

	
	
	
	
	

THE
PYTHON	BIBLE

	
7	IN	1

BY

FLORIAN	DEDOV

	

Copyright	©	2020

	

	

	

	

	

	

	

This	book	is	a	7-in-1	version	of	all	the	seven	volumes	of	The	Python
Bible	series.

I	recommend	reading	them	in	the	right	order,	since	the	volumes	build
on	top	of	each	other.

If	you	think	that	this	book	has	brought	value	to	you	and	helped	you	on
your	programming	journey,	I	would	appreciate	a	quick	review	on

Amazon.

Thank	you!

	

	

TABLE	OF	CONTENT

Introduction
Why	Python?
How	to	Read	This	Book

1	–	Installing	Python
Python	Installation
Development	Environment
Python	IDLE
Editor	and	CLI
PyCharm

2	–	Our	First	Program
Hello	World
Running	The	Script

3	–	Variables	and	Data	Types
Numerical	Data	Types
Strings
Booleans
Sequences
Creating	Variables
Using	Variables
Typecasting

4	–	Operators
Arithmetic	Operators
Assignment	Operators

Comparison	Operators
Logical	Operators
Other	Operators

5	–	User	Input
Input	Function

6	–	Conditions
If,	Elif,	Else
Flowchart
Nested	If-Statements

7	–	Loops
While	Loop
Endless	Loop

For	Loop
Range	Function

Loop	Control	Statements
Break	Statement
Continue	Statement
Pass	Statement

8	–	Sequences
Lists
Accessing	Values
Modifying	Elements
List	Operations
List	Functions

Tuples
Tuple	Functions

Dictionaries
Accessing	Values
Dictionary	Functions

Membership	Operators
9	–	Functions
Defining	Functions
Parameters
Return	Values

Default	Parameters
Variable	Parameters
Scopes

10	–	Exception	Handling
Try	Except
Else	Statements
Finally	Statements

11	–	File	Operations
Opening	and	Closing	Files
Access	Modes
Closing	Files
With	Statement

Reading	From	Files
Writing	Into	Files
Other	Operations
Deleting	and	Renaming
Directory	Operations

12	–	String	Functions

Strings	as	Sequences
Escape	Characters
String	Formatting
String	Functions
Case	Manipulating	Functions
Count	Function
Find	Function
Join	Function
Replace	Function
Split	Function

Triple	Quotes
What’s	Next?

INTRODUCTION
This	book	is	the	first	part	of	a	series	that	is	called	the	Python	Bible.	In	this	series,
we	are	going	to	focus	on	learning	the	Python	programming	language	as	effective
as	 possible.	 The	 goal	 is	 to	 learn	 it	 smart	 and	 fast	 without	 needing	 to	 read
thousands	of	pages.	We	will	keep	it	simple	and	precise.

In	this	first	book,	we	will	introduce	you	to	the	language	and	learn	the	basics.	It	is
for	 complete	 beginners	 and	 no	 programming,	 IT	 or	math	 skills	 are	 needed	 to
understand	it.	At	the	end,	you	will	be	able	to	write	some	simple	and	interesting
programs	and	you	will	have	the	necessary	basis	to	continue	with	volume	two.

WHY	PYTHON?
One	 question	 you	might	 be	 asking	 yourself	 right	 now	 is:	Why	 learn	 Python?
Why	not	Java,	C++	or	Go?

First	 of	 all,	 a	 good	 programmer	 is	 fluent	 in	 multiple	 languages,	 so	 learning
Python	doesn’t	mean	that	you	can’t	learn	C++	or	Java	additionally.	But	second
of	all,	Python	is	probably	the	best	language	to	start	with.

It	is	extremely	simple	in	its	syntax	(the	way	the	code	is	written)	and	very	easy	to
learn.	 A	 lot	 of	 things	 that	 you	 need	 to	 do	 manually	 in	 other	 languages	 are
automated	in	Python.

Besides	 that,	 Python’s	 popularity	 is	 skyrocketing.	 According	 to	 the	 TIOBE-
Index,	Python	is	the	third	most	popular	language	with	an	upward	trend.	But	also
in	other	rankings,	you	will	see	Python	near	the	top.

TIOBE:	https://www.tiobe.com/tiobe-index/

Also,	Python	is	the	lingua	franca	of	machine	learning.	This	means	that	it	is	the
one	 language	 that	 is	 used	 the	most	 in	 the	 areas	 of	 artificial	 intelligence,	 data
science,	finance	etc.	All	these	topics	will	be	part	of	this	Python	Bible	series.	But
since	 Python	 is	 a	 general-purpose	 language,	 the	 fields	 of	 application	 are
numerous.

Last	 but	 not	 least,	 Python	 is	 a	 very	 good	 choice	 because	 of	 its	 community.
Whenever	you	have	some	problem	or	some	error	in	your	code,	you	can	go	online
and	find	a	solution.	The	community	is	huge	and	everything	was	probably	already
solved	by	someone	else.

https://www.tiobe.com/tiobe-index/

HOW	TO	READ	THIS	BOOK
In	order	to	get	as	much	value	as	possible	from	this	book,	it	is	very	important	that
you	 code	 the	 individual	 examples	 yourself.	When	 you	 read	 and	 understand	 a
new	 concept,	 play	 around	with	 it.	Write	 some	 scripts	 and	 experiment	 around.
That’s	how	you	learn	and	grow.

So,	 stay	 motivated.	 Get	 excited	 and	 enjoy	 your	 programing	 journey.	 If	 you
follow	 the	 steps	 in	 this	 book,	 you	 will	 have	 a	 solid	 basis	 and	 a	 decent
understanding	of	the	Python	language.	I	wish	you	a	lot	of	fun	and	success	with
your	code!

	

Just	one	little	thing	before	we	start.	This	book	was	written	for	you,	so	that	you
can	get	as	much	value	as	possible	and	learn	to	code	effectively.	If	you	find	this
book	 valuable	 or	 you	 think	 you	 learned	 something	 new,	 please	 write	 a	 quick
review	on	Amazon.	It	is	completely	free	and	takes	about	one	minute.	But	it	helps
me	produce	more	high	quality	books,	which	you	can	benefit	from.

Thank	you!

1	–	INSTALLING	PYTHON
Now,	 before	 we	 get	 into	 the	 code,	 we	 need	 to	 install	 Python	 and	 our
development	 environment.	 Python	 is	 a	 so-called	 interpreted	 language.	 This
means	that	the	code	needs	a	certain	software	(the	interpreter)	to	be	executed.

Other	languages	like	C++	or	Java	are	compiled	languages.	You	need	a	compiler
but	 then	 the	 program	 is	 converted	 into	 machine	 code	 and	 can	 be	 executed
without	 extra	 software.	 Python	 scripts	 can’t	 be	 executed	 without	 a	 Python
interpreter.

PYTHON	INSTALLATION
First	of	all,	you	need	to	visit	the	official	Python	website	in	order	to	get	the	latest
version	from	there.

Python:	https://www.python.org/downloads/

Download	 the	 installer	 and	 follow	 the	 instructions.	 Once	 you	 are	 done,	 you
should	have	the	Python	interpreter	as	well	as	the	IDLE	on	your	computer.

The	 IDLE	 is	 an	 Integrated	 Development	 and	 Learning	 Environment.	 It	 is	 the
basic	editor,	where	we	can	write	and	execute	our	code.	Just	open	your	start	menu
and	look	for	it.

https://www.python.org/downloads/

DEVELOPMENT	ENVIRONMENT

PYTHON	IDLE
When	 it	 comes	 to	 our	 development	 environment,	 we	 have	 many	 options	 to
choose	from.	The	simplest	choice	is	to	just	use	the	default	IDLE.	It	is	a	great	tool
for	writing	the	code	and	it	has	an	integrated	interpreter.	So,	you	can	execute	the
code	directly	in	the	IDLE.	For	beginners	this	is	definitely	enough.	If	you	choose
this	 option,	 you	 can	 just	 stick	with	 the	 basic	 installation.	 In	 this	 book,	we	 are
going	to	assume	that	you	are	using	the	IDLE.

EDITOR	AND	CLI
If	you	prefer	to	use	a	specific	editor,	like	Atom,	Sublime	or	VS	Code,	you	can
run	your	code	directly	from	the	command	line.	So	you	basically	write	your	code
in	your	editor	and	save	the	file.	Then	you	run	CMD	(on	Windows)	or	Terminal
(on	 Linux	&	Mac).	 You	 need	 to	 use	 the	 following	 syntax	 in	 order	 to	 run	 the
code:

python	<scriptname>.py

This	option	is	a	bit	less	convenient	but	if	you	prefer	using	a	specific	editor,	you
may	need	 to	do	 it.	Another	way	would	be	 to	 look	 for	 some	Python	 interpreter
plugins	for	your	editor.

Atom	Editor:	https://atom.io/

Sublime	Text:	https://www.sublimetext.com/

VS	Code:	https://code.visualstudio.com/

PYCHARM
Last	but	not	least,	you	can	also	decide	to	use	a	very	professional	IDE	with	a	lot
of	 features.	 For	 Python	 this	 is	 PyCharm.	 This	 development	 environment	 is	 a
product	of	JetBrains,	a	very	well-known	and	professional	company.	It	has	a	ton
of	features,	professional	syntax	highlighting	and	a	great	user	interface.	I	would
definitely	recommend	it	to	every	Python	developer,	but	I	think	it	might	be	a	bit
too	much	and	not	necessary	for	beginners.	But	that	is	your	decision.	If	you	are
interested,	you	can	get	the	community	edition	for	free.

PyCharm:	https://www.jetbrains.com/pycharm/

https://atom.io/
https://www.sublimetext.com/
https://code.visualstudio.com/
https://www.jetbrains.com/pycharm/

Now,	let’s	get	into	the	code!

2	–	OUR	FIRST	PROGRAM
In	order	 to	understand	 the	 syntax	of	Python,	we	are	going	 to	 start	with	a	very
simple	first	program.	It	is	a	tradition	in	programming	to	start	with	a	Hello	World
application,	when	you	are	learning	a	new	language.	So,	we	are	going	to	do	that
in	this	chapter.

HELLO	WORLD
A	Hello	World	 application	 is	 just	 a	 script	 that	outputs	 the	 text	“Hello	World!”
onto	the	screen.	In	Python	this	is	especially	simple.

print("Hello	World!")

As	you	can	see,	this	is	a	one-liner	in	Python.	In	other	languages,	we	would	have
to	define	a	basic	structure	with	functions,	classes	and	more,	just	to	print	one	text.

But	let’s	see	what’s	happening	here.	The	first	thing	that	we	can	notice	is	the	so-
called	 function	 with	 the	 name	 print.	 When	 we	 use	 that	 function,	 it	 outputs	 a
certain	 text	 onto	 the	 screen.	 The	 text	 that	 we	 want	 to	 print	 needs	 to	 be	 put
between	the	parentheses.

Another	thing	that	is	very	important	here,	are	the	quotation	marks.	They	indicate
that	the	text	is	a	string	and	not	a	name	of	something	else.	A	string	is	a	data-type
that	 represents	 text.	 When	 we	 don’t	 use	 quotation	 marks,	 the	 interpreter	 will
think	that	Hello	World!	is	a	variable	name	and	not	a	text.	Therefore,	we	will	get
an	 error	message.	But	we	will	 talk	 about	 variables	 and	 data	 types	 in	 the	 next
chapter.

RUNNING	THE	SCRIPT
Now,	we	just	need	to	run	the	script	we	just	wrote.	For	that,	you	need	to	save	the
script	into	a	Python	file.	Then	you	can	use	the	integrated	interpreter	of	the	IDLE.
Just	click	on	Run	->	Run	Module	(or	F5).

Running	Code	in	Python	IDLE

You	 will	 then	 see	 the	 results	 on	 the	 screen.	 That’s	 how	 you	 run	 your	 first
program.

3	–	VARIABLES	AND	DATA	TYPES
Probably,	 you	 have	 already	 encountered	 variables	 in	 your	 math	 classes.
Basically,	they	are	just	placeholders	for	values.	In	programming,	that’s	the	same.
The	difference	is	that	we	have	a	lot	of	different	data	types,	and	variables	cannot
only	store	values	of	numbers	but	even	of	whole	objects.

In	 this	 chapter	 we	 are	 going	 to	 take	 a	 look	 at	 variables	 in	 Python	 and	 the
differences	 of	 the	 individual	 data	 types.	 Also,	 we	 will	 talk	 about	 type
conversions.

NUMERICAL	DATA	TYPES
The	 types	 you	 probably	 already	 know	 from	 mathematics	 are	 numerical	 data
types.	There	 are	 different	 kinds	of	 numbers	 that	 can	be	used	 for	mathematical
operations.

NUMERICAL	DATA	TYPES
DATA	TYPE KEYWORD DESCRIPTION

Integer int A	whole	number
Float float A	floating	point

number
Complex complex A	complex	number

As	 you	 can	 see,	 it’s	 quite	 simple.	 An	 integer	 is	 just	 a	 regular	 whole	 number,
which	we	can	do	basic	calculations	with.	A	float	extends	the	integer	and	allows
decimal	places	because	it	is	a	floating	point	number.	And	a	complex	number	is
what	 just	 a	 number	 that	 has	 a	 real	 and	an	 imaginary	 component.	 If	 you	 don’t
understand	complex	numbers	mathematically,	forget	about	them.	You	don’t	need
them	for	your	programming	right	now.

STRINGS
A	string	is	just	a	basic	sequence	of	characters	or	basically	a	text.	Our	text	that	we
printed	in	the	last	chapter	was	a	string.	Strings	always	need	to	be	surrounded	by
quotation	marks.	Otherwise	the	interpreter	will	not	realize	that	they	are	meant	to
be	treated	like	text.	The	keyword	for	String	in	Python	is	str.

BOOLEANS
Booleans	are	probably	the	most	simple	data	type	in	Python.	They	can	only	have
one	of	two	values,	namely	True	or	False.	It’s	a	binary	data	type.	We	will	use	it	a
lot	when	we	get	to	conditions	and	loops.	The	keyword	here	is	bool.

SEQUENCES
Sequences	are	a	topic	that	we	will	cover	in	a	later	chapter.	But	since	sequences
are	also	data	types	we	will	at	least	mention	that	they	exist.

SEQUENCE	TYPES
DATA	TYPE KEYWORD DESCRIPTION

List list Collection	of
values

Tuple tuple Immutable	list
Dictionary dict List	of	key-value

pairs

CREATING	VARIABLES
Creating	variables	in	Python	is	very	simple.	We	just	choose	a	name	and	assign	a
value.

myNumber	=	10

myText	=	"Hello"

Here,	we	defined	two	variables.	The	first	one	is	an	integer	and	the	second	one	a
string.	You	 can	 basically	 choose	whatever	 name	 you	want	 but	 there	 are	 some
limitations.	For	example	you	are	not	allowed	to	use	reserved	keywords	like	int	or
dict.	Also,	the	name	is	not	allowed	to	start	with	a	number	or	a	special	character
other	than	the	underline.

USING	VARIABLES
Now	that	we	have	defined	our	variables,	we	can	start	to	use	them.	For	example,
we	could	print	the	values.

print(myNumber)

print(myText)

Since	we	are	not	using	quotation	marks,	the	text	in	the	parentheses	is	treated	like
a	variable	name.	Therefore,	the	interpreter	prints	out	the	values	10	and	“Hello”.

TYPECASTING
Sometimes,	we	will	get	a	value	in	a	data	type	that	we	can’t	work	with	properly.
For	example	we	might	get	a	string	as	an	input	but	that	string	contains	a	number
as	 its	value.	 In	 this	case	“10”	 is	 not	 the	 same	as	10.	We	can’t	do	calculations
with	a	 string,	 even	 if	 the	 text	 represents	a	number.	For	 that	 reason	we	need	 to
typecast.

value	=	"10"

number	=	int(value)

Typecasting	is	done	by	using	the	specific	data	type	function.	In	this	case	we	are
converting	a	string	to	an	integer	by	using	the	int	keyword.	You	can	also	reverse
this	by	using	the	str	keyword.	This	is	a	very	important	thing	and	we	will	need	it
quite	often.

4	–	OPERATORS
The	next	thing	we	are	going	to	learn	is	operators.	We	use	operators	in	order	to
manage	 variables	 or	 values	 and	 perform	 operations	 on	 them.	 There	 are	many
different	 types	 of	 operators	 and	 in	 this	 chapter	we	 are	 going	 to	 talk	 about	 the
differences	and	applications.

ARITHMETIC	OPERATORS
The	 simplest	 operators	 are	 arithmetic	 operators.	 You	 probably	 already	 know
them	from	mathematics.

ARITHMETIC	OPERATORS
OPERATOR NAME DESCRIPTION

+ Addition Adds	two	values

- Subtraction Subtracts	one	value
from	another

* Multiplication Multiplies	two
values

/ Division Divides	one	value
by	another

% Modulus
Returns	the

remainder	of	a
division

** Exponent
Takes	a	value	to
the	power	of
another	value

// Floor	Division

Returns	the	result
of	a	division

without	decimal
places

	

	

	

	

Let’s	take	a	look	at	some	examples.

20	+	10	=	30 20	-	10	=	10

2	*	10	=	20 5	/	2	=	2.5

5	%	2	=	1 5	**	2	=	25

5	//	2	=	2 	

If	you	don’t	get	 it	 right	away,	don’t	worry.	Just	play	around	with	 the	operators
and	 print	 the	 results.	 Of	 course	 you	 can	 also	 use	 variables	 and	 not	 only	 pure

values.

ASSIGNMENT	OPERATORS
Another	 type	 of	 operators	 we	 already	 know	 is	 assignment	 operators.	 As	 the
name	already	tells	us,	we	use	them	to	assign	values	to	variables.

ASSIGNMENT	OPERATORS
OPERATOR DESCRIPTION

= Assigns	a	value	to	a	variable
+= Adds	a	value	to	a	variable
-= Subtracts	a	value	from	a	variable
*= Multiplies	a	value	with	a	variable
/= Divides	the	variable	by	a	value

%= Assigns	the	remainder	of	a
division

**= Assigns	the	result	of	a
exponentiation

//= Assigns	the	result	of	a	floor
division

Basically	we	use	these	operators	to	directly	assign	a	value.	The	two	statements
down	below	have	the	same	effect.	It’s	just	a	simpler	way	to	write	it.

a	=	a	+	10

a	+=	10

COMPARISON	OPERATORS
When	we	use	comparison	operators	in	order	to	compare	two	objects,	we	always
get	a	Boolean.	So	our	result	is	binary,	either	True	or	False.

COMPARISON	OPERATORS
OPERATOR NAME DESCRIPTION

== Equal Two	values	are	the
same

!= Not	Equal Two	values	are	not
the	same

>	 Greater	Than One	value	is	greater
than	the	other

<	 Less	Than One	value	is	less
than	the	other

>= Greater	or
Equal

One	value	is	greater
than	or	equal	to

another

<= Less	or
Equal

One	value	is	less
than	or	equal	to

another

We	use	comparisons,	when	we	are	dealing	with	conditions	and	loops.	These	are
two	topics	that	we	will	cover	in	later	chapters.

When	a	comparison	is	right,	it	returns	True,	otherwise	it	returns	False.	Let’s	look
at	some	examples.

10	==	10	→	True 10	!=	10	→	False
20	>	10	→	True 20	>	20	→	False
20	>=	20	→	True 20	<	10	→	False
10	<=	5	→	False 	

	

LOGICAL	OPERATORS
Logical	operators	are	used	to	combine	or	connect	Booleans	or	comparisons.

LOGICAL	OPERATORS
OPERATOR DESCRIPTION

or At	least	one	has	to	be	True
and Both	have	to	be	True
not Negates	the	input

I	think	this	is	best	explained	by	examples,	so	let’s	look	at	some.

True	or	True	→	True True	and	True	→	True
True	or	False	→	True False	and	False	→	False
False	or	False	→	False not	True	→	False
True	and	False	→	False not	False	→	True

OTHER	OPERATORS
There	are	also	other	operators	like	bitwise	or	membership	operators.	But	some	of
them	we	just	don’t	need	and	others	need	a	bit	more	programming	knowledge	to
be	understood.	So	for	this	chapter	we	will	stick	with	those.

5	–	USER	INPUT
Up	until	now,	the	only	thing	we	did	is	to	print	out	text	onto	the	screen.	But	what
we	can	also	do	 is	 to	 input	our	own	data	 into	 the	script.	 In	 this	chapter,	we	are
going	to	take	a	look	at	user	input	and	how	to	handle	it.

INPUT	FUNCTION
In	Python	we	have	the	function	input,	which	allows	us	to	get	the	user	input	from
the	console	application.

name	=	input("Please	enter	your	name:")

print(name)

Here,	the	user	can	input	his	name	and	it	gets	saved	into	the	variable	name.	We
can	then	call	this	variable	and	print	it.

number1	=	input("Enter	first	number:	")

number2	=	input("Enter	second	number:	")

sum	=	number1	+	number2

print("Result:	",	sum)

This	example	is	a	bit	misleading.	It	seems	like	we	are	taking	two	numbers	as	an
input	and	printing	the	sum.	The	problem	is	that	the	function	input	always	returns
a	string.	So	when	you	enter	10,	the	value	of	the	variable	is	“10”,	it’s	a	string.

So,	what	 happens	when	we	 add	 two	 strings?	We	 just	 append	one	 to	 the	other.
This	 means	 that	 the	 sum	 of	 “15”	 and	 “26”	 would	 be	 “1526”.	 If	 we	 want	 a
mathematical	addition,	we	need	to	typecast	our	variables	first.

number1	=	input("Enter	first	number:	")

number2	=	input("Enter	second	number:	")

number1	=	int(number1)

number2	=	int(number2)

sum	=	number1	+	number2

print("Result:	",	sum)

Now	our	script	works	well!	Always	remember	that	 the	input	function	returns	a
string	and	you	need	to	typecast	it,	if	you	want	to	do	calculations	with	it.

6	–	CONDITIONS
This	chapter	 is	about	a	concept	 that	will	make	our	scripts	more	 interesting.	So
far,	 the	 interpreter	 always	 executed	 one	 command	 after	 the	 other.	 With
conditions,	this	changes.

IF,	ELIF,	ELSE
Basically,	a	condition	needs	to	return	True,	so	that	our	script	continues	with	the
code	in	its	block.

number	=	input("Enter	a	number:")

number	=	int(number)

if	number	<	10:

				print("Your	number	is	less	than	10")

elif	number	>	10:

				print("Your	number	is	greater	than	10")

else:

				print("Your	number	is	10")

The	 three	 important	 keywords	here	 are	 if,	elif	 and	else.	 In	 this	 script,	 the	 user
inputs	a	number	 that	gets	converted	 into	an	 integer.	Then	our	 first	 if-statement
checks	if	this	number	is	less	than	ten.	Remember	that	comparisons	always	return
True	or	False.	If	the	return	is	True,	the	code	that	is	indented	here	gets	executed.
We	use	colons	and	indentations	to	mark	code	blocks	in	Python.

If	 this	 condition	 returns	False,	 it	 continues	 to	 the	elif-block	 and	 checks	 if	 this
condition	is	met.	The	same	procedure	happens	here.	You	can	have	as	many	elif-
blocks	as	you	want.	If	no	condition	is	met,	we	get	into	the	else-block.

	

FLOWCHART

In	 this	 flowchart	 you	 can	 see	 how	 these	 basic	 if,	 elif	 and	 else	 trees	work.	Of
course,	you	don’t	need	an	elif	or	else	block.	You	can	just	write	an	if-statement
and	if	the	condition	is	not	met,	it	skips	the	code	and	continues	with	the	rest	of	the
script.

NESTED	IF-STATEMENTS
You	can	also	put	if-blocks	into	if-blocks.	These	are	called	nested	if-statements.

if	number	%	2	==	0:

				if	number	==	0:

								print("Your	number	is	even	but	zero")

				else:

								print("Your	number	is	even")

else:

				print("Your	number	is	odd")

So,	here	we	have	the	first	condition,	which	checks	if	the	number	is	even.	When
it’s	even	it	then	checks	if	it’s	a	zero	or	not.	That’s	a	trivial	example	but	you	get
the	concept.

7	–	LOOPS
If	we	want	to	automate	a	repetitive	process,	we	can	use	loops	to	do	that.	A	loop
is	a	programming	structure	that	executes	the	same	code	over	and	over	again,	as
long	as	a	certain	condition	is	met.	This	is	at	least	true	for	the	classic	while	loop.

WHILE	LOOP
There	are	two	types	of	loops	in	Python:	while	loops	and	for	loops.	A	while	loop
executes	the	code	in	its	block	while	a	condition	is	met.

As	you	can	see,	it	goes	in	circles	until	the	condition	returns	False.	Let’s	have	a
look	at	the	code.

number	=	0

while	number	<	10:

				number	+=	1

				print(number)

We	 use	 the	while	 keyword	 to	 define	 the	 loop.	 Then	we	 state	 a	 condition	 and
again	the	code	block	is	indented	after	the	colon.	In	this	example,	we	are	counting
from	one	to	ten.	We	are	initializing	the	variable	number	with	the	value	zero.	In
every	iteration,	we	increase	it	by	one	and	print	its	value.	This	is	done	as	long	as
the	number	is	less	than	ten.

ENDLESS	LOOP
With	this	knowledge,	we	can	create	an	endless	loop.	This	might	seem	useless	but
in	fact	it	has	some	applications.

while	True:

				print("This	will	print	forever")

It	 is	 done	by	defining	 a	 loop	which	has	 the	 condition	True.	 Since	 it	 is	 always
True,	the	loop	will	never	end,	unless	we	terminate	the	script.

Warning:	This	might	overload	your	computer,	especially	if	it	is	a	slow	one.

FOR	LOOP
The	for	loop	works	a	bit	differently.	Here	we	don’t	have	a	condition.	This	loop
type	 is	 used	 to	 iterate	 over	 sequences.	 Since	 these	 are	 the	 topic	 of	 the	 next
chapter,	we	won’t	get	into	too	much	detail	here.

numbers	=	[10,	20,	30,	40]

for	number	in	numbers:

				print(number)

For	now,	we	won’t	care	about	the	syntax	of	sequences.	Just	notice	that	we	have	a
list	of	four	numbers.	We	then	use	the	for	keyword	to	iterate	over	it.	The	control
variable	number	always	gets	assigned	the	value	of	the	next	element.	In	this	case,
we	print	out	all	the	numbers.

As	you	can	see,	the	loop	continues	as	long	as	there	is	a	next	element	in	the	list.

RANGE	FUNCTION
With	the	range	function,	we	can	create	lists	that	contain	all	numbers	in	between
two	numbers.

for	x	in	range(100):

				print(x)

This	right	here	is	a	simple	way	to	print	all	the	numbers	up	to	100.	But	what	you
can	also	do	is	start	counting	from	another	number.

for	x	in	range	(20,	80):

				print(x)

Our	range	list	here	contains	the	numbers	between	20	and	80.

LOOP	CONTROL	STATEMENTS
In	order	to	manage	loops,	we	have	so-called	loop	control	statements.	They	allow
us	to	manipulate	the	process	flow	of	the	loop	at	a	specific	point.

BREAK	STATEMENT
With	the	break	statement,	we	can	end	a	loop	immediately,	without	caring	about
the	condition.

number	=	0

while	number	<	10:

				number	+=	1

				if	number	==	5:

								break

				print(number)

Here,	we	have	a	simple	counting	loop.	As	soon	as	the	number	reaches	the	value
five,	we	execute	a	break	statement	and	the	script	continues	with	the	rest	of	 the
code.

CONTINUE	STATEMENT
If	we	don’t	want	to	break	the	full	loop,	but	to	skip	only	one	iteration,	we	can	use
the	continue	statement.

number	=	0

while	number	<	10:

				number	+=	1

				if	number	==	5:

								continue

				print(number)

In	this	example,	we	always	increase	the	number	by	one	and	then	print	it.	But	if
the	number	is	a	five,	we	skip	the	iteration,	after	the	increment.	So,	this	number
doesn’t	get	printed.

PASS	STATEMENT
The	pass	statement	is	a	very	special	statement,	since	it	does	absolutely	nothing.
Actually,	it	is	not	really	a	loop	control	statement,	but	a	placeholder	for	code.

if	number	==	10:

				pass

else:

				pass

while	number	<	10:

				pass

Sometimes	you	want	 to	write	your	basic	code	 structure,	without	 implementing
the	logic	yet.	In	this	case,	we	can	use	the	pass	statement,	in	order	to	fill	the	code
blocks.	Otherwise,	we	can’t	run	the	script.

8	–	SEQUENCES
The	 sequence	 is	 the	 most	 basic	 data	 structure	 in	 Python.	 It	 contains	 multiple
elements	 and	 they	 are	 indexed	with	 a	 specific	 number.	 In	 this	 chapter,	we	 are
going	to	talk	about	the	different	types	of	sequences	and	their	functions.

LISTS
The	first	sequence	type	we	are	looking	at	is	the	list.	It	is	what	the	name	says	–
just	a	list.

numbers	=	[10,	22,	6,	1,	29]

In	 Python,	 we	 define	 lists	 by	 using	 square	 brackets.	 We	 put	 the	 elements	 in
between	of	those	and	separate	them	by	commas.	The	elements	of	a	list	can	have
any	data	type	and	we	can	also	mix	them.

numbers	=	[10,	22,	6,	1,	29]

names	=	["John",	"Alex",	"Bob"]

mixed	=	["Anna",	20,	28.12,	True]

ACCESSING	VALUES
In	order	to	access	values	of	a	sequence,	we	need	to	first	talk	about	indices.	The
index	is	more	or	less	the	position	of	the	element.	What’s	important	here	is	that
we	start	counting	from	zero.	So	the	first	element	has	the	index	zero,	the	second
has	the	index	one	and	so	on.	We	can	then	access	the	element	by	using	the	index.

print(numbers[2])

print(mixed[1])

print(names[0])

We	print	the	third	element	of	numbers	(6),	the	second	element	of	names	(Alex)
and	the	first	element	of	mixed	(Anna).

But	instead	of	only	accessing	one	single	element,	we	can	also	define	a	range	that
we	want	to	access.

print(numbers[1:3])	#	22	and	6

print(numbers[:3])		#	10,	22	and	6

print(numbers[1:])		#	22,	6,	1	and	29

By	using	the	colon,	we	can	slice	our	lists	and	access	multiple	elements	at	once.

MODIFYING	ELEMENTS
In	a	list,	we	can	also	modify	the	values.	For	this,	we	index	the	elements	in	the
same	way.

numbers[1]	=	10

names[2]	=	"Jack"

The	 second	 element	 of	 the	 numbers	 list	 is	 now	10	 instead	of	22	 and	 the	 third
element	of	the	names	list	is	Jack	instead	of	Bob.

LIST	OPERATIONS
Some	of	the	operators	we	already	know	can	be	used	when	working	with	lists	–
addition	and	multiplication.

LIST	OPERATIONS
OPERATION RESULT

[10,	20,	30]	+	[40,	50,	60] [10,	20,	30,	40,	50,	60]

[10,	“Bob”]	*	3 [10,	“Bob”,	10,	“Bob”,	10,	“Bob”]

LIST	FUNCTIONS
When	it	comes	to	lists,	there	are	a	lot	of	different	functions	and	methods	that	we
can	use.	We	are	not	going	to	talk	about	all	of	them,	since	it’s	just	not	necessary.
Our	focus	will	lie	on	the	most	important	ones.

LIST	FUNCTIONS
FUNCTION DESCRIPTION

len(list) Returns	the	length	of	a	list

max(list) Returns	the	item	with
maximum	value

min(list) Returns	the	item	with

minimum	value
list(element) Typecasts	element	into	list

	

LIST	METHODS
METHOD DESCRIPTION

list.append(x) Appends	element	to	the	list

list.count(x) Counts	how	many	times	an
element	appears	in	the	list

list.index(x)
Returns	the	first	index	at
which	the	given	element

occurs

list.pop() Removes	and	returns	last
element

list.reverse() Reverses	the	order	of	the
elements

list.sort() Sorts	the	elements	of	a	list

TUPLES
The	next	sequence	type	we	are	going	to	look	at	is	very	similar	to	the	list.	It’s	the
tuple.	The	only	difference	between	a	list	and	a	tuple	is	that	a	tuple	is	immutable.
We	can’t	manipulate	it.

tpl	=	(10,	20,	30)

Notice	that	a	tuple	is	defined	by	using	parentheses	rather	than	square	brackets.

TUPLE	FUNCTIONS
Basically,	all	the	reading	and	accessing	functions	like	len,	min	and	max	stay	the
same	 and	 can	 be	 used	with	 tuples.	But	 of	 course	 it	 is	 not	 possible	 to	 use	 any
modifying	or	appending	functions.

DICTIONARIES
The	last	sequence	type	in	this	chapter	will	be	the	dictionary.	A	dictionary	works
a	bit	like	a	lexicon.	One	element	in	this	data	structure	points	to	another.	We	are
talking	 about	 key-value	 pairs.	 Every	 entry	 in	 this	 sequence	 has	 a	 key	 and	 a
respective	 value.	 In	 other	 programming	 languages	 this	 structure	 is	 called	hash
map.

dct	=	{"Name":	"John",

							"Age":	25,

							"Height":	6.1}

We	 define	 dictionaries	 by	 using	 curly	 brackets	 and	 the	 key-value	 pairs	 are
separated	by	commas.	The	key	and	the	value	themselves	are	separated	by	colons.
On	the	left	side	there	is	the	key	and	on	the	right	side	the	according	value.

Since	the	key	now	replaces	the	index,	it	has	to	be	unique.	This	is	not	the	case	for
the	values.	We	can	have	many	keys	with	the	same	value	but	when	we	address	a
certain	key,	it	has	to	be	the	only	one	with	that	particular	name.	Also	keys	can’t
be	changed.

ACCESSING	VALUES
In	order	to	access	values	of	a	dictionary,	we	need	to	address	the	keys.

print(dct["Name"])

print(dct["Age"])

print(dct["Height"])

Notice	 that	 if	 there	were	multiple	keys	with	 the	same	name,	we	couldn’t	get	a
result	because	we	wouldn’t	know	which	value	we	are	talking	about.

DICTIONARY	FUNCTIONS
Similar	to	lists,	dictionaries	also	have	a	lot	of	functions	and	methods.	But	since

they	work	a	bit	differently	and	they	don’t	have	indices,	their	functions	are	not	the
same.

