiplication
%	 		__mod__(self,other)	 Returns	the	Remainder
<	 		__lt__(self,other)			 For	Less	than
/	 		__truediv__(self,other)	For	Division
<=	 		__le__(self,other)	 For	Less	than/equal	to
!=	 		__ne__(self,other)	 For	Not	equal	to
==	 		__eq__(self,other)	 For	Equal	to
>	 		__gt__(self,other)	 For	Greater	than
[index]		__getitem__(self,index)	 The	Index	operator
>=	 		__ge__(self,other)	 For	Greater	than/equal	to
in	 		__contains__(self,value)	Checks	the	membership
str	 __str__(self)	 For	string	representation
len	 __len__(self)	 Checks	number	of	the	elements

The	code	given	below	makes	use	of	above	functions	for	operator	overloading:

#!/usr/bin/python3

import	math

class	CircleClass:

def	__init__(self,	circleRadius):

		self.__circleRadius	=	circleRadius

def	setRadius(self,	circleRadius):

		self.__circleRadius	=	circleRadius

def	getRadius(self):

		return	self.__circleRadius

def	circleArea(self):

		return	math.pi	*	self.__circleRadius	**	2

def	__add__(self,	second_circle):

		return	CircleClass(self.__circleRadius	+	second_circle.__circleRadius)

def	__gt__(self,	second_circle):

		return	self.__circleRadius	>	second_circle.__circleRadius

def	__lt__(self,	second_circle):

		return	self.__circleRadius	<	second_circle.__circleRadius

def	__str__(self):

		return	"Circle	has	a	radius	of	"	+	str(self.__circleRadius)

circle1	=	CircleClass(2)

print(circle1.getRadius())

circle2	=	CircleClass(4)

print(circle2.getRadius())

circle3	=	circle1	+	circle2

print(circle3.getRadius())

print(circle3	>	circle2)	#	We	have	added	__gt__	method,	hence	this	is	possible

print(circle1	<	circle2)	#	we	added	__lt__	method,	hence	this	is	possible

print(circle3)	#we	added	__str__	method,	hence	this	is	possible

The	code	prints	the	following:

Chapter	9-	Exception	Handling

With	 Exception	 handling,	 we	 are	 able	 to	 detect	 errors	 and	 handle	 them
appropriately.	If	you	are	searching	for	a	file	and	it	is	not	found	for	example,	you
can	raise	an	error	message.	The	try	and	except	statements	are	used	in	Python	for
error	handling.	These	statements	follow	the	same	concept	followed	in	the	if-else
statement,	in	which	if	the	if	part	runs,	the	else	part	will	not	run.	Consequently,	if
the	try	part	runs,	the	except	part	won’t	run.	If	the	try	part	fails,	then	the	exception
part	will	run	with	error	generated	in	try	part.	With	exception	handling,	your	code
can	be	kept	 running	even	 in	cases	when	 it	could	have	failed.	Error	handling	 is
also	a	good	way	of	logging	any	problems	that	you	may	have	in	your	code.	You
may	also	correct	the	problem	with	your	code.

The	try	and	except	takes	this	syntax:

try:

				#	Add	code

				#	to	throw	an	exception

except	<ExceptionType>:

				#	The	exception	handler	to	alert	user

To	see	it	work,	you	only	have	to	write	the	code	that	will	throw	an	exception.	In
case	of	occurrence	of	an	exception,	the	 try	code	will	be	skipped,	If	you	have	a
matching	 exception	 in	 except	 part,	 then	 it	 will	 be	 executed	 to	 handle	 the
exception.

Example:

#!/usr/bin/python3

try:

fl	=	open('filename.txt',	'r')

print(fl.read())

fl.close()

except	IOError:

		print('The	file	was	not	found')

The	code	will	print:

We	are	trying	to	access	a	file	and	read	it.	That	is	in	the	try	statement.	However,
in	the	except	part,	we	have	the	IOError,	which	handles	input/output	exceptions.
We	have	defined	what	should	happen	in	case	of	such	an	occurrence,	that	is,	if	the
file	 is	 not	 found.	 It	 should	 execute	 the	print	 statement.	 Just	 run	 the	 code	 and
ensure	you	don’t	have	the	file.	The	print	statement	will	be	printed.

If	the	file	is	found,	then	the	part	under	except	statement	will	be	skipped.	In	my
case,	the	exception	occurred,	hence	the	try	part	was	skipped,	that	is,	the	file	was
not	read.	For	the	except	part	to	run,	the	exception	that	occurs	must	match	the	one
you	are	handling.	Note	that	our	code	given	above	is	only	capable	of	handling	the
“IOError”	 exception.	 To	 handle	 ay	 more	 errors,	 we	 should	 add	 other	 except
clauses.	This	means	 that	we	may	have	numerous	except	clauses	 in	a	single	 try
clause,	as	well	as	an	optional	else	or	finally	clause.

The	following	syntax	should	be	followed:

try:

	<try	body>

except	<Exception1>:

<Exception	handler1>

except	<ExceptionN>:

<Exception	handlerN>

except:

<Exception	handler>

else:

<else	body>

finally:

<finally	body>

The	except	works	similarly	to	elif	clause.	After	the	occurrence	of	an	exception,	it
is	 checked	 to	 know	 that	 except	 that	 matches.	 If	 a	 match	 is	 found,	 then	 it’s
executed.	Note	that	in	our	last	except,	we	don’t	have	ExceptionType.	This	means
if	 the	 exception	 doesn’t	 match	 any	 of	 the	 exception	 types,	 Note	 that	 the
statements	 below	 the	 else	 part	 will	 only	 run	 after	 none	 of	 the	 exceptions	 is
raised.	The	statements	in	the	finally	clause	will	always	run	whether	an	exception
is	raised	or	not.

Example:

#!/usr/bin/python3

try:

n1,	n2	=	eval(input("Type	numbers	and	separate	then	with	a	comma	:	"))

answer	=	n1	/	n2

print("The	result	is",	answer)

except	ZeroDivisionError:

print("Division	by	zero	gives	error	!!")

except	SyntaxError:

print("Comma	not	 found.	Type	numbers	and	separate	 then	with	a	comma	as	1,
2")

except:

print("	A	wrong	input	was	found")

else:

print("Exceptions	not	found	!	")

finally:

	print("This	part	for	finally	will	always	run")

You	can	 enter	 the	 two	numbers	 as	 instructed	 then	 fail	 to	 separate	 them	with	 a
comma.	An	exception	will	be	raised.	Whether	you	separate	then	with	a	comma
or	not,	you	notice	the	finally	clause	will	always	run.

With	 the	 eval()	 function,	 a	 Python	 program	 is	 capable	 of	 running	 the	 Python
code	in	itself.	The	function	should	be	supplied	with	string	argument.

Raising	Exceptions

If	you	are	in	need	of	raising	exceptions	from	your	own	methods,	you	should	use
the	raise	keyword.	Example:

raise	ExceptionClass("An	argument")

Example:

#!/usr/bin/python3

def	getAge(yourAge):

if	yourAge	<	0:

		raise	ValueError("Your	age	MUST	be	a	positive	integer	value")

if	yourAge	%	2	==	0:

		print("Your	age	is	an	even	number")

else:

		print("Your	age	is	an	odd	number")

try:

number	=	int(input("What's	your	age?	"))

getAge(number)

except	ValueError:

print("Only	positive	integers	are	allowed")

except:

print("something	went	wrong")

Run	 the	code.	You	will	be	prompted	 to	enter	your	age.	 If	 it’s	an	even	number,
you	get	the	following:

This	 is	 because	 after	 dividing	 26	 by	 2,	 the	 remainder	 is	 0.	This	means	 it’s	 an
even	number.	Enter	an	odd	number	for	the	age.	You	will	get	the	following:

Enter	 a	 negative	 integer	 for	 the	 age	 ad	 see	 what	 happens.	 You	 will	 get	 the
following:

That	is	how	you	can	raise	exceptions	on	your	methods.

Exception	Objects

Now	that	you	are	familiar	with	handling	exceptions	in	Python,	let	us	learn	how
to	access	the	exception	object	 in	the	code	for	exception	handler.	The	following
code	may	be	used	for	assigning	a	variable	to	an	exception	object.	The	following
syntax	should	be	used	for	this:

try:

				#	the	code	to	throw	an	exception

except	TypeOfException	as	ex:

				#	code	for	handling	the	exception

The	exception	object	can	be	stored	in	the	variable	ex.	The	exception	can	then	be
used	in	the	exception	handling	code.	Example:

#!/usr/bin/python3

try:

n1	=	eval(input("Type	a	number:	"))

print("You	entered	",	n1)

except	NameError	as	ex:

print("Exception:",	ex)

Run	 the	 code	 then	 type	 a	 number	 when	 prompted	 to	 do	 so.	 You	 will	 get	 the
following:

As	 shown	 above,	 the	 code	 executed	 correctly.	 Ow,	 run	 the	 code	 then	 enter	 a
string:

As	shown	above,	entering	a	string	raises	an	exception.	This	is	because	the	code

expected	 you	 to	 enter	 a	 number	 but	 you	 have	 entered	 a	 string.	 This	 raises	 an
error.

Custom	Exception	Class

It	is	possible	for	you	to	create	some	custom	exception	class.	This	requires	you	to
extend	 the	BaseException	 class	 or	 a	 subclass	 of	 the	BaseException	 class.	 The
BaseException	 class	 can	 be	 seen	 as	 the	 root	 of	 all	 the	 exception	 classes	 in
Python.