DICTIONARY	FUNCTIONS
FUNCTION DESCRIPTION

len(dict) Returns	the	length	of	a
dictionary

str(dict) Returns	the	dictionary
displayed	as	a	string

	

	

	

DICTIONARY	METHODS
METHOD DESCRIPTION

dict.clear() Removes	all	elements	from	a
dictionary

dict.copy() Returns	a	copy	of	the
dictionary

dict.fromkeys()
Returns	a	new	dictionary
with	the	same	keys	but

empty	values

dict.get(key) Returns	the	value	of	the
given	key

dict.has_key(key) Returns	if	the	dictionary	has
a	certain	key	or	not

dict.items() Returns	all	the	items	in	a	list
of	tuples

dict.keys() Returns	a	list	of	all	the	keys

dict.update(dict2) Add	the	content	of	another
dictionary	to	an	existing	one

dict.values() Returns	a	list	of	all	the
values

	

MEMBERSHIP	OPERATORS
One	 type	 of	 operators	 we	 haven’t	 talked	 about	 yet	 is	 membership	 operators.
These	are	very	important	when	it	comes	to	sequences.	We	use	them	to	check	if
an	element	is	a	member	of	a	sequence,	but	also	to	iterate	over	sequences.

list1	=	[10,	20,	30,	40,	50]

print(20	in	list1)					#	True

print(60	in	list1)					#	False

print(60	not	in	list1)	#	True

With	 the	 in	 or	 not	 in	 operators,	 we	 check	 if	 a	 sequence	 contains	 a	 certain
element.	If	the	element	is	in	the	list,	it	returns	True.	Otherwise	it	returns	False.

But	we	also	use	membership	operators,	when	we	iterate	over	sequences	with	for
loops.

for	x	in	list1:

				print(x)

For	every	element	in	the	sequence	x	becomes	the	value	of	the	next	element	and
gets	printed.	We	already	talked	about	that	in	the	loops	chapter.

9	–	FUNCTIONS
Oftentimes	 in	programming,	we	 implement	code	 that	we	want	 to	use	over	and
over	again	at	different	places.	That	code	might	become	quite	large.	Instead	of	re-
writing	it	everywhere	we	need	it,	we	can	use	functions.

Functions	 can	 be	 seen	 as	 blocks	 of	 organized	 code	 that	 we	 reuse	 at	 different
places	 in	 our	 scripts.	 They	 make	 our	 code	 more	 modular	 and	 increase	 the
reusability.

DEFINING	FUNCTIONS
In	order	to	define	a	function	in	Python,	we	use	the	def	keyword,	followed	by	a
function	name	and	parentheses.	The	code	needs	to	be	indented	after	the	colon.

def	hello():
				print("Hello")

Here	we	have	a	function	hello	that	prints	the	text	“Hello”.	It’s	quite	simple.	Now
we	can	call	the	function	by	using	its	name.

hello()

PARAMETERS
If	 we	 want	 to	 make	 our	 functions	 more	 dynamic,	 we	 can	 define	 parameters.
These	parameters	can	then	be	processed	in	the	function	code.

def	print_sum(number1,	number2):
				print(number1	+	number2)

As	you	can	see,	we	have	two	parameters	in	between	the	parentheses	–	number1
and	number2.	The	function	print_sum	now	prints	the	sum	of	these	two	values.

print_sum(20,	30)

This	function	call	prints	the	value	50	out	onto	the	screen.

RETURN	VALUES
The	 two	functions	we	wrote	were	 just	executing	statements.	What	we	can	also
do	is	return	a	certain	value.	This	value	can	then	be	saved	in	a	variable	or	it	can
be	processed.	For	this,	use	the	keyword	return.

def	add(number1,	number2):
				return	number1	+	number2

Here	we	return	the	sum	of	the	two	parameters	instead	of	printing	it.	But	we	can
then	use	this	result	in	our	code.

number3	=	add(10,	20)

print(add(10,	20))

DEFAULT	PARAMETERS
Sometimes	 we	 want	 our	 parameters	 to	 have	 default	 values	 in	 case	 we	 don’t
specify	 anything	 else.	 We	 can	 do	 that	 by	 assigning	 values	 in	 the	 function
definition.

def	say(text="Default	Text"):

				print(text)

In	this	case,	our	function	say	prints	 the	text	 that	we	pass	as	a	parameter.	But	 if
we	don’t	pass	anything,	it	prints	the	default	text.

	

VARIABLE	PARAMETERS
Sometimes	we	want	our	functions	to	have	a	variable	amount	of	parameters.	For
that,	 we	 use	 the	 asterisk	 symbol	 (*)	 in	 our	 parameters.	 We	 then	 treat	 the
parameter	as	a	sequence.

def	print_sum(*numbers):

				result	=	0

				for	x	in	numbers:

								result	+=	x

				print(result)

Here	 we	 pass	 the	 parameter	 numbers.	 That	 may	 be	 five,	 ten	 or	 a	 hundred
numbers.	We	 then	 iterate	over	 this	parameter,	 add	every	value	 to	our	 sum	and
print	it.

print_sum(10,	20,	30,	40)

SCOPES
The	last	thing	we	are	going	to	talk	about	in	this	chapter	is	scopes.	Scopes	are	not
only	important	for	functions	but	also	for	loops,	conditions	and	other	structures.
Basically,	we	need	to	realize	the	difference	between	local	and	global	variables.

def	function():

				number	=	10

				print(number)

				

print(number)	#	Doesn't	work

In	this	example,	you	see	why	it’s	important.	When	you	define	a	variable	inside
of	 a	 function,	 a	 loop,	 a	 condition	 or	 anything	 similar,	 this	 variable	 can’t	 be
accessed	outside	of	that	structure.	It	doesn’t	exist.

number	=	10

def	function():

				print(number)

This	on	the	other	hand	works.	The	variable	number	was	defined	outside	of	 the
function,	so	it	can	be	seen	inside	the	function.	But	you	will	notice	that	you	can’t
manipulate	it.

In	 order	 to	manipulate	 an	 object	 that	was	 defined	 outside	 of	 the	 function,	we
need	to	define	it	as	global.

number	=	10

def	function():

				global	number

				number	+=	10

				print(number)

By	using	the	keyword	global	we	can	fully	access	and	manipulate	the	variable.

10	–	EXCEPTION	HANDLING
Programming	is	full	of	errors	and	exceptions.	If	you	coded	along	while	reading
and	experimented	around	a	little	bit,	you	may	have	encountered	one	or	two	error
messages.	These	errors	can	also	be	called	exceptions.	They	terminate	our	script
and	crash	the	program	if	they	are	not	handled	properly.

result	=	10	/	0

Just	try	to	divide	a	number	by	zero	and	you	will	get	a	ZeroDivisionError.	That’s
because	 a	 division	 by	 zero	 is	 not	 defined	 and	 our	 script	 doesn’t	 know	how	 to
handle	it.	So	it	crashes.

text	=	"Hello"

number	=	int(text)

Alternatively,	 try	 to	 typecast	 an	 ordinary	 text	 into	 a	 number.	 You	 will	 get	 a
ValueError	and	the	script	crashes	again.

TRY	EXCEPT
We	can	handle	these	errors	or	exceptions	by	defining	try	and	except	blocks.

try:

				print(10	/	0)

				text	=	"Hello"

				number	=	int(text)

except	ValueError:

				print("Code	for	ValueError...")

except	ZeroDivisionError:

				print("Code	vor	ZDE...")

except:

				print("Code	for	other	exceptions...")

In	the	try	block	we	put	the	code	that	we	want	to	execute	and	where	errors	might
occur.	Then	we	define	except	blocks	that	tell	our	script	what	to	do	in	case	of	the
respective	errors.	Instead	of	crashing,	we	provide	code	that	handles	the	situation.
This	might	be	a	simple	error	message	or	a	complex	algorithm.

Here	 we	 defined	 two	 specific	 except	 blocks	 for	 the	 ValueError	 and	 the
ZeroDivisionError.	But	we	also	defined	a	general	except	block	in	case	we	get	an
error	that	doesn’t	fit	these	two	types.

ELSE	STATEMENTS
We	 can	 also	 use	 else	 statements	 for	 code	 that	 gets	 executed	 if	 nothing	 went
wrong.

try:

				print(10	/	0)

except:

				print("Error!")

else:

				print("Everything	OK!")

FINALLY	STATEMENTS
If	we	have	some	code	that	shall	be	executed	at	the	end	no	matter	what	happened,
we	can	write	it	into	a	finally	block.	This	code	will	always	be	executed,	even	if	an
exception	remains	unhandled.

try:

				print(10	/	0)

except:

				print("Error!")

finally:

				print("Always	executed!")

11	–	FILE	OPERATIONS
Oftentimes,	we	will	need	to	read	data	in	from	external	files	or	to	save	data	into
files.	 In	 this	 chapter	 we	 will	 take	 a	 look	 at	 file	 streams	 and	 the	 various
operations.

OPENING	AND	CLOSING	FILES
Before	we	can	read	from	or	write	into	a	file,	we	first	need	to	open	a	file	stream.
This	returns	the	respective	file	as	an	object	and	allows	us	to	deal	with	it.

file	=	open("myfile.txt",	"r")

We	use	the	function	open	in	order	to	open	a	new	file	stream.	As	a	parameter	we
need	 to	define	 the	file	name	and	 the	access	mode	 (we	will	 talk	about	 that	 in	a
second).	The	function	returns	the	stream	and	we	can	save	it	into	our	variable	file.

ACCESS	MODES
Whenever	we	open	a	 file	 in	Python,	we	use	 a	 certain	 access	mode.	An	access
mode	is	the	way	in	which	we	access	a	file.	For	example	reading	or	writing.	The
following	table	gives	you	a	quick	overview	over	the	various	access	modes.

ACCESS	MODE
LETTER ACCESS	MODE

r Reading

r+ Reading	and	Writing	(No
Truncating	File)

rb Reading	Binary	File

rb+ Reading	and	Writing	Binary	File
(No	Truncating	File)

w Writing

w+ Reading	and	Writing	(Truncating
File)

wb Writing	Binary	File

wb+ Reading	and	Writing	Binary	File
(Truncating	File)

a Appending
a+ Reading	and	Appending
ab Appending	Binary	File
ab+ Reading	and	Appending	Binary	File

The	difference	between	r+	or	rb+	and	w+	or	wb+	is	that	w+	and	wb+	overwrite
existing	files	and	create	new	ones	if	they	don’t	exist.	This	is	not	the	case	for	r+
and	rb+.

CLOSING	FILES

When	we	 are	 no	 longer	 in	 need	 of	 our	 opened	 file	 stream,	we	 should	 always
close	it.	Python	does	this	automatically	in	some	cases	but	it	is	considered	good
practice	to	close	streams	manually.	We	close	a	stream	by	using	the	method	close.

file	=	open("myfile.txt",	"r+")

#	CODE

file.close()

WITH	STATEMENT
Alternatively,	 we	 can	 open	 and	 close	 streams	 more	 effectively	 by	 using	with
statements.	 A	with	 statement	 opens	 a	 stream,	 executes	 the	 indented	 code	 and
closes	the	stream	afterwards.

with	open("myfile.txt",	"r")	as	file:

				#	Some	Code

It	shortens	the	code	and	makes	it	easier	to	not	forget	to	close	your	streams.

READING	FROM	FILES
Once	we	have	opened	a	file	in	a	reading	mode,	we	can	start	reading	its	content.
For	this,	we	use	the	read	method.

file	=	open('myfile.txt',	'r')

print(file.read())

file.close()

Here	we	open	the	file	in	reading	mode	and	then	print	out	its	content.	We	can	do
the	same	thing	by	using	the	with	statement.

with	open('myfile.txt',	'r')	as	file:

				print(file.read())

But	we	don’t	have	to	read	the	whole	file,	if	we	don’t	want	to.	We	can	also	read
the	first	20	or	50	characters	by	passing	a	parameter	to	the	method.

with	open('myfile.txt',	'r')	as	file:

				print(file.read(50))

WRITING	INTO	FILES
When	we	write	into	a	file,	we	need	to	ask	ourselves	if	we	just	want	to	add	our
text	or	if	we	want	to	completely	overwrite	a	file.	So	we	need	to	choose	between
writing	and	appending	mode.	For	writing	in	general	we	use	the	method	write.

file	=	open('myfile.txt',	'w')

print(file.write("Hello	File!"))

file.flush()

file.close()

We	open	our	file	in	writing	mode	and	write	our	little	text	into	the	file.	Notice	that
the	 text	 doesn’t	 get	 written	 until	 we	 flush	 the	 stream.	 In	 this	 case	 this	 is	 not
necessary	because	when	we	close	a	stream	it	flushes	automatically.	Let’s	look	at
the	with	statement	alternative	again.

with	open('myfile.txt',	'w')	as	file:

				print(file.write("Hello	File!"))

If	 we	 want	 to	 append	 our	 text,	 we	 just	 have	 to	 change	 the	 access	 mode.
Everything	else	stays	the	same.

with	open('myfile.txt',	'a')	as	file:

				print(file.write("Hello	File!"))

OTHER	OPERATIONS
Now	 if	 we	 want	 to	 perform	 other	 operations	 than	 writing,	 reading	 and
appending,	we	will	need	to	import	and	extra	module.	The	basic	Python	functions
and	 classes	 are	 available	 by	 default.	 But	 many	 things	 like	 mathematics,
networking,	 threading	and	also	additional	 file	operations,	 require	 the	 import	of
modules.	 In	 this	 case	 we	 need	 to	 import	 the	 os	 module,	 which	 stands	 for
operating	system.

import	os

This	would	be	one	way	to	import	this	module.	But	if	we	do	it	like	that,	we	would
always	need	to	specify	the	module	when	we	use	a	function.	To	make	it	easier	for
us,	we	will	do	it	like	that.

from	os	import	*

Basically,	what	we	are	saying	here	 is:	 Import	all	 the	 function	and	classes	 from
the	module	os.	Notice	that	the	import	statements	of	a	script	should	always	be	the
first	thing	at	the	top.

DELETING	AND	RENAMING
For	deleting	and	renaming	files	we	have	two	very	simple	functions	from	the	os
module	–	remove	and	rename.

remove("myfile.txt")

rename("myfile.txt",	"newfile.txt")

We	can	also	use	the	rename	function,	to	move	files	into	different	directories.	But
the	directory	has	to	already	be	there.	This	function	can’t	create	new	directories.

rename("myfile.txt",	"newdir/myfile.txt")

DIRECTORY	OPERATIONS
With	the	os	module	we	can	also	operate	with	directories.	We	can	create,	delete

and	navigate	through	them.

mkdir("newdir")

chdir("newdir")

chdir("..")

rmdir("newdir")

Here	we	 create	 a	 new	directory	 by	using	 the	mkdir	 (make	 directory)	 function.
We	 then	 go	 into	 that	 directory	with	 the	 chdir	 (change	directory)	 function	 and
then	back	to	the	previous	directory	with	the	same	function.	Last	but	not	least	we
remove	the	directory	with	the	rmdir	(remove	directory)	function.

By	using	(“..”)	we	navigate	back	one	directory.	Additionally,	if	we	would	want
to	specify	a	whole	path	like	“C:\Users\Python\Desktop\file.txt”,	we	would	have
to	 use	 double	 backslashes	 since	 Python	 uses	 single	 backslashes	 for	 different
purposes.	But	we	will	talk	about	this	in	the	next	chapter	in	more	detail.

12	–	STRING	FUNCTIONS
Even	though	strings	are	just	texts	or	sequences	of	characters,	we	can	apply	a	lot
of	functions	and	operations	on	them.	Since	this	is	a	book	for	beginners,	we	won’t
get	 too	much	 into	 the	details	here,	but	 it	 is	 important	 for	you	 to	know	how	 to
deal	with	strings	properly.

STRINGS	AS	SEQUENCES
As	I	already	said,	strings	are	sequences	of	characters	and	they	can	also	be	treated
like	that.	We	can	basically	index	and	slice	the	individual	characters.

text	=	"Hello	World!"

print(text[:5])

print(text[6:11])

The	first	slice	we	print	is	“Hello”	and	the	second	one	is	“World”.	Another	thing
we	can	do	is	to	iterate	over	strings	with	for	loops.

text	=	"Hello	World!"

for	x	in	text:

				print(x)

In	this	example,	we	print	the	individual	characters	one	after	the	other.

ESCAPE	CHARACTERS
In	 strings	 we	 can	 use	 a	 lot	 of	 different	 escape	 characters.	 These	 are	 non-
printable	 characters	 like	 tab	or	new	line.	They	 are	 all	 initiated	 by	 a	 backslash,
which	 is	 the	 reason	why	we	need	 to	use	double	backslashes	 for	 file	paths	 (see
last	chapter).

The	following	table	summarizes	the	most	important	of	these	escape	characters.	If
you	are	interested	in	all	the	other	ones	just	use	google	but	you	won’t	need	them
for	now.

ESCAPE	CHARATCERS
NOTATION DESCRIPTION

\b Backspace
\n New	Line
\s Space
\t Tab

STRING	FORMATTING
When	we	have	a	text	which	shall	include	the	values	of	variables,	we	can	use	the
%	operator	and	placeholders,	in	order	to	insert	our	values.

name,	age	=	"John",	25

print("%s	is	my	name!"	%	name)

print("I	am	%d	years	old!"	%	age)

Notice	 that	we	used	different	placeholders	 for	different	data	 types.	We	use	%s
for	 strings	 and	 %d	 for	 integers.	 The	 following	 table	 shows	 you	 which
placeholders	are	needed	for	which	data	types.

PLACEHOLDERS
PLACEHOLDER DATA	TYPE

%c Character
%s String

%d	or	%i Integer
%f Float
%e Exponential	Notation

If	you	want	to	do	it	more	general	without	specifying	data	types,	you	can	use	the
format	function.

name,	age	=	"John",	25

print("My	name	is	{}	and	I	am	{}	years	old"

						.format(name,	age))

Here	 we	 use	 curly	 brackets	 as	 placeholders	 and	 insert	 the	 values	 afterwards
using	the	format	function.

STRING	FUNCTIONS
There	are	a	 ton	of	 string	 functions	 in	Python	and	 it	would	be	unnecessary	and
time	wasting	to	talk	about	all	of	them	in	this	book.	If	you	want	an	overview	just
go	 online	 and	 look	 for	 them.	 One	 website,	 where	 you	 can	 find	 them	 is
W3Schools.

W3Schools	Python	String	Functions:
https://www.w3schools.com/python/python_ref_string.asp

In	this	chapter	however,	we	will	focus	on	the	most	essential,	most	interesting	and
most	 important	 of	 these	 functions.	 The	 ones	 that	 you	might	 need	 in	 the	 near
future.

CASE	MANIPULATING	FUNCTIONS
We	have	five	different	case	manipulating	string	functions	in	Python.	Let’s	have	a
look	at	them.

CASE	MANIPULATING	FUNCTIONS
FUNCTION DESCRIPTION

string.lower() Converts	all	letters	to
lowercase

string.upper() Converts	all	letters	to
uppercase

string.title() Converts	all	letters	to
titlecase

string.capitalize() Converts	first	letter	to
uppercase

string.swapcase() Swaps	the	case	of	all	letters

COUNT	FUNCTION
If	you	want	to	count	how	many	times	a	specific	string	occurs	in	another	string,
you	can	use	the	count	function.

text	=	"I	like	you	and	you	like	me!"

print(text.count("you"))

In	this	case,	the	number	two	will	get	printed,	since	the	string	“you”	occurs	two

https://www.w3schools.com/python/python_ref_string.asp

times.

FIND	FUNCTION
In	order	to	find	the	first	occurrence	of	a	certain	string	in	another	string,	we	use
the	find	function.

text	=	"I	like	you	and	you	like	me!"

print(text.find("you"))

Here	the	result	is	7	because	the	first	occurrence	of	“you”	is	at	the	index	7.

JOIN	FUNCTION
With	 the	 join	 function	 we	 can	 join	 a	 sequence	 to	 a	 string	 and	 separate	 each
element	by	this	particular	string.

names	=	["Mike",	"John",	"Anna"]

sep	=	"-"

print(sep.join(names))

The	result	looks	like	this:	Mike-John-Anna

	

REPLACE	FUNCTION
The	 replace	 function	 replaces	 one	 string	 within	 a	 text	 by	 another	 one.	 In	 the
following	example,	we	replace	the	name	John	by	the	name	Anna.

text	=	"I	like	John	and	John	is	my	friend!"

text	=	text.replace("John",	"Anna")

SPLIT	FUNCTION
If	we	want	to	split	specific	parts	of	a	string	and	put	them	into	a	list,	we	use	the
split	function.

names	=	"John,Max,Bob,Anna"

name_list	=	names.split(",")

Here	we	 have	 a	 string	 of	 names	 separated	 by	 commas.	We	 then	 use	 the	 split
function	and	define	 the	comma	as	 the	separator	 in	order	 to	save	 the	 individual
names	into	a	list.

TRIPLE	QUOTES
The	last	topic	of	this	chapter	is	triple	quotes.	They	are	just	a	way	to	write	multi-
line	strings	without	the	need	of	escape	characters.

print('''Hello	World!

This	is	a	multi-line	comment!

And	we	don't	need	to	use	escape	characters

in	order	to	write	new	empty	lines!''')

WHAT’S	NEXT?
You	made	it!	We	covered	all	of	the	core	basics	of	Pythons.	You	now	understand
how	 this	 language	 is	 structured	 but	 also	 general	 programming	 principles	 like
conditions,	loops	and	functions.	Definitely,	you	are	now	able	to	develop	a	basic
calculator	or	other	simple	applications.	But	the	journey	has	just	begun.

This	is	only	the	first	part	of	 the	Python	Bible	Series.	We’ve	covered	the	topics
for	beginners	but	the	real	fun	starts	when	we	get	into	more	advanced	topics	like
network	programming,	threading,	machine	learning,	data	science,	finance,	neural
networks	 and	 more.	With	 this	 book	 you	 have	 an	 excellent	 basis	 for	 the	 next
volumes	of	the	Python	Bible	and	I	encourage	you	to	continue	your	journey.

The	next	part	will	be	 for	 intermediates	and	advanced	programmers,	which	you
know	belong	to.	So	stay	tuned	and	keep	coding!

Last	but	not	 least,	a	 little	reminder.	This	book	was	written	 for	you,	so	 that	you
can	get	as	much	value	as	possible	and	learn	to	code	effectively.	If	you	find	this
book	 valuable	 or	 you	 think	 you	 learned	 something	 new,	 please	 write	 a	 quick
review	on	Amazon.	It	is	completely	free	and	takes	about	one	minute.	But	it	helps
me	produce	more	high	quality	books,	which	you	can	benefit	from.

Thank	you!

	

	

	
	
	
	
	

THE
PYTHON	BIBLE

	
VOLUME	TWO

INTERMEDIATE	AND	ADVANCED

BY

FLORIAN	DEDOV

	

Copyright	©	2019

	

	

TABLE	OF	CONTENT
Introduction
Intermediate	Concepts

1	–	Classes	and	Objects
Creating	Classes
Constructor
Adding	Functions
Class	Variables
Destructors

Creating	Objects
Hidden	Attributes

Inheritance
Overwriting	Methods

Operator	Overloading
2	–	Multithreading
How	A	Thread	Works
Starting	Threads
Start	VS	Run
Waiting	For	Threads
Thread	Classes

Synchronizing	Threads
Semaphores
Events
Daemon	Threads

3	–	Queues
Queuing	Resources

LIFO	Queues
Prioritizing	Queues

4	–	Network	Programming
Sockets
What	Are	Sockets?
Creating	Sockets

Client-Server	Architecture
Server	Socket	Methods
Client	Socket	Methods
Other	Socket	Methods

Creating	A	Server
Creating	A	Client
Connecting	Server	and	Client
Port	Scanner
Threaded	Port	Scanner

5	–	Database	Programming
Connecting	to	SQLite
Executing	Statements
Creating	Tables
Inserting	Values
Selecting	Values

Classes	and	Tables
From	Table	to	Object
From	Object	To	Table
Prepared	Statements

More	About	SQL
6	–	Recursion
Factorial	Calculation

7	–	XML	Processing

XML	Parser
Simple	API	for	XML	(SAX)
Document	Object	Model	(DOM)

XML	Structure
XML	With	SAX
Content	Handler	Class
Processing	XML	Data

XML	With	DOM
Manipulating	XML	Files
Creating	New	Elements

8	–	Logging
Security	Levels
Creating	Loggers
Logging	Into	Files
Formatting	Logs

9	–	Regular	Expressions
Identifier
Modifier
Escape	Characters
Applying	Regular	Expressions
Finding	Strings
Matching	Strings
Manipulating	Strings

What’s	Next?
	

INTRODUCTION
I	 think	 I	 don’t	 have	 to	 convince	you	 that	Python	 is	one	of	 the	most	 important
languages	of	our	time	and	worth	learning.	If	you	are	reading	this	book,	I	assume
that	 you	 have	 already	 programmed	 in	 Python	 and	 know	 the	 basic	 concepts	 of
this	 language.	For	 this	 book,	 you	will	 definitely	 need	 the	 foreknowledge	 from
the	first	volume,	since	we	will	build	on	the	skills	taught	there.

INTERMEDIATE	CONCEPTS
So	what	can	you	expect	from	this	second	volume?	Basically,	we	will	dive	deep
into	more	advanced	topics	of	Python	but	also	of	programming	in	general.	We’ll
start	with	object-oriented	programming,	 classes	 and	objects.	Then	we	will	 talk
about	multithreading,	network	programming	and	database	access.	Also,	we	are
going	to	build	an	efficient	port	scanner	along	the	way.	After	that,	we	will	cover
recursion,	XML	processing	and	other	interesting	topics	like	logging	and	regular
expressions.

There	is	a	lot	to	learn	here	and	the	concepts	get	more	and	more	complex	as	we
go	 on.	 So	 stay	 tuned	 and	 code	 along	 while	 reading.	 This	 will	 help	 you	 to
understand	the	material	better	and	to	practice	implementing	it.	I	wish	you	a	lot	of
fun	and	success	with	your	journey	and	this	book!

Just	one	little	thing	before	we	start.	This	book	was	written	for	you,	so	that	you
can	get	as	much	value	as	possible	and	learn	to	code	effectively.	If	you	find	this
book	 valuable	 or	 you	 think	 you	 have	 learned	 something	 new,	 please	 write	 a
quick	review	on	Amazon.	It	is	completely	free	and	takes	about	one	minute.	But	it
helps	me	produce	more	high	quality	books,	which	you	can	benefit	from.

Thank	you!

1	–	CLASSES	AND	OBJECTS
Python	is	an	object-oriented	language	which	means	that	the	code	can	be	divided
into	individual	units,	namely	objects.	Each	of	these	objects	is	an	instance	of	a	so-
called	class.	You	can	think	of	the	class	as	some	sort	of	blueprint.	For	example,
the	 blueprint	 of	 a	 car	 could	 be	 the	 class	 and	 an	 object	 would	 be	 the	 actual
physical	car.	So	a	class	has	specific	attributes	and	functions	but	the	values	vary
from	object	to	object.

CREATING	CLASSES
In	Python,	we	use	the	keyword	class	in	order	to	define	a	new	class.	Everything
that	is	indented	after	the	colon	belongs	to	the	class.

class	Car:

				def	__init__(self,	manufacturer,	model,	hp):
								self.manufacturer	=	manufacturer
								self.model	=	model
								self.hp	=	hp

After	the	class	keyword,	we	put	the	class	name.	In	this	example,	this	is	Car.

CONSTRUCTOR

What	we	notice	 first	here,	 is	a	 special	 function	called	__init__.	This	 is	 the	 so-
called	constructor.	Every	time	we	create	an	instance	or	an	object	of	our	class,	we
use	this	constructor.	As	you	can	see,	it	accepts	a	couple	of	parameters.	The	first
one	is	the	parameter	self	and	it	is	mandatory.	Every	function	of	the	class	needs	to
have	at	least	this	parameter.

The	other	parameters	are	just	our	custom	attributes.	In	this	case,	we	have	chosen
the	manufacturer,	the	model	and	the	horse	power	(hp).

When	we	write	 self.attribute,	we	 refer	 to	 the	 actual	 attribute	 of	 the	 respective
object.	We	then	assign	the	value	of	the	parameters	to	it.

ADDING	FUNCTIONS
We	 can	 simply	 add	 functions	 to	 our	 class	 that	 perform	 certain	 actions.	 These
functions	can	also	access	the	attributes	of	the	class.

class	Car:

				def	__init__(self,	manufacturer,	model,	hp):

								self.manufacturer	=	manufacturer

								self.model	=	model

								self.hp	=	hp

				def	print_info(self):

								print("Manufacturer:	{},	Model:	{},	HP;	{}"

														.format(self.manufacturer,

																						self.model,

																						self.hp))

Here	 we	 have	 the	 function	 print_info	 that	 prints	 out	 information	 about	 the
attributes	 of	 the	 respective	 object.	Notice	 that	we	 also	 need	 the	 parameter	 self
here.

CLASS	VARIABLES
In	 the	 following	code,	you	can	 see	 that	we	can	use	one	and	 the	 same	variable
across	all	the	objects	of	the	class,	when	it	is	defined	without	referring	to	self.

class	Car:

				amount_cars	=	0

				def	__init__(self,	manufacturer,	model,	hp):

								self.manufacturer	=	manufacturer

								self.model	=	model

								self.hp	=	hp

								Car.amount_cars	+=	1

				def	print_car_amount(self):

								print("Amount:	{}"

														.format(Car.amount_cars))

The	variable	amount_cars	doesn’t	belong	 to	 the	 individual	object	since	 it’s	not
addressed	with	self.	It	is	a	class	variable	and	its	value	is	the	same	for	all	objects
or	instances.

Whenever	we	create	a	new	car	object,	it	increases	by	one.	Then,	every	object	can
access	and	print	the	amount	of	existing	cars.

DESTRUCTORS
In	Python,	we	can	also	specify	a	method	 that	gets	called	when	our	object	gets
destroyed	or	deleted	and	is	no	longer	needed.	This	function	is	called	destructor
and	it	is	the	opposite	of	the	constructor.

class	Car:

				amount_cars	=	0

				def	__init__(self,	manufacturer,	model,	hp):

								self.manufacturer	=	manufacturer

								self.model	=	model

								self.hp	=	hp

								Car.amount_cars	+=	1

								

				def	__del__(self):

								print("Object	gets	deleted!")

								Car.amount_cars	-=1

The	 destructor	 function	 is	 called	 __del__.	 In	 this	 example,	 we	 print	 an
informational	message	and	decrease	the	amount	of	existing	cars	by	one,	when	an
object	gets	deleted.

CREATING	OBJECTS
Now	that	we	have	implemented	our	class,	we	can	start	to	create	some	objects	of
it.

myCar1	=	Car("Tesla",	"Model	X",	525)

First,	we	specify	the	name	of	our	object,	like	we	do	with	ordinary	variables.	In
this	case,	our	object’s	name	is	myCar1.	We	then	create	an	object	of	the	Car	class
by	writing	 the	 class	 name	 as	 a	 function.	This	 calls	 the	 constructor,	 so	we	 can
pass	our	parameters.	We	can	then	use	the	functions	of	our	car	object.

myCar1.print_info()

myCar1.print_car_amount()

The	results	look	like	this:

Manufacturer:	Tesla,	Model:	Model	X,	HP;	525
Amount:	1

What	you	can	also	do	is	directly	access	the	attributes	of	an	object.

print(myCar1.manufacturer)

print(myCar1.model)

print(myCar1.hp)

Now	let’s	create	some	more	cars	and	see	how	the	amount	changes.

myCar1	=	Car("Tesla",	"Model	X",	525)

myCar2	=	Car("BMW",	"X3",	200)

myCar3	=	Car("VW",	"Golf",	100)

myCar4	=	Car("Porsche",	"911",	520)

del	myCar3

myCar1.print_car_amount()

Here	we	first	create	four	different	car	objects.	We	then	delete	one	of	 them	and
finally	we	print	out	the	car	amount.	The	result	is	the	following:

Object	gets	deleted!
Amount:	3

Notice	that	all	the	objects	get	deleted	automatically	when	our	program	ends.	But
we	can	manually	delete	them	before	that	happens	by	using	the	del	keyword.

HIDDEN	ATTRIBUTES
If	we	want	to	create	hidden	attributes	that	can	only	be	accessed	within	the	class,
we	can	do	this	with	underlines.

class	MyClass:

				def	__init__(self):

								self.__hidden	=	"Hello"

								print(self.__hidden)	#	Works

m1	=	MyClass()

print(m1.__hidden)	#	Doesn't	Work

By	putting	two	underlines	before	the	attribute	name,	we	make	it	 invisible	from
outside	the	class.	The	first	print	function	works	because	it	is	inside	of	the	class.
But	when	we	try	to	access	this	attribute	from	the	object,	we	can’t.

INHERITANCE
One	 very	 important	 and	 powerful	 concept	 of	 object-oriented	 programming	 is
inheritance.	 It	 allows	 us	 to	 use	 existing	 classes	 and	 to	 extend	 them	with	 new
attributes	and	functions.

For	example,	we	could	have	the	parent	class	which	represents	a	Person	and	then
we	 could	 have	 many	 child	 classes	 like	Dancer,	 Policeman,	 Artist	 etc.	 All	 of
these	 would	 be	 considered	 a	 person	 and	 they	 would	 have	 the	 same	 basic
attributes.	 But	 they	 are	 special	 kinds	 of	 persons	 with	 more	 attributes	 and
functions.

class	Person:

				def	__init__(self,	name,	age):

								self.name	=	name

								self.age	=	age

				def	get_older(self,	years):

								self.age	+=	years

class	Programmer(Person):

				def	__init__(self,	name,	age,	language):

								super(Programmer,	self).__init__(name,	age)

								self.language	=	language

				def	print_language(self):

								print("Favorite	Programming	Language:	{}"

														.format(self.language))

You	can	see	that	we	created	two	classes	here.	The	first	one	is	the	Person	class,
which	has	the	attributes	name	and	age.	Additionally,	it	has	a	function	get_older
that	increases	the	age.

The	second	class	is	the	Programmer	class	and	it	inherits	from	the	Person	class.
This	is	stated	in	the	parentheses	after	the	class	name.	In	the	constructor	we	have
one	additional	 attribute	 language.	 First	we	need	 to	 pass	 our	 class	 to	 the	 super
function.	 This	 function	 allows	 us	 to	 call	 the	 constructor	 of	 the	 parent	 class
Person.	 There	 we	 pass	 our	 first	 two	 parameters.	 We	 also	 have	 an	 additional
function	print_language.

p1	=	Programmer("Mike",	30,	"Python")

print(p1.age)

print(p1.name)

print(p1.language)

p1.get_older(5)

print(p1.age)

Our	Programmer	 object	 can	 now	 access	 all	 the	 attributes	 and	 functions	 of	 its
parent	 class,	 additionally	 to	 its	 new	 values.	 These	 are	 the	 results	 of	 the
statements:

30
Mike
Python
35

OVERWRITING	METHODS
When	one	class	inherits	from	another	class,	it	can	overwrite	its	methods.	This	is
automatically	 done	 by	 defining	 a	 method	 with	 the	 same	 name	 and	 the	 same
amount	of	parameters.

class	Animal:

				def	__init__(self,	name):

								self.name	=	name

				def	make_sound(self):

								print("Some	sound!")

class	Dog(Animal):

				def	__init__(self,	name):

								super(Dog,	self).__init__(name)

				def	make_sound(self):

								print("Bark!")

Here	the	function	make_sound	was	overwritten	in	the	child	class	Dog.	It	now	has
a	different	functionality	than	the	function	of	the	parent	class	Animal.

OPERATOR	OVERLOADING
When	we	create	a	class	with	various	attributes,	it	is	not	clear	what	should	happen
when	we	perform	certain	operations	on	them.	For	example,	what	should	happen
when	we	add	two	humans	or	when	we	multiply	them?	Since	there	is	no	default
solution	 for	 this	question,	we	can	overload	 and	define	 the	operators	ourselves.
That	 allows	 us	 to	 choose	 what	 happens	 when	 we	 apply	 the	 operators	 on	 our
objects.

class	Vector():

				def	__init__(self,	x,	y):

								self.x	=	x

								self.y	=	y

				def	__str__(self):

								return	"X:	%d,	Y:	%d"	%	(self.x,	

																																	self.y)

				def	__add__(self,	other):

								return	Vector(self.x	+	other.x,	

																						self.y	+	other.y)

				def	__sub__(self,	other):

								return	Vector(self.x	-	other.x,	

																						self.y	-	other.y)

Here	you	see	a	class	 that	 represents	 the	 function	of	a	Vector.	When	you	add	a
vector	 to	 another,	 you	 need	 to	 add	 the	 individual	 values.	 This	 is	 the	 same	 for
subtracting.	 If	 you	 don’t	 know	 what	 vectors	 are	 mathematically,	 forget	 about
them.	This	is	just	one	example.

We	 use	 the	 functions	__add__	 and	 __sub__	 to	 define	what	 happens	when	we
apply	the	+	and	 the	–	operator.	The	__str__	 function	determines	what	happens
when	we	print	the	object.

v1	=	Vector(3,	5)

v2	=	Vector(6,	2)

v3	=	v1	+	v2

v4	=	v1	-	v2

print(v1)

print(v2)

print(v3)

print(v4)

The	results	are	the	following:

X:	3,	Y:	5
X:	6,	Y:	2
X:	9,	Y:	7
X:	-3,	Y:	3

2	–	MULTITHREADING
Threads	are	lightweight	processes	that	perform	certain	actions	in	a	program	and
they	are	part	of	 a	process	 themselves.	These	 threads	can	work	 in	parallel	with
each	other	in	the	same	way	as	two	individual	applications	can.

Since	threads	in	the	same	process	share	the	memory	space	for	the	variables	and
the	 data,	 they	 can	 exchange	 information	 and	 communicate	 efficiently.	 Also,
threads	 need	 fewer	 resources	 than	 processes.	 That’s	 why	 they’re	 often	 called
lightweight	processes.

HOW	A	THREAD	WORKS
A	thread	has	a	beginning	or	a	start,	a	working	sequence	and	an	end.	But	it	can
also	be	stopped	or	put	on	hold	at	any	time.	The	latter	is	also	called	sleep.

There	 are	 two	 types	 of	 threads:	 Kernel	 Threads	 and	 User	 Threads.	 Kernel
threads	are	part	of	 the	operating	system,	whereas	user	 threads	are	managed	by
the	programmer.	That’s	why	we	will	focus	on	user	threads	in	this	book.

In	 Python,	 a	 thread	 is	 a	 class	 that	 we	 can	 create	 instances	 of.	 Each	 of	 these
instances	then	represents	an	individual	thread	which	we	can	start,	pause	or	stop.
They	 are	 all	 independent	 from	 each	 other	 and	 they	 can	 perform	 different
operations	at	the	same	time.

For	 example,	 in	 a	video	game,	one	 thread	could	be	 rendering	all	 the	graphics,
while	 another	 thread	 processes	 the	 keyboard	 and	 mouse	 inputs.	 It	 would	 be
unthinkable	to	serially	perform	these	tasks	one	after	the	other.

STARTING	THREADS
In	order	 to	work	with	 threads	 in	Python,	we	will	need	 to	 import	 the	respective
library	threading.

import	threading

Then,	 we	 need	 to	 define	 our	 target	 function.	 This	 will	 be	 the	 function	 that
contains	the	code	that	our	thread	shall	be	executing.	Let’s	just	keep	it	simple	for
the	beginning	and	write	a	hello	world	function.

import	threading

def	hello():

				print("Hello	World!")

t1	=	threading.Thread(target=hello)

t1.start()

After	we	have	defined	the	function,	we	create	our	first	 thread.	For	this,	we	use
the	class	Thread	of	the	imported	threading	module.	As	a	parameter,	we	specify
the	target	to	be	the	hello	function.	Notice	that	we	don’t	put	parentheses	after	our
function	name	here,	since	we	are	not	calling	it	but	just	referring	to	it.	By	using
the	start	method	we	put	our	thread	to	work	and	it	executes	our	function.

START	VS	RUN
In	 this	example,	we	used	 the	function	start	 to	put	our	 thread	 to	work.	Another
alternative	 would	 be	 the	 function	 run.	 The	 difference	 between	 these	 two
functions	gets	important,	when	we	are	dealing	with	more	than	just	one	thread.

When	we	use	the	run	function	to	execute	our	threads,	they	run	serially	one	after
the	other.	They	wait	for	each	other	to	finish.	The	start	function	puts	all	of	them

to	work	simultaneously.

The	following	example	demonstrates	this	difference	quite	well.

import	threading

def	function1():

				for	x	in	range(1000):

								print("ONE")

def	function2():

				for	x	in	range(1000):

								print("TWO")

t1	=	threading.Thread(target=function1)

t2	=	threading.Thread(target=function2)

t1.start()

t2.start()

When	 you	 run	 this	 script,	 you	 will	 notice	 that	 the	 output	 alternates	 between
ONEs	and	TWOs.	Now	if	you	use	the	run	function	instead	of	the	start	function,
you	will	see	1000	times	ONE	followed	by	1000	times	TWO.	This	shows	you	that
the	threads	are	run	serially	and	not	in	parallel.

One	more	 thing	 that	 you	 should	 know	 is	 that	 the	 application	 itself	 is	 also	 the
main	 thread,	which	continues	 to	 run	 in	 the	background.	So	while	your	 threads
are	 running,	 the	 code	 of	 the	 script	 will	 be	 executed	 unless	 you	 wait	 for	 the
threads	to	finish.

WAITING	FOR	THREADS
If	we	want	to	wait	for	our	threads	to	finish	before	we	move	on	with	the	code,	we
can	use	the	join	function.

import	threading

def	function():

				for	x	in	range(500000):

								print("HELLO	WORLD!")

t1	=	threading.Thread(target=function)

t1.start()

print("THIS	IS	THE	END!")

If	 you	 execute	 this	 code,	 you	 will	 start	 printing	 the	 text	“HELLO	WORLD!”
500,000	 times.	 But	 what	 you	 will	 notice	 is	 that	 the	 last	 print	 statement	 gets
executed	immediately	after	our	thread	starts	and	not	after	it	ends.

t1	=	threading.Thread(target=function)

t1.start()

t1.join()

print("THIS	IS	THE	END!")

By	using	the	join	function	here,	we	wait	for	the	thread	to	finish	before	we	move
on	with	the	last	print	statement.	If	we	want	to	set	a	maximum	time	that	we	want
to	wait,	we	just	pass	the	number	of	seconds	as	a	parameter.

t1	=	threading.Thread(target=function)

t1.start()

t1.join(5)

print("THIS	IS	THE	END!")

In	 this	 case,	we	will	wait	 for	 the	 thread	 to	 finish	but	only	 a	maximum	of	 five
seconds.	After	this	time	has	passed	we	will	proceed	with	the	code.

Notice	that	we	are	only	waiting	for	this	particular	thread.	If	we	would	have	other
threads	running	at	the	same	time,	we	would	have	to	call	the	join	function	on	each
of	them	in	order	to	wait	for	all	of	them.

THREAD	CLASSES
Another	 way	 to	 build	 our	 threads	 is	 to	 create	 a	 class	 that	 inherits	 the	Thread
class.	We	can	then	modify	the	run	function	and	implement	our	functionality.	The
start	function	is	also	using	the	code	from	the	run	 function	so	we	don’t	have	 to
worry	about	that.

import	threading

class	MyThread(threading.Thread):

				def	__init__(self,	message):

								threading.Thread.__init__(self)

								self.message	=	message

				def	run(self):

								for	x	in	range(100):

												print(self.message)

mt1	=	MyThread("This	is	my	thread	message!")

mt1.start()

It	is	basically	the	same	but	it	offers	more	modularity	and	structure,	if	you	want	to
use	attributes	and	additional	functions.

SYNCHRONIZING	THREADS
Sometimes	you	are	going	to	have	multiple	threads	running	that	all	try	to	access
the	 same	 resource.	This	may	 lead	 to	 inconsistencies	 and	problems.	 In	order	 to
prevent	 such	 things	 there	 is	 a	 concept	 called	 locking.	 Basically,	 one	 thread	 is
locking	all	of	the	other	threads	and	they	can	only	continue	to	work	when	the	lock
is	removed.

I	 came	up	with	 the	 following	quite	 trivial	 example.	 It	 seems	a	bit	 abstract	 but
you	can	still	get	the	concept	here.

import	threading

import	time

x	=	8192

def	halve():

				global	x

				while(x	>	1):

								x	/=	2

								print(x)

								time.sleep(1)

				print("END!")

def	double():

				global	x

				while(x	<	16384):

								x	*=	2

								print(x)

								time.sleep(1)

				print("END!")

t1	=	threading.Thread(target=halve)

t2	=	threading.Thread(target=double)

t1.start()

t2.start()

Here	we	have	two	functions	and	the	variable	x	that	starts	at	the	value	8192.	The
first	 function	 halves	 the	 number	 as	 long	 as	 it	 is	 greater	 than	 one,	whereas	 the
second	function	doubles	the	number	as	long	as	it	is	less	than	16384.

Also,	 I’ve	 imported	 the	 module	 time	 in	 order	 to	 use	 the	 function	 sleep.	 This
function	 puts	 the	 thread	 to	 sleep	 for	 a	 couple	 of	 seconds	 (in	 this	 case	 one
second).	 So	 it	 pauses.	 We	 just	 do	 that,	 so	 that	 we	 can	 better	 track	 what’s
happening.

When	we	now	start	two	threads	with	these	target	functions,	we	will	see	that	the
script	 won’t	 come	 to	 an	 end.	 The	 halve	 function	 will	 constantly	 decrease	 the
number	and	the	double	function	will	constantly	increase	it.

With	locking	we	can	now	let	one	function	finish	before	the	next	function	starts.
Of	course,	in	this	example	this	is	not	very	useful	but	we	can	do	the	same	thing	in
much	more	complex	situations.

import	threading

import	time

x	=	8192

lock	=	threading.Lock()

def	halve():

				global	x,	lock

				lock.acquire()

				while(x	>	1):

								x	/=	2

								print(x)

								time.sleep(1)

				print("END!")

				lock.release()

def	double():

				global	x,	lock

				lock.acquire()

				while(x	<	16384):

								x	*=	2

								print(x)

								time.sleep(1)

				print("END!")

				lock.release()

t1	=	threading.Thread(target=halve)

t2	=	threading.Thread(target=double)

t1.start()

t2.start()

So	here	we	added	a	couple	of	elements.	First	of	all	we	defined	a	Lock	object.	It
is	part	of	the	threading	module	and	we	need	this	object	in	order	to	manage	the
locking.

Now,	when	we	want	to	try	to	lock	the	resource,	we	use	the	function	acquire.	 If
the	lock	was	already	locked	by	someone	else,	we	wait	until	it	 is	released	again
before	 we	 continue	 with	 the	 code.	 However,	 if	 the	 lock	 is	 free,	 we	 lock	 it
ourselves	and	release	it	at	the	end	using	the	release	function.

Here,	we	start	both	functions	with	a	locking	attempt.	The	first	function	that	gets
executed	will	lock	the	other	function	and	finish	its	loop.	After	that	it	will	release
the	lock	and	the	other	function	can	do	the	same.

So	the	number	will	be	halved	until	it	reaches	the	number	one	and	then	it	will	be
doubled	until	it	reaches	the	number	16384.	

SEMAPHORES
Sometimes	we	 don’t	 want	 to	 completely	 lock	 a	 resource	 but	 just	 limit	 it	 to	 a
certain	 amount	 of	 threads	 or	 accesses.	 In	 this	 case,	 we	 can	 use	 so-called
semaphores.

To	demonstrate	this	concept,	we	will	look	at	another	very	abstract	example.

import	threading

import	time

semaphore	=	threading.BoundedSemaphore(value=5)

def	access(thread_number):

				print("{}:	Trying	access..."

										.format(thread_number))

				semaphore.acquire()

				print("{}:	Access	granted!"

										.format(thread_number))

				print("{}:	Waiting	5	seconds..."

										.format(thread_number))

				time.sleep(5)

				semaphore.release()

				print("{}:	Releasing!"

										.format(thread_number))

for	thread_number	in	range(10):

				t	=	threading.Thread(target=access,	

																									args=(thread_number,))

				t.start()

We	first	use	 the	BoundedSemaphore	 class	 to	create	our	semaphore	 object.	The
parameter	value	determines	how	many	parallel	accesses	we	allow.	 In	 this	case,
we	choose	five.

With	our	access	function,	we	try	to	access	the	semaphore.	Here,	this	is	also	done
with	 the	 acquire	 function.	 If	 there	 are	 less	 than	 five	 threads	 utilizing	 the
semaphore,	we	can	acquire	it	and	continue	with	the	code.	But	when	it’s	full,	we
need	to	wait	until	some	other	thread	frees	up	one	space.

When	we	run	this	code,	you	will	see	that	the	first	five	threads	will	immediately
run	the	code,	whereas	the	remaining	five	threads	will	need	to	wait	five	seconds
until	the	first	threads	release	the	semaphore.

This	 process	makes	 a	 lot	 of	 sense	when	we	 have	 limited	 resources	 or	 limited
computational	power	in	a	system	and	we	want	to	limit	the	access	to	it.

EVENTS
With	events	we	can	manage	our	threads	even	better.	We	can	pause	a	thread	and
wait	for	a	certain	event	to	happen,	in	order	to	continue	it.

import	threading

event	=	threading.Event()

def	function():

				print("Waiting	for	event...")

				event.wait()

				print("Continuing!")

thread	=	threading.Thread(target=function)

thread.start()

x	=	input("Trigger	event?")

if(x	==	"yes"):

				event.set()

To	 define	 an	 event	 we	 use	 the	Event	 class	 of	 the	 threading	 module.	 Now	we
define	 our	 function	 which	 waits	 for	 our	 event.	 This	 is	 done	 with	 the	 wait
function.	So	we	start	the	thread	and	it	waits.

Then	we	ask	the	user,	 if	he	wants	to	trigger	the	event.	If	 the	answer	is	yes,	we

trigger	it	by	using	the	set	function.	Once	the	event	is	triggered,	our	function	no
longer	waits	and	continues	with	the	code.

DAEMON	THREADS
So-called	 daemon	 threads	 are	 a	 special	 kind	 of	 thread	 that	 runs	 in	 the
background.	This	means	that	the	program	can	be	terminated	even	if	this	thread	is
still	 running.	 Daemon	 threads	 are	 typically	 used	 for	 background	 tasks	 like
synchronizing,	 loading	 or	 cleaning	 up	 files	 that	 are	 not	 needed	 anymore.	We
define	 a	 thread	 as	 a	 daemon	 by	 setting	 the	 respective	 parameter	 in	 the
constructor	for	Thread	to	True.

import	threading

import	time

path	=	"text.txt"

text	=	""

def	readFile():

				global	path,	text

				while	True:

								with	open(path)	as	file:

												text	=	file.read()

								time.sleep(3)

def	printloop():

				global	text

				for	x	in	range(30):

								print(text)

								time.sleep(1)

t1	=	threading.Thread(target=readFile,	daemon=True)

t2	=	threading.Thread(target=printloop)

t1.start()

t2.start()

So,	here	we	have	two	functions.	The	first	one	constantly	reads	in	the	text	from	a
file	 and	 saves	 it	 into	 the	 text	 variable.	 This	 is	 done	 in	 an	 interval	 of	 three
seconds.	The	second	one	prints	out	the	content	of	text	every	second	but	only	30
times.

As	 you	 can	 see,	 we	 start	 the	 readFile	 function	 in	 a	 daemon	 thread	 and	 the
printloop	function	in	an	ordinary	thread.	So	when	we	run	this	script	and	change
the	content	of	 the	 text.txt	 file	while	 it	 is	 running,	we	will	 see	 that	 it	 prints	 the
actual	content	all	the	time.	Of	course,	we	first	need	to	create	that	file	manually.

After	 it	 printed	 the	content	30	 times	however,	 the	whole	 script	will	 stop,	 even
though	the	daemon	thread	is	still	reading	in	the	files.	Since	the	ordinary	threads
are	all	finished,	the	program	ends	and	the	daemon	thread	just	gets	terminated.

3	–	QUEUES
In	Python,	queues	are	structures	that	take	in	data	in	a	certain	order	to	then	output
it	 in	a	certain	order.	The	default	queue	 type	 is	 the	 so-called	FIFO	queue.	This
stands	 for	 first	 in	 first	 out	 and	 the	 name	 describes	 exactly	 what	 it	 does.	 The
elements	that	enter	the	queue	first	are	also	the	elements	that	will	leave	the	queue
first.

import	queue

q	=	queue.Queue()

for	x	in	range(5):

				q.put(x)

for	x	in	range(5):

				print(q.get(x))

In	order	 to	work	with	queues	 in	Python,	we	need	 to	 import	 the	module	queue.
We	can	then	create	an	instance	of	the	class	Queue	by	using	the	constructor.

As	you	can	see,	we	are	using	two	functions	here	–	put	and	get.	The	put	function
adds	an	element	to	the	queue	that	can	then	be	extracted	by	the	get	function.

Here,	we	put	 in	 the	numbers	one	 to	 five	 into	our	queue.	Then,	we	 just	get	 the
elements	 and	 print	 them.	The	 order	 stays	 the	 same,	 since	 the	 default	 queue	 is
FIFO.

QUEUING	RESOURCES
Let’s	say	we	have	a	list	of	numbers	that	need	to	be	processed.	We	decide	to	use
multiple	threads,	in	order	to	speed	up	the	process.	But	there	might	be	a	problem.
The	 threads	 don’t	 know	 which	 number	 has	 already	 been	 processed	 and	 they
might	do	 the	same	work	 twice,	which	would	be	unnecessary.	Also,	solving	 the
problem	with	a	counter	variable	won’t	always	work,	because	too	many	threads
access	the	same	variable	and	numbers	might	get	skipped.

In	this	case	we	can	just	use	queues	to	solve	our	problems.	We	fill	up	our	queue
with	 the	 numbers	 and	 every	 thread	 just	 uses	 the	 get	 function,	 to	 get	 the	 next
number	and	process	it.

Let’s	say	we	have	the	following	worker	function:

import	threading

import	queue

import	math

q	=	queue.Queue()

threads	=	[]

def	worker():

				while	True:

								item	=	q.get()

								if	item	is	None:

												break

								print(math.factorial(item))

								q.task_done()

We	start	out	with	an	empty	queue	and	an	empty	list	for	threads.	Our	function	has
an	 endless	 loop	 that	 gets	 numbers	 from	 the	 list	 and	 calculates	 the	 factorial	 of
them.	For	this	 factorial	 function,	we	need	to	 import	 the	module	math.	But	you
can	ignore	this	part,	since	it	is	only	used	because	the	computation	requires	a	lot
of	 resources	 and	 takes	 time.	At	 the	 end,	we	use	 the	 function	 task_done	 of	 the
queue,	in	order	to	signal	that	the	element	was	processed.

for	x	in	range(5):

				t	=	threading.Thread(target=worker)

				t.start()

				threads.append(t)

zahlen	=	[134000,	14,	5,	300,	98,	88,	11,	23]

for	item	in	zahlen:

				q.put(item)

q.join()

for	i	in	range(5):

				q.put(None)

We	then	use	a	for	loop	to	create	and	start	five	threads	that	we	also	add	to	our	list.
After	that,	we	create	a	list	of	numbers,	which	we	then	all	put	into	the	queue.

The	 method	 join	 of	 the	 queue	 waits	 for	 all	 elements	 to	 be	 extracted	 and
processed.	Basically,	 it	waits	for	all	 the	 task_done	functions.	After	that,	we	put
None	elements	into	the	queue,	so	that	our	loops	break.

Notice	 that	our	 threads	can’t	process	 the	 same	element	 twice	or	even	skip	one
because	they	can	only	get	them	by	using	the	get	function.

If	we	would	use	a	counter	for	this	task,	two	threads	might	increase	it	at	the	same
time	 and	 then	 skip	 an	 element.	 Or	 they	 could	 just	 access	 the	 same	 element
simultaneously.	Queues	are	irreplaceable	for	tasks	like	this.	We	will	see	a	quite
powerful	application	of	queues	in	the	chapter	about	networking.

LIFO	QUEUES
An	alternative	 to	 the	FIFO	queues	would	be	 the	LIFO	queues.	That	 stands	 for
last	in	first	out.	You	can	imagine	this	queue	like	some	sort	of	stack.	The	element
you	put	last	on	top	of	the	stack	is	the	first	that	you	can	get	from	it.

import	queue

q	=	queue.LifoQueue()

numbers	=	[1,	2,	3,	4,	5]

for	x	in	numbers:

				q.put(x)

while	not	q.empty():

				print(q.get())

By	using	the	LifoQueue	class	from	the	queue	module,	we	can	create	an	instance

of	this	type.	When	we	now	put	in	the	numbers	one	to	five	in	ascending	order,	we
will	get	them	back	in	descending	order.

The	result	would	be:

5		4		3		2		1

PRIORITIZING	QUEUES
What	we	can	also	do	 in	Python,	 is	 creating	prioritized	queues.	 In	 these,	 every
element	gets	assigned	a	level	of	priority	that	determines	when	they	will	leave	the
queue.

import	queue

q	=	queue.PriorityQueue()

q.put((8,	"Some	string"))

q.put((1,	2023))

q.put((90,	True))

q.put((2,	10.23))

while	not	q.empty():

				print(q.get())

Here,	we	create	a	new	instance	of	the	class	PriorityQueue.	When	we	put	a	new
element	into	this	queue,	we	need	to	pass	a	tuple	as	a	parameter.	The	first	element
of	 the	 tuple	 is	 the	 level	 of	 importance	 (the	 lower	 the	 number,	 the	 higher	 the
priority)	and	the	second	element	is	the	actual	object	or	value	that	we	want	to	put
into	the	queue.

When	we	execute	the	print	statement	of	the	loop,	we	get	the	following	results:

(1,	2023)
(2,	10.23)
(8,	'Some	string')
(90,	True)

As	 you	 can	 see,	 the	 elements	 got	 sorted	 by	 their	 priority	 number.	 If	 you	 only
want	to	access	the	actual	value,	you	need	to	address	the	index	one	because	it	is
the	second	value	of	the	tuple.

while	not	q.empty():

				print(q.get()[1])

4	–	NETWORK	PROGRAMMING
Now	 we	 get	 into	 one	 of	 the	 most	 interesting	 intermediate	 topics	 –	 network
programming.	It	is	about	communicating	with	other	applications	and	devices	via
some	network.	That	can	be	the	internet	or	just	the	local	area	network.

SOCKETS

WHAT	ARE	SOCKETS?
Whenever	we	talk	about	networking	in	programming,	we	also	have	to	talk	about
sockets.	They	are	the	endpoints	of	the	communication	channels	or	basically,	the
endpoints	 that	 talk	 to	each	other.	The	communication	may	happen	 in	 the	same
process	or	even	across	different	continents	over	the	internet.

What’s	 important	 is	 that	 in	 Python	 we	 have	 different	 access	 levels	 for	 the
network	 services.	 At	 the	 lower	 layers,	 we	 can	 access	 the	 simple	 sockets	 that
allow	us	to	use	the	connection-oriented	and	connectionless	protocols	like	TCP	or
UDP,	whereas	other	Python	modules	like	FTP	or	HTTP	are	working	on	a	higher
layer	–	the	application	layer.

CREATING	SOCKETS
In	order	to	work	with	sockets	in	Python,	we	need	to	import	the	module	socket.

import	socket

Now,	 before	we	 start	 defining	 and	 initializing	 our	 socket,	we	 need	 to	 know	 a
couple	of	things	in	advance:

·									Are	we	using	an	internet	socket	or	a	UNIX	socket?
·									Which	protocol	are	we	going	to	use?
·									Which	IP-address	are	we	using?
·									Which	port	number	are	we	using?

The	first	question	can	be	answered	quite	simply.	Since	we	want	to	communicate
over	a	network	 instead	of	 the	operating	system,	we	will	 stick	with	 the	 internet
socket.

The	 next	 question	 is	 a	 bit	 trickier.	 We	 choose	 between	 the	 protocols	 TCP
(Transmission	 Control	 Protocol)	 and	UDP	 (User	 Datagram	 Protocol).	 TCP	 is
connection-oriented	and	more	trustworthy	than	UDP.	The	chances	of	losing	data
are	minimal	in	comparison	to	UDP.	On	the	other	hand,	UDP	is	much	faster	than
TCP.	So	the	choice	depends	on	the	task	we	want	to	fulfil.	For	our	examples,	we
will	stick	with	TCP	since	we	don’t	care	too	much	about	speed	for	now.

The	IP-address	should	be	the	address	of	the	host	our	application	will	run	on.	For

now,	we	will	use	127.0.0.1	which	is	the	localhost	address.	This	applies	to	every
machine.	 But	 notice	 that	 this	 only	 works	 when	 you	 are	 running	 your	 scripts
locally.

For	our	port	we	can	basically	choose	any	number	we	want.	But	be	careful	with
low	 numbers,	 since	 all	 numbers	 up	 to	 1024	 are	 standardized	 and	 all	 numbers
from	1024	to	49151	are	reserved.	If	you	choose	one	of	these	numbers,	you	might
have	some	conflicts	with	other	applications	or	your	operating	system.

import	socket

s	=	socket.socket(socket.AF_INET,

																		socket.SOCK_STREAM)

Here	we	created	our	first	socket,	by	initializing	an	instance	of	 the	class	socket.
Notice	that	we	passed	two	parameters	here.	The	first	one	AF_INET	states	that	we
want	 an	 internet	 socket	 rather	 than	 a	 UNIX	 socket.	 The	 second	 one
SOCK_STREAM	 is	 for	 the	 protocol	 that	 we	 choose.	 In	 this	 case	 it	 stands	 for
TCP.	If	we	wanted	UDP,	we	would	have	to	choose	SOCK_DGRAM.

So	we	have	a	 socket	 that	uses	 the	 IP	protocol	 (internet)	and	 the	TCP	protocol.
Now,	before	we	get	into	the	actual	setup	of	the	socket,	we	need	to	talk	a	little	bit
about	clients	and	servers.

CLIENT-SERVER	ARCHITECTURE
In	a	nutshell,	the	server	is	basically	the	one	who	provides	information	and	serves
data,	whereas	the	clients	are	the	ones	who	request	and	receive	the	data	from	the
server.

A	 server	 opens	 up	 a	 session	 with	 every	 client	 that	 connects	 to	 it.	 This	 way,
servers	are	able	to	serve	multiple	clients	at	once	and	individually.

SERVER	SOCKET	METHODS
There	are	 three	methods	of	 the	socket	class	 that	are	of	high	 importance	for	 the
servers.

SERVER	SOCKET	METHODS
METHOD DESCRIPTION

bind()
Binds	the	address	that	consists
of	hostname	and	port	to	the

socket

listen() Waits	for	a	message	or	a	signal

accept() Accepts	the	connection	with	a
client

CLIENT	SOCKET	METHODS

For	 the	 client,	 there	 is	 only	 one	 specific	 and	 very	 important	 method,	 namely
connect.	With	this	method	the	client	attempts	to	connect	to	a	server	which	then
has	to	accept	this	with	the	respective	method.

OTHER	SOCKET	METHODS
Also,	there	are	some	other	socket	methods	that	are	quite	important	in	general.

OTHER	SOCKET	METHODS
METHOD DESCRIPTION

recv() Receives	a	TCP	message

send() Sends	a	TCP	message

recvfrom() Receives	a	UDP	message

sendto() Sends	a	UDP	message

close() Closes	a	socket

gethostname() Returns	hostname	of	a	socket

	

CREATING	A	SERVER
Now	 that	 we	 understand	 the	 client-server	 architecture,	 we	 are	 going	 to
implement	 our	 server.	 We	 decided	 that	 we	 want	 to	 use	 TCP	 and	 an	 internet
socket.	For	the	address	we	will	use	the	localhost	address	127.0.0.1	and	as	a	port,
we	will	choose	9999.

s	=	socket.socket(socket.AF_INET,

																		socket.SOCK_STREAM)

s.bind(("127.0.0.1",	9999))

s.listen()

print("Listening...")

Here	we	 initialize	 our	 socket	 like	we	 did	 in	 the	 beginning	 of	 this	 chapter.	We
then	 use	 the	 method	 bind,	 in	 order	 to	 assign	 the	 IP-address	 and	 the	 port	 we
chose.	Notice	that	we	are	passing	a	tuple	as	a	parameter	here.	Last	but	not	least,
we	put	our	socket	to	listening	mode	by	using	the	method	listen.
After	that,	we	just	have	to	create	a	loop	that	accepts	the	client	requests	that	will
eventually	come	in.

server.py

import	socket

s	=	socket.socket(socket.AF_INET,	

																		socket.SOCK_STREAM)

s.bind(("127.0.0.1",	9999))

s.listen()

print("Listening...")

while	True:

				client,	address	=	s.accept()

				print("Connected	to	{}".format(address))

				message	=	"Hello	Client!"

				client.send(message.encode('ascii'))

				client.close()

The	method	accept	waits	for	a	connection	attempt	to	come	and	accepts	it.	It	then
returns	a	client	for	responses	and	the	address	of	the	client	that	is	connected.	We
can	 then	use	 this	client	object	 in	order	 to	 send	 the	message.	But	 it’s	 important
that	we	encode	the	message	first,	because	otherwise	we	can’t	send	it	properly.	At
the	end,	we	close	the	client	because	we	don’t	need	it	anymore.

CREATING	A	CLIENT
Now	our	 server	 is	 done	 and	we	 just	 need	 some	 clients	 that	 connect	 to	 it.	Our
clients	shall	request	a	resource	from	the	server.	In	this	case,	this	is	the	message
“Hello	Client!”.

For	our	client	we	also	need	a	socket	but	this	time	it	will	not	use	the	function	bind
but	the	function	connect.	So	let’s	start	writing	our	code	into	a	new	file.

import	socket

s	=	socket.socket(socket.AF_INET,

																		socket.SOCK_STREAM)

s.connect(("127.0.0.1",	9999))

We	just	create	an	ordinary	internet	socket	 that	uses	TCP	and	then	connect	 it	 to
the	localhost	IP-address	at	the	port	9999.

To	 now	 get	 the	message	 from	 the	 server	 and	 decode	 it,	 we	 will	 use	 the	 recv
function.

client.py

import	socket

s	=	socket.socket(socket.AF_INET,

																		socket.SOCK_STREAM)

s.connect(("127.0.0.1",	9999))

message	=	s.recv(1024)

s.close()

print(message.decode('ascii'))

After	we	connect	 to	 the	server,	we	 try	 to	receive	up	 to	1024	bytes	from	it.	We
then	save	the	message	into	our	variable	and	then	we	decode	and	print	it.

CONNECTING	SERVER	AND	CLIENT
Now	 in	 order	 to	 connect	 these	 two	 entities,	we	 first	 need	 to	 run	our	 server.	 If
there	 is	 no	 server	 listening	 on	 the	 respective	 port,	 our	 client	 can’t	 connect	 to
anything.	So	we	run	our	server.py	script	and	start	listening.

After	that,	we	can	run	our	client.py	script	many	times	and	they	will	all	connect	to
the	server.	The	results	will	look	like	this:

Server

Listening...
Connected	to	('127.0.0.1',	4935)
Connected	to	('127.0.0.1',	4942)
Connected	to	('127.0.0.1',	4943)
Connected	to	('127.0.0.1',	4944)
Connected	to	('127.0.0.1',	4945)

Client
Hello	Client!

One	 thing	 you	 might	 optimize	 on	 that	 script	 if	 you	 want	 is	 the	 exception
handling.	If	there	is	no	server	listening	and	our	client	tries	to	connect,	we	get	a
ConnectionRefusedError	and	our	script	crashes.	Now	you	can	 fix	 this	with	 the
knowledge	from	the	first	book.

Hint:	Use	try	and	except!

PORT	SCANNER
Now	we	have	 learned	a	 lot	 about	multithreading,	 locking,	queues	and	 sockets.
With	all	that	knowledge,	we	can	create	a	highly	efficient	and	well	working	port
scanner.

What	a	port	scanner	basically	does	is:	It	tries	to	connect	to	certain	ports	at	a	host
or	 a	 whole	 network,	 in	 order	 to	 find	 loopholes	 for	 future	 attacks.	 Open	 ports
mean	 a	 security	 breach.	 And	 with	 our	 skills,	 we	 can	 already	 code	 our	 own
penetration	testing	tool.