In	 your	 Python	 text	 editor,	 create	 a	 new	 file	 named	NegativeAgeException.py
then	add	the	following	code	to	it:

class	NegativeAgeException(RuntimeError):

				def	__init__(self,	yourAge):

								super().__init__()

								self.yourAge	=	yourAge

What	 the	 code	 does	 is	 that	 it	 creates	 a	 new	 exception	 class	 named
NegativeAgeException.	 The	 class	 has	 only	 one	 constructor	 that	 will	 call	 the
parent	 class	 constructor	 by	 use	 of	 	 super().__init__()	 then	 set	 the	 value	 of
yourAge	argument.	The	custom	exception	class	can	be	used	as	follows:

#!/usr/bin/python3

def	getAge(yourAge):

if	yourAge	<	0:

		raise	NegativeAgeException("Age	MUST	be	a	positive	integer")

if	yourAge	%	2	==	0:

		print("The	age	is	an	even	number")

else:

		print("The	age	is	an	odd	number")

try:

		n	=	int(input("What's	your	age?	"))

		getAge(n)

except	NegativeAgeException:

print("Enter	a	positive	integer")

except:

print("something	went	wrong")

You	can	run	the	code	and	enter	a	numeric	value,	a	positive	one.	You	will	get	this:

	

The	code	runs	correctly.	Now	run	the	code	then	enter	a	negative	 integer	as	 the
value	for	your	age:

The	exception	will	be	raised	as	shown	above.

Let	us	create	an	exception	related	to	RuntimeError.	We	will	creat6e	a	class	to	be
a	subsclass	of	RuntimeError	class.	It	is	a	good	way	of	getting	more	information
after	the	occurrence	of	an	exception.	The	exception	is	raised	in	the	try	block	then
handled	 in	 the	 except	 block.	 We	 will	 use	 the	 variable	 ex	 for	 creation	 of	 an
instance	of	class	Networkerror:

class	Networkerror(RuntimeError):

			def	__init__(self,	argu):

						self.args	=	argu

After	defining	the	class	as	above,	the	exception	can	be	raised	as	follows:

try:

			raise	Networkerror("Wrong	hostname")

except	Networkerror,ex:

			print	ex.args

Chapter	10-	Python	Modules

The	purpose	of	modules	is	to	help	us	organize	our	code	in	a	logical	way.	When
sections	of	related	code	are	grouped,	it	becomes	easy	to	understand	and	use	the
code.	A	module	comes	with	a	number	of	attributes	that	one	can	bind	as	well	as
reference.	The	module	is	simply	a	file	that	has	Python	code.	It	can	be	used	for
definition	of	 classes,	 functions	 and	variables.	The	module	may	also	have	code
that	can	run.

Example:

def	print_func(par):

			print	"Hello	:	",	par

			return

If	you	need	to	access	and	use	code	for	another	Python	source	file,	you	can	use
the	import	keyword	to	have	it	in	the	source	file	you	are	working	on.	That	is	how
modules	are	used	in	other	source	files:
import	module1[,module2[,...	moduleN]

Once	 the	Python	 interpreter	 encounters	 the	 import	 statement,	 it	will	 search	 for
the	specified	module	in	the	path	and	import	it	into	your	current	source	file.	The
search	path	is	made	up	of	a	number	of	directories	that	the	interpreter	must	search
whenever	it	needs	to	import	a	module.

Python	comes	with	the	default	hello.py	file	with	the	basic	Hello	code.	For	us	to
use	this,	we	must	import	the	support	module	by	adding	the	import	 statement	at
the	top	of	our	script.	Example:

#!/usr/bin/python3

#	Importing	a	module	named	support

import	support

#	Let	us	call	a	method	defined	in	the	module

support.print_func("Nicholas")

What	 we	 have	 done	 is	 that	 we	 have	 used	 the	 import	 	keyword	 to	 import	 the
module	named	support.	The	module	is	simply	written	in	a	file	named	support.py.
The	module	has	a	function	named	print_func.	We	have	then	called	this	method
in	 our	 above	 file.	 Note	 the	 syntax	 used	 for	 calling	 methods	 defined	 in	 other
modules.	We	begin	by	the	module	name	then	the	method	name,	joined/separated
using	a	dot	(.)

Note	that	a	module	will	only	be	imported	once	regardless	of	the	number	of	times
you	call	 it	 via	 the	 import	keyword.	This	 helps	 in	 prevention	of	 execution	of	 a
module	repeatedly.

Sometimes,	 you	may	 not	 be	 in	 need	 of	 importing	 or	 using	 the	 entire	module.
Some	modules	 are	 also	 heavy	 and	may	 occupy	 too	much	memory	 space.	 The
from	 keyword	 helps	 you	 import	 only	 a	 number	 of	 attributes	 from	 the	 Python
modules.	 This	 means	 that	 the	 entire	 module	 won’t	 be	 imported	 but	 only	 the
attributes	you	have	specified.	Syntax:

from	moduleName	import	attribute1[,	attribute2[,	...	attributeN]]

Example:

Python	has	a	module	named	fib.	We	can	import	the	Fibonacci	method	from	this
module	as	follows:

#!/usr/bin/python3

#	Python	module	for	Fibonacci	numbers

def	fib(num):	#	return	then	Fibonacci	series	to	num

			answer	=	[]

			ax,	bx	=	0,	1

			while	bx	<	num:

						answer.append(bx)

						ax,	bx	=	bx,	ax	+	bx

			return	answer

Now	that	we	have	the	module	above,	that	is,	fib,	we	can	import	its	attribute	as
follows	from	the	Python	interactive	interpreter.
>>>from	fib	import	fib
>>>fib(50)

Note	that	you	must	save	the	code	with	the	name	fib.py	to	designate	it	as	a	Python
file.	The	file	should	also	be	saved	in	a	directory	known	to	the	Python	interpreter.
This	will	make	it	easy	for	the	interpreter	to	search	for	the	file,	open	it	and	get	the
attribute	 or	 method	 you	 need	 to	 import.	 In	 my	 case,	 I	 have	 saved	 the	 file	 as
fib.py.	 Once	 I	 compile	 it,	 I	 get	 no	 error.	 It	 is	 after	 that	 I	 open	 the	 Python
interactive	 terminal	 then	 I	 import	 the	 attribute	 and	 call	 the	 method	 as	 shown
below:

The	first	statement	helps	us	import	the	fib	function/method	from	the	module.	We
are	 then	 able	 to	 call	 the	 method	 and	 pass	 it	 an	 argument	 to	 it.	 It	 successful
returns	the	fibonacci	of	50	to	us.	Note	that	we	didn’t	import	the	entire	module,
but	only	an	attribute	from	it.

Also,	 it	 is	 possible	 for	 one	 to	 import	 all	 attributes	 of	 a	 module	 into	 current
namespace	by	use	of	this	statement:

from	moduleName	import	*

The	above	provides	us	with	an	easy	way	of	importing	all	named	contained	in	a
module	into	current	workspace.

Inside	 the	module,	 the	 name	 for	 the	module	 is	 provided	 in	 string	 form	 and	 as
value	of	global	variable	__name__.	The	module	code	will	be	run	in	similar	way

as	you	had	imported	it,	but	the	__name__	will	be	set	to	__main__.

You	can	modify	the	code	for	your	Fibonacci	module	to	appear	as	follows.	You
only	add	a	section	of	code	at	its	end:

#!/usr/bin/python3

#	Python	module	for	Fibonacci	numbers

def	fib(num):	#	return	then	Fibonacci	series	to	num

			answer	=	[]

			ax,	bx	=	0,	1

			while	bx	<	num:

						answer.append(bx)

						ax,	bx	=	bx,	ax	+	bx

			return	answer

if	__name__	==	"__main__":

			fb	=	fib(50)

			print(fb)

You	can	run	the	code	and	see	what	it	prints.	It	will	give	you	the	following	result:

As	shown	above,	the	result	is	simply	the	Fibonacci	of	50.	This	time,	we	did	not
have	to	call	 the	module	from	the	Python	terminal	but	we	have	done	directly	in
the	module	code.

Locating	Modules

Once	 you	 attempt	 to	 import	 a	 module	 via	 the	 import	 statement,	 there	 are	 a
number	of	directories	that	the	Python	interpreter	searches	to	locate	it.	First,	 the
Interpreter	must	search	for	the	module	in	the	current	directory.	If	it	is	not	found,
it	 proceeds	 to	 search	 in	 all	 the	 directories	 in	 the	 shell	 variable,	 that	 is,
PYTHONPATH.	If	the	interpreter	doesn’t	find	the	module,	it	proceeds	to	check
for	it	in	the	default	path.	In	UNIX	systems,	the	default	path	is	normally	located
at	/usr/local/lib/python3/.

The	search	path	for	the	module	is	kept	in	system	module	sys	in	the	form	of	the
variable	sys.path.	The	variable,	 that	 is,	 	sys.path,	has	 the	current	directory,	 the	
PYTHONPATH	and	python-dependent	default.

PYTHONPATH	is	 simply	an	environment	variable.	 It	 is	made	up	of	numerous
directories.	 It	 has	 same	 syntax	 as	 that	 of	 shell	 variable	 PATH.	 Example	 of
PYTHONPATH	in	Windows:
set	PYTHONPATH	=c:\python34\lib;

Example	of	PYTHONPATH	in	UNIX:

set	PYTHONPATH	=/usr/local/lib/python

Namespaces	and	Scope

Variables	 are	 simply	 names	 mapping	 to	 objects.	 The	 namespace	 refers	 to
dictionary	of	variable	names	(the	keys)	together	with	the	corresponding	objects
(the	 values).	 Python	 statements	 are	 allowed	 to	 access	 both	 global	 and	 local
variables.	This	brings	the	concept	of	local	namespace	and	global	namespace.	In
case	same	name	is	used	for	both	a	local	and	global	variable,	the	global	variable
will	be	shadowed	by	the	local	variable.