WARNING:	Port	scanning	 is	not	allowed	on	any	hosts	or	networks
which	 you	 don’t	 have	 explicit	 permission	 for.	 Only	 scan	 your	 own
networks	 or	 networks	 for	 which	 you	 were	 given	 permission.	 I	 don’t
take	any	liability	for	what	you	do	with	this	knowledge,	since	I	warned
you!

import	socket

target	=	"10.0.0.5"

def	portscan(port):

				try:

								s	=	socket.socket(socket.AF_INET,	

																										socket.SOCK_STREAM)

								conn	=	s.connect((target,	port))

								return	True

				except:

								return	False

for	x	in	range(1,	501):

				if(portscan(x)):

								print("Port	{}	is	open!".format(x))

				else:

								print("Port	{}	is	closed!".format(x))

So	this	scanner	 is	quite	simple.	We	define	a	 target	address.	 In	 this	case,	 this	 is
10.0.0.5.	Our	function	portscan	 simply	 tries	 to	connect	 to	a	certain	port	at	 that
host.	If	it	succeeds,	the	function	returns	True.	If	we	get	an	error	or	an	exception,
it	returns	False.

This	is	as	simple	as	a	port	scan	can	get.	We	then	use	a	for	loop	to	scan	the	first
500	ports	and	we	always	print	if	the	port	is	open	or	closed.

Just	choose	a	target	address	and	run	this	script.	You	will	see	that	it	works.

Port	21	is	closed!
Port	22	is	open!
Port	23	is	closed!
Port	24	is	closed!
Port	25	is	open!

But	you	will	also	notice	that	it	is	extremely	slow.	That’s	because	we	serially	scan
one	port	after	the	other.	And	I	think	we	have	already	learned	how	to	handle	that.

THREADED	PORT	SCANNER
In	order	 to	speed	up	 the	scanning	process,	we	are	going	 to	use	multithreading.
And	to	make	sure	that	every	port	gets	scanned	and	also	that	no	port	is	scanned
twice,	we	will	use	queues.

import	socket

from	queue	import	Queue

import	threading

target	=	"10.0.0.5"

q	=	Queue()

for	x	in	range(1,501):

				q.put(x)

def	portscan(port):

				try:

								s	=	socket.socket(socket.AF_INET,

																										socket.SOCK_STREAM)

								conn	=	s.connect((target,	port))

								return	True

				except:

								return	False

def	worker():

				while	True:

								port	=	q.get()

								if	portscan(port):

												print("Port	{}	is	open!"

																		.format(port))

So	we	start	by	creating	a	queue	and	filling	it	up	with	all	numbers	from	1	to	500.
We	then	have	two	functions.	The	portscan	function	does	the	scanning	itself	and
the	worker	function	gets	all	the	ports	from	the	queue	in	order	to	pass	them	to	the
portscan	 function	 and	 prints	 the	 result.	 In	 order	 to	 not	 get	 confused	 with	 the
output,	we	only	print	when	a	port	is	open	because	we	don’t	care	when	a	port	is
closed.

Now	we	just	have	to	decide	how	many	threads	we	want	to	start	and	then	we	can
go	for	it.

for	x	in	range(30):

				t	=	threading.Thread(target=worker)

				t.start()

In	this	example,	we	start	30	threads	at	the	same	time.	If	you	run	this,	you	will	see
that	it	increases	the	scanning	speed	a	lot.	Within	a	few	seconds,	all	the	500	ports
are	scanned.	So	if	you	want,	you	can	increase	the	number	to	5000.

The	results	for	my	virtual	server	are	the	following:

Port	25	is	open!
Port	22	is	open!
Port	80	is	open!
Port	110	is	open!
Port	119	is	open!

Port	143	is	open!
Port	443	is	open!
Port	465	is	open!

As	 you	 can	 see,	 there	 are	 a	 lot	 of	 vulnerabilities	 here.	 You	 now	 just	 have	 to
google	which	ports	are	 interesting	and	depending	on	your	 side	you	may	either
prepare	 for	an	attack	or	 fix	 the	security	breaches.	For	example	port	22	 is	SSH
and	quite	dangerous.

5	–	DATABASE	PROGRAMMING
Databases	 are	 one	 of	 the	 most	 popular	 ways	 to	 store	 and	 manage	 data	 in
computer	science.	Because	of	that,	in	this	chapter	we	are	going	to	take	a	look	at
database	programming	with	Python.

Notice	that	for	most	databases	we	use	the	query	language	SQL,	which	stands	for
Structured	 Query	 Language.	 We	 use	 this	 language	 in	 order	 to	 manage	 the
database,	 the	 tables	 and	 the	 rows	 and	 columns.	 This	 chapter	 is	 not	 about
database	structure	itself,	nor	is	it	about	SQL.	Maybe	I	will	write	a	specific	SQL
book	in	the	future	but	here	we	are	only	going	to	focus	on	the	implementation	in
Python.	We	are	not	going	to	explain	the	SQL	syntax	in	too	much	detail.

CONNECTING	TO	SQLITE
The	database	that	comes	pre-installed	with	Python	is	called	SQLite.	It	is	also	the
one	 which	 we	 are	 going	 to	 use.	 Of	 course,	 there	 are	 also	 other	 libraries	 for
MySQL,	MongoDB	etc.

In	 order	 to	 use	SQLite	 in	 Python,	we	 need	 to	 import	 the	 respective	module	 –
sqlite3.

import	sqlite3

Now,	 to	 create	 a	 new	 database	 file	 on	 our	 disk,	 we	 need	 to	 use	 the	 connect
method.

conn	=	sqlite3.connect('mydata.db')

This	right	here	creates	 the	new	file	mydata.db	and	connects	 to	 this	database.	It
returns	a	connection	object	which	we	save	in	the	variable	conn.

EXECUTING	STATEMENTS
So,	we	 have	 established	 a	 connection	 to	 the	 database.	But	 in	 order	 to	 execute
SQL	statements,	we	will	need	to	create	a	so-called	cursor.

c	=	conn.cursor()

We	 get	 this	 cursor	 by	 using	 the	 method	 cursor	 of	 our	 connection	 object	 that
returns	it.	Now	we	can	go	ahead	and	execute	all	kinds	of	statements.

CREATING	TABLES
For	example,	we	can	create	our	first	table	like	this:

c.execute("""CREATE	TABLE	persons	(

												first_name	TEXT,

												last_name	TEXT,

												age	INTEGER

)""")

Here	we	use	the	execute	function	and	write	our	query.	What	we	are	passing	here
is	 SQL	 code.	 As	 I	 already	 said,	 understanding	 SQL	 is	 not	 the	main	 objective
here.	We	are	focusing	on	the	Python	part.	Nevertheless,	it’s	quite	obvious	what’s
happening	here.	We	 are	 creating	 a	 new	 table	with	 the	name	persons	 and	 each
person	will	have	the	three	attributes	first_name,	last_name	and	age.

Now	 our	 statement	 is	written	 but	 in	 order	 to	 really	 execute	 it,	 we	 ne	 need	 to
commit	to	our	connection.

conn.commit()

When	we	do	this,	our	statement	gets	executed	and	our	table	created.	Notice	that
this	works	only	once,	since	after	that	the	table	already	exists	and	can’t	be	created
again.

At	 the	 end,	 don’t	 forget	 to	 close	 the	 connection,	 when	 you	 are	 done	 with
everything.

conn.close()

INSERTING	VALUES
Now	let’s	 fill	up	our	 table	with	 some	values.	For	 this,	we	 just	use	an	ordinary
INSERT	statement.

c.execute("""INSERT	INTO	persons	VALUES

												('John',	'Smith',	25),

												('Anna',	'Smith',	30),

												('Mike',	'Johnson',	40)""")

	

conn.commit()

conn.close()

So	 basically,	we	 are	 just	 adding	 three	 entries	 to	 our	 table.	When	 you	 run	 this
code,	you	will	see	that	everything	went	fine.	But	to	be	on	the	safe	side,	we	will
try	to	now	extract	the	values	from	the	database	into	our	program.

SELECTING	VALUES
In	 order	 to	 get	 values	 from	 the	 database,	 we	 need	 to	 first	 execute	 a	 SELECT
statement.	After	that,	we	also	need	to	fetch	the	results.

c.execute("""SELECT	*	FROM	persons

													WHERE	last_name	=	'Smith'""")

print(c.fetchall())

conn.commit()

conn.close()

As	 you	 can	 see,	 our	 SELECT	 statement	 that	 gets	 all	 the	 entries	 where	 the
last_name	has	the	value	Smith.	We	then	need	to	use	 the	method	 fetchall	of	 the
cursor,	in	order	to	get	our	results.	It	returns	a	list	of	tuples,	where	every	tuple	is
one	entry.	Alternatively,	we	could	use	the	method	 fetchone	 to	only	get	 the	first
entry	or	fetchmany	to	get	a	specific	amount	of	entries.	In	our	case	however,	the
result	looks	like	this:

[('John',	'Smith',	25),	('Anna',	'Smith',	30)]

CLASSES	AND	TABLES
Now	in	order	to	make	the	communication	more	efficient	and	easier,	we	are	going
to	create	a	Person	class	that	has	the	columns	as	attributes.

class	Person():

				def	__init__(self,	first=None,

																	last=None,	age=None):

								self.first	=	first

								self.last	=	last

								self.age	=	age

				def	clone_person(self,	result):

								self.first	=	result[0]

								self.last	=	result[1]

								self.age	=	result[2]

Here	we	 have	 a	 constructor	with	 default	 parameters.	 In	 case	we	 don’t	 specify
any	 values,	 they	 get	 assigned	 the	 value	 None.	 Also,	 we	 have	 a	 function
clone_person	 that	 gets	 passed	 a	 sequence	 and	 assigns	 the	 values	 of	 it	 to	 the
object.	In	our	case,	this	sequence	will	be	the	tuple	from	the	fetching	results.

FROM	TABLE	TO	OBJECT
So	let’s	create	a	new	Person	object	by	getting	its	data	from	our	database.

c.execute("""SELECT	*	FROM	persons

													WHERE	last_name	=	'Smith'""")

person1	=	Person()

person1.clone_person(c.fetchone())

print(person1.first)

print(person1.last)

print(person1.age)

Here	we	fetch	the	first	entry	of	our	query	results,	by	using	the	fetchone	function.
The	result	is	the	following:

John
Smith
25

FROM	OBJECT	TO	TABLE
We	can	also	do	that	the	other	way	around.	Let’s	create	a	person	objects,	assign
values	to	the	attributes	and	then	insert	this	object	into	our	database.

person2	=	Person("Bob",	"Davis",	23)

c.execute("""INSERT	INTO	persons	VALUES

												('{}',	'{}',	'{}')"""

										.format(person2.first,

																		person2.last,

																		person2.age))

	

conn.commit()

conn.close()

Here	 we	 used	 the	 basic	 format	 function	 in	 order	 to	 put	 our	 values	 into	 the
statement.	When	we	execute	it,	our	object	gets	inserted	into	the	database.	We	can
check	this	by	printing	all	objects	of	the	table	persons.

c.execute("SELECT	*	FROM	persons")

print(c.fetchall())

In	the	results,	we	find	our	new	object:

[('John',	 'Smith',	 25),	 ('Anna',	 'Smith',	 30),	 ('Mike',	 'Johnson',	 40),	 ('Bob',
'Davis',	23)]

PREPARED	STATEMENTS
There	is	a	much	more	secure	and	elegant	way	to	put	the	values	of	our	attributes
into	the	SQL	statements.	We	can	use	prepared	statements.

person	=	Person("Julia",	"Johnson",	28)

c.execute("INSERT	INTO	persons	VALUES	(?,	?,	?)",

										(person.first,	person.last,	person.age))

conn.commit()

conn.close()

We	replace	the	values	with	question	marks	and	pass	the	values	as	a	tuple	in	the
function.	 This	 makes	 our	 statements	 cleaner	 and	 also	 less	 prone	 to	 SQL
injections.

MORE	ABOUT	SQL
For	this	book,	we	are	done	with	database	programming.	But	there’s	a	lot	more	to
learn	about	SQL	and	databases.	As	I	said,	I	might	publish	a	detailed	SQL	book	in
the	future	so	keep	checking	my	author	page	on	Amazon.

However,	if	you	are	interested	in	learning	SQL	right	now,	you	can	check	out	the
W3Schools	tutorial.

W3Schools:	https://www.w3schools.com/sql/

	

https://www.w3schools.com/sql/

6	–	RECURSION
In	 this	 short	 chapter,	we	are	going	 to	 talk	about	a	programming	concept	 that	 I
would	 say	 should	 be	 taught	 in	 a	 book	 for	 intermediates.	 This	 concept	 is
recursion	and	basically	it	refers	to	a	function	calling	itself.

def	function():

				function()

function()

So	what	do	you	think	happens,	when	you	call	a	function	like	that?	It	is	a	function
that	calls	 itself.	And	 this	called	function	calls	 itself	again	and	so	on.	Basically,
you	get	into	an	endless	recursion.	This	is	not	very	useful	and	in	Python	we	get	an
RecursionError	when	the	maximum	recursion	depth	is	exceeded.

Every	program	has	a	stack	memory	and	this	memory	is	limited.	When	we	run	a
function	we	 allocate	 stack	memory	 space	 and	 if	 there	 is	 no	 space	 left,	 this	 is
called	Stack	Overflow.	This	is	also	where	the	name	of	the	famous	forum	comes
from.

FACTORIAL	CALCULATION
But	 recursion	 can	 also	 be	 useful,	 if	 it’s	 managed	 right.	 For	 example,	 we	 can
write	a	recursive	function	that	calculates	the	factorial	of	a	number.	A	factorial	is
just	 the	 value	 you	 get,	 when	 you	 multiply	 a	 number	 by	 every	 lower	 whole
number	down	to	one.

So	10	factorial	would	be	10	times	9	times	8	and	so	on	until	you	get	to	times	1.

def	factorial(n):

				if	n	<	1:

								return	1

				else:

								number	=	n	*	factorial(n-1)

								return	number

Look	at	this	function.	When	we	first	call	it,	the	parameter	n	is	our	base	number
that	 we	 want	 to	 calculate	 the	 factorial	 of.	 If	 n	 is	 not	 smaller	 than	 one,	 we
multiply	it	by	the	factorial	of	n-1.	At	the	end,	we	return	the	number.

Notice	 that	our	 first	 function	call	doesn’t	 return	anything	until	we	get	down	to
one.	This	is	because	it	always	calls	itself	in	itself	over	and	over	again.	At	the	end
all	the	results	are	multiplied	by	the	last	return	which	of	course	is	one.	Finally,	we
can	print	the	end	result.

This	might	be	quite	confusing,	if	you	have	never	heard	of	recursion	before.	Just
take	 your	 time	 and	 analyze	 what’s	 happening	 step-by-step	 here.	 Try	 to	 play
around	with	this	concept	of	recursion.

7	–	XML	PROCESSING
Up	until	now,	we	either	saved	our	data	into	regular	text	files	or	into	professional
databases.	Sometimes	however,	our	script	is	quite	small	and	doesn’t	need	a	big
database	 but	 we	 still	 want	 to	 structure	 our	 data	 in	 files.	 For	 this,	 we	 can	 use
XML.

XML	stands	for	Extensible	Markup	Language	and	is	a	language	that	allows	us	to
hierarchically	 structure	 our	 data	 in	 files.	 It	 is	 platform-independent	 and	 also
application-independent.	XML	files	that	you	create	with	a	Python	script,	can	be
read	and	processed	by	a	C++	or	Java	application.

XML	PARSER
In	Python,	we	can	choose	between	 two	modules	 for	parsing	XML	files	–	SAX
and	DOM.

SIMPLE	API	FOR	XML	(SAX)
SAX	stands	for	Simple	API	for	XML	and	is	better	suited	for	large	XML	files	or	in
situations	where	we	have	very	limited	RAM	memory	space.	This	 is	because	in
this	mode	we	never	 load	the	full	 file	 into	our	RAM.	We	read	the	file	from	our
hard	drive	and	only	load	the	little	parts	that	we	need	right	at	the	moment	into	the
RAM.	An	additional	effect	of	this	is	that	we	can	only	read	from	the	file	and	not
manipulate	it	and	change	values.

DOCUMENT	OBJECT	MODEL	(DOM)
DOM	 stands	 for	Document	 Object	 Model	 and	 is	 the	 generally	 recommended
option.	 It	 is	 a	 language-independent	 API	 for	 working	 with	 XML.	 Here	 we
always	 load	 the	 full	 XML	 file	 into	 our	 RAM	 and	 then	 save	 it	 there	 in	 a
hierarchical	 structure.	Because	 of	 that,	we	 can	 use	 all	 of	 the	 features	 and	 also
manipulate	the	file.

Obviously,	DOM	is	a	lot	faster	than	SAX	because	it	is	using	the	RAM	instead	of
the	hard	disk.	The	main	memory	is	way	more	efficient	than	the	hard	drive.	We
only	use	SAX	when	our	RAM	is	so	limited	that	we	can’t	even	load	the	full	XML
file	into	it	without	problems.

There	is	no	reason	to	not	use	both	options	in	the	same	projects.	We	can	choose
depending	on	the	use	case.

XML	STRUCTURE
For	this	chapter,	we	are	going	to	use	the	following	XML	file:

<?xml	version="1.0"?>

<group>

				<person	id="1">

								<name>John	Smith</name>

								<age>20</age>

								<weight>80</weight>

								<height>188</height>

				</person>

				<person	id="2">

								<name>Mike	Davis</name>

								<age>45</age>

								<weight>82</weight>

								<height>185</height>

				</person>

				<person	id="3">

								<name>Anna	Johnson</name>

								<age>33</age>

								<weight>67</weight>

								<height>167</height>

				</person>

				<person	id="4">

								<name>Bob	Smith</name>

								<age>60</age>

								<weight>70</weight>

								<height>174</height>

				</person>

				<person	id="5">

								<name>Sarah	Pitt</name>

								<age>12</age>

								<weight>50</weight>

								<height>152</height>

				</person>

</group>

As	you	can	see,	the	structure	is	quite	simple.	The	first	row	is	just	a	notation	and
indicates	 that	we	are	using	XML	version	one.	After	 that	we	have	various	 tags.
Every	tag	that	gets	opened	also	gets	closed	at	the	end.

Basically,	we	have	one	group	tag.	Within	that,	we	have	multiple	person	tags	that
all	have	 the	attribute	 id.	And	 then	again,	every	person	has	 four	 tags	with	 their
values.	These	tags	are	the	attributes	of	the	respective	person.	We	save	this	file	as
group.xml.

XML	WITH	SAX
In	order	to	work	with	SAX,	we	first	need	to	import	the	module:

import	xml.sax

Now,	what	we	need	 in	order	 to	process	 the	XML	data	 is	 a	content	handler.	 It
handles	and	processes	the	attributes	and	tags	of	the	file.

import	xml.sax

handler	=	xml.sax.ContentHandler()

parser	=	xml.sax.make_parser()

parser.setContentHandler(handler)

parser.parse("group.xml")

First	we	create	an	instance	of	the	ContentHandler	class.	Then	we	use	the	method
make_parser,	in	order	to	create	a	parser	object.	After	that,	we	set	our	handler	to
the	content	handler	of	our	parser.	We	can	then	parse	the	file	by	using	the	method
parse.

Now,	when	we	 execute	 our	 script,	we	 don’t	 see	 anything.	 This	 is	 because	we
need	to	define	what	happens	when	an	element	gets	parsed.

CONTENT	HANDLER	CLASS
For	 this,	we	will	define	our	own	content	 handler	class.	Let’s	 start	with	 a	very
simple	example.

import	xml.sax

class	GroupHandler(xml.sax.ContentHandler):

				def	startElement(self,	name,	attrs):

								print(name)

handler	=	GroupHandler()

parser	=	xml.sax.make_parser()

parser.setContentHandler(handler)

parser.parse("group.xml")

We	created	a	class	GroupHandler	 that	 inherits	 from	ContentHandler.	Then	we
overwrite	the	function	startElement.	Every	time	an	element	gets	processed,	this
function	 gets	 called.	 So	 by	manipulating	 it,	 we	 can	 define	 what	 shall	 happen
during	the	parsing	process.

Notice	that	the	function	has	two	parameters	–	name	and	attr.	These	represent	the
tag	name	and	the	attributes.	In	our	simple	example,	we	just	print	the	tag	names.
So,	let’s	get	to	a	more	interesting	example.

PROCESSING	XML	DATA
The	following	example	is	a	bit	more	complex	and	includes	two	more	functions.

import	xml.sax

class	GroupHandler(xml.sax.ContentHandler):

				def	startElement(self,	name,	attrs):

								self.current	=	name

								if	self.current	==	"person":

												print("---	Person	---")

												id	=	attrs["id"]

												print("ID:	%s"	%	id)

				def	endElement(self,	name):

								if	self.current	==	"name":

												print("Name:	%s"	%	self.name)

								elif	self.current	==	"age":

												print("Age:	%s"	%	self.age)

								elif	self.current	==	"weight":

												print("Weight:	%s"	%	self.weight)

								elif	self.current	==	"height":

												print("Height:	%s"	%	self.height)

								self.current	=	""

				def	characters(self,	content):

								if	self.current	==	"name":

												self.name	=	content

								elif	self.current	==	"age":

												self.age	=	content

								elif	self.current	==	"weight":

												self.weight	=	content

								elif	self.current	==	"height":

												self.height	=	content

handler	=	GroupHandler()

parser	=	xml.sax.make_parser()

parser.setContentHandler(handler)

parser.parse("group.xml")

The	first	thing	you	will	notice	here	is	that	we	have	three	functions	instead	of	one.
When	 we	 start	 processing	 an	 element,	 the	 function	 startElement	 gets	 called.
Then	we	go	on	to	process	the	individual	characters	which	are	name,	age,	weight
and	height.	At	the	end	of	the	element	parsing,	we	call	the	endElement	function.

In	this	example,	we	first	check	if	the	element	is	a	person	or	not.	If	this	is	the	case

we	print	the	id	just	for	information.	We	then	go	on	with	the	characters	method.
It	checks	which	tag	belongs	to	which	attribute	and	saves	the	values	accordingly.
At	the	end,	we	print	out	all	the	values.	This	is	what	the	results	look	like:

---	Person	---
ID:	1
Name:	John	Smith
Age:	20
Weight:	80
Height:	188
---	Person	---
ID:	2
Name:	Mike	Davis
Age:	45
Weight:	82
Height:	185
---	Person	---
...

XML	WITH	DOM
Now,	let’s	look	at	the	DOM	option.	Here	we	can	not	only	read	from	XML	files
but	 also	 change	 values	 and	 attributes.	 In	 order	 to	 work	 with	 DOM,	we	 again
need	to	import	the	respective	module.

import	xml.dom.minidom

When	working	with	DOM,	we	need	to	create	a	so-called	DOM-Tree	and	view	all
elements	as	collections	or	sequences.

domtree	=	xml.dom.minidom.parse("group.xml")

group	=	domtree.documentElement

We	parse	 the	XML	 file	 by	 using	 the	method	parse.	 This	 returns	 a	DOM-tree,
which	we	save	into	a	variable.	Then	we	get	the	documentElement	of	our	tree	and
in	our	case	this	is	group.	We	also	save	this	one	into	an	object.

persons	=	group.getElementsByTagName("person")

for	person	in	persons:

				print("---	Person	---")

				if	person.hasAttribute("id"):

								print("ID:	%s"	%	person.getAttribute("id"))

				name	=	person.getElementsByTagName("name")[0]

				age	=	person.getElementsByTagName("age")[0]

				weight	=	person.getElementsByTagName("weight")[0]

				height	=	person.getElementsByTagName("height")[0]

Now,	 we	 can	 get	 all	 the	 individual	 elements	 by	 using	 the
getElementsByTagName	function.	For	example,	we	save	all	our	person	tags	into
a	variable	by	using	this	method	and	specifying	the	name	of	our	desired	tags.	Our
persons	variable	is	now	a	sequence	that	we	can	iterate	over.

By	 using	 the	 functions	 hasAttribute	 and	 getAttribute,	 we	 can	 also	 access	 the
attributes	 of	 our	 tags.	 In	 this	 case,	 this	 is	 only	 the	 id.	 In	 order	 to	 get	 the	 tag
values	 of	 the	 individual	 person,	 we	 again	 use	 the	 method
getElementsByTagName.

When	we	do	all	that	and	execute	our	script,	we	get	the	exact	same	result	as	with
SAX.

---	Person	---
ID:	1
Name:	John	Smith
Age:	20
Weight:	80
Height:	188
---	Person	---
ID:	2
Name:	Mike	Davis
Age:	45
Weight:	82
Height:	185
---	Person	---
...

MANIPULATING	XML	FILES
Since	we	are	now	working	with	DOM,	let’s	manipulate	our	XML	file	and	change
some	values.

persons	=	group.getElementsByTagName("person")

persons[0].getElementsByTagName("name")[0].childNodes[0].nodeValue	=	"New	Name"

As	you	can	see,	we	are	using	the	same	function,	to	access	our	elements.	Here	we
adress	 the	 name	 tag	 of	 the	 first	 person	 object.	 Then	 we	 need	 to	 access	 the
childNodes	and	change	 their	nodeValue.	Notice	 that	we	only	have	one	element
name	and	also	only	one	child	node	but	we	still	need	to	address	the	index	zero,
for	the	first	element.

In	this	example,	we	change	the	name	of	the	first	person	to	New	Name.	Now	in
order	to	apply	these	changes	to	the	real	file,	we	need	to	write	into	it.

domtree.writexml(open("group.xml",	"w"))

We	use	 the	writexml	method	of	our	 initial	domtree	 object.	As	 a	parameter,	we
pass	a	file	stream	that	writes	into	our	XML	file.	After	doing	that,	we	can	look	at
the	changes.

<person	id="1">

				<name>New	Name</name>

				<age>20</age>

				<weight>80</weight>

				<height>188</height>

</person>

We	can	also	change	the	attributes	by	using	the	function	setAttribute.

persons[0].setAttribute("id",	"10")

Here	we	change	the	attribute	id	of	the	first	person	to	10.

<person	id="10">

				<name>New	Name</name>

				<age>20</age>

				<weight>80</weight>

				<height>188</height>

</person>

CREATING	NEW	ELEMENTS

The	last	thing	that	we	are	going	to	look	at	in	this	chapter	is	creating	new	XML

elements	 by	 using	 DOM.	 In	 order	 to	 do	 that,	 we	 first	 need	 to	 define	 a	 new
person	element.

newperson	=	domtree.createElement("person")

newperson.setAttribute("id",	"6")

So	we	use	the	domtree	object	and	the	respective	method,	to	create	a	new	XML
element.	Then	we	set	the	id	attribute	to	the	next	number.

After	 that,	 we	 create	 all	 the	 elements	 that	 we	 need	 for	 the	 person	 and	 assign
values	to	them.

name	=	domtree.createElement("name")

name.appendChild(domtree.createTextNode("Paul	Smith"))

age	=	domtree.createElement("age")

age.appendChild(domtree.createTextNode("45"))

weight	=	domtree.createElement("weight")

weight.appendChild(domtree.createTextNode("78"))

height	=	domtree.createElement("height")

height.appendChild(domtree.createTextNode("178"))

First,	we	create	a	new	element	for	each	attribute	of	the	person.	Then	we	use	the
method	appendChild	to	put	something	in	between	the	tags	of	our	element.	In	this
case	we	create	a	new	TextNode,	which	is	basically	just	text.

Last	 but	 not	 least,	 we	 again	 need	 to	 use	 the	method	 appendChild	 in	 order	 to
define	 the	 hierarchical	 structure.	 The	 attribute	 elements	 are	 the	 childs	 of	 the
person	element	and	this	itself	is	the	child	of	the	group	element.

newperson.appendChild(name)

newperson.appendChild(age)

newperson.appendChild(weight)

newperson.appendChild(height)

group.appendChild(newperson)

domtree.writexml(open("group.xml",	"w"))

When	we	write	these	changes	into	our	file,	we	can	see	the	following	results:

<person	id="6">

				<name>Paul	Smith</name>

				<age>45</age>

				<weight>78</weight>

				<height>178</height>

</person>

	

8	–	LOGGING
No	matter	what	we	do	 in	computer	 science,	 sooner	or	 later	we	will	need	 logs.
Every	 system	 that	 has	 a	 certain	 size	 produces	 errors	 or	 conditions	 in	 which
specific	 people	 should	 be	 warned	 or	 informed.	 Nowadays,	 everything	 gets
logged	 or	 recorded.	Bank	 transactions,	 flights,	 networking	 activities,	 operating
systems	 and	 much	 more.	 Log	 files	 help	 us	 to	 find	 problems	 and	 to	 get
information	 about	 the	 state	 of	 our	 systems.	 They	 are	 an	 essential	 tool	 for
avoiding	and	understanding	errors.

Up	 until	 now,	we	 have	 always	 printed	 some	message	 onto	 the	 console	 screen
when	we	 encountered	 an	 error.	But	when	 our	 applications	 grow,	 this	 becomes
confusing	 and	we	 need	 to	 categorize	 and	 outsource	 our	 logs.	 In	 addition,	 not
every	message	is	equally	relevant.	Some	messages	are	urgent	because	a	critical
component	fails	and	some	just	provide	nice	information.

SECURITY	LEVELS
In	 Python,	 we	 have	 got	 five	 security	 levels.	 A	 higher	 level	 means	 higher
importance	or	urgency.

1.				DEBUG
2.				INFO
3.				WARNING
4.				ERROR
5.				CRITICAL

Notice	that	when	we	choose	a	certain	security	level,	we	also	get	all	the	messages
of	 the	 levels	 above.	 So	 for	 example,	 INFO	 also	 prints	 the	 messages	 of
WARNING,	ERROR	and	CRITICAL	but	not	of	DEBUG.

DEBUG	 is	mainly	used	 for	 tests,	 experiments	 or	 in	 order	 to	 check	 something.
We	typically	use	this	mode,	when	we	are	looking	for	errors	(troubleshooting).

We	use	INFO	when	we	want	to	log	all	the	important	events	that	inform	us	about
what	 is	 happening.	 This	 might	 be	 something	 like	 “User	 A	 logged	 in
successfully!”	or	“Now	we	have	17	users	online!”

WARNING	messages	are	messages	that	inform	us	about	irregularities	and	things
that	might	go	wrong	and	become	a	problem.	For	example	messages	like	“Only
247	MB	of	RAM	left!”

An	ERROR	message	gets	logged	or	printed	when	something	didn’t	go	according
to	the	plan.	When	we	get	an	exception	this	is	a	classical	error.

CRITICAL	 messages	 tell	 us	 that	 critical	 for	 the	 whole	 system	 or	 application
happened.	This	might	be	the	case	when	a	crucial	component	fails	and	we	have	to
immediately	stop	all	operations.

CREATING	LOGGERS
In	order	to	create	a	logger	in	Python,	we	need	to	import	the	logging	module.

import	logging

Now	we	can	just	log	messages	by	directly	using	the	respective	functions	of	the
logging	module.

logging.info("First	informational	message!")

logging.critical("This	is	serious!")

This	works	because	we	are	using	 the	root	 logger.	We	haven’t	created	our	own
loggers	yet.	The	output	looks	like	this:

CRITICAL:root:This	is	serious!
INFO:root:Logger	successfully	created!

So	let’s	create	our	own	logger	now.	This	is	done	by	either	using	the	constructor
of	the	Logger	class	or	by	using	the	method	getLogger.

logger	=	logging.getLogger()

logger	=	logging.Logger("MYLOGGER")

Notice	that	we	need	to	specify	a	name	for	our	logger,	if	we	use	the	constructor.
Now	we	can	log	our	messages.

logger.info("Logger	successfully	created!")

logger.log(logging.INFO,	"Successful!")

logger.critical("Critical	Message!")

logger.log(logging.CRITICAL,	"Critical!")

Here	we	 also	 have	 two	 different	 options	 for	 logging	messages.	We	 can	 either

directly	 call	 the	 function	 of	 the	 respective	 security	 level	 or	 we	 can	 use	 the
method	log	and	specify	the	security	level	in	the	parameters.

But	when	you	now	execute	the	script,	you	will	notice	that	it	will	only	print	the
critical	messages.	This	has	two	reasons.	First	of	all,	we	need	to	adjust	the	level
of	the	logger	and	second	of	all,	we	need	to	remove	all	of	the	handlers	from	the
default	root	logger.

for	handler	in	logging.root.handlers:

				logging.root.removeHandler(handler)

logging.basicConfig(level=logging.INFO)

Here	we	 just	 use	 a	 for	 loop	 in	 order	 to	 remove	 all	 the	 handlers	 from	 the	 root
logger.	Then	we	use	the	basicConfig	method,	in	order	to	set	our	logging	level	to
INFO.	When	we	now	run	our	code	again,	the	output	is	the	following:

INFO:MYLOGGER:Logger	successfully	created!
INFO:MYLOGGER:Successful!
CRITICAL:MYLOGGER:Critical	Message!
CRITICAL:MYLOGGER:Critical!

LOGGING	INTO	FILES
What	we	are	mainly	 interested	 in	 is	 logging	 into	 files.	For	 this,	we	need	a	 so-
called	FileHandler.	It	is	an	object	that	we	add	to	our	logger,	in	order	to	make	it
log	everything	into	a	specific	file.

import	logging

logger	=	logging.getLogger("MYLOGGER")

logger.setLevel(logging.INFO)

handler	=	logging.FileHandler("logfile.log")

handler.setLevel(logging.INFO)

logger.addHandler(handler)

logger.info("Log	this	into	the	file!")

logger.critical("This	is	critical!")

We	start	again	by	defining	a	logger.	Then	we	set	the	security	level	to	INFO	by
using	the	function	setLevel.	After	that,	we	create	a	FileHandler	that	logs	into	the
file	 logfile.log.	Here	we	also	need	 to	set	 the	security	 level.	Finally,	we	add	 the
handler	to	our	logger	using	the	addHandler	function	and	start	logging	messages.

FORMATTING	LOGS
One	thing	that	you	will	notice	is	that	we	don’t	have	any	format	in	our	logs.	We
don’t	know	which	logger	was	used	or	which	security	level	our	message	has.	For
this,	we	can	use	a	so-called	formatter.

import	logging

logger	=	logging.getLogger()

logger.setLevel(logging.INFO)

handler	=	logging.FileHandler("logfile.log")

handler.setLevel(logging.INFO)

formatter	=	logging.Formatter('%(asctime)s:	%(levelname)s	-

%(message)s')

handler.setFormatter(formatter)

logger.addHandler(handler)

logger.info("This	will	get	into	the	file!")

We	create	a	formatter	by	using	the	constructor	of	the	respective	class.	Then	we
use	 the	keywords	 for	 the	 timestamp,	 the	 security	 level	 name	and	 the	message.
Last	but	not	least,	we	assign	the	formatter	to	our	handler	and	start	logging	again.
When	we	now	look	into	our	file,	we	will	find	a	more	detailed	message.

2019-06-25	15:41:43,523:	INFO	-	This	will	get	into	the	file!

These	 log	 messages	 can	 be	 very	 helpful,	 if	 they	 are	 used	 wisely.	 Place	 them
wherever	something	important	or	alarming	happens	in	your	code.

	

9	–	REGULAR	EXPRESSIONS
In	programming,	you	will	oftentimes	have	to	deal	with	long	texts	from	which	we
want	 to	 extract	 specific	 information.	 Also,	 when	 we	 want	 to	 process	 certain
inputs,	we	need	to	check	for	a	specific	pattern.	For	example,	think	about	emails.
They	need	to	have	some	text,	followed	by	an	@	character,	then	again	some	text
and	finally	a	dot	and	again	some	little	text.

In	order	to	make	the	validations	easier,	more	efficient	and	more	compact,	we	use
so-called	regular	expressions.

The	topic	of	regular	expressions	is	very	huge	and	you	could	write	a	whole	book
only	 about	 it.	This	 is	why	we	are	not	 going	 to	 focus	 too	much	on	 the	various
placeholders	 and	 patterns	 of	 the	 expressions	 themselves	 but	 on	 the
implementation	of	RegEx	in	Python.

So	 in	 order	 to	 confuse	 you	 right	 in	 the	 beginning,	 let’s	 look	 at	 a	 regular
expression	that	checks	if	the	format	of	an	email-address	is	valid.

^[a-zA-Z0-9.!#$%&'*+/=?^_`{|}~-]+@[a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-
Z0-9])?(?:\.[a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?)*$

Now	you	can	 see	why	 this	 is	 a	huge	 field	 to	 learn.	 In	 this	 chapter,	we	are	not
going	 to	 build	 regular	 expressions	 like	 this.	 We	 are	 going	 to	 focus	 on	 quite
simple	examples	and	how	to	properly	implement	them	in	Python.

IDENTIFIER
Let’s	 get	 started	with	 some	 basic	 knowledge	 first.	 So-called	 identifiers	 define
what	 kind	 of	 character	 should	 be	 at	 a	 certain	 place.	 Here	 you	 have	 some
examples:

|REGEX	IDENTIFIERS
IDENTIFIER DESCRIPTION

\d Some	digit

\D Everything	BUT	a	digit

\s White	space

\S Everything	BUT	a	white	space

\w Some	letter

\W Everything	BUT	a	letter

. Every	character	except	for	new
lines

\b White	spaces	around	a	word

\. A	dot

MODIFIER
The	modifiers	extend	the	regular	expressions	and	the	identifiers.	They	might	be
seen	as	some	kind	of	operator	for	regular	expressions.

REGEX	MODIFIERS
MODIFIER DESCRIPTION

{x,y} A	number	that	has	a	length
between	x	and	y

+ At	least	one

? None	or	one

* Everything

$ At	the	end	of	a	string

^ At	the	beginning	of	a	string

| Either	Or
Example:	x	|	y	=	either	x	or	y

[] Value	range

{x} x	times

{x,y} x	to	y	times
	

ESCAPE	CHARACTERS
Last	but	not	least,	we	have	the	classic	escape	characters.

REGEX	ESCAPE	CHARATCERS
CHARACTER DESCRIPTION

\n New	Line

\t Tab

\s White	Space
	

APPLYING	REGULAR	EXPRESSIONS

FINDING	STRINGS
In	 order	 to	 apply	 these	 regular	 expressions	 in	 Python,	 we	 need	 to	 import	 the
module	re.

import	re

Now	we	can	start	by	trying	to	find	some	patterns	in	our	strings.

text	=	'''

Mike	is	20	years	old	and	George	is	29!

My	grandma	is	even	104	years	old!

'''

ages	=	re.findall(r'\d{1,3}',	text)

print(ages)

In	this	example,	we	have	a	text	with	three	ages	in	it.	What	we	want	to	do	is	to
filter	these	out	and	print	them	separately.

As	 you	 can	 see,	 we	 use	 the	 function	 findall	 in	 order	 to	 apply	 the	 regular
expression	onto	our	string.	In	this	case,	we	are	looking	for	numbers	that	are	one
to	three	digits	long.	Notice	that	we	are	using	an	r	character	before	we	write	our
expression.	This	indicates	that	the	given	string	is	a	regular	expression.

At	the	end,	we	print	our	result	and	get	the	following	output:

['20',	'29',	'104']

MATCHING	STRINGS
What	we	can	also	do	is	to	check	if	a	string	matches	a	certain	regular	expression.

For	example,	we	can	apply	our	regular	expression	for	mails	here.

import	re

text	=	"test@mail.com"

result	=	re.fullmatch(r"^[a-zA-Z0-9.!#$%&'*+/=?^_`{|}~-

]+@[a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?(?:\.[a-zA-

Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?)*$",	text)

if	result	!=	None:

				print("VALID!")

else:

				print("INVALID!")

We	are	not	going	to	talk	about	the	regular	expression	itself	here.	It	is	very	long
and	complicated.	But	what	we	see	here	is	a	new	function	called	fullmatch.	This
function	 returns	 the	checked	string	 if	 it	matches	 the	 regular	expression.	 In	 this
case,	this	happens	when	the	string	has	a	valid	mail	format.

If	 the	 expression	 doesn’t	 match	 the	 string,	 the	 function	 returns	None.	 In	 our
example	above,	we	get	the	message	“VALID!”	since	the	expression	is	met.	If	we
enter	something	like	“Hello	World!”,	we	will	get	the	other	message.

MANIPULATING	STRINGS
Finally,	 we	 are	 going	 to	 take	 a	 look	 at	 manipulating	 strings	 with	 regular
expressions.	By	using	 the	 function	sub	we	 can	 replace	 all	 the	parts	 of	 a	 string
that	match	the	expression	by	something	else.

import	re

text	=	"""

Mike	is	20	years	old	and	George	is	29!

My	grandma	is	even	104	years	old!

"""

text	=	re.sub(r'\d{1,3}',	"100",	text)

print(text)

In	this	example,	we	replace	all	ages	by	100.	This	is	what	gets	printed:

Mike	is	100	years	old	and	George	is	100!
My	grandma	is	even	100	years	old!

These	are	the	basic	functions	that	we	can	operate	with	in	Python	when	dealing
with	 regular	 expressions.	 If	 you	want	 to	 learn	more	 about	 regular	 expressions
just	google	and	you	will	find	a	lot	of	guides.	Play	around	with	the	identifiers	and
modifiers	a	little	bit	until	you	feel	like	you	understand	how	they	work.

WHAT’S	NEXT?
Now	you	have	finished	reading	 the	second	volume	of	 this	Python	Bible	series.
This	one	was	way	more	complex	than	the	first	one	and	it	had	a	lot	more	content.
Make	sure	that	you	practice	what	you’ve	learned.	If	necessary,	reread	this	book	a
couple	of	 times	and	play	around	with	 the	code	samples.	That	will	dramatically
increase	the	value	that	you	can	get	out	of	this	book.

However,	 you	 are	 now	 definitely	 able	 to	 develop	 some	 advanced	 and
professional	Python	applications.	You	can	develop	a	chat,	a	port	scanner,	a	string
formatter	and	many	more	ideas.	But	this	is	still	just	the	beginning.	Even	though
you	can	now	consider	yourself	 to	be	an	advanced	Python	programmer,	 there	 is
much	more	to	learn.

With	 the	 next	 volumes	 we	 are	 going	 to	 dive	 deep	 into	 the	 fields	 of	 machine
learning,	 data	 science	 and	 finance.	 By	 having	 read	 the	 first	 two	 volumes	 you
already	have	an	excellent	basis	and	I	encourage	you	to	continue	your	journey.	I
hope	you	could	get	some	value	out	of	this	book	and	that	it	helped	you	to	become
a	better	programmer.	So	stay	tuned	and	prepare	for	the	next	volume!

Last	but	not	 least,	a	 little	reminder.	This	book	was	written	 for	you,	so	 that	you
can	get	as	much	value	as	possible	and	learn	to	code	effectively.	If	you	find	this
book	 valuable	 or	 you	 think	 you	 learned	 something	 new,	 please	 write	 a	 quick
review	on	Amazon.	It	is	completely	free	and	takes	about	one	minute.	But	it	helps
me	produce	more	high	quality	books,	which	you	can	benefit	from.

Thank	you!

	

	
	
	
	
	

THE
PYTHON	BIBLE

	
VOLUME	THREE

DATA	SCIENCE

BY

FLORIAN	DEDOV

	

Copyright	©	2019

	

	

TABLE	OF	CONTENT
Introduction
This	Book

1	–	What	is	Data	Science?
Why	Python?

2	–	Installing	Modules
NumPy
SciPy
Matplotlib
Pandas
Installing	Modules	With	PIP

3	–	NumPy	Arrays
Creating	Arrays
Multi-Dimensional	Arrays

Filling	Arrays
Full	Function
Zeros	and	Ones
Empty	and	Random
Ranges
Not	A	Number	(NaN)

Attributes	of	Arrays
Mathematical	Operations
Arithmetic	Operations
Mathematical	Functions

Aggregate	Functions
Manipulating	Arrays

Shape	Manipulation	Functions
Joining	Functions
Splitting	Functions
Adding	and	Removing

Loading	and	Saving	Arrays
NumPy	Format
CSV	Format

4	–	Matplotlib	Diagrams
Plotting	Mathematical	Functions
Visualizing	Values
Multiple	Graphs
Subplots
Multiple	Plotting	Windows
Plotting	Styles
Labeling	Diagrams
Setting	Titles
Labeling	Axes
Legends

Saving	Diagrams
5	–	Matplotlib	Plot	Types
Histograms
Bar	Chart
Pie	Chart
Scatter	Plots
Boxplot
3D	Plots
Surface	Plots

6	–	Pandas	Data	Analysis
Pandas	Series

Accessing	Values
Converting	Dictionaries

Pandas	Data	Frame
Data	Frame	Functions
Basic	Functions	and	Attributes
Statistical	Functions
Applying	Numpy	Functions
Lambda	Expressions

Iterating
Sorting
Sort	by	Index
Inplace	Parameter
Sort	by	Columns

Joining	and	Merging
Joins

Querying	Data
Read	Data	From	Files
Plotting	Data

What’s	Next?
	

INTRODUCTION
In	our	modern	time,	the	amount	of	data	grows	exponentially.	Over	time,	we	learn
to	extract	important	information	out	of	this	data	by	analyzing	it.	The	field	which
is	primarily	focusing	on	exactly	that	is	called	data	science.	We	use	data	science
to	 analyze	 share	 prices,	 the	 weather,	 demographics	 or	 to	 create	 powerful
artificial	 intelligences.	 Every	 modern	 and	 big	 system	 has	 to	 deal	 with
tremendous	amounts	of	data	that	need	to	be	managed	and	analyzed	intelligently.

Therefore,	it	is	more	than	reasonable	to	educate	yourself	in	this	area	as	much	as
possible.	Otherwise	you	might	get	overrun	by	this	fast-growing	trend	instead	of
being	part	of	it.

THIS	BOOK
If	you	have	 read	 the	 first	 two	volumes	of	 this	 series,	you	are	already	a	decent
Python	 programmer.	 You	 are	 able	 to	 develop	 complex	 scripts	 using	 advanced
techniques	like	multithreading	or	network	programming.	A	lot	of	these	skills	will
be	needed	for	this	volume,	since	it’s	going	to	be	quite	complex	and	detailed.

Now	in	this	volume,	we	are	going	to	start	by	talking	about	the	major	libraries	or
modules	for	data	science	in	Python.	We	are	taking	a	look	at	advanced	arrays	and
lists,	 professional	 data	 visualization,	 statistical	 analysis	 and	 advanced	 data
science	with	data	 frames.	At	 the	end,	you	will	be	able	 to	prepare,	 analyze	and
visualize	your	own	big	data	sets.	This	will	lay	the	foundations	for	future	volumes
about	machine	learning	and	finance.

This	book	is	again	full	of	new	and	more	complex	information.	There	is	a	lot	to
learn	 here	 so	 stay	 tuned	 and	 code	 along	while	 reading.	 This	 will	 help	 you	 to
understand	the	material	better	and	to	practice	implementing	it.	I	wish	you	a	lot	of
fun	and	success	with	your	journey	and	this	book!

Just	one	little	thing	before	we	start.	This	book	was	written	for	you,	so	that	you
can	get	as	much	value	as	possible	and	learn	to	code	effectively.	If	you	find	this
book	 valuable	 or	 you	 think	 you	 have	 learned	 something	 new,	 please	 write	 a
quick	review	on	Amazon.	It	is	completely	free	and	takes	about	one	minute.	But	it
helps	me	produce	more	high	quality	books,	which	you	can	benefit	from.

Thank	you!

	

	

	

1	–	WHAT	IS	DATA	SCIENCE?
Now	 before	 we	 do	 anything	 at	 all,	 we	 need	 to	 first	 define	 what	 we	 are	 even
talking	about	when	using	the	term	data	science.	What	is	data	science?

When	we	are	dealing	with	data	science	or	data	analysis,	we	are	always	trying	to
generate	 or	 extract	 knowledge	 from	 our	 data.	 For	 this,	 we	 use	 models,
techniques	 and	 theories	 from	 the	 areas	 of	 mathematics,	 statistics,	 computer
science,	machine	learning	and	many	more.

The	figure	above	illustrates	pretty	accurately	what	data	science	actually	is.	When
you	 combine	 computer	 science	 and	 business	 knowledge,	 you	 get	 software
development	and	create	business	applications.	When	you	combine	your	business
knowledge	with	mathematics	 and	 statistics,	 you	 can	 also	 analyze	 the	 data	 but
you	have	to	do	it	manually,	since	you	are	missing	the	computational	component.
When	 you	 only	 combine	 computer	 science	 and	 statistics,	 you	 get	 machine
learning,	which	is	very	powerful,	but	without	the	necessary	business	knowledge,
you	won’t	get	any	significant	 information	or	conclusions.	We	need	 to	combine
all	of	these	three	areas,	in	order	to	end	up	with	data	science.

However,	in	this	volume	we	are	not	going	to	focus	too	much	on	the	mathematics
and	 the	 statistics	or	 the	machine	 learning	algorithms.	This	will	 be	 the	 topic	of
future	volumes.	In	this	book	we	are	focusing	on	the	structuring,	visualization	and
analyzing	of	the	data.

WHY	PYTHON?
Now,	 you	 should	 already	 know	 why	 Python	 is	 a	 good	 choice	 and	 a	 good
programming	 language	 to	 learn.	 But	 why	 should	 we	 use	 it	 for	 data	 science?
Aren’t	there	better	alternatives?

And	although	I	hate	polarizing	answers	and	generalization,	I	have	to	bluntly	say
NO!	You	have	some	alternatives	like	the	programming	language	R	or	MATLAB
but	they	are	not	as	big,	as	powerful	and	as	simple	as	Python.

One	of	the	main	reasons	for	Python’s	popularity	in	this	area	is	the	large	amount
of	libraries	and	modules	for	data	science	but	also	machine	learning	and	scientific
computing.	 We	 already	 have	 professional	 open-source	 libraries	 for	 managing
lists,	 linear	 algebra,	 data	 visualization,	machine	 learning,	 neural	 networks	 and
much	more.

Also,	alternatives	like	R	or	MATLAB	are	very	specialized	in	one	single	area	like
statistics	or	mathematical	programming.	Python	on	the	other	hand	is	a	general-
purpose	language.	We	use	it	to	code	network	scripts,	video	games,	professional
web	 applications,	 artificial	 intelligences	 and	much	more.	 Self-driving	 cars	 use
Python,	 professional	 modelling	 software	 uses	 Python	 and	 also	 Pinterest	 was
developed	with	Django,	which	is	a	Python	framework.

For	 these	 reasons,	 Python	 has	 become	 one	 of	 the	most	 popular	 programming
languages	out	there,	especially	for	machine	learning	and	data	science.

2	–	INSTALLING	MODULES
So	the	last	thing	we	need	to	talk	about	before	we	get	into	the	coding	itself	is	the
modules	or	libraries	that	we	are	going	to	use.
	
The	 following	 figure	 illustrates	 the	 structure	 of	 the	modules	 that	 are	 used	 for
data	science	and	scientific	computing.

As	 you	 can	 see,	we	 have	 four	major	modules	 here	 and	 they	 all	 build	 on	 core
Python.	 Basically,	 this	 is	 the	 hierarchy	 of	 these	 modules.	 NumPy	 builds	 on
Python,	Matplotlib	uses	or	builds	on	NumPy	and	Pandas	builds	on	 top	of	 that.
Of	course	there	are	other	libraries	that	then	build	on	top	of	Pandas	as	well.	But
for	now,	these	are	the	modules	that	interest	us.

Now	 in	 order	 to	 clear	 up	 the	 confusion,	 let’s	 look	 at	 the	 purpose	 and
functionalities	of	the	individual	libraries.

NUMPY
The	NumPy	 module	 allows	 us	 to	 efficiently	 work	 with	 vectors,	 matrices	 and
multi-dimensional	arrays.	It	is	crucial	for	linear	algebra	and	numerical	analysis.
Also,	it	offers	some	advanced	things	like	Fourier	transforms	and	random	number
generation.	 It	 basically	 replaces	 the	 primitive	 and	 inefficient	 Python	 list	 with
very	powerful	NumPy	arrays.

Another	thing	worth	mentioning	is	that	NumPy	was	built	in	the	C	programming
language.	This	means	that	it	is	a	lot	faster	and	more	efficient	than	other	Python
libraries.

SCIPY
SciPy	 is	 a	 module	 which	 we	 are	 actually	 not	 going	 to	 use	 in	 this	 book.
Nevertheless,	 it	 is	 worth	mentioning	 because	 it	 is	 a	 very	 powerful	 library	 for
scientific	computing	(maybe	there	will	be	a	future	volume	about	this).

However,	 SciPy	 can	 be	 seen	 as	 the	 application	 of	 NumPy	 to	 real	 problems.
NumPy	 is	basically	 just	managing	 the	arrays	and	 lists.	 It	 is	 responsible	 for	 the
operations	 like	 indexing,	 sorting,	 slicing,	 reshaping	 and	 so	 on.	 Now,	 SciPy
actually	 uses	 NumPy	 to	 offer	 more	 abstract	 classes	 and	 functions	 that	 solve
scientific	 problems.	 It	 gets	 deeper	 into	 the	 mathematics	 and	 adds	 substantial
capabilities	to	NumPy.

MATPLOTLIB
On	top	of	that,	we	have	Matplotlib.	This	library	is	responsible	for	plotting	graphs
and	visualizing	our	data.	It	offers	numerous	types	of	plotting,	styles	and	graphs.

Visualization	 is	a	key	step	 in	data	science.	When	we	see	our	data	 in	 form	of	a
graph,	 we	 can	 extract	 information	 and	 spot	 relations	 much	 easier.	 With
Matplotlib	we	can	do	this	professionally	and	very	easy.

PANDAS
Last	but	not	least,	we	have	Pandas.	This	is	 the	most	high-level	of	our	libraries
and	it	builds	on	 top	of	 them.	It	offers	us	a	powerful	data	structure	named	data
frame.	You	can	imagine	it	 to	be	a	bit	 like	a	mix	of	an	Excel	 table	and	an	SQL
database	table.

This	library	allows	us	to	efficiently	work	with	our	huge	amounts	of	interrelated
data.	We	can	merge,	reshape,	filter	and	query	our	data.	We	can	iterate	over	it	and
we	 can	 read	 and	 write	 into	 files	 like	 CSV,	 XLSX	 and	 more.	 Also,	 it	 is	 very
powerful	when	we	work	with	databases,	due	to	the	similar	structure	of	the	tables.

Pandas	 is	 highly	 compatible	 with	 NumPy	 and	 Matplotlib,	 since	 it	 builds	 on
them.	We	can	easily	convert	data	from	one	format	to	the	other.

INSTALLING	MODULES	WITH	PIP
Since	all	these	modules	don’t	belong	to	core	Python,	we	will	need	to	install	them
externally.	For	this,	we	are	going	to	use	pip.	This	is	a	recursive	name	and	stands
for	pip	installs	packages.

In	order	to	use	pip,	we	just	need	to	open	up	our	terminal	or	command	line.	On
windows	this	is	CMD	and	on	Mac	and	Linux	it	is	the	terminal.	We	then	just	use
the	following	syntax,	in	order	to	install	the	individual	packages.

pip	install	<package-name>

So	what	we	need	to	do	is	to	execute	the	following	commands:

pip	install	numpy

pip	install	scipy	(optional)

pip	install	matplotlib

pip	install	pandas

3	–	NUMPY	ARRAYS
We	can’t	do	a	lot	of	data	science	with	NumPy	alone.	But	it	provides	the	basis	for
all	 the	 high-level	 libraries	 or	 modules	 for	 data	 science.	 It	 is	 essential	 for	 the
efficient	management	of	arrays	and	linear	algebra.

In	order	to	use	NumPy,	we	of	course	have	to	import	the	respective	module	first.

import	numpy	as	np

As	 you	 can	 see,	 we	 are	 also	 defining	 an	 alias	 here,	 so	 that	 we	 can	 address
NumPy	by	just	writing	np.

CREATING	ARRAYS
To	create	a	NumPy	array,	we	 just	use	 the	respective	function	array	 and	pass	 a
list	to	it.

a	=	np.array([10,	20,	30])

b	=	np.array([1,	77,	2,	3])

Now	we	can	access	the	values	in	the	same	way	as	we	would	do	it	with	a	list.

print(a[0])

print(b[2])

MULTI-DIMENSIONAL	ARRAYS
The	arrays	we	created	are	one-dimensional	arrays.	With	NumPy,	we	can	create
large	multi-dimensional	arrays	that	have	the	same	structure	as	a	matrix.

a	=	np.array([

				[10,	20,	30],

				[40,	50,	60]

])

print(a)

Here,	we	pass	 two	 lists	within	a	 list	as	a	parameter.	This	creates	a	2x3	matrix.
When	we	print	the	array,	we	get	the	following	result:

[[10	20	30]
	[40	50	60]]

Since	 we	 now	 have	 two	 dimensions,	 we	 also	 need	 to	 address	 two	 indices,	 in
order	to	access	a	specific	element.

print(a[1][2])

In	this	case,	we	are	addressing	the	second	row	(index	one)	and	the	third	element
or	column	(index	two).	Therefore,	our	result	is	60.

We	 can	 extend	 this	 principle	 as	much	 as	we	want.	 For	 example,	 let’s	 create	 a
much	bigger	array.

a	=	np.array([

				[

								[10,20,30,40],	[8,8,2,1],	[1,1,1,2]

],

				[

								[9,	9,	2,	39],	[1,2,3,3],	[0,0,3,2]

],

				[

								[12,33,22,1],	[22,1,22,2],	[0,2,3,1]

]

],	dtype=float)

Here	we	have	a	3x3x4	matrix	and	slowly	but	 surely	 it	becomes	a	bit	 irritating
and	we	can’t	 really	grasp	 the	 structure	of	 the	array.	This	 is	especially	 the	case
when	 we	 get	 into	 four	 or	 more	 dimensions,	 since	 we	 only	 perceive	 three
dimensions	in	everyday	life.

You	 can	 imagine	 this	 three-dimensional	 array	 as	 a	 cube.	We	 have	 three	 rows,
four	 columns	 and	 three	 pages	 or	 layers.	 Such	 visualizations	 fail	 in	 higher
dimensions.

Another	thing	that	is	worth	mentioning	is	the	parameter	dtype.	It	stands	for	data

type	and	allows	us	 to	specify	which	data	 type	our	values	have.	In	 this	case	we
specified	float	and	therefore	our	values	will	be	stored	as	floating	point	numbers
with	the	respective	notation.

FILLING	ARRAYS
Instead	of	manually	filling	our	arrays	with	values,	we	can	also	use	pre-defined
functions	 in	 certain	 cases.	 The	 only	 thing	 we	 need	 to	 specify	 is	 the	 desired
function	and	the	shape	of	the	array.

FULL	FUNCTION

By	using	the	 full	 function	for	example,	we	fill	an	array	of	a	certain	shape	with
the	 same	 number.	 In	 this	 case	we	 create	 a	 3x5x4	matrix,	which	 is	 filled	with
sevens.

a	=	np.full((3,5,4),	7)

print(a)

When	we	print	it,	we	get	the	following	output:

[[[7	7	7	7]
		[7	7	7	7]
		[7	7	7	7]]
	
	[[7	7	7	7]
		[7	7	7	7]
		[7	7	7	7]]]

ZEROS	AND	ONES
For	 the	cases	 that	we	want	arrays	 full	of	zeros	or	ones,	we	even	have	specific
functions.

a	=	np.zeros((3,3))

b	=	np.ones((2,3,4,2))

Here	we	 create	 a	 3x3	 array	 full	 of	 zeros	 and	 a	 four-dimensional	 array	 full	 of
ones.

EMPTY	AND	RANDOM

Other	options	would	be	to	create	an	empty	array	or	one	that	is	filled	with	random
numbers.	For	this,	we	use	the	respective	functions	once	again.

a	=	np.empty((4,4))

b	=	np.random.random((2,3))

The	 function	empty	 creates	 an	 array	without	 initializing	 the	 values	 at	 all.	This
makes	it	a	little	bit	faster	but	also	more	dangerous	to	use,	since	the	user	needs	to
manually	initialize	all	the	values.

When	using	the	random	function,	make	sure	that	you	are	referring	to	the	module
np.random.	You	need	to	write	it	two	times	because	otherwise	you	are	calling	the
library.

RANGES
Instead	of	just	filling	arrays	with	the	same	values,	we	can	fill	create	sequences	of
values	by	specifying	the	boundaries.	For	this,	we	can	use	two	different	functions,
namely	arange	and	linspace.

a	=	np.arange(10,	50,	5)

The	function	arange	creates	a	 list	with	values	 that	 range	from	the	minimum	to
the	maximum.	The	step-size	has	to	be	specified	in	the	parameters.

[10	15	20	25	30	35	40	45]

In	 this	example,	we	create	have	count	 from	10	 to	45	by	always	adding	5.	The
result	can	be	seen	above.

By	using	 linspace	we	 also	 create	 a	 list	 from	a	minimum	value	 to	 a	maximum
value.	But	 instead	of	specifying	 the	step-size,	we	specify	 the	amount	of	values
that	we	want	 to	 have	 in	 our	 list.	 They	will	 all	 be	 spread	 evenly	 and	 have	 the
same	distance	to	their	neighbors.

b	=	np.linspace(0,	100,	11)

Here,	we	want	to	create	a	list	that	ranges	from	0	to	100	and	contains	11	elements.
This	 fits	 smoothly	with	 a	 difference	 of	 10	 between	 all	 numbers.	 So	 the	 result

looks	like	this:

[0.		10.		20.		30.		40.		50.		60.		70.		80.		90.	100.]

Of	 course,	 if	 we	 choose	 different	 parameters,	 the	 numbers	 don’t	 be	 that
“beautiful”.

NOT	A	NUMBER	(NAN)
There	is	a	special	value	in	NumPy	that	represents	values	that	are	not	numbers.	It
is	 called	 NaN	 and	 stands	 for	 Not	 a	 Number.	 We	 basically	 just	 use	 it	 as	 a
placeholder	 for	 empty	 spaces.	 It	 can	 be	 seen	 as	 a	 value	 that	 indicates	 that
something	is	missing	at	that	place.

When	 importing	big	data	packets	 into	our	application,	 there	will	sometimes	be
missing	data.	 Instead	of	 just	setting	 these	values	 to	zero	or	something	else,	we
can	set	them	to	NaN	and	then	filter	these	data	sets	out.

ATTRIBUTES	OF	ARRAYS
NumPy	 arrays	 have	 certain	 attributes	 that	 we	 can	 access	 and	 that	 provide
information	about	the	structure	of	it.

NUMPY	ARRAY	ATTRIBUTES
ATTRIBUTE DESCRIPTION

a.shape Returns	the	shape	of	the	array
e.g.	(3,3)	or	(3,4,7)

a.ndim Returns	how	many	dimensions
our	array	has

a.size Returns	the	amount	of	elements
an	array	has

a.dtype Returns	the	data	type	of	the
values	in	the	array

MATHEMATICAL	OPERATIONS
Now	that	we	know	how	to	create	an	array	and	what	attributes	it	has,	let’s	take	a
look	 at	 how	 to	 work	 with	 arrays.	 For	 this,	 we	 will	 start	 out	 with	 basic
mathematical	operations.

ARITHMETIC	OPERATIONS

a	=	np.array([

				[1,4,2],

				[8,8,2]

])

print(a	+	2)

print(a	-	2)

print(a	*	2)

print(a	/	2)

When	 we	 perform	 basic	 arithmetic	 operations	 like	 addition,	 subtraction,
multiplication	and	division	 to	an	array	and	a	scalar,	we	apply	 the	operation	on
every	single	element	in	the	array.	Let’s	take	a	look	at	the	results:

[[3		6		4]
	[10	10		4]]

[[-1		2		0]
	[6		6		0]]

[[2		8		4]
	[16	16		4]]

[[0.5	2.		1.]
	[4.		4.		1.]]

As	you	can	see,	when	we	multiply	 the	array	by	 two,	we	multiply	every	 single
value	in	it	by	two.	This	is	also	the	case	for	addition,	subtraction	and	division.	But

what	happens	when	we	apply	these	operations	on	two	arrays?

a	=	np.array([

				[1,4,2],

				[8,8,2]

])

b	=	np.array([

				[1,2,3]

])

c	=	np.array([

				[1],

				[2]

])

d	=	np.array([

				[1,2,3],

				[3,2,1]

])

In	 order	 to	 apply	 these	 operations	 on	 two	 arrays,	we	 need	 to	 take	 care	 of	 the
shapes.	They	don’t	have	to	be	the	same,	but	there	has	to	be	a	reasonable	way	of
performing	the	operations.	We	then	again	apply	the	operations	on	each	element
of	the	array.

For	example,	look	at	a	and	b.	They	have	different	shapes	but	when	we	add	these
two,	they	share	at	least	the	amount	of	columns.

print(a+b)

[[2		6		5]
	[9	10		5]]

Since	 they	 match	 the	 columns,	 we	 can	 just	 say	 that	 we	 add	 the	 individual
columns,	even	if	the	amount	of	rows	differs.

The	same	can	also	be	done	with	a	and	c	where	the	rows	match	and	the	columns
differ.

print(a+c)

[[2		5		3]
	[10	10		4]]

And	of	course	it	also	works,	when	the	shapes	match	exactly.	The	only	problem	is
when	the	shapes	differ	too	much	and	there	is	no	reasonable	way	of	performing
the	operations.	In	these	cases,	we	get	ValueErrors.

MATHEMATICAL	FUNCTIONS
Another	 thing	 that	 the	NumPy	module	offers	us	 is	mathematical	 functions	 that
we	can	apply	to	each	value	in	an	array.

NUMPY	MATHEMATICAL	FUNCTIONS
FUNCTION DESCRIPTION

np.exp(a) Takes	e	to	the	power	of	each
value

np.sin(a) Returns	the	sine	of	each	value

np.cos(a) Returns	the	cosine	of	each	value

np.tan(a) Returns	the	tangent	of	each	value

np.log(a) Returns	the	logarithm	of	each
value

np.sqrt(a) Returns	the	square	root	of	each
value

AGGREGATE	FUNCTIONS
Now	 we	 are	 getting	 into	 the	 statistics.	 NumPy	 offers	 us	 some	 so-called
aggregate	functions	that	we	can	use	in	order	to	get	a	key	statistic	from	all	of	our
values.

NUMPY	AGGREGATE	FUNCTIONS
FUNCTION DESCRIPTION

a.sum() Returns	the	sum	of	all	values	in
the	array

a.min() Returns	the	lowest	value	of	the
array

a.max() Returns	the	highest	value	of	the
array

a.mean() Returns	the	arithmetic	mean	of
all	values	in	the	array

np.median(a) Returns	the	median	value	of	the
array

np.std(a) Returns	the	standard	deviation	of
the	values	in	the	array

MANIPULATING	ARRAYS
NumPy	offers	 us	 numerous	ways	 in	which	we	 can	manipulate	 the	 data	 of	 our
arrays.	Here,	we	are	going	to	take	a	quick	look	at	the	most	important	functions
and	categories	of	functions.

If	 you	 just	want	 to	 change	 a	 single	 value	 however,	 you	 can	 just	 use	 the	 basic
indexing	of	lists.

a	=	np.array([

				[4,	2,	9],

				[8,	3,	2]

])

a[1][2]	=	7

SHAPE	MANIPULATION	FUNCTIONS
One	 of	 the	 most	 important	 and	 helpful	 types	 of	 functions	 are	 the	 shape
manipulating	 functions.	 These	 allow	 us	 to	 restructure	 our	 arrays	 without
changing	their	values.

SHAPE	MANIPULATION	FUNCTIONS
FUNCTION DESCRIPTION

a.reshape(x,y)
Returns	an	array	with	the	same
values	structured	in	a	different

shape

a.flatten() Returns	a	flattened	one-
dimensional	copy	of	the	array

a.ravel()
Does	the	same	as	flatten	but
works	with	the	actual	array

instead	of	a	copy

a.transpose() Returns	an	array	with	the	same
values	but	swapped	dimensions
Returns	an	array	with	the	same

a.swapaxes() values	but	two	swapped	axes

a.flat Not	a	function	but	an	iterator	for
the	flattened	version	of	the	array

	

There	 is	one	more	element	 that	 is	 related	 to	 shape	but	 it’s	not	a	 function.	 It	 is
called	 flat	 and	 it	 is	 an	 iterator	 for	 the	 flattened	one-dimensional	version	of	 the
array.	Flat	is	not	callable	but	we	can	iterate	over	it	with	for	loops	or	index	it.

for	x	in	a.flat:

				print(x)

print(a.flat[5])

JOINING	FUNCTIONS
We	use	joining	functions	when	we	combine	multiple	arrays	into	one	new	array.