Every	 function	 has	 a	 local	 namespace.	Class	methods	 normally	 follow	 similar
scoping	 rule	 just	 like	 ordinary	 functions.	 Python	 is	 capable	 of	 making	 wise
guesses	regarding	whether	a	variable	is	local	or	global.	Any	variable	assigned	a
value	 is	 assumed	 to	 be	 local.	 If	 you	 need	 to	 assign	 a	 value	 to	 some	 global
variable	within	a	function,	you	should	use	global	keyword.	Example:

global	VariableName
The	above	 tells	Python	 interpreter	 that	VariableName	 is	 a	global	variable.	The
Python	 interpreter	 will	 not	 search	 for	 the	 local	 namespace	 of	 the	 variable.
Example:

#!/usr/bin/python3

Wage	=	3000

def	IncreaseWage():

			#	Uncomment	the	below	line	and	fix	your	code:

			#global	Wage

			Wage	=	Wage	+	200

print	("The	initial	value	for	wage	is:",	Wage)

IncreaseWage()

print	("The	value	of	wage	after	increase	is:",	Wage)

The	above	code	generates	an	error	message.	Since	Wage	was	assigned	a	value,	it
was	 assumed	 that	 it’s	 a	 local	 variable.	 However,	 it	 was	 defined	 in	 the	 global
namespace.	We	however	access	value	of	local	variable	Wage	without	setting	its
value.	An	UnboundLocalError	was	generated.	To	 fix	 the	problem,	uncomment
your	global	statement	to	remain	with	this:

#!/usr/bin/python3

Wage	=	3000

def	IncreaseWage():

			#	Uncomment	the	below	line	and	fix	your	code:

			global	Wage

			Wage	=	Wage	+	200

print	("The	initial	value	for	wage	is:",	Wage)

IncreaseWage()

print	("The	value	of	wage	after	increase	is:",	Wage)

The	error	will	be	removed,	and	the	code	will	print	the	following	once	executed:

dir()	Function

This	is	an	in-built	function	that	returns	strings	that	have	been	sorted	with	names
a	 module	 has	 defined.	 The	 list	 shows	 all	 names,	 functions	 and	 variables	 the
module	has	defined.	Example:

#!/usr/bin/python3

#	Import		module	math	which	is	built-in

import	math

cont	=	dir(math)

print	(cont)

The	code	will	print	the	following:

The	output	 is	 just	a	 section	of	 the	output	as	 the	code	prints	a	 list	of	 functions,
variables	and	names	defined	by	the	math	module.	See	how	the	dir()	function	was
called	with	the	argument	to	the	function	being	the	name	of	the	module.

locals	()	and	global()	Functions

These	 two	 functions	 are	 useful	 for	 returning	 names	 in	 local	 and	 global
namespaces	 based	 on	 location	 you	 have	 called	 them	 from.	 If	 you	 call	 locals()
from	 within	 a	 function,	 it	 returns	 a	 list	 of	 names	 accessible	 from	 within	 that
function.	If	you	call	globals()	from	within	a	function,	 it	 returns	a	 list	of	names
accessible	globally	from	within	the	function.

Note	 that	 both	 have	 a	 dictionary	 as	 the	 return	 type.	This	means	 to	 extract	 the
names,	we	can	use	the	keys()	function.

reload	()	Function

This	 is	 another	 function	 in	 Python.	 After	 you	 have	 imported	 a	module	 into	 a
script,	 the	module’s	 code	 in	 top-level	 portion	will	 be	 executed	 for	 only	 once.
However,	 there	might	be	situations	 in	which	you	will	wat	 to	 run	 this	 top-level
code	 for	 more	 than	 once.	 In	 such	 a	 case,	 you	 call	 the	 reload()	 function.	 The
function	 works	 by	 importing	 a	 module	 that	 had	 been	 imported.	 The	 reload()
function	has	the	following	syntax:

reload(module_name)
The	module_name	 denotes	 the	 name	 of	 the	 module	 that	 you	 need	 to	 reload.
However,	 it’s	 not	 the	 string	 that	 has	 the	 name	 of	 the	module.	 If	 you	 need	 to
reload	a	module	named	hello	for	example,	use	this:

reload(hello)
A	 package	 refers	 to	 a	 file	 director	 organized	 in	 a	 hierarchical	 structure.	 It
represents	 a	 single	 application	 with	 modules,	 sub-packages	 and	 even	 sub-
subpackages.

Chapter	11-	File	Handling

With	Python,	 you	 can	 access	 your	 files	 in	 the	 system	 and	 read	 them,	write	 to
them	and	 even	modify	 their	 contents.	You	 are	 now	aware	on	how	 to	 read	 and
write	to	standard	output.	I	will	be	showing	you	how	to	do	this	to	your	files.

There	 are	default	Python	 functions	 that	 can	be	used	 for	 file	 handling.	The	 file
object	can	help	you	do	much	of	the	calculation.	The	file	object	can	help	you	do
the	manipulation	on	your	files.

open()	Function

For	a	file	to	be	read,	written	to	or	even	modified,	it	must	first	be	opened.	This	is
done	 using	 the	 Python	 in-built	 function	 named	 open().	 When	 invoked,	 the
function	 will	 create	 file	 objects	 that	 can	 be	 used	 for	 calling	 support	 methods
associated	with	it.	Here	is	the	method’s	syntax:

file	objectName	=	open(file_name	[,access_mode][,buffering])

The	file_name	is	a	string	representing	the	name	of	the	file	to	be	opened.	For	the
access_mode,	the	file	can	be	opened	for	read,	write	or	append.	The	default	mode
foe	opening	the	file	into	is	read	(r).	If	the	value	for	buffering	is	set	to	0,	then	no
buffering	will	be	done.	If	it	is	set	to	1,	line	buffering	will	be	done	after	accessing
the	file.	If	you	specify	another	integer	greater	than	1	for	buffering,	then	buffering
will	be	done	at	the	size	that	you	have	specified.	The	integer	is	normally	taken	as
buffer	 size.	 If	 it	 is	 set	 to	 a	 negative	 integer,	 the	 default	 buffering	 size	 for	 the
system	is	used.

There	are	different	modes	in	which	the	file	may	be	opened.	They	include:

r-	the	file	is	opened	for	reading	only,	and	it’s	the	default	mode.	The	file
pointer	is	placed	at	the	start	of	the	file.
rb-	the	file	is	opened	I	binary	format	for	reading	only.	The	file	pointer	is
placed	at	the	start	of	the	file.
r+-	 the	 file	 is	 opened	 for	 both	 reading	 and	writing.	 The	 file	 pointer	 is
placed	at	the	start	of	the	file.
rb+-	the	file	is	opened	in	binary	format	for	reading	and	writing.	The	file
pointer	is	placed	at	the	start	of	the	file.
w-	the	file	is	opened	for	writing	only.	If	the	file	exists,	it	is	overwritten.
If	the	file	does	not	exist,	a	new	one	is	created.
wb-	the	file	is	opened	in	binary	format	for	writing	only.	If	the	file	exists,
it	 is	overwritten.	 If	 the	file	doesn’t	exist,	a	new	one	 is	created	for	both
reading	and	writing.

wb+-	the	file	is	opened	in	binary	format	for	both	reading	and	writing.	If
the	 file	 exists,	 it	 is	 overwritten.	 If	 the	 file	 doesn’t	 exist,	 a	 new	 one	 is
created.
a-	 the	 file	 is	opened	 for	appending.	 If	 the	 file	exists,	 the	 file	pointer	 is
placed	at	the	end	of	the	file.	If	the	file	doesn’t	exist,	a	new	one	is	created
for	writing.
ab-	the	file	is	opened	in	binary	format	for	appending.
a+-	the	file	is	opened	for	both	reading	and	appending.	If	the	file	exists,
the	 pointer	 is	 moved	 to	 the	 end	 of	 the	 file.	 This	 puts	 the	 file	 in	 the
append	mode.	If	 the	file	doesn’t	exist,	a	new	one	 is	created	for	writing
and	reading.
ab+-	the	file	is	opened	in	binary	format	for	both	reading	and	appending.
If	 the	 file	exists,	 the	pointer	 is	placed	at	 the	end	of	 the	 file.	The	 file	 is
kept	 in	append	mode.	If	 the	file	doesn’t	exist,	a	new	one	 is	created	for
writing	and	reading.

The	file	object	is	related	to	these	attributes:

file.closed-	it	will	return	true	if	file	is	closed,	and	false	otherwise.
file.mode-	this	returns	the	mode	in	which	the	file	is	opened.
file.name-	this	will	return	the	file	name.

Example:

#!/usr/bin/python3

#	Opening	the	file

f	=	open("names.txt",	"wb")

print	("The	file	name	is:	",	f.name)

print	("If	the	file	closed?	",	f.closed)

print	("Which	mode	is	the	file	in?	",	f.mode)

#	close	the	file

f.close()

Ensure	that	you	have	the	file	named	names.txt	in	the	directory	then	run	the	code.
The	code	will	give	result	based	on	the	file.	In	my	case,	it	prints	the	following:

We	have	the	name	of	the	file	which	was	obtained	by	calling	the	name	attribute.
The	false	in	the	result	tells	us	that	the	file	is	not	closed.	Also,	it	is	clear	that	the
file	has	been	opened	in	binary	format	for	writing.

close()	Method

This	 method	 should	 be	 called	 for	 closing	 a	 file.	 It	 first	 flushes	 the	 unwritten
information	then	closes	the	file.	Once	the	file	has	been	closed,	no	further	writing
can	be	done.	If	reference	object	for	file	is	assigned	to	some	other	object,	Python
will	 automatically	 close	 the	 file.	Whenever	 you	 need	 to	 close	 a	 file,	 call	 the
close()	method.	The	method	syntax	is	as	follows:

fileObject.close();
Example:

#!/usr/bin/python3

#	Opening	the	file

f	=	open("names.txt",	"wb")

print	("The	file	name	is	:",	f.name)

#	Close	the	opened	file

f.close()

print("Is	the	file	closed	?	",	f.closed)

Run	the	code	in	the	directory	with	the	file	names.txt	and	the	following	result	will
be	printed:

In	our	previous	example,	we	got	FALSE	when	we	called	 the	 f.closed	 property.
This	meant	that	the	file	was	not	closed.	The	reason	is	that	we	had	not	called	the
close()	method.	 In	 above	 example,	we	 have	 called	 close()	method	 on	 our	 file
object.	This	closed	the	file;	hence	we	get	true	after	calling	the	f.closed	property.
This	means	that	file	has	been	closed.

write()	Method

This	Python	method	helps	us	write	to	files.	For	you	to	use	it,	first	open	the	file
then	pass	the	string	to	be	written	to	the	file.	Note	that	Python	strings	may	have
binary	data	 rather	 than	 strings	only.	Note	 that	 the	method	doesn’t	 add	newline
character	(\n)	at	the	end	of	your	string.	The	method	has	the	following	syntax:

fileObject.write(string);
The	parameter	 to	 the	method	 is	 the	 content	 to	 be	written	 to	 the	 file.	Once	 the
writing	has	been	completed,	call	the	close()	method	to	close	the	file.

Example:

#!/usr/bin/python3

#	Opening	the	file	in	write	mode

f	=	open("names.txt",	"w")

f.write("This	is	the	first	line	we	are	writing	into	the	file.\nThis	is	the	second	line
we	are	writing	into	the	file!!\n")

#	Close	the	opened	file

f.close()

Run	 the	 code	 in	 the	 directory	with	 the	 file	names.txt.	You	will	 notice	 that	 the
specified	 strings	 will	 be	 written/added	 to	 the	 file.	We	 first	 opened	 the	 file	 in
write	mode.	We	then	called	the	write()	method	and	passed	to	it	the	two	strings	to
be	written	into	the	file.	Each	string	has	been	enclosed	into	its	quotes.	To	start	a
new	line	after	writing	the	first	string,	we	have	used	the	newline	character,	that	is,
\n.	The	 following	will	 be	written	 to	 the	 file	names.txt	after	 running	 the	 above
code:

This	is	the	first	line	we	are	writing	into	the	file.

This	is	the	second	line	we	are	writing	into	the	file!!

read	()	Method

This	method	helps	us	read	a	string	from	an	open	file.	Note	that	the	file	may	have
either	textual	data	or	binary	data.	Both	can	be	read	via	this	function.	The	method
syntax	is	as	follows:

fileObject.read([count]);
The	parameter	to	the	function	is	the	number	of	bytes	that	you	need	to	read	from
the	file.	The	method	usually	begins	to	read	from	the	beginning	of	the	file.	If	you
don’t	specify	a	value	for	count,	then	the	method	will	read	from	the	file	as	much
as	it	can.	Most	probably,	the	method	will	read	till	the	file’s	end.

Example:

#!/usr/bin/python3

#	Opening	the	file

f	=	open("names.txt",	"r+")

txt	=	f.read(10)

print	("The	method	read	the	string	:	",	txt)

#	Closing	the	opened	file

f.close()

In	my	case,	the	following	text	was	read	from	the	file:

Note	that	we	had	instructed	the	method	to	read	only	10	bytes	from	the	file,	and
that	is	why	not	all	the	file	contents	were	read.

File	Positions

You	may	use	tell()	method	to	tell	current	position	in	a	file.	This	tells	where	the
next	read	or	write	will	start	from	the	next	time	you	attempt	to	do	so	on	the	file.

If	you	need	to	change	this	position,	you	can	use	the	seek(offset[,	from])	method.
The	argument,	that	is,	offset	specifies	the	number	of	bytes	that	should	be	moved.
The	 argument	 from	 specifies	 reference	 position	 from	 which	 bytes	 should	 be
moved.

If	 the	value	of	 from	 is	0,	 then	the	reference	position	is	 the	starting	point	of	 the
file.	If	you	set	it	to	1,	then	the	current	position	will	be	used	as	reference	position.
If	it	is	set	to	2,	the	file’s	end	will	be	used	as	reference	position.

Example:

#!/usr/bin/python3

#	Openig	the	file

f	=	open("names.txt",	"r+")

str	=	f.read(10)

print	("The	function	read	the	string	:	",	str)

#	Checking	the	current	position

pos	=	f.tell()

print	("The	current	position	for	the	file	is	:	",	pos)

#	Reposition	the	pointer	to	the	beginning

pos	=	f.seek(0,	0)

str	=	f.read(10)

print	("The	read	String	again	is	:	",	str)

#	Close	the	opened	file

f.close()

Run	the	code	from	the	directory	you	have	stored	the	file	names.txt.	In	my	case,	it
returns	the	following:

	

You	notice	that	in	both	case,	the	same	string	was	read.	We	first	read	the	first	10
bytes	of	the	file.	This	moved	the	position	in	the	file	to	10	as	shown	in	the	output.
We	 then	 called	 the	 seek()	 function	 to	 reset	 the	 position	 of	 the	 file	 to	 the
beginning.	When	we	issue	the	read	command,	it	again	reads	from	the	beginning,
hence	we	get	the	same	output.

rename()	Method

This	 method	 helps	 in	 renaming	 file	 names,	 and	 it	 takes	 two	 arguments.	 The
method	takes	two	arguments,	the	first	one	being	the	current	name	of	the	file	and
the	second	one	being	the	new	name	to	be	given	to	the	file.	Note	that	this	method
is	provided	by	a	Python	module	named	os.	For	you	to	use	the	function,	you	must
first	import	the	module.	The	method	takes	the	following	syntax:
os.rename(current_filename,	new_filename)

Example:

#!/usr/bin/python3

import	os

#	Rename	the	file	from	names.txt	to	mytext.txt

os.rename("names.txt",	"mytext.txt")

We	began	by	importing	the	os	module	via	the	import	keyword.	It	is	after	that	we
have	called	the	rename()	method.	Note	 the	syntax	used	for	calling	 the	method.
We	 began	 by	 the	 module	 name,	 that	 is,	 os,	 then	 the	 method	 name,	 that	 is,
rename().	Two	arguments	were	passed	to	the	method.	The	first	one	is	the	name
of	the	file	we	need	to	rename	which	is	names.txt.	We	have	then	defined	the	new
name	we	need	to	give	to	the	file,	that	is,	mytext.txt.	That	is	how	files	should	be
renamed	in	Python.

remove()	Method

This	method	 can	 be	 used	 for	 deletion	 of	 a	 file.	 The	method	 is	 called	 and	 the
name	of	the	file	to	be	deleted	or	removed	is	passed	as	the	argument.	Again,	this
method	 is	provided	 in	 the	os	module,	 hence	 you	must	 first	 import	 the	module
before	using	the	method.	The	syntax	for	the	method	is	as	follows:
os.remove(file_name)

Example:

#!/usr/bin/python3

import	os

#	Deleting	the	file	named	mytext.txt

os.remove("mytext.txt")

In	the	above	case,	we	first	imported	the	os	module	into	the	script.	We	have	then
called	the	remove()	method	from	this	module.	Again,	we	used	the	same	syntax	to
call	 the	method	as	we	did	 in	our	previous	example.	The	name	of	 the	file	 to	be
deleted	is	mytext.txt,	hence	this	has	been	passed	as	the	argument	to	the	function.

mkdir()	Method

Files	are	kept	in	directories.	The	os	module	comes	with	several	methods	that	can
be	used	for	working	with	directories.	The	mkdir()	command	provided	in	the	os
module	 helps	 in	 creating	 directories	 in	 your	 current	 directory.	 The	 method
expects	an	argument	to	be	passed	to	it,	and	this	should	be	the	name	of	directory
to	be	created.	Its	syntax	involves	calling	the	os	module	first	as	shown	below:
os.mkdir("newdirname")

Example:

#!/usr/bin/python3

import	os

#	Create	the	directory	"testdirectory"

os.mkdir("testdirectory")

In	 the	 above	 example,	 we	 have	 created	 a	 directory	 named	 testdirectory.	 The
name	of	the	directory	has	been	passed	as	the	argument	to	the	method.

chdir()	Method

This	 method	 helps	 in	 changing	 the	 current	 directory.	 It	 takes	 one	 argument,
which	is	the	name	for	the	directory	you	need	to	shift	or	change	to.	The	syntax	for
the	method	is	as	follows:
os.chdir("newdirname")

Example:

#!/usr/bin/python3

import	os

#	Change	directory	to	"/home/directory1"

os.chdir("/home/directory1")

In	above	example,	we	have	simply	changed	directory	to	directory1.

getcwd()	Method

This	method	returns	the	current	working	directory.	The	method	is	defined	in	os
module;	hence	it	takes	the	following	syntax:

os.getcwd()

Example:

#!/usr/bin/python3

import	os

#	This	will	return	location	of	current	directory

print(os.getcwd())

The	code	will	 return	the	current	working	directory	for	 the	user.	Notice	 that	 the
os.getcwd()	method	has	been	called	within	the	print()	method.	This	will	help	in
displaying	the	current	working	directory.

rmdir()	Method

This	method	helps	 in	deleting	a	directory	 that	 is	passed	 to	 it	 in	 the	 form	of	an
argument.	 Before	 a	 directory	 can	 be	 removed,	 all	 its	 contents	 should	 first	 be
deleted.	Here	is	the	syntax	for	the	method:

os.rmdir('dirname')

When	 deleting	 a	 directory,	 a	 fully	 qualified	 name	 for	 the	 directory	 should	 be
provided.	If	you	don’t,	the	directory	will	be	searched	for	in	the	current	directory
and	it	may	not	be	found.	Example:

#!/usr/bin/python3

import	os

#	This	will	delete	the	"/tmp/testdirectory"		directory.

os.rmdir("/tmp/directory")

Chapter	12-	Tkinter

Python	 has	 a	 number	 of	 modules	 that	 can	 be	 used	 for	 GUI	 (Graphical	 User
Interface)	development.	An	example	of	such	modules	is	the	tkinter.	The	module
can	 be	 used	 for	 development	 of	 various	 GUI	 elements	 including	 buttons,
textboxes,	 image	buttons	 etc.	 If	you	need	 to	develop	a	Python	application	 that
will	provide	its	users	with	a	graphical	user	interface,	this	is	the	best	module	for
you	to	use.