JOINING	FUNCTIONS
FUNCTION DESCRIPTION

np.concatenate(a,b) Joins	multiple	arrays	along
an	existing	axis

np.stack(a,b) Joins	multiple	arrays	along
a	new	axis

np.hstack(a,b) Stacks	the	arrays
horizontally	(column-wise)

np.vstack(a,b) Stacks	the	arrays	vertically
(row-wise)

In	the	following,	you	can	see	the	difference	between	concatenate	and	stack:

a	=	np.array([10,	20,	30])

b	=	np.array([20,	20,	10])

print(np.concatenate((a,b)))

print(np.stack((a,b)))

[10	20	30	20	20	10]
[[10	20	30]
	[20	20	10]]

What	concatenate	does	is,	it	joins	the	arrays	together	by	just	appending	one	onto
the	other.	Stack	on	 the	other	hand,	creates	an	additional	axis	 that	 separates	 the
two	initial	arrays.

SPLITTING	FUNCTIONS
We	can	not	only	join	and	combine	arrays	but	also	split	them	again.	This	is	done
by	using	splitting	functions	that	split	arrays	into	multiple	sub-arrays.

SPLITTING	FUNCTIONS
FUNCTION DESCRIPTION

np.split(a,	x) Splits	one	array	into	multiple
arrays

np.hsplit(a,	x)
Splits	one	array	into	multiple
arrays	horizontally	(column-

wise)

np.vsplit(a,	x) Splits	one	array	into	multiple
arrays	vertically	(row-wise)

When	splitting	a	list	with	the	split	 function,	we	need	to	specify	into	how	many
sections	we	want	to	split	our	array.

a	=	np.array([

				[10,	20,	30],

				[40,	50,	60],

				[70,	80,	90],

				[100,	110,	120]

])

print(np.split(a,	2))

print(np.split(a,	4))

This	array	can	be	split	into	either	two	or	four	equally	sized	arrays	on	the	default
axis.	The	two	possibilities	are	the	following:

1:	[[10,	20,	30],[40,	50,	60]]
2:	[[70,	80,	90],[100,	110,	120]]

OR

1:	[[10,	20,	30]]
2:	[[40,	50,	60]]
3:	[[70,	80,	90]]
4:	[[100,	110,	120]]

ADDING	AND	REMOVING
The	last	manipulating	functions	that	we	are	going	to	look	at	are	the	ones	which
allow	us	to	add	and	to	remove	items.

ADDING	AND	REMOVING	FUNCTIONS
FUNCTION DESCRIPTION

np.resize(a,
(x,y))

Returns	a	resized	version	of
the	array	and	fills	empty

spaces	by	repeating	copies	of
a

np.append(a,
[…])

Appends	values	at	the	end	of
the	array

np.insert(a,	x,
…)

Insert	a	value	at	the	index	x
of	the	array

np.delete(a,	x,	y) Delete	axes	of	the	array

	

LOADING	AND	SAVING	ARRAYS
Now	 last	 but	 not	 least,	we	 are	 going	 to	 talk	 about	 loading	 and	 saving	NumPy
arrays.	For	this,	we	can	use	the	integrated	NumPy	format	or	CSV-files.

NUMPY	FORMAT
Basically,	we	 are	 just	 serializing	 the	 object	 so	 that	we	 can	 use	 it	 later.	This	 is
done	by	using	the	save	function.

a	=	np.array([

				[10,	20,	30],

				[40,	50,	60],

				[70,	80,	90],

				[100,	110,	120]

])

np.save('myarray.npy',	a)

Notice	 that	you	don’t	have	 to	use	 the	file	ending	npy.	 In	 this	example,	we	 just
use	it	for	clarity.	You	can	pick	whatever	you	want.

Now,	 in	 order	 to	 load	 the	 array	 into	 our	 script	 again,	 we	 will	 need	 the	 load
function.

a	=	np.load('myarray.npy')

print(a)

CSV	FORMAT

As	 I	 already	mentioned,	 we	 can	 also	 save	 our	 NumPy	 arrays	 into	 CSV	 files,
which	are	just	comma-separated	text	files.	For	this,	we	use	the	function	savetxt.

np.savetxt('myarray.csv',	a)

Our	array	is	now	stored	in	a	CSV-file	which	is	very	useful,	because	it	can	then
also	be	read	by	other	applications	and	scripts.

In	order	to	read	this	CSV-file	back	into	our	script,	we	use	the	function	loadtxt.

a	=	np.loadtxt('myarray.csv')

print(a)

If	we	want	to	read	in	a	CSV-file	that	uses	another	separator	than	the	default	one,
we	can	specify	a	certain	delimiter.

a	=	np.loadtxt('myarray.csv',	delimiter=';')

print(a)

Now	it	uses	semi-colons	as	separator	when	reading	the	file.	The	same	can	also
be	done	with	the	saving	or	writing	function.

4	–	MATPLOTLIB	DIAGRAMS
We	have	already	mentioned	that	visualizing	our	data	is	crucial	for	data	science.
It	 gives	 us	 an	 overview	 and	 helps	 us	 to	 analyze	 data	 and	 make	 conclusions.
Therefore,	we	will	talk	quite	a	lot	about	Matplotlib,	the	library	which	we	use	for
plotting	and	visualizing.

PLOTTING	MATHEMATICAL	FUNCTIONS
Now,	let’s	start	out	by	drawing	some	mathematical	functions	first.	In	order	to	do
so,	we	need	to	import	the	matplotlib.pyplot	module	and	also	NumPy.

import	numpy	as	np
import	matplotlib.pyplot	as	plt

Notice	that	we	are	also	using	an	alias	for	pyplot	here.	In	this	case,	it	is	plt.

In	order	to	plot	a	function,	we	need	the	x-values	or	the	input	and	the	y-values	or
the	output.	So	let	us	generate	our	x-values	first.

x_values	=	np.linspace(0,	20,	100)

We	are	doing	this	by	using	the	already	known	linspace	function.	Here	we	create
an	array	with	100	values	between	0	 and	20.	To	now	get	our	y-values,	we	 just
need	to	apply	the	respective	function	on	our	x-values.	For	this	example,	we	are
going	with	the	sine	function.

y_values	=	np.sin(x_values)

Remember	that	the	function	gets	applied	to	every	single	item	of	the	input	array.
So	in	this	case,	we	have	an	array	with	the	sine	value	of	every	element	of	the	x-
values	array.	We	just	need	to	plot	them	now.

plt.plot(x_values,	y_values)
plt.show()

We	do	this	by	using	the	function	plot	and	passing	our	x-values	and	y-values.	At
the	end	we	call	the	show	function,	to	display	our	plot.

That	was	very	simple.	Now,	we	can	go	ahead	and	define	our	own	function	that
we	want	to	plot.

x	=	np.linspace(0,	10,	100)
y	=	(6	*	x	-	30)	**	2

plt.plot(x,	y)
plt.show()

The	result	looks	like	this:

This	is	just	the	function	(6x	–	30)²	plotted	with	Matplotlib.

VISUALIZING	VALUES
What	we	can	also	do,	instead	of	plotting	functions,	is	just	visualizing	values	in
form	of	single	dots	for	example.

numbers	=	10	*	np.random.random(100)

plt.plot(numbers,	'bo')
plt.show()

Here	we	 are	 just	 generating	 100	 random	numbers	 from	 0	 to	 10.	We	 then	 plot
these	numbers	as	blue	dots.	This	is	defined	by	the	second	parameter	‘bo’,	where
the	 first	 letter	 indicates	 the	 color	 (blue)	 and	 the	 second	 one	 the	 shape	 (dots).
Here	you	can	see	what	this	looks	like:

MULTIPLE	GRAPHS
Our	 plots	 are	 not	 limited	 to	 only	 one	 single	 graph.	 We	 can	 plot	 multiple
functions	in	different	color	and	shape.

x	=	np.linspace(0,5,200)
y1	=	2	*	x
y2	=	x	**	2
y3	=	np.log(x)

plt.plot(x,	y1)
plt.plot(x,	y2)
plt.plot(x,	y3)
plt.show()

In	this	example,	we	first	generate	200	x-values	from	0	to	5.	Then	we	define	three
different	functions	y1,	y2	and	y3.	We	plot	all	these	and	view	the	plotting	window.
This	is	what	it	looks	like:

SUBPLOTS
Now,	sometimes	we	want	to	draw	multiple	graphs	but	we	don’t	want	them	in	the
same	 plot	 necessarily.	 For	 this	 reason,	 we	 have	 so-called	 subplots.	 These	 are
plots	that	are	shown	in	the	same	window	but	independently	from	each	other.

x	=	np.linspace(0,5,200)
y1	=	np.sin(x)
y2	=	np.sqrt(x)

plt.subplot(211)
plt.plot(x,	y1,	'r-')

plt.subplot(212)
plt.plot(x,	y2,	'g--')

plt.show()

By	using	 the	function	subplot	we	state	 that	everything	we	plot	now	belongs	 to
this	specific	subplot.	The	parameter	we	pass	defines	the	grid	of	our	window.	The
first	digit	indicates	the	number	of	rows,	the	second	the	number	of	columns	and
the	last	one	the	index	of	the	subplot.	So	in	this	case,	we	have	two	rows	and	one
column.	Index	one	means	that	the	respective	subplot	will	be	at	the	top.

As	you	can	see,	we	have	two	subplots	in	one	window	and	both	have	a	different
color	and	shape.	Notice	that	the	ratios	between	the	x-axis	and	the	y-axis	differ	in
the	two	plots.

MULTIPLE	PLOTTING	WINDOWS
Instead	of	plotting	into	subplots,	we	can	also	go	ahead	and	plot	our	graphs	into
multiple	windows.	In	Matplotlib	we	call	these	figures.

plt.figure(1)
plt.plot(x,	y1,	'r-')

plt.figure(2)
plt.plot(x,	y2,	'g--')

By	doing	 this,	we	 can	 show	 two	windows	with	 their	 graphs	 at	 the	 same	 time.
Also,	we	can	use	subplots	within	figures.

PLOTTING	STYLES
Matplotlib	 offers	 us	many	 different	 plotting	 styles	 to	 choose	 from.	 If	 you	 are
interested	in	how	they	look	when	they	are	applied,	you	can	see	an	overview	by
going	 to	 the	 following	 website	 (I	 used	 a	 URL	 shortener	 to	 make	 it	 more
readable):

https://bit.ly/2JfhJ4o

In	order	to	use	a	style,	we	need	to	import	the	style	module	of	Matplotlib	and	then
call	the	function	use.

from	matplotlib	import	style

style.use('ggplot')

By	 using	 the	 from	…	 import	…	 notation	 we	 don’t	 need	 to	 specify	 the	 parent
module	matplotlib.	Here	we	apply	the	style	of	ggplot.	This	adds	a	grid	and	some
other	 design	 changes	 to	 our	 plots.	 For	 more	 information,	 check	 out	 the	 link
above.

https://bit.ly/2JfhJ4o

LABELING	DIAGRAMS
In	order	to	make	our	graphs	understandable,	we	need	to	label	them	properly.	We
should	label	the	axes,	we	should	give	our	windows	titles	and	in	some	cases	we
should	also	add	a	legend.

SETTING	TITLES
Let’s	start	out	by	setting	the	titles	of	our	graphs	and	windows.

x	=	np.linspace(0,50,100)
y	=	np.sin(x)

plt.title("Sine	Function")
plt.suptitle("Data	Science")
plt.grid(True)
plt.plot(x,y)

plt.show()

In	this	example,	we	used	the	two	functions	 title	and	suptitle.	The	first	 function
adds	 a	 simple	 title	 to	 our	 plot	 and	 the	 second	one	 adds	 an	 additional	 centered
title	above	it.	Also,	we	used	the	grid	function,	to	turn	on	the	grid	of	our	plot.

If	you	want	 to	change	 the	 title	of	 the	window,	you	can	use	 the	 figure	 function
that	we	already	know.

plt.figure("MyFigure")

LABELING	AXES
As	a	next	step,	we	are	going	to	label	our	axes.	For	this,	we	use	the	two	functions
xlabel	and	ylabel.

plt.xlabel("x-values")
plt.ylabel("y-values")

You	can	choose	whatever	labels	you	like.	When	we	combine	all	these	pieces	of
code,	we	end	up	with	a	graph	like	this:

In	this	case,	the	labels	aren’t	really	necessary	because	it	is	obvious	what	we	see
here.	 But	 sometimes	 we	want	 to	 describe	 what	 our	 values	 actually	mean	 and
what	the	plot	is	about.

LEGENDS
Sometimes	 we	 will	 have	 multiple	 graphs	 and	 objects	 in	 a	 plot.	 We	 then	 use
legends	 to	 label	 these	 individual	 elements,	 in	 order	 to	 make	 everything	 more
readable.

x	=	np.linspace(10,50,100)
y1	=	np.sin(x)
y2	=	np.cos(x)
y3	=	np.log(x/3)

plt.plot(x,y1,'b-',label="Sine")
plt.plot(x,y2,'r-',label="Cosine")
plt.plot(x,y3,'g-',label="Logarithm")

plt.legend(loc='upper	left')

plt.show()

Here	we	have	three	functions,	sine,	cosine	and	a	logarithmic	function.	We	draw
all	graphs	 into	one	plot	and	add	a	 label	 to	 them.	 In	order	 to	make	 these	 labels
visible,	we	 then	use	 the	 function	 legend	 and	 specify	a	 location	 for	 it.	Here	we
chose	the	upper	left.	Our	result	looks	like	this:

As	you	can	see,	the	legend	makes	our	plot	way	more	readable	and	it	also	looks
more	professional.

SAVING	DIAGRAMS
So	now	that	we	know	quite	a	lot	about	plotting	and	graphing,	let’s	take	a	look	at
how	to	save	our	diagrams.

plt.savefig("functions.png")

Actually,	this	is	quite	simple.	We	just	plot	whatever	we	want	to	plot	and	then	use
the	function	savefig	to	save	our	figure	into	an	image	file.

	

	

5	–	MATPLOTLIB	PLOT	TYPES
In	 the	 last	 chapter,	 we	 mainly	 plotted	 functions	 and	 a	 couple	 of	 values.	 But
Matplotlib	offers	a	huge	arsenal	of	different	plot	types.	Here	we	are	going	to	take
a	look	at	these.

HISTOGRAMS
Let’s	 start	 out	 with	 some	 statistics	 here.	 So-called	 histograms	 represent	 the
distribution	of	numerical	values.	For	example,	we	could	graph	the	distribution	of
heights	amongst	students	in	a	class.

mu,	sigma	=	172,	4

x	=	mu	+	sigma	*	np.random.randn(10000)

We	start	by	defining	a	mean	value	mu	(average	height)	and	a	standard	deviation
sigma.	To	create	our	x-values,	we	use	our	mu	and	sigma	combined	with	10000
randomly	 generated	 values.	Notice	 that	we	 are	 using	 the	 randn	 function	 here.
This	function	generates	values	for	a	standard	normal	distribution,	which	means
that	we	will	get	a	bell	curve	of	values.

plt.hist(x,	100,	density=True,	facecolor="blue")

Then	 we	 use	 the	 hist	 function,	 in	 order	 to	 plot	 our	 histogram.	 The	 second
parameter	states	how	many	values	we	want	to	plot.	Also,	we	want	our	values	to
be	 normed.	 So	 we	 set	 the	 parameter	 density	 to	True.	 This	 means	 that	 our	 y-
values	will	 sum	up	 to	one	and	we	can	view	 them	as	percentages.	Last	but	not
least,	we	set	the	color	to	blue.

Now,	when	we	show	this	plot,	we	will	realize	that	it	is	a	bit	confusing.	So	we	are
going	to	add	some	labeling	here.

plt.xlabel("Height")

plt.ylabel("Probability")

plt.title("Height	of	Students")

plt.text(160,	0.125,"µ	=	172,	σ	=	4")

plt.axis([155,190,0,0.15])

plt.grid(True)

First	we	 label	 the	 two	 axes.	The	x-values	 represent	 the	 height	 of	 the	 students,
whereas	 the	 y-values	 represent	 the	 probability	 that	 a	 randomly	 picked	 student
has	the	respective	height.	Besides	the	title,	we	also	add	some	text	to	our	graph.
We	place	it	at	the	x-value	160	and	the	y-value	of	0.125.	The	text	just	states	the
values	for	µ	(mu)	and	σ	(sigma).	Last	but	not	least,	we	set	the	ranges	for	the	two
axes.	Our	x-values	range	from	155	to	190	and	our	y-values	from	0	to	0.15.	Also,
the	grid	is	turned	on.	This	is	what	our	graph	looks	like	at	the	end:

We	 can	 see	 the	 Gaussian	 bell	 curve	 which	 is	 typical	 for	 the	 standard	 normal
distribution.

BAR	CHART
For	visualizing	certain	statistics,	bar	charts	are	oftentimes	very	useful,	especially
when	it	comes	to	categories.	In	our	case,	we	are	going	to	plot	the	skill	levels	of
three	different	people	in	the	IT	realm.

bob	=	(90,	67,	87,	76)

charles	=	(80,	80,	47,	66)

daniel	=	(40,	95,	76,	89)

skills	=	("Python",	"Java",	"Networking",	"Machine

Learning")

Here	we	have	the	three	persons	Bob,	Charles	and	Daniel.	They	are	represented
by	tuples	with	four	values	that	indicate	their	skill	levels	in	Python	programming,
Java	programming,	networking	and	machine	learning.

width	=	0.2

index	=	np.arange(4)

plt.bar(index,	bob,

								width=width,	label="Bob")

plt.bar(index	+	width,	charles,	

								width=width,	label="Charles")

plt.bar(index	+	width	*	2,	daniel,

								width=width,	label="Daniel")

We	then	use	the	bar	function	to	plot	our	bar	chart.	For	this,	we	define	an	array
with	the	indices	one	to	four	and	a	bar	width	of	0.2.	For	each	person	we	plot	the

four	respective	values	and	label	them.

plt.xticks(index	+	width,	skills)

plt.ylim(0,120)

plt.title("IT	Skill	Levels")

plt.ylabel("Skill	Level")

plt.xlabel("IT	Skill")

plt.legend()

Then	we	label	the	x-ticks	with	the	method	xticks	and	set	the	limit	of	the	y-axis	to
120	to	free	up	some	space	for	our	legend.	After	that	we	set	a	title	and	label	the
axes.	The	result	looks	like	this:

We	can	now	see	who	 is	 the	most	skilled	 in	each	category.	Of	course	we	could
also	change	the	graph	so	that	we	have	the	persons	on	the	x-axis	with	the	skill-
colors	in	the	legend.

PIE	CHART
Pie	charts	 are	used	 to	display	proportions	of	numbers.	For	 example,	we	could
graph	how	many	percent	of	the	students	have	which	nationality.

labels	=	('American',	'German',	'French',	'Other')

values	=	(47,	23,	20,	10)

We	have	one	tuple	with	our	four	nationalities.	They	will	be	our	labels.	And	we
also	have	one	tuple	with	the	percentages.

plt.pie(values,labels=labels,

								autopct="%.2f%%",	shadow=True)

plt.title("Student	Nationalities")

plt.show()

Now	we	just	need	to	use	the	pie	function,	to	draw	our	chart.	We	pass	our	values
and	 our	 labels.	 Then	 we	 set	 the	 autopct	 parameter	 to	 our	 desired	 percentage
format.	Also,	we	turn	on	the	shadow	of	the	chart	and	set	a	title.	And	this	is	what
we	end	up	with:

As	you	can	see,	this	chart	is	perfect	for	visualizing	percentages.

SCATTER	PLOTS
So-called	scatter	plots	are	used	to	represent	two-dimensional	data	using	dots.

x	=	np.random.rand(50)

y	=	np.random.rand(50)

plt.scatter(x,y)

plt.show()

Here	we	just	generate	50	random	x-values	and	50	random	y-values.	By	using	the
scatter	function,	we	can	then	plot	them.

BOXPLOT
Boxplot	diagrams	are	used,	in	order	to	split	data	into	quartiles.	We	do	that	to	get
information	about	the	distribution	of	our	values.	The	question	we	want	to	answer
is:	How	widely	spread	is	the	data	in	each	of	the	quartiles.

mu,	sigma	=	172,	4

values	=	np.random.normal(mu,sigma,200)

plt.boxplot(values)

plt.title("Student's	Height")

plt.ylabel("Height")

plt.show()

In	 this	 example,	 we	 again	 create	 a	 normal	 distribution	 of	 the	 heights	 of	 our
students.	Our	mean	value	is	172,	our	standard	deviation	4	and	we	generate	200
values.	Then	we	plot	our	boxplot	diagram.

Here	we	see	the	result.	Notice	that	a	boxplot	doesn’t	give	information	about	the
frequency	of	the	individual	values.	It	only	gives	information	about	the	spread	of
the	values	 in	 the	 individual	quartiles.	Every	quartile	has	25%	of	 the	values	but

some	have	a	very	small	spread	whereas	others	have	quite	a	large	one.

3D	PLOTS
Now	last	but	not	least,	let’s	take	a	look	at	3D-plotting.	For	this,	we	will	need	to
import	 another	 plotting	 module.	 It	 is	 called	mpl_toolkits	 and	 it	 is	 part	 of	 the
Matplotlib	stack.

from	mpl_toolkits	import	mplot3d

Specifically,	we	import	the	module	mplot3d	from	this	library.	Then,	we	can	use
3d	as	a	parameter	when	defining	our	axes.

ax	=	plt.axes(projection='3d')
plt.show()

We	can	only	use	this	parameter,	when	mplot3d	is	imported.	Now,	our	plot	looks
like	this:

Since	we	are	now	plotting	in	three	dimensions,	we	will	also	need	to	define	three
axes.

z	=	np.linspace(0,	20,	100)

x	=	np.sin(z)

y	=	np.cos(z)

ax	=	plt.axes(projection='3d')

ax.plot3D(x,y,z)

plt.show()

In	 this	case,	we	are	 taking	 the	z-axis	as	 the	 input.	The	z-axis	 is	 the	one	which
goes	 upwards.	 We	 define	 the	 x-axis	 and	 the	 y-axis	 to	 be	 a	 sine	 and	 cosine
function.	Then,	we	use	the	function	plot3D	to	plot	our	function.	We	end	up	with
this:

SURFACE	PLOTS
Now	in	order	to	plot	a	function	with	a	surface,	we	need	to	calculate	every	point
on	it.	This	is	impossible,	which	is	why	we	are	just	going	to	calculate	enough	to
estimate	the	graph.	In	this	case,	x	and	y	will	be	the	input	and	the	z-function	will
be	the	3D-result	which	is	composed	of	them.

ax	=	plt.axes(projection='3d')

def	z_function(x,	y):

				return	np.sin(np.sqrt(x	**	2	+	y	**	2))

x	=	np.linspace(-5,	5,	50)

y	=	np.linspace(-5,	5,	50)

We	start	by	defining	a	z_function	which	is	a	combination	of	sine,	square	root	and
squaring	the	input.	Our	inputs	are	just	50	numbers	from	-5	to	5.

X,	Y	=	np.meshgrid(x,y)

Z	=	z_function(X,Y)

ax.plot_surface(X,Y,Z)

plt.show()

Then	we	define	new	variables	for	x	and	y	(we	are	using	capitals	this	time).	What
we	 do	 is	 converting	 the	 x-	 and	 y-vectors	 into	 matrices	 using	 the	 meshgrid
function.	 Finally,	we	 use	 the	 z_function	 to	 calculate	 our	 z-values	 and	 then	we
plot	our	surface	by	using	the	method	plot_surface.	This	is	the	result:

Play	 around	 with	 these	 charts	 and	 plots	 until	 you	 really	 understand	 them.
Visualizing	functions	and	data	is	very	important	in	data	science.

	

6	–	PANDAS	DATA	ANALYSIS
Pandas	 is	 probably	 the	most	 powerful	 libraries	 of	 this	 book.	 It	 provides	 high-
performance	 tools	 for	 data	 manipulation	 and	 analysis.	 Furthermore,	 it	 is	 very
effective	at	converting	data	formats	and	querying	data	out	of	databases.	The	two
main	data	structures	of	Pandas	are	the	series	and	the	data	frame.	To	work	with
Pandas,	we	need	to	import	the	module.

import	pandas	as	pd

PANDAS	SERIES
A	series	in	Pandas	is	a	one-dimensional	array	which	is	labeled.	You	can	imagine
it	to	be	the	data	science	equivalent	of	an	ordinary	Python	dictionary.

series	=	pd.Series([10,	20,	30,	40],

																			['A',	'B',	'C',	'D'])

In	order	 to	create	a	series,	we	use	 the	constructor	of	 the	Series	 class.	The	 first
parameter	that	we	pass	is	a	list	full	of	values	(in	this	case	numbers).	The	second
parameter	is	the	list	of	the	indices	or	keys	(in	this	case	strings).	When	we	now
print	our	series,	we	can	see	what	the	structure	looks	like.

A				10
B				20
C				30
D				40
dtype:	int64

The	 first	 column	 represents	 the	 indices,	whereas	 the	 second	column	 represents
the	actual	values.

ACCESSING	VALUES
The	accessing	of	values	works	in	the	same	way	that	it	works	with	dictionaries.
We	need	to	address	the	respective	index	or	key	to	get	our	desired	value.

print(series['C'])

print(series[1])

As	you	 can	 see,	we	 can	 choose	how	we	want	 to	 access	 our	 elements.	We	 can
either	address	the	key	or	the	position	that	the	respective	element	is	at.

CONVERTING	DICTIONARIES
Since	series	and	dictionaries	are	quite	similar,	we	can	easily	convert	our	Python
dictionaries	into	Pandas	series.

myDict	=	{'A':10,	'B':20,	'C':30}

series	=	pd.Series(myDict)

Now	the	keys	are	our	indices	and	the	values	remain	values.	But	what	we	can	also
do	is,	to	change	the	order	of	the	indices.

myDict	=	{'A':10,	'B':20,	'C':30}

series	=	pd.Series(myDict,	index=['C','A','B'])

Our	series	now	looks	like	this:

C				30
A				10
B				20
dtype:	int64

PANDAS	DATA	FRAME
In	 contrast	 to	 the	 series,	 a	 data	 frame	 is	 not	 one-dimensional	 but	 multi-
dimensional	and	looks	like	a	table.	You	can	imagine	it	to	be	like	an	Excel	table
or	a	data	base	table.

data	=	{'Name':	['Anna',	'Bob',	'Charles'],

								'Age':	[24,	32,	35],

								'Height':	[176,	187,	175]}

df	=	pd.DataFrame(data)

To	create	a	Pandas	data	frame,	we	use	the	constructor	of	the	class.	In	this	case,
we	first	create	a	dictionary	with	some	data	about	three	persons.	We	feed	that	data
into	our	data	frame.	It	then	looks	like	this:

						Name		Age		Height
0					Anna			24					176
1						Bob			32					187
2		Charles			35					175

As	 you	 can	 see,	without	 any	manual	work,	we	 already	 have	 a	 structured	 data
frame	and	table.

To	now	access	 the	values	 is	a	bit	more	complicated	 than	with	 series.	We	have
multiple	columns	and	multiple	rows,	so	we	need	to	address	two	values.

print(df['Name'][1])

So	 first	we	 choose	 the	 column	Name	 and	 then	we	 choose	 the	 second	 element
(index	one)	of	this	column.	In	this	case,	this	is	Bob.

When	we	omit	 the	 last	 index,	we	can	also	 select	only	 the	one	column.	This	 is
useful	when	we	want	to	save	specific	columns	of	our	data	frame	into	a	new	one.
What	we	can	also	do	in	this	case	is	to	select	multiple	columns.

print(df[['Name',	'Height']])

Here	we	select	two	columns	by	addressing	a	list	of	two	strings.	The	result	is	the
following:

												Name		Height
0					Anna					176
1						Bob					187
2		Charles					175

DATA	FRAME	FUNCTIONS
Now,	let	us	get	a	little	bit	more	into	the	functions	of	a	data	frame.

BASIC	FUNCTIONS	AND	ATTRIBUTES
For	 data	 frames	 we	 have	 a	 couple	 of	 basic	 functions	 and	 attributes	 that	 we
already	know	from	lists	or	NumPy	arrays.

BASIC	FUNCTIONS	AND	ATTRIBUTES
FUNCTION DESCRIPTION

df.T Transposes	the	rows	and
columns	of	the	data	frame

df.dtypes Returns	data	types	of	the	data
frame

df.ndim Returns	the	number	of
dimensions	of	the	data	frame

df.shape Returns	the	shape	of	the	data
frame

df.size Returns	the	number	of	elements
in	the	data	frame

df.head(n) Returns	the	first	n	rows	of	the
data	frame	(default	is	five)

df.tail(n) Returns	the	last	n	rows	of	the
data	frame	(default	is	five)

STATISTICAL	FUNCTIONS
For	 the	statistical	 functions,	we	will	now	extend	our	data	 frame	a	 little	bit	and
add	some	more	persons.

data	=	{'Name':	['Anna',	'Bob',	'Charles',

																	'Daniel',	'Evan',	'Fiona',

																	'Gerald',	'Henry',	'India'],

								'Age':	[24,32,35,45,22,54,55,43,25],

								'Height':	[176,187,175,182,176,

																			189,165,187,167]}

df	=	pd.DataFrame(data)

STATISTICAL	FUNCTIONS
FUNCTION DESCRIPTION

count() Count	the	number	of	non-null
elements

sum() Returns	the	sum	of	values	of	the
selected	columns

mean() Returns	the	arithmetic	mean	of
values	of	the	selected	columns

median() Returns	the	median	of	values	of
the	selected	columns

mode()
Returns	the	value	that	occurs
most	often	in	the	columns

selected

std() Returns	standard	deviation	of
the	values

min() Returns	the	minimum	value

max() Returns	the	maximum	value

abs() Returns	the	absolute	values	of
the	elements

prod() Returns	the	product	of	the
selected	elements

describe() Returns	data	frame	with	all
statistical	values	summarized

Now,	we	are	not	going	to	dig	deep	into	every	single	function	here.	But	let’s	take
a	look	at	how	to	apply	some	of	them.

print(df['Age'].mean())

print(df['Height'].median())

Here	we	choose	a	column	and	then	apply	the	statistical	functions	on	it.	What	we
get	is	just	a	single	scalar	with	the	desired	value.

37.22222222222222
176.0

We	can	 also	 apply	 the	 functions	 to	 the	whole	 data	 frame.	 In	 this	 case,	we	 get
returned	another	data	frame	with	the	results	for	each	column.

print(df.mean())

Age								37.222222
Height				178.222222
dtype:	float64

APPLYING	NUMPY	FUNCTIONS
Instead	of	using	the	built-in	Pandas	functions,	we	can	also	use	the	methods	we
already	know.	For	this,	we	just	use	the	apply	function	of	the	data	frame	and	then
pass	our	desired	method.

print(df['Age'].apply(np.sin))

In	this	example,	we	apply	the	sine	function	onto	our	ages.	It	doesn’t	make	any
sense	but	it	demonstrates	how	this	works.

LAMBDA	EXPRESSIONS

A	very	 powerful	 in	 Python	 are	 lambda	expression.	 They	 can	 be	 thought	 of	 as
nameless	functions	that	we	pass	as	a	parameter.

print(df['Age'].apply(lambda	x:	x	*	100))

By	using	the	keyword	lambda	we	create	a	temporary	variable	that	represents	the
individual	 values	 that	we	 are	 applying	 the	operation	onto.	After	 the	 colon,	we
define	what	we	want	 to	do.	 In	 this	 case,	we	multiply	all	 values	of	 the	column
Age	by	100.

df	=	df[['Age',	'Height']]

print(df.apply(lambda	x:	x.max()	-	x.min()))

Here	 we	 removed	 the	Name	 column,	 so	 that	 we	 only	 have	 numerical	 values.
Since	we	are	applying	our	expression	on	the	whole	data	frame	now,	x	 refers	 to
the	whole	columns.	What	we	do	here	 is	calculating	 the	difference	between	 the
maximum	value	and	the	minimum	value.

Age							33
Height				24
dtype:	int64

The	oldest	and	the	youngest	are	33	years	apart	and	the	tallest	and	the	tiniest	are
24	centimeters	apart.

	

ITERATING
Iterating	over	data	frames	is	quite	easy	with	Pandas.	We	can	either	do	it	 in	 the
classic	way	or	use	specific	functions	for	it.

for	x	in	df['Age']:

				print(x)

As	you	can	see,	iterating	over	a	column’s	value	is	very	simple	and	nothing	new.
This	would	print	all	 the	ages.	When	we	 iterate	over	 the	whole	data	 frame,	our
control	variable	takes	on	the	column	names.

STATISTICAL	FUNCTIONS
FUNCTION DESCRIPTION

iteritems() Iterator	for	key-value	pairs

iterrows() Iterator	for	the	rows	(index,
series)

itertuples() Iterator	for	the	rows	as	named
tuples

Let’s	take	a	look	at	some	practical	examples.

for	key,	value	in	df.iteritems():

				print("{}:	{}".format(key,	value))

Here	we	use	the	iteritems	function	to	iterate	over	key-value	pairs.	What	we	get	is
a	huge	output	of	all	rows	for	each	column.

On	the	other	hand,	when	we	use	iterrows,	we	can	print	out	all	the	column-values
for	each	row	or	index.

for	index,	value	in	df.iterrows():

				print(index,value)

We	get	packages	like	this	one	for	every	index:

0	Name						Anna
Age									24
Height					176
Name:	0,	dtype:	object

SORTING
One	 very	 powerful	 thing	 about	 Pandas	 data	 frames	 is	 that	 we	 can	 easily	 sort
them.

SORT	BY	INDEX

df	=	pd.DataFrame(np.random.rand(10,2),

																		index=[1,5,3,6,7,2,8,9,0,4],

																		columns=['A','B'])

Here	 we	 create	 a	 new	 data	 frame,	 which	 is	 filled	 with	 random	 numbers.	We
specify	our	own	indices	and	as	you	can	see,	they	are	completely	unordered.

print(df.sort_index())

By	 using	 the	 method	 sort_index,	 we	 sort	 the	 whole	 data	 frame	 by	 the	 index
column.	The	result	is	now	sorted:

										A									B
0		0.193432		0.514303
1		0.391481		0.193495
2		0.159516		0.607314
3		0.273120		0.056247
…						…										…

INPLACE	PARAMETER
When	we	use	functions	that	manipulate	our	data	frame,	we	don’t	actually	change
it	but	we	return	a	manipulated	copy.	 If	we	wanted	 to	apply	 the	changes	on	 the
actual	data	frame,	we	would	need	to	do	it	like	this:

df	=	df.sort_index()

But	Pandas	offers	us	another	alternative	as	well.	This	alternative	is	the	parameter
inplace.	When	this	parameter	is	set	to	True,	the	changes	get	applied	to	our	actual
data	frame.

df.sort_index(inplace=True)

SORT	BY	COLUMNS
Now,	we	can	also	sort	our	data	frame	by	specific	columns.

data	=	{'Name':	['Anna',	'Bob',	'Charles',

																	'Daniel',	'Evan',	'Fiona',

																	'Gerald',	'Henry',	'India'],

								'Age':	[24,24,35,45,22,54,54,43,25],

								'Height':	[176,187,175,182,176,

																			189,165,187,167]}

df	=	pd.DataFrame(data)

df.sort_values(by=['Age',	'Height'],

															inplace=True)

print(df)

Here	 we	 have	 our	 old	 data	 frame	 slightly	 modified.	 We	 use	 the	 function
sort_values	to	sort	our	data	frames.	The	parameter	by	states	the	columns	that	we
are	sorting	by.	In	this	case,	we	are	first	sorting	by	age	and	if	 two	persons	have
the	same	age,	we	sort	by	height.