To	create	a	GUI	with	the	TKInter	module,	follow	these	steps:

1.	 Begin	by	importing	the	TKinter	module.	This	is	done	using	the	import
keyword.

2.	 Create	the	main	window	that	will	house	the	GUI	elements.
3.	 Add	the	GUI	elements	including	buttons,	textboxes	etc.
4.	 Add	the	main	event	loop	to	respond	to	user	actions	on	the	interface.

You	 should	 note	 that	 the	module	was	 referred	 to	 as	TKinter	 in	 Python	 2.7.	 In
Python	 3,	 the	 name	 of	 the	 module	 has	 changed	 to	 tkinter.	 As	 we	 had	 stated
earlier,	Python	 is	a	case	sensitive	coding	 language,	hence	 the	 two	are	different
and	failure	to	adhere	to	this	may	generate	errors.

The	version	of	Python	you	are	running	your	code	in	will	determine	the	output.
The	 names	 of	 modules	 have	 changed	 significantly.	 In	 my	 case,	 I	 am	 using
Python	version	3.5.0.

The	following	code	demonstrates	how	to	create	the	main	window	where	to	add
your	GUI	components	in	Python:

#!/usr/bin/python3

import	tkinter

window	=	tkinter.Tk()

#	Code	for	the	widgets	should	be	added	here

window.mainloop()

Run	the	code	and	it	will	give	a	window	as	shown	below:

We	began	by	importing	the	tkinter	module	via	the	import	keyword.	If	we	needed
to	 import	 everything	 provided	 by	 the	 module,	 we	 would	 have	 used	 this
command:

from	tkinter	import	*

The	window	has	then	been	created	by	calling	the	TK()	method	from	the	tkinter
module	as	shown	below:

window	=	tkinter.Tk()

As	usual,	the	module	name	comes	first,	and	then	the	name	of	the	method	we	are
calling.

TKinter	Buttons

Buttons	can	be	used	for	displaying	 text	 to	 text.	When	a	user	clicks	a	button,	 it
should	 do	 something.	 The	 following	 code	 demonstrates	 how	 one	 can	 create	 a
button	with	tkinter:

#	!/usr/bin/python3

from	tkinter	import	*

from	tkinter	import	messagebox

window	=	Tk()

window.geometry("200x200")

def	sayHello():

			msg=messagebox.showinfo("Hi!",	"Thank	you	for	clicking	the	button")

myButton	=	Button(window,	text	="Hello,	Click	Me!",	command	=	sayHello)

myButton.place(x=50,y=50)

window.mainloop()

In	 above	 code,	we	have	 imported	 the	 tkinter	module.	We	 also	 need	 to	 use	 the
messagebox	attribute	from	the	module,	hence	we	also	imported	it.	The	window
was	created	on	which	the	button	will	be	added.	The	geometry()	method	helps	us
set	the	size	of	the	window.	A	function	named	sayHello()	has	been	defined,	and
this	function	is	to	show	a	message	box	with	some	text	on	it.	The	Button()	class
helps	us	create	a	button	named	myButton.	The	parameters	 for	 the	class	 include
the	window	on	which	the	button	is	to	be	displayed,	which	is	window,	the	text	to
be	displayed	on	the	button	which	is	a	string	and	the	command,	which	defines	the
method	to	be	called	once	the	button	is	clicked.	This	has	been	set	 to	sayHello()
method.

Running	the	code	gives	the	following	window:

Click	the	button	just	as	instructed.	You	will	get	the	following	message	box:

TKinter	MenuButtons

	

In	this	app,	we	will	demonstrate	how	one	can	create	a	MenuButton	and	Menus	in
Python.	A	menubutton	is	a	drop-down	menu	which	will	stay	on	the	screen	all	the
time.	 Each	 menubutton	 has	 a	 Menu	 widget	 for	 displaying	 the	 choices	 of	 the
choices	for	the	menubutton	once	the	user	has	clicked	on	it.

Example:

#	!/usr/bin/python3

from	tkinter	import	*

import	tkinter

window	=	Tk()

window.geometry("100x100")

menub=		Menubutton	(window,	text="File",	relief=RAISED)

menub.grid()

menub.menu		=		Menu	(menub,	tearoff	=	0)

menub["menu"]		=		menub.menu	

newVar		=	IntVar()

openVar	=	IntVar()

menub.menu.add_checkbutton	(label="New",

																										variable=newVar)

menub.menu.add_checkbutton	(label="Open",

																										variable=openVar)

menub.pack()

window.mainloop()

When	executed,	the	code	gives	the	following	window:

Click	on	 the	button	written	“File”	and	observe	what	will	 happen.	A	dropdown
which	shows	the	options	for	both	“New”	and	“Open”	will	show	up.	If	you	click
on	any	of	these	two,	it	will	be	checked.

To	create	a	menubutton	in	Python,	we	use	the	“Menubutton()”	function	and	we
pass	the	necessary	parameters	to	it.	The	“text”	parameter	specifies	the	text	which
will	 appear	on	 the	button.	The	 submenus	have	 to	be	given	 a	variable	name	as
well	as	the	label	which	will	be	visible.

In	most	applications,	menus	are	very	common.	They	help	us	to	select	an	option
from	a	list	of	options.	They	also	help	us	to	save	on	the	space	which	is	provided
on	the	window	screen.

In	 a	 practical	 application,	 menus	 are	 very	 important.	 The	 following	 example
demonstrates	how	these	may	be	used:

#	!/usr/bin/python3

from	tkinter	import	*

def	function1():

			window	=	Toplevel(root)

			bt	=	Button(window,	text="Hello!")

			bt.pack()

root	=	Tk()

menub	=	Menu(root)

mymenu	=	Menu(menub,	tearoff=0)

mymenu.add_command(label="New",	command=function1)

mymenu.add_command(label="Open",	command=function1)

mymenu.add_command(label="Save",	command=function1)

mymenu.add_command(label="Save	As...",	command=function1)

mymenu.add_command(label="Exit",	command=function1)

mymenu.add_separator()

mymenu.add_command(label="Exit",	command=root.quit)

menub.add_cascade(label="File",	menu=mymenu)

edit	=	Menu(menub,	tearoff=0)

edit.add_command(label="Undo",	command=function1)

edit.add_separator()

edit.add_command(label="Copy",	command=function1)

edit.add_command(label="Paste",	command=function1)

edit.add_command(label="cut",	command=function1)

edit.add_command(label="Delete",	command=function1)

edit.add_command(label="Select	All",	command=function1)

menub.add_cascade(label="Edit",	menu=edit)

help	=	Menu(menub,	tearoff=0)

help.add_command(label="Get	Help",	command=function1)

help.add_command(label="About	this",	command=function1)

menub.add_cascade(label="Help",	menu=help)

root.config(menu=menub)

root.mainloop()

The	code	gives	the	following	result	once	executed:

	

The	menus	 in	 this	case	are	 the	File,	Edit	and	Help.	Once	you	click	on	each	of
them,	 you	 will	 see	 that	 they	 have	 a	 number	 of	 options.	 Note	 the	 use	 of	 the
“add_separator()”	method	which	is	used	to	separate	the	menus.	Click	on	the	File
menu	and	then	click	on	any	of	the	available	options.	You	will	see	the	following
window	popup:

In	this	case,	we	have	used	the	menu	to	trigger	an	event.	The	button	shown	above
with	 the	 “Hello”	 text	 as	 created	within	 the	 function	 named	 “function1()”.	 For
these	menu	options,	the	command	has	been	set	to	this	function.	When	any	of	the
menus	is	clicked,	it	will	call	the	function,	which	in	turn	renders	the	button	for	us!
That	is	how	you	can	use	a	button	or	a	menu	to	trigger	an	event	in	Python.

Canvas

In	 this	 example,	 we	 will	 demonstrate	 how	 you	 can	 use	 a	 canvas	 for	 drawing
simple	and	complex	 layouts	such	as	pictures.	A	canvas	can	accommodate	 text,
widgets,	graphics	or	frames.	Here	is	the	code	to	help	you	create	a	canvas:

#	!/usr/bin/python3

from	tkinter	import	*

window	=	Tk()

window.geometry("300x300")

cv	=	Canvas(window,	bg="grey",	height=220,	width=220)

crd	=	10,	50,	240,	210

arc	=	cv.create_arc(crd,	start=10,	extent=200,	fill="red")

line	=	cv.create_line(20,20,200,200,fill='blue')

cv.pack()

window.mainloop()

The	code	generates	the	following	once	executed:

	

We	began	by	importing	our	necessary	module,	the	tkinter.	Note	that	the	name	for
this	is	case	sensitive,	and	that	is	how	we	write	it	in	Python	3.	We	have	then	used
the	“Canvas()”	function	so	as	to	create	our	canvas.	The	background	color	of	this
canvas	has	been	set	to	grey,	and	we	have	set	its	height	as	well	as	the	width.

Our	aim	is	to	draw	and	arch	and	a	line.	The	arc	has	to	be	filled	with	red	color.
First,	we	have	used	 the	“crd”	variable	 so	as	 to	 set	 the	coordinates	 for	 this	arc.
The	 creation	 of	 the	 arc	 has	 been	 done	 in	 the	 line	 “arc	 =	 cv.create_arc(crd,
start=10,	extent=200,	fill="red")”.	The	use	of	“cv”	means	that	the	arch	is	being
added	to	the	canvas	which	we	created	earlier	on.	The	arc	should	start	at	10	and
then	 extend	 up	 to	 200.	 Note	 that	 to	 create	 an	 arc	 in	 Python,	 we	 use	 the
“create_arc()”	method.	We	have	 then	 added	 a	 line	 to	 the	 canvas	by	use	of	 the
“create_line()”	method.

Lastly,	we	have	used	the	“cv.pack()”	method	so	as	to	render	our	canvas	together
with	its	components,	which	include	the	arc	and	the	line.

Slider

It	is	possible	for	us	to	create	a	graphical	slider	in	Python	and	allow	us	to	choose
some	values	from	it.	To	do	this,	we	just	have	to	implement	a	scale	widget.

Example:

#	!/usr/bin/python3

from	tkinter	import	*

def	scaleFunction():

			sel	=	"Value	=	"	+	str(x.get())

			lab.config(text	=	sel)

window	=	Tk()

x	=	DoubleVar()

scale	=	Scale(window,	variable	=	x)

scale.pack(anchor=CENTER)

button1	=	Button(window,	text="See	the	Value",	command=scaleFunction)

button1.pack(anchor=CENTER)

lab	=	Label(window)

lab.pack()

window.mainloop()

The	code	results	into	this	when	executed:

Scroll	downwards	and	you	will	see	that	the	value	of	the	scale	will	be	shown	as
you	 scroll	downwards	and	even	upwards.	The	above	 figure	 shows	 the	 scale	 at
scale	0.	Scroll	downwards	then	click	the	button	written	“See	the	Value”.

	

As	 shown	 above,	 the	 above	 gets	 the	 value	 of	 the	 scale	 and	 shows	 it	 at	 the
bottom.	This	shows	 that	we	are	able	 to	scroll	along	 the	scale	and	 then	get	any
value	depending	on	where	we	are	on	the	scale.	We	used	the	“Scale()”	function	so
as	 to	 create	 the	 scale.	The	 button	 has	 been	 connected	 to	 the	 “scaleFunction()”
method,	and	that	is	why	it	is	able	to	get	the	value	which	has	been	selected	on	the
scale.

TKinter	Label

This	is	an	element	that	provides	you	with	a	box	where	you	can	place	some	text.
They	are	good	for	labeling.	Unlike	buttons,	labels	are	not	used	for	responding	to
user	 events.	However,	 you	 can	update	 the	 text	 at	 any	 time	 that	 you	need.	The
creation	of	a	label	involves	calling	the	Label()	method	which	takes	this	syntax:

l	=	Label	(master,	option,...)

The	master	in	this	case	is	the	parent	window	on	which	the	label	is	to	be	added.
The	other	arguments	 to	 the	 functions	are	 the	options	 for	your	 label,	which	can
act	as	key	value	pairs	separated	by	commas.	Example:

#	!/usr/bin/python3

from	tkinter	import	*

window	=	Tk()

str	=	StringVar()

lab	=	Label(window,	textvariable	=	str,	relief	=	RAISED)

str.set("Hi,	this	is	a	label")

lab.pack()

window.mainloop()

When	executed,	the	code	gives	the	following	window:

	

We	 created	 a	 window	 and	 we	 gave	 it	 the	 name	window.	 The	 label	 was	 then
created	 by	 calling	 the	 Label()	 method	 to	 which	 we	 passed	 a	 number	 of
parameters.	The	string	to	be	added	on	the	label	was	given	the	name	str	and	 its
value	has	also	been	specified.	That	is	how	we	got	the	above	label.

TKinter	Checkbutton

This	is	a	type	of	button	used	when	there	is	a	need	to	display	a	number	of	options
to	the	user.	The	options	are	represented	in	the	form	of	toggle	button.	The	user	is
allowed	to	select	one	or	more	options	from	the	available	ones	by	clicking	on	the
buttons	 next	 to	 the	 options.	One	 is	 also	 allowed	 to	 display	 images	 in	 place	 of
text.

The	checkbutton	is	created	by	calling	the	Checkbutton()	method	which	takes	this
syntax:

ch	=	Checkbutton	(master,	option,..)

The	master	 represents	 the	name	of	 the	window	on	which	you	need	 to	 add	 the
checkbutton.	 The	 options	 for	 the	 checkbutton	 are	 numerous,	 and	 these	 are
determined	by	the	way	you	need	your	checkbutton	to	appear.

Example:

#	!/usr/bin/python3

from	tkinter	import	*

import	tkinter

window	=	Tk()

Option1	=	IntVar()

Option2	=	IntVar()

Ch1	=	Checkbutton(window,	text	=	"Male",	variable	=	Option1,	\

																	onvalue	=	1,	offvalue	=	0,	height=5,	\

																	width	=	20,)

Ch2	=	Checkbutton(window,	text	=	"Female",	variable	=	Option2,	\

																	onvalue	=	1,	offvalue	=	0,	height=5,	\

																	width	=	20)

Ch1.pack()

Ch2.pack()

window.mainloop()

When	executed,	the	code	will	result	into	the	following	window:

The	first	checkbutton	has	been	identified	as	Ch1	while	the	second	one	has	been
identified	 as	 Ch2.	 The	 string	 to	 be	 added	 next	 to	 each	 checkbutton	 has	 been
added	 with	 the	 attribute	 text.	 The	 offvalue	 determined	 the	 value	 of	 the
checkbutton	when	it	is	deactivated	or	unchecked,	while	the	onvalue	determines
the	value	of	the	checkbutton	when	it	is	activated	or	checked.	The	height	and	the
width	of	the	checkboxes	have	also	been	specified.

TKinter	Radiobutton

With	this	type	of	button,	the	user	is	provided	with	a	number	of	buttons	to	select
from,	and	the	user	is	only	allowed	to	select	one	of	them.	This	is	not	the	case	with
the	checkbutton	as	the	checkbox	allows	one	to	select	more	than	one	option.	For
such	 a	 functionality	 to	 be	 achieved	 with	 radiobuttons,	 all	 radiobuttons	 in	 the
same	group	are	associated	with	the	same	variable.	Each	button	should	also	be	a
symbol	of	a	single	value.

The	tab	key	helps	us	switch	from	one	radiobutton	to	another.

To	create	a	Radiobutton,	we	must	call	 the	Radiobutton()	method	which	 takes	a
simple	syntax	as	shown	below:

radio	=	Radiobutton	(master,	option,...)

The	 master	 is	 the	 first	 argument	 which	 denotes	 the	 parent	 window	 for	 the
radiobutton.	This	is	 then	followed	by	a	number	of	other	options	for	the	button.
Example:

#	!/usr/bin/python3

from	tkinter	import	*

def	optionSelection():

			option	=	"You	must	select	an	option	"	+	str(x.get())

			lab.config(text	=	option)

window	=	Tk()

x	=	IntVar()

Opt1	=	Radiobutton(window,	text	=	"First	Option",	variable	=	x,	value	=	1,

																		command	=	optionSelection)

Opt1.pack(anchor	=	W)

Opt2	=	Radiobutton(window,	text	=	"Second	Option",	variable	=	x,	value	=	2,

																		command	=	optionSelection)

Opt2.pack(anchor	=	W)

Opt3	=	Radiobutton(window,	text	=	"Third	Option",	variable	=	x,	value	=	3,

																		command	=	optionSelection)

Opt3.pack(anchor	=	W)

lab	=	Label(window)

lab.pack()

window.mainloop()

When	executed,	the	above	code	generates	this	window:

Click	or	activate	or	select	ay	of	the	options	and	see	what	happens:

Some	text	is	displayed	at	the	bottom	of	the	window.	Notice	that	we	defined	only
a	single	variable	named	x.	This	variable	has	been	associated	with	every	option
via	the	variable	method.	We	also	defined	a	method	named	optionSelection.	This
has	also	been	associated	with	every	option	in	the	radiobutton	group.	The	method
will	be	called	every	time	you	select	any	of	the	radiobuttons.	This	also	shows	that
the	Radiobutton()	method	takes	the	command	argument,	which	helps	you	specify

what	 next	 after	 the	 user	 has	 selected	 the	 radiobutton.	 The	 text	 displayed	 after
selecting	the	radiobuttons	is	shown	on	a	label.	You	also	notice	that	the	interpreter
is	capable	of	knowing	the	option	that	you	have	selected,	whether	1,	2	or	3.

Chapter	13-	Python	Operators

Python	operators	help	us	manipulate	value	of	operands	in	operations.	Example:

10	*	34	=	340

In	the	above	example,	 the	values	10	and	34	are	known	as	operands,	while	*	 is
known	as	the	operator.	Python	supports	different	types	of	operators.

Arithmetic	Operators

These	are	the	operators	used	for	performing	the	basic	mathematical	operations.
They	 include	 multiplication	 (*),	 addition(+),	 subtraction	 (-),	 division	 (/),
modulus	(%)	and	others.	Example:

#!/usr/bin/python3

n1	=	6

n2	=	5

n3	=	0

n3	=	n1	+	n2

print("The	value	of	sum	is:	",	n3)

n3	=	n1	-	n2

print("The	result	of	subtraction	is:	",	n3)

n3	=	n1	*	n2

print("The	result	of	multiplication	is:",	n3)

n3	=	n1	/	n2

print	("The	result	of	division	is:	",	n3)

n3	=	n1	%	n2

print	("The	remainder	after	division	is:	",	n3)

n1	=	2

n2	=	3

n3	=	n1**n2

print	("The	exponential	value	is:	",	n3)

n1	=	20

n2	=	4

n3	=	n1//n2

print	("The	result	of	floor	division	is:	",	n3)

The	code	prints	the	followig	when	executed:

That	is	how	the	arithmetic	operations	work	in	Python.	The	modulus	operator	(%)
returns	the	remainder	after	a	division	has	been	done.	In	our	case,	we	are	dividing
6	by	5,	and	the	remainder	is	1.

Comparison	Operators

These	operators	are	used	for	comparing	the	values	of	operands	and	identify	the
relationship	between	them.	They	include	the	equal	to	(==),	not	equal	to	(!=),	less
than	(<),	greater	than	(>),	greater	than	or	equal	to	(>=)	and	less	than	or	equal	to
(<=).