JOINING	AND	MERGING
Another	powerful	concept	in	Pandas	is	joining	and	merging	data	frames.

names	=	pd.DataFrame({

				'id':	[1,2,3,4,5],

				'name':	['Anna',	'Bob',	'Charles',

													'Daniel',	'Evan'],

})

ages	=	pd.DataFrame({

				'id':	[1,2,3,4,5],

				'age':	[20,30,40,50,60]

})

Now	when	we	have	two	separate	data	frames	which	are	related	to	one	another,
we	 can	 combine	 them	 into	 one	 data	 frame.	 It	 is	 important	 that	 we	 have	 a
common	column	that	we	can	merge	on.	In	this	case,	this	is	id.

df	=	pd.merge(names,ages,on='id')

df.set_index('id',	inplace=True)

First	we	 use	 the	method	merge	 and	 specify	 the	 column	 to	merge	 on.	We	 then
have	a	new	data	frame	with	the	combined	data	but	we	also	want	our	id	column	to
be	the	index.	For	this,	we	use	the	set_index	method.	The	result	looks	like	this:

							name		age
id													
1						Anna			20
2							Bob			30
3			Charles			40

4				Daniel			50
5						Evan			60

JOINS
It	is	not	necessarily	always	obvious	how	we	want	to	merge	our	data	frames.	This
is	where	joins	come	into	play.	We	have	four	types	of	joins.

JOIN	MERGE	TYPES
JOIN DESCRIPTION

left Uses	all	keys	from	left	object
and	merges	with	right

right Uses	all	keys	from	right	object
and	merges	with	left

outer Uses	all	keys	from	both	objects
and	merges	them

inner
Uses	only	the	keys	which	both
objects	have	and	merges	them

(default)

Now	let’s	change	our	two	data	frames	a	little	bit.

names	=	pd.DataFrame({

				'id':	[1,2,3,4,5,6],

				'name':	['Anna',	'Bob',	'Charles',

													'Daniel',	'Evan',	'Fiona'],

})

ages	=	pd.DataFrame({

				'id':	[1,2,3,4,5,7],

				'age':	[20,30,40,50,60,70]

})

Our	names	 frame	now	has	 an	 additional	 index	6	 and	 an	 additional	name.	And
our	ages	frame	has	an	additional	index	7	with	an	additional	name.

df	=	pd.merge(names,ages,on='id',	how='inner')

df.set_index('id',	inplace=True)

If	we	 now	 perform	 the	 default	 inner	 join,	 we	will	 end	 up	with	 the	 same	 data
frame	as	in	the	beginning.	We	only	take	the	keys	which	both	objects	have.	This
means	one	to	five.

df	=	pd.merge(names,ages,on='id',	how='left')

df.set_index('id',	inplace=True)

When	we	use	the	left	join,	we	get	all	the	keys	from	the	names	data	frame	but	not
the	additional	index	7	from	ages.	This	also	means	that	Fiona	won’t	be	assigned
any	age.

							name			age
id														
1						Anna		20.0
2							Bob		30.0
3			Charles		40.0
4				Daniel		50.0
5						Evan		60.0
6					Fiona			NaN

The	same	principle	goes	for	the	right	join	just	the	other	way	around.

df	=	pd.merge(names,ages,on='id',	how='right')

df.set_index('id',	inplace=True)

							name		age
id													
1						Anna			20
2							Bob			30
3			Charles			40
4				Daniel			50
5						Evan			60
7							NaN			70

Now,	we	only	have	the	keys	from	the	ages	frame	and	the	6	is	missing.	Finally,	if

we	use	the	outer	join,	we	combine	all	keys	into	one	data	frame.

df	=	pd.merge(names,ages,on='id',	how='outer')

df.set_index('id',	inplace=True)

							name			age
id														
1						Anna		20.0
2							Bob		30.0
3			Charles		40.0
4				Daniel		50.0
5						Evan		60.0
6					Fiona			NaN
7							NaN		70.0

QUERYING	DATA
Like	 in	 databases	with	 SQL,	we	 can	 also	 query	 data	 from	 our	 data	 frames	 in
Pandas.	For	this,	we	use	the	function	loc,	in	which	we	put	our	expression.

print(df.loc[df['Age']	==	24])

print(df.loc[(df['Age']	==	24)	&

													(df['Height']	>	180)])

print(df.loc[df['Age']	>	30]['Name'])

Here	 we	 have	 some	 good	 examples	 to	 explain	 how	 this	 works.	 The	 first
expression	returns	all	rows	where	the	value	for	Age	is	24.

			Name		Age		Height
0		Anna			24					176
1			Bob			24					187

The	second	query	is	a	bit	more	complicated.	Here	we	combine	two	conditions.
The	 first	one	 is	 that	 the	age	needs	 to	be	24	but	we	 then	combine	 this	with	 the
condition	that	the	height	is	greater	than	180.	This	leaves	us	with	one	row.

		Name		Age		Height
1		Bob			24					187

In	 the	 last	expression,	we	can	see	 that	we	are	only	choosing	one	column	to	be
returned.	We	want	the	names	of	all	people	that	are	older	than	30.

2				Charles
3					Daniel
5						Fiona
6					Gerald
7						Henry

READ	DATA	FROM	FILES
Similar	to	NumPy,	we	can	also	easily	read	data	from	external	files	into	Pandas.
Let’s	say	we	have	an	CSV-File	like	this	(opened	in	Excel):

The	only	thing	that	we	need	to	do	now	is	to	use	the	function	read_csv	to	import
our	data	into	a	data	frame.

df	=	pd.read_csv('data.csv')

df.set_index('id',	inplace=True)

print(df)

We	also	set	the	index	to	the	id	column	again.	This	is	what	we	have	imported:

							name		age		height
id																					
1						Anna			20					178
2							Bob			30					172
3			Charles			40					189
4				Daniel			50					192
5						Evan			60					183
6					Fiona			70					165

This	of	course,	also	works	 the	other	way	around.	By	using	 the	method	 to_csv,
we	can	also	save	our	data	frame	into	a	CSV-file.

data	=	{'Name':	['Anna',	'Bob',	'Charles',

																	'Daniel',	'Evan',	'Fiona',

																	'Gerald',	'Henry',	'India'],

								'Age':	[24,24,35,45,22,54,54,43,25],

								'Height':	[176,187,175,182,176,

																			189,165,187,167]}

df	=	pd.DataFrame(data)

df.to_csv('mydf.csv')

Then	we	have	this	CSV-file	(opened	in	Excel):

PLOTTING	DATA
Since	Pandas	builds	on	Matplotlib,	we	can	easily	visualize	the	data	from	our	data
frame.

data	=	{'Name':	['Anna',	'Bob',	'Charles',

																	'Daniel',	'Evan',	'Fiona',

																	'Gerald',	'Henry',	'India'],

								'Age':	[24,24,35,45,22,54,54,43,25],

								'Height':	[176,187,175,182,176,

																			189,165,187,167]}

df	=	pd.DataFrame(data)

df.sort_values(by=['Age',	'Height'])

df.hist()

plt.show()

In	 this	 example,	we	 use	 the	method	hist	 to	 plot	 a	 histogram	 of	 our	 numerical
columns.	Without	specifying	anything	more,	this	is	what	we	end	up	with:

But	we	can	also	 just	use	 the	 function	plot	 to	plot	our	data	 frame	or	 individual
columns.

df.plot()

plt.show()

The	result	is	the	following:

Of	course	we	can	also	just	use	the	Matplotlib	library	itself	and	pass	the	columns
as	parameters.

plt.plot(df['Age'],	'bo')

plt.show()

WHAT’S	NEXT?
Finally,	we	are	done	with	the	third	volume	of	the	Python	Bible	series.	It	was	very
practical	 and	went	 deep	 into	 the	 topic	 of	 data	 science.	 This	 has	 now	 laid	 the
foundation	 for	more	 complex	 topics	 like	machine	 learning	 and	 finance,	which
will	be	the	follow-ups	to	this	book.	You	are	on	a	very	good	path!	Just	make	sure
you	practice	everything	until	you	 really	understand	 the	material	 that	we	 talked
about.

You	are	now	definitely	able	to	find	some	huge	data	sets	online	(maybe	in	CSV-
format)	and	analyze	them	with	Python.	And	I	encourage	you	to	do	that.	We	only
learn	by	doing	and	practicing.	In	the	next	volumes	we	will	also	import	data	from
online	sources	and	APIs.	And	we	are	not	only	going	to	analyze	this	data	but	also
to	make	predictions	with	it.

Now	that	you’ve	read	the	first	 three	volumes	of	 this	series,	 I	encourage	you	to
continue	on	 this	 journey	because	 it	 is	NOW	that	 things	get	 really	 interesting.	 I
hope	you	could	get	some	value	out	of	this	book	and	that	it	helped	you	to	become
a	better	programmer.	So	stay	tuned	and	prepare	for	the	next	volume!

Last	but	not	 least,	a	 little	reminder.	This	book	was	written	 for	you,	so	 that	you
can	get	as	much	value	as	possible	and	learn	to	code	effectively.	If	you	find	this
book	 valuable	 or	 you	 think	 you	 learned	 something	 new,	 please	 write	 a	 quick
review	on	Amazon.	It	is	completely	free	and	takes	about	one	minute.	But	it	helps
me	produce	more	high	quality	books,	which	you	can	benefit	from.

Thank	you!

	

	

	
	
	
	
	

THE
PYTHON	BIBLE

VOLUME	FOUR

MACHINE	LEARNING

By

FLORIAN	DEDOV

	

Copyright	©	2019

	

	

TABLE	OF	CONTENT
Introduction
This	Book

1	–	What	is	Machine	Learning?
Supervised	Learning
Unsupervised	Learning
Reinforcement	Learning
Deep	Learning
Fields	of	Application
Why	Python?

2	–	Installing	Modules
NumPy
Matplotlib
Pandas
Scikit-Learn
Tensorflow
Installing	Modules	With	PIP

3	–	Linear	Regression
Mathematical	Explanation
Loading	Data
Preparing	Data
Training	and	Testing
Visualizing	Correlations

4	–	Classification
Classification	Algorithms
K-Nearest-Neighbors
Naive-Bayes

Logistic	Regression
Decision	Trees
Random	Forest

Loading	Data
Preparing	Data
Training	and	Testing
The	Best	Algorithm
Predicting	Labels

5	–	Support	Vector	Machines
Kernels
Soft	Margin
Loading	Data
Training	and	Testing

6	–	Clustering
How	Clustering	Works
Loading	Data
Training	and	Predicting

7	–	Neural	Networks
Structure	of	a	Neural	Network
Structure	of	a	Neuron
How	Neural	Networks	Work
Recognizing	Handwritten	Digits
Loading	Data
Building	The	Neural	Network
Training	and	Testing
Predicting	Your	Own	Digits

8	–	Optimizing	Models
Serialization
Saving	Models

Loading	Models
Optimizing	Models

What’s	Next?
	

INTRODUCTION
With	this	book,	we	get	into	some	really	advanced	territory	and	things	get	more
and	more	complicated.	In	the	last	book,	we	were	learning	about	data	science	and
data	 analysis.	We	 now	 know	 how	 to	 analyze	 and	 visualize	 big	 data	 sets.	 But
except	for	some	statistical	values	we	didn’t	really	extract	any	knowledge	out	of
the	data	and	we	were	certainly	not	able	to	predict	future	data.

This	is	where	the	topic	of	this	book	comes	into	play	–	machine	learning.	 It’s	a
much	hyped	term	and	nowadays	 it	can	be	found	almost	everywhere.	 In	robots,
video	 games,	 the	 stock	 market,	 home	 appliances	 or	 even	 in	 cars.	 And	 it’s
constantly	growing.	The	development	of	artificial	intelligences	can’t	be	stopped
and	 it	 bears	 almost	 unlimited	potential	 (for	 both	–	good	 and	 evil).	The	people
who	don’t	educate	themselves	on	this	matter	will	be	overrun	by	the	development
instead	of	benefiting	from	it.

Python	 is	 definitely	 the	 language	 that	 dominates	 the	 AI	 market.	 Of	 course,
artificial	 intelligences	 are	 developed	 in	 all	 sorts	 of	 languages	 but	 Python	 has
become	the	lingua	franca	of	machine	learning	in	the	past	few	years.	Therefore,
if	you	want	to	be	part	of	this	future,	you	will	need	to	be	fluent	in	Python	and	get
a	good	understanding	of	machine	learning.

THIS	BOOK
In	 this	 volume	of	The	Python	Bible	 series,	we	will	 dig	deep	 into	 the	machine
learning	 realm	 and	 the	 Python	 language.	 We	 will	 train	 and	 apply	 complex
machine	learning	models	and	at	the	end	you	will	be	able	to	develop	and	optimize
your	own	AI	suited	for	your	specific	tasks.

What	 you	 will	 need	 for	 this	 book	 is	 the	 knowledge	 from	 the	 previous	 three
volumes.	You	will	need	to	be	fluent	in	the	basic	and	intermediate	concepts	of	the
Python	language.	Also,	you	will	need	some	basic	understanding	of	data	science
and	 the	 libraries	 NumPy,	 Pandas	 and	 Matplotlib.	 If	 you	 have	 already	 read
volume	one	to	three,	you	are	good	to	go.	A	decent	understanding	of	mathematics
(high	school	level)	is	definitely	beneficial.

We	will	 start	 by	 discussing	what	machine	 learning	 actually	 is	 and	what	 types
there	 are.	 Then,	 we	 will	 install	 the	 necessary	 modules	 and	 start	 with	 the
programming	part.	First,	we	will	look	at	linear	regression,	which	is	a	pretty	basic
statistical	 machine	 learning	 model.	 After	 that,	 we	 will	 cover	 classification,
clustering	and	support	vector	machines.	Then,	we	will	discuss	neural	networks
and	 build	 a	model	 that	 predicts	 handwritten	 digits.	At	 the	 end,	we	will	 take	 a
look	at	the	optimization	of	models.

This	book	is	again	full	of	new	and	more	complex	information.	There	is	a	lot	to
learn	 here	 so	 stay	 tuned	 and	 code	 along	while	 reading.	 This	 will	 help	 you	 to
understand	the	material	better	and	to	practice	implementing	it.	I	wish	you	a	lot	of
fun	and	success	with	your	journey	and	this	book!

Just	one	little	thing	before	we	start.	This	book	was	written	for	you,	so	that	you
can	get	as	much	value	as	possible	and	learn	to	code	effectively.	If	you	find	this
book	 valuable	 or	 you	 think	 you	 have	 learned	 something	 new,	 please	 write	 a
quick	review	on	Amazon.	It	is	completely	free	and	takes	about	one	minute.	But	it
helps	me	produce	more	high	quality	books,	which	you	can	benefit	from.

Thank	you!

1	–	WHAT	IS	MACHINE	LEARNING?
As	 always,	 before	 we	 start	 to	 learn	 how	 something	 works,	 we	 first	 want	 to
precisely	 define	 what	 it	 is,	 that	 we	 are	 learning	 about.	 So	what	 is	 this	 hyped
concept	of	machine	learning?	I	will	not	try	to	give	you	some	sophisticated	and
complex	scientific	definition	here.	We	will	try	to	explain	it	as	simply	as	possible.

What	machine	 learning	is	fundamentally	 is	 just	 the	science,	 in	which	we	focus
on	teaching	machines	or	computers	to	perform	certain	tasks	without	being	given
specific	 instructions.	 We	 want	 our	 machines	 to	 learn	 how	 to	 do	 something
themselves	without	explaining	it	to	them.

In	order	to	do	this,	we	oftentimes	look	at	how	the	human	brain	works	and	try	to
design	virtual	brains	that	work	in	a	similar	manner.

Notice	 that	 machine	 learning	 and	 artificial	 intelligence	 are	 not	 the	 same.
Artificial	intelligence	is	a	broad	field	and	every	system	that	can	learn	and	solve
problems	might	be	considered	an	AI.	Machine	learning	is	one	specific	approach
to	this	broad	field.	In	machine	learning	the	AI	doesn’t	receive	any	instructions.	It
isn’t	 static	 and	 it	 doesn’t	 follow	 clear	 and	 strict	 steps	 to	 solve	 problems.	 It’s
dynamic	and	restructures	itself.

SUPERVISED	LEARNING
In	 machine	 learning	 we	 have	 different	 approaches	 or	 types.	 The	 two	 main
approaches	are	supervised	learning	and	unsupervised	learning.	So	let’s	first	talk
about	supervised	learning.

Here,	 we	 give	 our	 model	 a	 set	 of	 inputs	 and	 also	 the	 corresponding	 outputs,
which	 are	 the	 desired	 results.	 In	 this	 way,	 the	 model	 learns	 to	 match	 certain
inputs	to	certain	outputs	and	it	adjusts	its	structure.	It	learns	to	make	connections
between	 what	 was	 put	 in	 and	 what	 the	 desired	 output	 is.	 It	 understands	 the
correlation.	 When	 trained	 well	 enough,	 we	 can	 use	 the	 model	 to	 make
predictions	for	inputs	that	we	don’t	know	the	results	for.

Classic	 supervised	 learning	 algorithms	 are	 regressions,	 classifications	 and
support	vector	machines.

UNSUPERVISED	LEARNING
With	 unsupervised	 learning	 on	 the	 other	 hand,	 we	 don’t	 give	 our	 model	 the
desired	 results	 while	 training.	 Not	 because	 we	 don’t	 want	 to	 but	 because	 we
don’t	know	them.	This	approach	is	more	like	a	kind	of	pattern	recognition.	We
give	our	model	a	set	of	input	data	and	it	then	has	to	look	for	patterns	in	it.	Once
the	model	 is	 trained,	we	can	put	 in	new	data	and	our	model	will	need	to	make
decisions.

Since	 the	model	 doesn’t	 get	 any	 information	 about	 classes	or	 results,	 it	 has	 to
work	with	 similarities	 and	 patterns	 in	 the	 data	 and	 categorize	 or	 cluster	 it	 by
itself.

Classic	unsupervised	 learning	algorithms	are	clustering,	anomaly	detection	and
some	applications	of	neural	networks.

REINFORCEMENT	LEARNING
Then	 there	 is	 a	 third	 type	 of	 machine	 learning	 called	 reinforcement	 learning.
Here	we	create	some	model	with	a	random	structure.	Then	we	just	observe	what
it	does	and	reinforce	or	encourage	it,	when	we	like	what	it	does.	Otherwise,	we
can	also	give	some	negative	feedback.	The	more	our	model	does	what	we	want	it
to	 do,	 the	 more	 we	 reinforce	 it	 and	 the	 more	 “rewards”	 it	 gets.	 This	 might
happen	in	form	of	a	number	or	a	grade,	which	represents	the	so-called	fitness	of
the	model.

In	this	way,	our	model	learns	what	is	right	and	what	is	wrong.	You	can	imagine	it
a	 little	 bit	 like	 natural	 selection	 and	 survival	 of	 the	 fittest.	We	 can	 create	 100
random	models	and	kill	 the	50	models	 that	perform	worst.	Then	the	remaining
50	reproduce	and	the	same	process	repeats.	These	kinds	of	algorithms	are	called
genetic	algorithms.

Classic	reinforcement	learning	algorithms	are	genetic	or	evolutional	algorithms.

DEEP	LEARNING
Another	 term	 that	 is	 always	 confused	with	machine	 learning	 is	deep	 learning.
Deep	 learning	 however	 is	 just	 one	 area	 of	machine	 learning,	 namely	 the	 one,
which	works	with	neural	networks.	Neural	networks	are	a	very	comprehensive
and	complex	topic.	Even	though	there	is	a	chapter	about	them	in	this	book,	we
won’t	be	able	to	dig	too	deep	into	the	details	here.	Maybe	I	will	write	a	separate
volume	which	just	focuses	only	on	neural	networks	in	the	future.

FIELDS	OF	APPLICATION
Actually,	 it	 would	 be	 easier	 to	 list	 all	 the	 areas	 in	 which	 machine	 learning
doesn’t	 get	 applied	 rather	 than	 the	 fields	 of	 application.	 Despite	 that,	 we	will
take	 a	 quick	 look	 at	 some	of	 the	major	 areas,	 in	which	machine	 learning	 gets
applied.

·									Research
·									Autonomous	Cars
·									Spacecraft
·									Economics	and	Finance
·									Medical	and	Healthcare
·									Physics,	Biology,	Chemistry
·									Engineering
·									Mathematics
·									Robotics
·									Education
·									Forensics
·									Police	and	Military
·									Marketing
·									Search	Engines
·									GPS	and	Pathfinding	Systems
·									…

We	could	go	on	forever.	I	think	it	is	very	clear	why	we	should	educate	ourselves
in	this	area.	With	this	book,	you	are	going	into	the	right	direction.

WHY	PYTHON?
Now	before	we	go	on	to	the	next	chapters,	let’s	once	again	address	the	question
of	why	we	should	use	Python	for	machine	learning	instead	of	another	language.	I
already	 mentioned	 that	 it	 has	 become	 the	 lingua	 franca	 of	 machine	 learning.
This	 means	 that	 it	 has	 become	 the	 main	 language	 in	 this	 field.	 You	 might
compare	it	to	English	in	the	western	world.

There	 are	 also	 other	 languages	 like	 R,	 MATLAB	 or	 LISP	 which	 may	 be
considered	competition	of	Python	but	they	are	quite	specialized	for	one	specific
field	of	application,	whereas	Python	is	a	general-purpose	language.

Python’s	 community	 is	 great	 and	 it	 is	 massively	 gaining	 popularity.	 The
language	 is	 simple,	 easy	 to	 learn,	 easy	 to	 use	 and	 offers	 a	 huge	 arsenal	 of
powerful	 open-source	 libraries	 for	 data	 science,	 scientific	 computing	 and
machine	learning.	Of	course	other	languages	have	their	advantages	over	Python,
but	 for	 the	 field	 of	 machine	 learning	 there	 is	 probably	 no	 better	 choice	 than
Python	at	the	current	moment.

	

2	–	INSTALLING	MODULES
Again,	 before	we	get	 into	 the	 coding,	we	will	 need	 to	 install	 the	modules	 and
libraries	 that	we	are	going	to	use.	If	you	have	read	volume	three	of	 this	series,
you	will	already	be	 familiar	with	 the	 first	 three.	Nevertheless,	we	are	going	 to
discuss	them	quickly	one	more	time.

NUMPY
The	NumPy	 module	 allows	 us	 to	 efficiently	 work	 with	 vectors,	 matrices	 and
multi-dimensional	arrays.	It	is	crucial	for	linear	algebra	and	numerical	analysis.
It	basically	replaces	the	primitive	and	inefficient	Python	list	with	very	powerful
NumPy	arrays.

MATPLOTLIB
On	 top	of	NumPy,	we	have	Matplotlib.	This	 library	 is	 responsible	 for	 plotting
graphs	and	visualizing	our	data.	It	offers	numerous	types	of	plotting,	styles	and
graphs.

PANDAS
Pandas	offers	us	a	powerful	data	structure	named	data	frame.	You	can	imagine	it
to	be	a	bit	like	a	mix	of	an	Excel	table	and	an	SQL	database	table.

This	library	allows	us	to	efficiently	work	with	our	huge	amounts	of	interrelated
data.	We	can	merge,	reshape,	filter	and	query	our	data.	We	can	iterate	over	it	and
we	 can	 read	 and	 write	 into	 files	 like	 CSV,	 XLSX	 and	 more.	 Also,	 it	 is	 very
powerful	when	we	work	with	databases,	due	to	the	similar	structure	of	the	tables.

Pandas	 is	 highly	 compatible	 with	 NumPy	 and	 Matplotlib,	 since	 it	 builds	 on
them.	We	can	easily	convert	data	from	one	format	to	the	other.

SCIKIT-LEARN
Now,	the	first	new	library	of	this	book	is	scikit-learn.	This	is	probably	the	most
important	 Python	 library	 for	 traditional	 machine	 learning.	 It	 features
classification,	 regression	 and	 clustering	 algorithms.	Also,	 it	 allows	 us	 to	work
with	 support	 vector	machines	 and	more.	 Scikit-learn	 is	 designed	 to	work	with
NumPy	and	Matplotlib,	which	will	make	everything	much	easier	for	us.

TENSORFLOW
Tensorflow	 is	 one	 of	 the	most	 popular	machine	 learning	 frameworks	 out	 there
and	it	was	developed	by	Google.	It	is	a	whole	ecosystem	for	developing	modern
deep	learning	models.	This	means	that	it	is	mainly	used	for	the	development	and
training	of	models	 that	use	neural	networks.	 It	 also	has	 its	own	data	 structures
and	ways	of	visualizing	data.	

INSTALLING	MODULES	WITH	PIP
We	now	need	to	install	our	models.	In	this	book,	we	are	using	pip	to	do	that.

pip	install	numpy
pip	install	matplotlib
pip	install	pandas
pip	install	scikit-learn
pip	install	tensorflow

3	–	LINEAR	REGRESSION
The	 easiest	 and	most	 basic	machine	 learning	 algorithm	 is	 linear	regression.	 It
will	be	the	first	one	that	we	are	going	to	look	at	and	it	is	a	supervised	learning
algorithm.	 That	 means	 that	 we	 need	 both	 –	 inputs	 and	 outputs	 –	 to	 train	 the
model.

MATHEMATICAL	EXPLANATION
Before	 we	 get	 into	 the	 coding,	 let	 us	 talk	 about	 the	 mathematics	 behind	 this
algorithm.

In	the	figure	above,	you	see	a	lot	of	different	points,	which	all	have	an	x-value
and	a	y-value.	The	x-value	is	called	the	feature,	whereas	the	y-value	is	our	label.
The	label	is	the	result	for	our	feature.	Our	linear	regression	model	is	represented
by	 the	blue	 line	 that	goes	straight	 through	our	data.	 It	 is	placed	so	 that	 it	 is	as
close	as	possible	to	all	points	at	the	same	time.	So	we	“trained”	the	line	to	fit	the
existing	points	or	the	existing	data.

The	 idea	 is	 now	 to	 take	 a	 new	x-value	without	 knowing	 the	 corresponding	 y-
value.	We	 then	 look	at	 the	 line	 and	 find	 the	 resulting	y-value	 there,	which	 the
model	predicts	for	us.	However,	since	this	line	is	quite	generalized,	we	will	get	a
relatively	inaccurate	result.

However,	 one	must	 also	 mention	 that	 linear	 models	 only	 really	 develop	 their
effectiveness	 when	 we	 are	 dealing	 with	 numerous	 features	 (i.e.	 higher
dimensions).

If	we	 are	 applying	 this	model	 to	 data	 of	 schools	 and	we	 try	 to	 find	 a	 relation
between	missing	hours,	learning	time	and	the	resulting	grade,	we	will	probably

get	a	 less	accurate	 result	 than	by	 including	30	parameters.	Logically,	however,
we	then	no	longer	have	a	straight	line	or	flat	surface	but	a	hyperplane.	This	is	the
equivalent	to	a	straight	line,	in	higher	dimensions.

LOADING	DATA
To	get	started	with	our	code,	we	first	need	data	that	we	want	to	work	with.	Here
we	use	a	dataset	from	UCI.

Link:	https://archive.ics.uci.edu/ml/datasets/student+performance

This	is	a	dataset	which	contains	a	lot	of	information	about	student	performance.
We	will	use	it	as	sample	data	for	our	models.

	

We	 download	 the	 ZIP-file	 from	 the	Data	 Folder	 and	 extract	 the	 file	 student-
mat.csv	from	there	into	the	folder	in	which	we	code	our	script.

Now	 we	 can	 start	 with	 our	 code.	 First	 of	 all,	 we	 will	 import	 the	 necessary
libraries.

import	numpy	as	np
import	pandas	as	pd
import	matplotlib.pyplot	as	plt
from	sklearn.linear_model	import	LinearRegression
from	sklearn.model_selection	import	train_test_split

Besides	the	imports	of	the	first	three	libraries	that	we	already	know,	we	have	two
more	imports	that	are	new	to	us.	First,	we	import	the	LinearRegression	module.
This	 is	 the	 module	 that	 we	 will	 use	 for	 creating,	 training	 and	 using	 our
regression	model.	Additionally,	we	import	the	train_test_split	module,	which	we
will	use	to	prepare	and	split	our	data.

Our	first	action	is	to	load	the	data	from	the	CSV	file	into	a	Pandas	DataFrame.
We	do	this	with	the	function	read_csv.

data	=	pd.read_csv('student-mat.csv',	sep=';')

It	 is	 important	 that	 we	 change	 our	 separator	 to	 semicolon,	 since	 the	 default
separator	for	CSV	files	is	a	comma	and	our	file	is	separated	by	semicolons.

In	the	next	step,	we	think	about	which	features	(i.e.	columns)	are	relevant	for	us,
and	what	exactly	we	want	to	predict.	A	description	of	all	features	can	be	found
on	the	previously	mentioned	website.	In	this	example,	we	will	limit	ourselves	to

https://archive.ics.uci.edu/ml/datasets/student+performance

the	following	columns:

Age,	Sex,	Studytime,	Absences,	G1,	G2,	G3	(label)

data	=	data[['age',	'sex',	'studytime',

													'absences',	'G1',	'G2',	'G3']]

The	columns	G1,	G2	and	G3	are	the	three	grades	that	the	students	get.	Our	goal
is	 to	 predict	 the	 third	 and	 final	 grade	 by	 looking	 at	 the	 other	 values	 like	 first
grade,	age,	sex	and	so	on.

Summarized	that	means	that	we	only	select	these	columns	from	our	DataFrame,
out	of	the	33	possible.	G3	is	our	label	and	the	rest	are	our	features.	Each	feature
is	an	axis	in	the	coordinate	system	and	each	point	is	a	record,	that	is,	one	row	in
the	table.

But	we	have	a	little	problem	here.	The	sex	feature	is	not	numeric,	but	stored	as	F
(for	 female)	 or	M	(for	male).	 But	 for	 us	 to	work	with	 it	 and	 register	 it	 in	 the
coordinate	system,	we	have	to	convert	it	into	numbers.

data['sex']	=	data['sex'].map({'F':	0,	'M':	1})

We	do	this	by	using	the	map	function.	Here,	we	map	a	dictionary	to	our	feature.
Each	F	becomes	a	zero	and	every	M	becomes	a	one.	Now	we	can	work	with	it.

Finally,	we	define	the	column	of	the	desired	label	as	a	variable	to	make	it	easier
to	work	with.

prediction	=	'G3'

PREPARING	DATA
Our	data	is	now	fully	loaded	and	selected.	However,	in	order	to	use	it	as	training
and	testing	data	for	our	model,	we	have	to	reformat	them.	The	sklearn	models	do
not	accept	Pandas	data	frames,	but	only	NumPy	arrays.	That's	why	we	turn	our
features	into	an	x-array	and	our	label	into	a	y-array.

X	=	np.array(data.drop([prediction],	1))

Y	=	np.array(data[prediction])

The	 method	 np.array	 converts	 the	 selected	 columns	 into	 an	 array.	 The	 drop
function	returns	the	data	frame	without	 the	specified	column.	Our	X	array	now
contains	all	of	our	columns,	except	for	the	final	grade.	The	final	grade	is	in	the	Y
array.

In	order	to	train	and	test	our	model,	we	have	to	split	our	available	data.	The	first
part	is	used	to	get	the	hyperplane	to	fit	our	data	as	well	as	possible.	The	second
part	then	checks	the	accuracy	of	the	prediction,	with	previously	unknown	data.

X_train,	X_test,	Y_train,	Y_test	=	train_test_split(X,	Y,

test_size=0.1)

With	the	function	train_test_split,	we	divide	our	X	and	Y	arrays	into	four	arrays.
The	order	must	be	exactly	as	shown	here.	The	test_size	parameter	specifies	what
percentage	 of	 records	 to	 use	 for	 testing.	 In	 this	 case,	 it	 is	 10%.	This	 is	 also	 a
good	and	recommended	value.	We	do	this	to	test	how	accurate	it	is	with	data	that
our	model	has	never	seen	before.

TRAINING	AND	TESTING
Now	we	can	 start	 training	 and	 testing	our	model.	For	 that,	we	 first	 define	our
model.

model	=	LinearRegression()

model.fit(X_train,	Y_train)

By	using	the	constructor	of	the	LinearRegression	class,	we	create	our	model.	We
then	use	 the	 fit	 function	and	pass	our	 training	data.	Now	our	model	 is	 already
trained.	It	has	now	adjusted	its	hyperplane	so	that	it	fits	all	of	our	values.

In	order	to	test	how	well	our	model	performs,	we	can	use	the	score	method	and
pass	our	testing	data.

accuracy	=	model.score(X_test,	Y_test)

print(accuracy)

Since	 the	 splitting	 of	 training	 and	 test	 data	 is	 always	 random,	 we	 will	 have
slightly	different	results	on	each	run.	An	average	result	could	look	like	this:

0.9130676521162756

Actually,	91	percent	is	a	pretty	high	and	good	accuracy.	Now	that	we	know	that
our	 model	 is	 somewhat	 reliable,	 we	 can	 enter	 new	 data	 and	 predict	 the	 final
grade.

X_new	=	np.array([[18,	1,	3,	40,	15,	16]])

Y_new	=	model.predict(X_new)

print(Y_new)

Here	we	 define	 a	 new	NumPy	 array	 with	 values	 for	 our	 features	 in	 the	 right
order.	Then	we	use	the	predict	method,	to	calculate	the	likely	final	grade	for	our
inputs.

[17.12142363]

In	this	case,	the	final	grade	would	probably	be	17.