Example:

#!/usr/bin/python3

n1	=	6

n2	=	5

if	(n1	==	n2):

			print	("The	two	numbers	have	equal	values")

else:

			print	("The	two	numbers	are	not	equal	in	value")

if	(n1	!=	n2):

			print	("The	two	numbers	are	not	equal	in	value")

else:

			print	("The	two	numbers	are	equal	in	value")

if	(n1	<	n2):

			print	("n1	is	less	than	n2")

else:

			print	("n1	is	not	less	than	n2")

if	(n1	>	n2):

			print	("n1	is	greater	than	n2")

else:

			print	("n1	is	not	greater	than	n2")

n1,n2=n2,n1	#the	values	of	n1	and	n2	will	be	swapped.	n1=5,	n2=6

if	(n1	<=	n2):

			print	("n1	is	either	less	than	or	equal	to	n2")

else:

			print	("n1	is	neither	less	than	nor	equal	to	n2")

if	(n2	>=	n1):

			print	("n2	is	either	greater	than	or	equal	to	n1")

else:

			print	("n2	is	neither	greater	than	nor	equal	to	n1")

The	code	will	print	the	following:

The	value	of	n1	is	6,	while	that	of	n2	is	5.	The	use	of	the	equal	to	(==)	operator
on	the	two	operands	will	return	a	false	as	the	two	operands	are	not	equal.	This
will	 lead	 the	 execution	 of	 the	 “else”	 part.	 The	 operator	 not	 equal	 to	 (!=)	 will
return	 a	 true	 as	 the	 values	 of	 the	 two	 operands	 are	 not	 equal.	 The	 only	 logic
which	might	seem	complex	in	this	case	is	the	swapping	of	the	values.	The	value
of	n1,	which	is	6	becomes	5,	while	that	of	n2	becomes	6.	The	statements	which
are	below	this	swapping	statement	will	then	operate	with	these	two	new	values.

Assignment	Operators

These	operators	 the	combination	of	 the	assignment	operator	 (=)	with	 the	other
operators.	A	good	 example	of	 an	 assignment	operator	 is	 “+=”.	The	 expression
p+=q	 means	 “p=p	 +	 q”.	 The	 expression	 “p/=q”	 means	 that	 “p=p	 /	 q”.	 The
assignment	operators	involve	combining	the	assignment	operator	with	the	rest	of
the	other	operators.

Example:

#!/usr/bin/python3

n1	=	6

n2	=	5

n3	=	0

n3	=	n1	+	n2

print	("The	value	of	n3	is:	",	n3)

n3	+=	n1

print	("The	value	of	n3	is:	",	n3)

n3	*=	n1

print	("The	value	of	n3	is:	",	n3)

n3	/=	n1

print	("The	value	of	n3	",	n3)

n3		=	2

n3	%=	n1

print	("The	value	of	n3	is:	",	n3)

n3	**=	n1

print	("The	value	of	n3	is:	",	n3)

n3	//=	n1

print	("The	value	of	n3	is:	",	n3)

The	code	will	print	the	following	when	executed:

The	statement	“n3	=	n1	+	n2”	is	very	straight	forward	as	we	are	just	adding	the
value	of	n1	to	that	of	n2.	In	the	expression	“n3	+=	n1”,	we	are	adding	the	value
of	n3	 to	 that	 of	n1	 and	 then	 assign	 the	 result	 to	n3.	However,	 note	 that	 in	 the
previous	statement,	the	value	of	n3	changed	to	“11”	after	adding	n1	to	n2.	So	we
have	11+6,	which	gives	17.	After	that,	the	new	value	of	the	variable	n3	will	be
17.	The	expression	“n3	*=	n1”	means	“n3=	n3	*	n1”.	This	will	be	17	*	6,	and	the
result	will	be	102.	That	is	how	these	operators	work	in	Python!

Membership	Operators

These	 are	 the	 operators	 which	 are	 used	 for	 testing	 membership	 in	 a	 certain
sequence	of	elements.	The	sequence	of	elements	can	be	a	string,	a	list	or	a	tuple.
The	two	membership	operators	include	“in”	and	“not	in”.

The	“in”	operator	returns	true	if	the	value	you	specify	is	found	in	the	sequence.
The	operator	“not	in”	will	evaluate	to	a	true	if	the	specified	element	is	not	found
in	the	sequence.

Example:

#!/usr/bin/python3

n1	=	7

n2	=	21

ls	=	[10,	20,	30,	40,	50]

if	(n1	in	ls):

			print	("n1	was	found	in	the	list")

else:

			print	("n1	was	not	found	in	the	list")

if	(n2	not	in	ls):

			print	("n2	was	not	found	in	the	list")

else:

			print	("n2	was	found	in	the	list")

n3=n2/n1

if	(n3	in	ls):

			print	("n1	was	found	in	the	list")

else:

			print	("n1	was	not	found	in	the	list")

The	code	will	print	the	following	once	executed:

The	value	of	num1	is	7.	This	is	not	part	of	our	list,	and	that	is	why	the	use	of	the
“in”	 operator	 returns	 a	 false.	 This	 causes	 the	 “else”	 part	 to	 be	 executed.	 The
value	of	n2	 is	21.	This	is	not	in	the	list.	This	expression	returns	a	true,	and	the
first	part	below	the	expression	is	executed.	21	divide	by	7	is	3.	This	value	is	not
in	the	list.	The	use	of	the	last	“in”	operator	evaluates	to	a	false,	and	that	is	why
the	“else”	part	below	it	is	executed.

Identity	Operators

These	 operators	 are	 used	 to	 compare	 the	 values	 of	 two	 memory	 locations.
Python	has	a	method	named	“id()”	that	returns	the	unique	identifier	of	the	object.
Python	has	two	identity	operators:

is-	this	operator	evaluates	to	a	true	in	case	the	variables	used	on	either	sides	of
the	operator	are	pointing	to	a	similar	object.	It	evaluates	to	false	otherwise.

is	not-	 this	 operator	 evaluates	 to	 a	 false	 if	 the	 variables	 on	 either	 sides	 of	 the
operator	are	pointing	to	a	similar	object,	and	true	otherwise.

Example:

#!/usr/bin/python3

n1	=	45

n2	=	45

print	('The	initial	values	are','n1=',n1,':',id(n1),	'n2=',n2,':',id(n2))

if	(n1	is	n2):

			print	("1.	n1	and	n2	share	an	identity")

else:

			print	("2.	n1	and	n2	do	not	share	identity")

if	(id(n1)	==	id(n2)):

			print	("3.	n1	and	n2	share	an	identity")

else:

			print	("4.	n1	and	n2	do	not	share	identity")

n2	=	100

print	('The	variable	values	are','n1=',n1,':',id(n1),	'n2=',n2,':',id(n2))

if	(n1	is	not	n2):

			print	("5.	n1	and	n2	do	not	share	identity")

else:

			print	("6.	n1	and	n2	share	identity")

The	code	will	print	the	following	once	executed:

Note	that	I	have	numbered	some	of	the	print	statements	so	that	it	may	be	easy	to
differentiate	 them.	 In	 the	 first	 instance,	 the	 values	 of	 variables	 n1	 and	n2	 are
equal.	 The	 first	 statement	 of	 the	 output	 shows	 the	 respective	 values	 for	 the
variables	 together	with	 their	unique	 identifier.	Note	 that	 the	 identifier	has	been
obtained	by	use	if	the	id()	Python	method,	and	the	name	of	the	variable	has	been
passed	inside	the	function	as	the	argument.	The	expression	“if	(n1	is	n2):”	will
evaluate	 to	 a	 true	 since	 the	 values	 of	 the	 two	 variables	 are	 equal,	 or	 they	 are
pointing	 to	 a	 similar	 object.	 This	 is	 why	 the	 print	 statement	 labeled	 1	 was
executed!

You	must	also	have	noticed	 that	 the	unique	 identifiers	of	 the	 two	variables	are
equal.	 In	 the	expression	“if	 (id(n1)	==	 id(n2)):”,	we	 are	 testing	whether	 the
values	of	 the	 identifiers	for	 the	 two	variables	are	 the	same.	This	evaluates	 to	a
true,	hence	the	print	statement	labeled	3	has	been	executed!

The	expression	“n2	=	100”	changes	the	value	of	variable	n2	from	45	to	100.	At
this	point,	 the	values	of	the	two	variables	will	not	be	equal.	This	is	because	n1
has	a	value	of	45,	while	n2	has	a	value	of	100.	This	is	clearly	in	the	next	print
statement	 which	 shows	 the	 values	 of	 the	 variables	 together	 with	 their
corresponding	ids.	You	must	also	have	noticed	that	the	ids	of	the	two	variables
are	not	equal	at	this	point.

The	expression	“if	(n1	is	not	n2):”	evaluates	to	a	true,	hence	the	print	statement
labeled	5	was	executed.	If	we	test	to	check	whether	the	values	of	the	ids	for	the
two	variables	are	equal,	you	will	notice	that	they	are	not	equal.

Chapter	14-	Accessing	MySQL	Databases

It	is	possible	for	you	to	access	a	MySQL	database	from	your	Python	code.	For
the	 of	 SQLite,	 Pytho	 has	 an	 in-built	 support	 for	 it.	 You	 can	 use	 an	 interface
named	 PyMySQL	 to	 connect	 to	 a	 MySQL	 database	 from	 Python.	 To	 know
whether	this	package	has	been	installed	on	your	computer,	you	have	to	open	the
Python	terminal	then	run	the	following	command:

import	PyMySQL
The	command	simply	tries	to	import	the	module.	If	it	is	not	found,	you	will	get
an	error.

The	above	figure	shows	that	the	module	is	not	installed.	I	must	install	it.	Python
comes	with	a	module	named	pip	that	helps	you	install	other	Python	modules	and
packages.	You	can	use	it	to	install	PyMySQL	by	running	the	following	command
from	the	terminal	of	your	operating	system:

pip	install	PyMySQL

The	command	will	run	and	PyMySQL	will	be	installed	on	your	system:

The	above	figure	shows	the	installation	was	successful.

Now	that	the	module	has	been	installed,	you	can	use	I	to	connect	to	the	MySQL
server.	 However,	 ensure	 that	 you	 have	 created	 a	 database	 that	 you	 need	 to
connect	to.

In	my	case,	I	will	be	connecting	to	a	database	named	school.	The	database	has	a
table	named	student	with	four	columns	namely	name,	admission,	course	and	age.

The	 following	 Python	 code	 can	 help	 us	 establish	 a	 connection	 to	 the	 School
database:

#!/usr/bin/python3

import	PyMySQL

#	Opening	the	database	connection

database	=	PyMySQL.connect("localhost","root","","SCHOOL")

#	create	the	cursor	object	by	calling	cursor()	method

cursor	=	database.cursor()

#	execute	a	SQL	query	by	calling	execute()	method.

cursor.execute("SELECT	VERSION()")

#	Fetch	single	row	by	calling	fetchone()	method.

dt	=	cursor.fetchone()

print	("Database	version	:	%s	"	%	dt)

#	disconnect	from	the	server

database.close()

The	 code	 will	 print	 the	 version	 of	 MySQL	 that	 you	 have	 installed	 on	 your
system.	If	you	are	using	either	WampServer	or	XAMPP,	ensure	that	they	are	up
and	 running	 before	 running	 the	 above	 code.	 Consider	 the	 following	 line
extracted	from	the	above	code:

database	=	PyMySQL.connect("localhost","root","","SCHOOL")

We	 have	 simply	 invoked	 the	 connect()	 method	 which	 is	 contained	 in	 the
PyMySQL	module.	The	method	 takes	a	number	of	parameters.	The	 first	one	 is
the	computer	on	which	the	MySQL	server	is	running	on,	which	in	our	case	is	the
localhost.	The	next	parameter	is	the	username	for	the	MySQL	account	we	need
to	use	for	connection.	We	are	logging	in	as	the	root	user.	The	next	parameter	is
the	password	of	the	username	you	have	provided.	In	my	case,	the	password	for
root	user	is	blank,	hence	we	enter	nothing	there.	The	last	parameter	is	the	name
of	 the	MySQL	database	we	need	 to	connect	 to.	This	has	been	 specified	as	 the
SCHOOL	database.

Whenever	we	need	to	run	a	SQL	statement,	we	call	the	execute()	method	as	we
have	 done	 above.	 To	 close	 a	 connection	 to	 a	 MySQL	 database,	 we	 call	 the
close()	method	as	done	above.

Creating	a	Table

Now	that	we	have	established	a	connection	to	the	database,	we	can	create	tables
or	 even	 insert	 records	 into	 the	 existing	 tables.	 We	 will	 create	 a	 table	 named
Workers.	This	can	be	done	via	the	execute	method:

#!/usr/bin/python3

import	PyMySQL

#	Opening	the	database	connection

database	=	PyMySQL.connect("localhost","root","","SCHOOL")

#	preparing	a	cursor	object	by	calling	cursor()	method

cursor	=	database.cursor()

#	Drop	the	table	if	it	exists	by	calling	execute()	method.

cursor.execute("DROP	TABLE	IF	EXISTS	WORKERS")

#	Creating	a	table	as	required

statement	=	"""CREATE	TABLE	WORKERS	(

			FIRST_NAME		CHAR(30)	NOT	NULL,

			LAST_NAME		CHAR(30),

			AGE	INT,	

			GENDER	CHAR(1),

			SALARY	FLOAT)"""

cursor.execute(statement)

#	disconnecting	from	the	server

database.close()

After	 that,	 confirm	 from	 the	MySQL	 terminal	 to	 check	whether	 the	 table	 has

been	created.

Inserting	Data

Let	us	insert	some	data	into	the	WORKERS	table	that	we	have	just	created:

#!/usr/bin/python3

import	PyMySQL

#	Opening	the	database	connection

database	=	PyMySQL.connect("localhost","root","","SCHOOL”)

#	preparing	the	cursor	object	by	calling	cursor	()	method

cursor	=	database.cursor()

#	Preparing	a	SQL	statement	to	INSERT	record	into	our	table.

statement	=	"""INSERT	INTO	WORKERS	(FIRST_NAME,

			LAST_NAME,	AGE,	GENDER,	SALARY)

			VALUES	('Nicholas',	'Samuel',	26,	'M',	5000)"""

try:

			#	Execute	the	above	SQL	command

			cursor.execute(statement)

			#	Commit	the	changes	made	to	the	database

			database.commit()

except:

			#	Rollback	in	case	an	error	occurs

			database.rollback()

#	disconnecting	from	the	server

database.close()

The	record	will	be	inserted	into	your	table.	If	you	need	the	code	to	generate	the

queries	dynamically,	you	can	modify	it	to	the	following:

#!/usr/bin/python3

import	PyMySQL

#	Opening	the	database	connection

database	=	PyMySQL.connect("localhost","root","","SCHOOL")

#	preparing	the	cursor	object	by	calling	cursor()	method

cursor	=	database.cursor()

#	Preparing	a	SQL	statement	to	INSERT	record	into	our	table.

statement	=	"INSERT	INTO	WORKERS(FIRST_NAME,	\

			LAST_NAME,	AGE,	GENDER,	SALARY)	\

			VALUES	('%s',	'%s',	'%d',	'%c',	'%d')"	%	\

			('Nicholas',	'Samuel',	26,	'M',	5000)

try:

			#	Execute	the	above	SQL	command

			cursor.execute(statement)

			#	Commit	the	changes	made	to	the	database

			database.commit()

except:

			#	Rollback	in	case	an	error	occurs

			database.rollback()

#	disconnecting	from	the	server

database.close()

After	 that,	 you	will	 only	 have	 to	 change	 the	 values	 for	 each	worker	 and	 their

details	will	be	inserted	into	the	database	table.

	

Conclusion

Python	 is	 a	 good	 programming	 language	 that	 can	 be	 used	 for	 development	 of
various	 types	 of	 applications.	 It	 is	 an	 object-oriented	 programming	 language
which	 supports	 the	 use	 of	 the	 object-oriented	 programming	 concepts.	Most	 of
the	aspects	of	Python	have	been	discussed	in	this	book,	and	my	hope	is	that	you
are	now	familiar	with	them.	That	is	all	what	it	takes	for	one	to	become	a	Python
geek.	 The	 language	 is	 interpreted	 rather	 than	 being	 compiled.	 If	 you	 are	 a
beginner	to	programming,	Python	is	a	good	language	to	begin	with.	It	will	help
you	form	solid	backgrounds	that	make	it	easy	for	you	to	learn	any	other	type	of
programming	language.	This	is	because	Python	comes	with	numerous	constructs
that	 are	 easy	 for	 you	 to	 learn.	 These	 constructs	 are	 also	 closely	 related	 to	 the
constructs	used	in	other	programming	languages.

	

Thank	you!

Thank	you	for	buying	this	book!	It	is	intended	to	help	you	understanding	Python
Programming.	If	you	enjoyed	this	book	and	felt	that	it	helped	you	learn	python,
please	take	the	time	to	review	it.

Your	 honest	 feedback	 would	 be	 greatly	 appreciated.	 It	 really	 does	 make	 a
difference.

THE	BEST	WAY	TO	THANK	AN	AUTHOR	IS	TO	WRITE	REVIEW	 	 	
BY	CLIKING	HERE

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

https://www.amazon.com/dp/B07M5B2D68/

	

	

	Introduction
	Chapter 1- Getting Started with Python
	What is Python?
	Installing Python
	Python
	Installation on Windows
	Installation on Linux
	Installation on Mac OS

	Running Programs
	Interactive Interpreter
	Script from Command Line
	Python IDE (Integrated Development Environment)

	Chapter 2- Basic Python Syntax
	Indentation
	Quotes
	User Input

	Chapter 3- Python Variables
	Multiple Variable Assignment

	Chapter 4- Python Data Types
	Python Numbers
	Python Strings
	Python Lists
	Python Tuples
	Python Dictionaries
	Datatype Conversion

	Chapter 5- Control Statements
	If Statement
	If-Else Statement
	If Elif Else Statement
	Nested If

	Chapter 6- Python Functions
	Function Parameters
	Function Parameter Defaults

	Chapter 7- Python Loops
	For Loop
	While Loop
	Loop Control
	Break Statement
	Continue Statement
	Pass Statement

	Chapter 8- Python Classes and Objects
	Class Definition
	Built-in Attributes
	Garbage Collection
	Inheritance
	Multiple Inheritance
	Python Constructors
	Overriding Class Methods
	Operator Overloading

	Chapter 9- Exception Handling
	Raising Exceptions
	Exception Objects
	Custom Exception Class

	Chapter 10- Python Modules
	Locating Modules
	Namespaces and Scope
	global VariableName
	dir() Function
	locals () and global() Functions
	reload () Function
	reload(module_name)
	reload(hello)

	Chapter 11- File Handling
	open() Function
	close() Method
	fileObject.close();
	write() Method
	fileObject.write(string);
	read () Method
	fileObject.read([count]);
	File Positions
	rename() Method
	remove() Method
	mkdir() Method
	chdir() Method
	getcwd() Method
	rmdir() Method
	Chapter 12- Tkinter
	TKinter Buttons
	TKinter MenuButtons
	Canvas
	Slider
	TKinter Label
	TKinter Checkbutton
	TKinter Radiobutton

	Chapter 13- Python Operators
	Arithmetic Operators
	Comparison Operators
	Assignment Operators
	Membership Operators
	Identity Operators

	Chapter 14- Accessing MySQL Databases
	import PyMySQL
	Creating a Table
	Inserting Data

	Conclusion