VISUALIZING	CORRELATIONS
Since	we	are	dealing	with	high	dimensions	here,	we	can’t	draw	a	graph	of	our
model.	This	is	only	possible	in	two	or	three	dimensions.	However,	what	we	can
visualize	are	relationships	between	individual	features.

plt.scatter(data['studytime'],	data['G3'])

plt.title("Correlation")

plt.xlabel("Study	Time")

plt.ylabel("Final	Grade")

plt.show()

Here	 we	 draw	 a	 scatter	 plot	 with	 the	 function	 scatter,	 which	 shows	 the
relationship	between	the	learning	time	and	the	final	grade.

In	 this	 case,	we	 see	 that	 the	 relationship	 is	 not	 really	 strong.	The	 data	 is	 very
diverse	and	you	cannot	see	a	clear	pattern.

plt.scatter(data['G2'],	data['G3'])

plt.title("Correlation")

plt.xlabel("Second	Grade")

plt.ylabel("Final	Grade")

plt.show()

However,	 if	we	 look	at	 the	correlation	between	 the	 second	grade	and	 the	 final
grade,	we	see	a	much	stronger	correlation.

Here	we	can	clearly	see	that	the	students	with	good	second	grades	are	very	likely
to	end	up	with	a	good	final	grade	as	well.	You	can	play	around	with	the	different
columns	of	this	data	set	if	you	want	to.

	

4	–	CLASSIFICATION
With	regression	we	now	predicted	specific	output-values	for	certain	given	input-
values.	 Sometimes,	 however,	 we	 are	 not	 trying	 to	 predict	 outputs	 but	 to
categorize	or	classify	our	elements.	For	this,	we	use	classification	algorithms.

In	the	figure	above,	we	see	one	specific	kind	of	classification	algorithm,	namely
the	K-Nearest-Neighbor	 classifier.	 Here	 we	 already	 have	 a	 decent	 amount	 of
classified	elements.	We	then	add	a	new	one	(represented	by	the	stars)	and	try	to
predict	its	class	by	looking	at	its	nearest	neighbors.

CLASSIFICATION	ALGORITHMS
There	are	various	different	classification	algorithms	and	they	are	often	used	for
predicting	medical	data	or	other	real	life	use-cases.	For	example,	by	providing	a
large	amount	of	tumor	samples,	we	can	classify	if	a	tumor	is	benign	or	malignant
with	a	pretty	high	certainty.

K-NEAREST-NEIGHBORS
As	 already	mentioned,	 by	 using	 the	K-Nearest-Neighbors	 classifier,	we	 assign
the	class	of	the	new	object,	based	on	its	nearest	neighbors.	The	K	specifies	the
amount	of	neighbors	to	look	at.	For	example,	we	could	say	that	we	only	want	to
look	at	 the	one	neighbor	who	is	nearest	but	we	could	also	say	 that	we	want	 to
factor	in	100	neighbors.

Notice	 that	K	 shouldn’t	 be	 a	multiple	 of	 the	 number	 of	 classes	 since	 it	might
cause	 conflicts	when	we	have	 an	 equal	 amount	 of	 elements	 from	one	 class	 as
from	the	other.

NAIVE-BAYES
The	Naive	Bayes	algorithm	might	be	a	bit	confusing	when	you	encounter	it	the
first	time.	However,	we	are	only	going	to	discuss	the	basics	and	focus	more	on
the	implementation	in	Python	later	on.

Outlook Temperture Humidity Windy Play
Sunny Hot High False No
Sunny Hot High True No
Rainy Mild High False No
Rainy Hot High True No

Overcast Hot Normal True Yes
Sunny Hot Normal True Yes
Sunny Mild High True Yes
Overcast Cold Normal True No

… … … … …

Imagine	 that	 we	 have	 a	 table	 like	 the	 one	 above.	We	 have	 four	 input	 values
(which	we	would	 have	 to	make	 numerical	 of	 course)	 and	 one	 label	 or	 output.
The	two	classes	are	Yes	and	No	and	they	indicate	if	we	are	going	to	play	outside
or	not.

What	 Naive	 Bayes	 now	 does	 is	 to	 write	 down	 all	 the	 probabilities	 for	 the
individual	 scenarios.	 So	 we	 would	 start	 by	 writing	 the	 general	 probability	 of
playing	and	not	playing.	In	this	case,	we	only	play	three	out	of	eight	times	and
thus	our	probability	of	playing	will	be	3/8	and	the	probability	of	not	playing	will
be	5/8.

Also,	out	of	the	five	times	we	had	a	high	humidity	we	only	played	once,	whereas
out	 of	 the	 three	 times	 it	 was	 normal,	we	 played	 twice.	 So	 our	 probability	 for
playing	when	we	have	a	high	humidity	 is	1/5	and	for	playing	when	we	have	a
medium	 humidity	 is	 2/3.	We	 go	 on	 like	 that	 and	 note	 all	 the	 probabilities	we
have	in	our	table.	To	then	get	the	classification	for	a	new	entry,	we	multiply	the
probabilities	together	and	end	up	with	a	prediction.

LOGISTIC	REGRESSION
Another	 popular	 classification	 algorithm	 is	 called	 logistic	 regression.	 Even
though	 the	 name	 says	 regression,	 this	 is	 actually	 a	 classification	 algorithm.	 It
looks	at	probabilities	and	determines	how	likely	it	is	that	a	certain	event	happens
(or	a	certain	class	is	the	right	one),	given	the	input	data.	This	is	done	by	plotting
something	similar	to	a	logistic	growth	curve	and	splitting	the	data	into	two.

Since	we	 are	 not	 using	 a	 line	 (and	 thus	 our	model	 is	 not	 linear),	 we	 are	 also
preventing	mistakes	caused	by	outliers.

DECISION	TREES
With	decision	 tree	 classifiers,	we	 construct	 a	 decision	 tree	 out	 of	 our	 training
data	and	use	it	to	predict	the	classes	of	new	elements.

This	 classification	 algorithm	 requires	 very	 little	 data	 preparation	 and	 it	 is	 also
very	easy	 to	understand	and	visualize.	On	 the	other	hand,	 it	 is	very	easy	 to	be
overfitting	 the	model.	Here,	 the	model	 is	 very	 closely	matched	 to	 the	 training
data	and	thus	has	worse	chances	to	make	a	correct	prediction	on	new	data.

RANDOM	FOREST
The	last	classification	algorithm	of	this	chapter	is	the	random	forest	classifier.	It
is	based	on	decision	trees.	What	it	does	is	creating	a	forest	of	multiple	decision
trees.	To	 classify	 a	 new	object,	 all	 the	 various	 trees	 determine	 a	 class	 and	 the
most	frequent	result	gets	chosen.	This	makes	the	result	more	accurate	and	it	also
prevents	 overfitting.	 It	 is	 also	 more	 suited	 to	 handle	 data	 sets	 with	 higher
dimensions.	On	the	other	hand,	since	the	generation	of	the	forest	is	random,	you
have	very	little	control	over	your	model.

LOADING	DATA
Now	let	us	get	into	the	code.	In	this	example,	we	will	get	our	data	directly	from
the	sklearn	module.	For	the	program	we	need	the	following	imports:

import	numpy	as	np

from	sklearn.model_selection	import	train_test_split

from	sklearn.neighbors	import	KNeighborsClassifier

from	sklearn.datasets	import	load_breast_cancer

At	 the	 last	 import,	we	 import	 a	 dataset	 containing	 data	 on	 breast	 cancer.	Also
notice	that	we	are	only	importing	the	KNeighborsClassifier	for	now.

data	=	load_breast_cancer()

print(data.feature_names)

print(data.target_names)

We	load	the	data	with	the	load_breast_cancer	function	and	get	the	names	of	the
features	and	targets.	Our	features	are	all	parameters	that	should	help	to	determine
the	 label	 or	 the	 target.	 For	 the	 targets,	 we	 have	 two	 options	 in	 this	 dataset:
malignant	and	benign.

PREPARING	DATA
Again,	we	convert	our	data	back	into	NumPy	arrays	and	split	them	into	training
and	test	data.

X	=	np.array(data.data)

Y	=	np.array(data.target)

X_train,	X_test,	Y_train,	Y_test	=

train_test_split(X,Y,test_size=0.1)

The	 data	 attribute	 refers	 to	 our	 features	 and	 the	 target	 attribute	 points	 to	 the
classes	or	labels.	We	again	choose	a	test	size	of	ten	percent.

TRAINING	AND	TESTING
We	start	by	first	defining	our	K-Nearest-Neighbors	classifier	and	then	training	it.

knn	=	KNeighborsClassifier(n_neighbors=5)

knn.fit(X_train,	Y_train)

The	 n_neighbors	 parameter	 specifies	 how	 many	 neighbor	 points	 we	 want	 to
consider.	 In	 this	 case,	 we	 take	 five.	 Then	 we	 test	 our	 model	 again	 for	 its
accuracy.

accuracy	=	knn.score(X_test,	Y_test)

print(accuracy)

We	get	a	pretty	decent	accuracy	for	such	a	complex	task.

0.9649122807017544

THE	BEST	ALGORITHM
Now	let’s	put	all	the	classification	algorithms	that	we’ve	discussed	up	until	now
to	use	and	see	which	one	performs	best.

from	sklearn.neighbors	import	KNeighborsClassifier

from	sklearn.naive_bayes	import	GaussianNB

from	sklearn.linear_model	import	LogisticRegression

from	sklearn.tree	import	DecisionTreeClassifier

from	sklearn.ensemble	import	RandomForestClassifier

Of	 course,	 we	 need	 to	 import	 all	 the	 modules	 first.	 We	 can	 then	 create	 five
different	classifiers	to	train	and	test	them	with	the	exact	same	data.

clf1	=	KNeighborsClassifier(n_neighbors=5)

clf2	=	GaussianNB()

clf3	=	LogisticRegression()

clf4	=	DecisionTreeClassifier()

clf5	=	RandomForestClassifier()

clf1.fit(X_train,	Y_train)

clf2.fit(X_train,	Y_train)

clf3.fit(X_train,	Y_train)

clf4.fit(X_train,	Y_train)

clf5.fit(X_train,	Y_train)

print(clf1.score(X_test,	Y_test))

print(clf2.score(X_test,	Y_test))

print(clf3.score(X_test,	Y_test))

print(clf4.score(X_test,	Y_test))

print(clf5.score(X_test,	Y_test))

When	 you	 run	 this	 program	 a	 couple	 of	 times,	 you	 will	 notice	 that	 we	 can’t
really	say	which	algorithm	is	the	best.	Every	time	we	run	this	script,	we	will	see
different	results,	at	least	for	this	specific	data	set.

PREDICTING	LABELS
Again,	we	 can	 again	make	 predictions	 for	 new,	 unknown	 data.	 The	 chance	 of
success	in	the	classification	is	even	very	high.	We	just	need	to	pass	an	array	of
input	values	and	use	the	predict	function.

X_new	=	np.array([[...]])

Y_new	=	clf.predict(X_new)

Unfortunately,	 visualizing	 the	 data	 is	 not	 possible	 here	 because	 we	 have	 30
features	and	cannot	draw	a	30-dimensional	coordinate	system.

	

5	–	SUPPORT	VECTOR	MACHINES
Now	 things	 get	 mathematically	 a	 bit	 more	 demanding.	 This	 chapter	 is	 about
Support	 Vector	 Machines.	 These	 are	 very	 powerful,	 very	 efficient	 machine
learning	 algorithms	 and	 they	 even	 achieve	 much	 better	 results	 than	 neural
networks	 in	 some	 areas.	We	 are	 again	 dealing	with	 classification	 here	 but	 the
methodology	is	quite	different.

What	we	are	looking	for	is	a	hyperplane	that	distinctly	classifies	our	data	points
and	has	the	maximum	margin	to	all	of	our	points.	We	want	our	model	to	be	as
generalized	as	possible.

In	the	graph	above	the	model	is	very	general	and	the	line	is	the	optimal	function
to	separate	our	data.	We	can	use	an	endless	amount	of	lines	to	separate	the	two
classes	but	we	don’t	want	to	overfit	our	model	so	that	it	only	works	for	the	data
we	already	have.	We	also	want	it	to	work	for	unknown	data.

Here	our	model	also	separates	the	data	we	already	have	perfectly.	But	we’ve	got
a	 new	 red	 data	 point	 here.	When	 we	 just	 look	 at	 this	 with	 our	 intuition	 it	 is
obvious	 that	 this	 point	 belongs	 to	 the	 orange	 triangles.	 However,	 our	 model
classifies	it	as	a	blue	circle	because	it	is	overfitting	our	current	data.

To	 find	 our	 perfect	 line	 we	 are	 using	 so-called	 support	 vectors,	 which	 are
parallel	lines.

We	are	looking	for	the	two	points	that	are	the	farthest	away	from	the	other	class.
In	between	of	those,	we	draw	our	hyperplane	so	that	the	distance	to	both	points

is	 the	 same	 and	 as	 large	 as	 possible.	 The	 two	 parallel	 lines	 are	 the	 support
vectors.	In	between	the	orange	and	the	blue	line	there	are	no	data	points.	This	is
our	margin.	We	want	this	margin	to	be	as	big	as	possible	because	it	makes	our
predictions	more	reliable.

KERNELS
The	 data	 we	 have	 looked	 at	 so	 far	 is	 relatively	 easy	 to	 classify	 because	 it	 is
clearly	separated.	Such	data	can	almost	never	be	found	in	the	real	world.	Also,
we	are	oftentimes	working	in	higher	dimensions	with	many	features.	This	makes
things	more	complicated.

Data	 taken	 from	 the	 real	 world	 often	 looks	 like	 this	 in	 figure.	 Here	 it	 is
impossible	 to	draw	a	straight	 line,	and	even	a	quadratic	or	cubic	function	does
not	help	us	here.	 In	such	cases	we	can	use	so-called	kernels.	These	add	a	new
dimension	to	our	data.	By	doing	that,	we	hope	to	increase	the	complexity	of	the
data	and	possibly	use	a	hyperplane	as	a	separator.

Notice	 that	 the	kernel	 (a.k.a.	 the	additional	dimension)	should	be	derived	from
the	data	that	we	already	have.	We	are	just	making	it	more	abstract.	A	kernel	 is
not	some	random	feature	but	a	combination	of	the	features	we	already	have.

We	can	define	our	kernel	to	be	whatever	we	want.	For	example,	we	could	define
it	 as	 the	 result	 of	 dividing	 feature	 one	 by	 feature	 two.	 But	 that	 wouldn’t	 be
reasonable	or	helpful.	Therefore,	there	are	pre-defined	and	effective	kernels	that
we	can	choose	from.

SOFT	MARGIN
Sometimes,	we	will	 encounter	 statistical	 outliers	 in	 our	 data.	 It	would	be	very
easy	to	draw	a	hyperplane	that	separates	the	data	into	the	classes,	if	it	wasn’t	for
these	outliers.

In	the	figure	above,	you	can	see	such	a	data	set.	We	can	see	that	almost	all	of	the
orange	triangles	are	in	the	top	first	third,	whereas	almost	all	the	blue	dots	are	in
the	bottom	two	thirds.	The	problem	here	is	with	the	outliers.

Now	instead	of	using	a	kernel	or	a	polynomial	function	to	solve	this	problem,	we
can	 define	 a	 so-called	 soft	 margin.	 With	 this,	 we	 allow	 for	 conscious
misclassification	of	outliers	in	order	to	create	a	more	accurate	model.	Caring	too
much	about	these	outliers	would	again	mean	overfitting	the	model.

As	you	can	see,	even	though	we	are	misclassifying	two	data	points	our	model	is
very	accurate.

LOADING	DATA
Now	 that	 we	 understand	 how	 SVMs	work,	 let’s	 get	 into	 the	 coding.	 For	 this
machine	 learning	 algorithm,	we	 are	 going	 to	 once	 again	 use	 the	 breast	 cancer
data	set.	We	will	need	the	following	imports:

from	sklearn.svm	import	SVC

from	sklearn.datasets	import	load_breast_cancer

from	sklearn.neighbors	import	KNeighborsClassifier

from	sklearn.model_selection	import	train_test_split

Besides	the	libraries	we	already	know,	we	are	importing	the	SVC	module.	This	is
the	support	vector	classifier	 that	we	are	going	to	use	as	our	model.	Notice	 that
we	 are	 also	 importing	 the	KNeighborsClassifier	 again,	 since	 we	 are	 going	 to
compare	the	accuracies	at	the	end.

data	=	load_breast_cancer()

X	=	data.data

Y	=	data.target

X_train,	X_test,	Y_train,	Y_test	=	train_test_split(X,	Y,

test_size=0.1,	random_state=30)

This	time	we	use	a	new	parameter	named	random_state.	It	is	a	seed	that	always
produces	the	exact	same	split	of	our	data.	Usually,	the	data	gets	split	randomly
every	time	we	run	the	script.	You	can	use	whatever	number	you	want	here.	Each
number	creates	a	certain	split	which	doesn’t	change	no	matter	how	many	times
we	 run	 the	 script.	We	 do	 this	 in	 order	 to	 be	 able	 to	 objectively	 compare	 the
different	classifiers.

TRAINING	AND	TESTING
So	first	we	define	our	support	vector	classifier	and	start	training	it.

model	=	SVC(kernel='linear',	C=3)

model.fit(X_train,	Y_train)

We	are	using	 two	parameters	when	creating	an	 instance	of	 the	SVC	class.	The
first	one	is	our	kernel	and	the	second	one	is	C	which	is	our	soft	margin.	Here	we
choose	 a	 linear	 kernel	 and	 allow	 for	 three	misclassifications.	Alternatively	we
could	choose	poly,	rbf,	sigmoid,	precomputed	or	a	self-defined	kernel.	Some	are
more	effective	in	certain	situations	but	also	a	lot	more	time-intensive	than	linear
kernels.

accuracy	=	model.score(X_test,	Y_test)

print(accuracy)

When	we	now	score	our	model,	we	will	see	a	very	good	result.

0.9649122807017544

Now	let’s	take	a	look	at	the	KNeighborsClassifier	with	the	same	random_state.

knn	=	KNeighborsClassifier(n_neighbors=5)

knn.fit(X_train,	Y_train)

knn_accuracy	=	knn.score(X_test,	Y_test)

print(knn_accuracy)

The	result	 is	only	a	 tiny	bit	worse	but	when	the	data	becomes	 larger	and	more
complex,	we	might	see	a	quite	bigger	difference.

0.9473684210526315

Play	around	with	different	random_state	parameters.	You	will	see	 that	most	of
the	time	the	SVC	will	perform	better.

6	–	CLUSTERING
Up	until	now,	we	have	only	looked	at	supervised	learning	algorithms.	Clustering
however	is	an	unsupervised	learning	algorithm,	which	means	that	we	don’t	have
the	results	for	our	inputs.	We	can’t	tell	our	model	what	is	right	and	wrong.	It	has
to	find	patterns	on	its	own.

The	 algorithm	 gets	 raw	 data	 and	 tries	 to	 divide	 it	 up	 into	 clusters.	 K-Means-
Clustering	 is	 the	method	 that	we	 are	 going	 to	 use	 here.	 Similar	 to	K-Nearest-
Neighbors,	the	K	states	the	amount	of	clusters	we	want.

HOW	CLUSTERING	WORKS
The	clustering	itself	works	with	so-called	centroids.	These	are	the	points,	which
lie	in	the	center	of	the	respective	clusters.

The	figure	above	illustrates	quite	well	how	clustering	works.	First,	we	randomly
place	 the	 centroids	 somewhere	 in	 our	 data.	This	 is	 the	 initialization.	Here,	we
have	defined	three	clusters,	which	is	why	we	also	have	three	centroids.

Then,	we	look	at	each	individual	data	point	and	assign	the	cluster	of	the	nearest
centroid	to	it.	When	we	have	done	this,	we	continue	by	realigning	our	centroids.
We	place	them	in	the	middle	of	all	points	of	their	cluster.

After	that,	we	again	reassign	the	points	to	the	new	centroids.	We	continue	doing
this	 over	 and	 over	 again	 until	 almost	 nothing	 changes	 anymore.	Then	we	will
hopefully	end	up	with	the	optimal	clusters.	The	result	then	looks	like	this:

Of	course,	you	will	probably	never	find	data	that	looks	like	this	in	the	real	world.
We	 are	 working	 with	 much	more	 complex	 data	 and	much	more	 features	 (i.e.
dimensions).

LOADING	DATA
For	 the	clustering	algorithm,	we	will	use	a	dataset	of	handwritten	digits.	Since
we	are	using	unsupervised	learning,	we	are	not	going	to	classify	the	digits.	We
are	just	going	to	put	them	into	clusters.	The	following	imports	are	necessary:

from	sklearn.cluster	import	KMeans

from	sklearn.preprocessing	import	scale

from	sklearn.datasets	import	load_digits

Besides	the	KMeans	module	and	the	 load_digits	dataset,	we	are	also	importing
the	function	scale	 from	the	preprocessing	 library.	We	will	use	 this	 function	for
preparing	our	data.

digits	=	load_digits()
data	=	scale(digits.data)

After	loading	our	dataset	we	use	the	scale	function,	to	standardize	our	data.	We
are	 dealing	with	 quite	 large	 values	 here	 and	 by	 scaling	 them	down	 to	 smaller
values	we	save	computation	time.

TRAINING	AND	PREDICTING
We	can	now	train	our	model	in	the	same	way	we	trained	the	supervised	learning
models	up	until	now.

clf	=	KMeans(n_clusters=10,	init="random",	n_init=10)
clf.fit(data)

Here	 we	 are	 passing	 three	 parameters.	 The	 first	 one	 (n_clusters)	 defines	 the
amount	of	clusters	we	want	to	have.	Since	we	are	dealing	with	the	digits	0	to	9,
we	create	ten	different	clusters.

With	 the	 init	 parameter	 we	 choose	 the	 way	 of	 initialization.	 Here	 we	 chose
random,	 which	 obviously	 means	 that	 we	 just	 randomly	 place	 the	 centroids
somewhere.	Alternatively,	we	could	use	k-means++	for	intelligent	placing.

The	last	parameter	(n_init)	states	how	many	times	the	algorithm	will	be	run	with
different	centroid	seeds	to	find	the	best	clusters.

Since	we	are	dealing	with	unsupervised	learning	here,	scoring	the	model	is	not
really	possible.	You	won’t	be	able	to	really	score	if	the	model	is	clustering	right
or	 not.	 We	 could	 only	 benchmark	 certain	 statistics	 like	 completeness	 or
homogeneity.

What	we	can	do	however	is	to	predict	which	cluster	a	new	input	belongs	to.

clf.predict([...])

In	this	case,	inputting	data	might	be	quite	hard,	since	we	would	need	to	manually
put	in	all	the	pixels.	You	could	either	try	to	write	a	script	what	converts	images
into	NumPy	arrays	or	you	could	work	with	a	much	simpler	data	set.

Also,	 since	 we	 are	 working	 with	 huge	 dimensions	 here,	 visualization	 is	 quite
hard.	 When	 you	 work	 with	 two-	 or	 three-dimensional	 data,	 you	 can	 use	 the
Matplotlib	knowledge	from	volume	three,	in	order	to	visualize	your	model.

	

	

	

7	–	NEURAL	NETWORKS
As	already	mentioned	in	the	beginning,	neural	networks	are	a	very	complex	and
comprehensive	topic.	Way	too	comprehensive	to	cover	it	in	one	chapter.	For	this
reason,	I	will	probably	write	a	separate	book	about	neural	networks	in	the	future.
However,	 in	 this	 chapter,	we	 are	 going	 to	 cover	 the	 basics	 of	 neural	 networks
and	 we	 will	 build	 a	 fully	 functioning	 model	 that	 classifies	 handwritten	 digits
properly.

STRUCTURE	OF	A	NEURAL	NETWORK
With	neural	networks	we	are	trying	to	build	our	models	based	on	the	structure	of
the	 human	 brain,	 namely	 with	 neurons.	 The	 human	 brain	 is	 composed	 of
multiple	 billions	 of	 neurons	 which	 are	 interconnected.	 Neural	 networks	 are
structures	which	try	to	use	a	similar	principle.

In	the	figure	above,	we	can	see	three	layers.	First	the	input	layer,	at	the	end	the
output	layer	and	in	between	the	hidden	layer.

Obviously	 the	 input	 layer	 is	where	 our	 inputs	 go.	 There	we	 put	 all	 the	 things
which	are	being	entered	or	sensed	by	the	script	or	the	machine.	Basically	these
are	our	features.

We	can	use	neural	networks	 to	classify	data	or	 to	act	on	 inputs	and	 the	output
layer	is	where	we	get	our	results.	These	results	might	be	a	class	or	action	steps.
Maybe	when	we	input	a	high	temperature	into	our	model,	the	output	will	be	the
action	of	cooling	down	the	machine.

All	the	layers	between	input	and	output	are	called	hidden	layers.	They	make	the
model	 more	 abstract	 and	 more	 complex.	 They	 extend	 the	 internal	 logic.	 The
more	hidden	layers	and	neurons	you	add,	the	more	sophisticated	the	model	gets.

Here	 for	 example	we	 have	 two	 hidden	 layers,	 one	with	 four	 neurons	 and	 one
with	 three	 neurons.	Notice	 that	 every	 neuron	 of	 a	 layer	 is	 connected	 to	 every
neuron	of	the	next	layer.

STRUCTURE	OF	A	NEURON
In	 order	 to	 understand	 how	 a	 neural	 network	 works	 in	 general,	 we	 need	 to
understand	how	the	individual	neurons	work.

As	you	can	see,	every	neuron	has	a	certain	 input,	which	is	either	 the	output	of
another	neuron	or	the	input	of	the	first	layer.

This	 number	 (which	 is	 the	 input)	 now	 gets	multiplied	 by	 each	 of	 the	weights
(w1,	 w2,	 w3…).	 After	 that,	 we	 subtract	 the	 bias	 b.	 The	 results	 of	 these
calculations	are	the	outputs	of	the	neuron.

What	I	have	just	explained	and	what	you	can	see	on	the	picture	 is	an	outdated
version	of	a	neuron	called	a	perceptron.	Nowadays,	we	are	using	more	complex
neurons	 like	 the	 sigmoid	 neurons	 which	 use	 more	 sophisticated	 activation
functions	to	calculate	the	outputs.

Now	you	 can	maybe	 imagine	 to	 some	degree	 how	 complex	 these	 systems	 get
when	we	combine	hundreds	of	thousands	of	these	neurons	in	one	network.

HOW	NEURAL	NETWORKS	WORK
But	what	has	all	this	to	do	with	artificial	intelligence	or	machine	learning?	Since
neural	 networks	 are	 structures	 with	 a	 huge	 amount	 of	 parameters	 that	 can	 be
changed,	we	can	use	certain	algorithms	so	 that	 the	model	can	adjust	 itself.	We
input	 our	 data	 and	 the	 desired	 outcome.	 Then	 the	 model	 tries	 to	 adjust	 its
weights	and	biases	so	that	we	can	get	from	our	inputs	to	the	respective	outputs.
Since	we	 are	 dealing	with	multiple	 thousands	 of	 neurons,	we	 can’t	 do	 all	 this
manually.

We	 use	 different	 algorithms	 like	 backpropagation	 and	 gradient	 descent,	 to
optimize	 and	 train	 our	model.	We	 are	 not	 going	 to	 deep	 into	 the	mathematics
here.	Our	focus	will	be	on	the	coding	and	the	implementation.

RECOGNIZING	HANDWRITTEN	DIGITS
Up	 until	 now,	 we	 always	 used	 the	 sklearn	 module	 for	 traditional	 machine
learning.	Because	of	that	all	our	examples	were	quite	similar.	In	this	chapter,	we
will	use	Tensorflow.	We	will	need	the	following	imports:

import	numpy	as	np
import	tensorflow	as	tf
import	matplotlib.pyplot	as	plt

LOADING	DATA
The	handwritten	digits	data	that	we	are	going	to	use	in	this	chapter	is	provided
by	 the	 Tensorflow	 Keras	 datasets.	 It	 is	 the	 so-called	 MNIST	 dataset	 which
contains	70,000	images	of	handwritten	digits	in	the	resolution	of	28x28	pixels.

mnist	=	tf.keras.datasets.mnist
(X_train,	Y_train),	(X_test,	Y_test)	=	mnist.load_data()

The	mnist	 class	 that	we	 import	 here	has	 the	 function	 load_data.	This	 function
returns	two	tuples	with	two	elements	each.	The	first	tuple	contains	our	training
data	 and	 the	 second	one	our	 test	 data.	 In	 the	 training	data	we	can	 find	60,000
images	and	in	the	test	data	10,000.

The	 images	 are	 stored	 in	 the	 form	 of	 NumPy	 arrays	 which	 contain	 the
information	about	 the	 individual	pixels.	Now	we	need	to	normalize	our	data	 to
make	it	easier	to	handle.

X_train	=	tf.keras.utils.normalize(X_train)
X_test	=	tf.keras.utils.normalize(X_test)

By	normalizing	our	data	with	the	normalize	 function	of	the	keras.utils	module,
we	scale	our	data	down.	We	standardize	 it	as	we	have	already	done	 in	 the	 last
chapter.	Notice	that	we	are	only	normalizing	the	X-values	since	it	wouldn’t	make
a	lot	of	sense	to	scale	down	our	results,	which	are	the	digits	from	0	to	9.

BUILDING	THE	NEURAL	NETWORK
We	 have	 prepared	 our	 data	 so	 that	 we	 can	 now	 start	 building	 our	 network.
Tensorflow	 offers	 us	 a	 very	 easy	 way	 to	 construct	 neural	 networks.	 We	 just
create	a	model	and	then	define	the	individual	layers	in	it.

model	=	tf.keras.models.Sequential()

model.add(tf.keras.layers.Flatten(input_shape=(28,28)))

model.add(tf.keras.layers.Dense(units=128,

																										activation='relu'))

model.add(tf.keras.layers.Dense(units=128,

																										activation='relu'))

model.add(tf.keras.layers.Dense(units=10,

																										activation=tf.nn.softmax))

First	 we	 define	 our	 model	 to	 be	 a	 Sequential.	 This	 is	 a	 linear	 type	 of	 model
where	which	is	defined	layer	by	layer.	Once	we	have	defined	the	model,	we	can
use	the	add	function	to	add	as	many	different	layers	as	we	want.

The	 first	 layer	 that	we	are	adding	here	 is	 the	 input	 layer.	 In	our	case,	 this	 is	 a
Flatten	 layer.	 This	 type	 of	 layer	 flattens	 the	 input.	 As	 you	 can	 see,	 we	 have
specified	the	input	shape	of	28x28	(because	of	the	pixels).	What	Flatten	does	is
to	transform	this	shape	into	one	dimension	which	would	here	be	784x1.

All	 the	other	 layers	are	of	 the	class	Dense.	This	 type	of	 layer	 is	 the	basic	one
which	is	connected	to	every	neuron	of	the	neighboring	layers.	We	always	specify
two	 parameters	 here.	 First,	 the	 units	 parameter	 which	 states	 the	 amount	 of
neurons	in	this	layer	and	second	the	activation	which	specifies	which	activation
function	we	are	using.

We	have	two	hidden	layers	with	128	neurons	each.	The	activation	function	that
we	are	using	here	is	called	relu	and	stands	for	rectified	linear	unit.	This	is	a	very
fast	and	a	very	simple	function.	It	basically	just	returns	zero	whenever	our	input
is	negative	and	the	input	itself	whenever	it	is	positive.

f(x)	=	max(0,x)

We	 use	 it	 because	 it	 is	 quite	 simple,	 quite	 powerful,	 very	 fast	 and	 prevents
negative	values.

For	 our	 output	 layer	 we	 only	 use	 ten	 neurons	 (because	 we	 have	 ten	 possible
digits	to	classify)	and	a	different	activation	function.	This	one	is	called	softmax
and	what	it	does	is	it	picks	output	values	so	that	all	of	our	end	results	add	up	to
one.	 Because	 of	 this	 we	 are	 getting	 ten	 different	 probabilities	 for	 each	 digit,
indicating	its	likelihood.

Our	model	 is	now	defined	but	before	we	can	start	working	with	 it,	we	have	 to
compile	it	first.	By	doing	this	we	define	certain	parameters	and	configure	it	for
training	and	testing.

model.compile(optimizer='adam',

								loss='sparse_categorical_crossentropy',

								metrics=['accuracy'])

Here	 we	 define	 three	 things,	 namely	 the	 optimizer,	 the	 loss	 function	 and	 the
metrics	 that	we	 are	 interested	 in.	We	 are	 not	 going	 to	 go	 into	 the	math	 of	 the
adam	optimizer	or	the	sparse_categorical_crossentropy	loss	function.	However,
these	are	very	popular	choices,	especially	for	tasks	like	this	one.

TRAINING	AND	TESTING
The	training	and	testing	of	the	model	is	quite	simple	and	very	similar	to	the	way
we	did	it	with	sklearn	models.

model.fit(X_train,	Y_train,	epochs=3)

loss,	accuracy	=	model.evaluate(X_test,	Y_test)

print('Loss:	',	loss)

print('Accuracy:	',	accuracy)

We	use	 the	 fit	 function	 to	 train	our	model	but	 this	 time	we	have	an	additional
parameter	named	epochs.	The	number	of	epochs	is	the	number	of	times	that	we
feed	 the	 same	data	 into	 the	model	over	 and	over	 again.	By	using	 the	evaluate
function,	we	get	two	values	–	loss	and	accuracy.

The	 accuracy	 is	 the	 percentage	 of	 correctly	 classified	 digits	 and	 therefore	 we
want	to	keep	it	as	high	as	possible.	The	loss	on	the	other	hand	is	not	a	percentage
but	a	summation	of	the	errors	made	that	we	want	to	minimize.

When	we	run	our	test,	we	have	a	pretty	high	accuracy	around	97	percent.

PREDICTING	YOUR	OWN	DIGITS
Now	that	we	have	 trained	such	an	awesome	model,	we	of	course	want	 to	play
with	it.	So	what	we	are	going	to	do	is	to	read	in	our	own	images	of	handwritten
digits	and	predict	them	with	our	model.

For	 this,	you	can	either	use	software	 like	Paint	or	Gimp	and	draw	28x28	pixel
images	or	you	can	scan	digits	from	real	documents	into	your	computer	and	scale
them	 down	 to	 this	 size.	 But	 we	 will	 need	 an	 additional	 library	 here	 that	 we
haven’t	installed	yet.

pip	install	opencv-python

This	library	is	called	OpenCV	and	is	mainly	used	for	computer	vision.	However,
we	 will	 use	 it	 in	 order	 to	 read	 in	 our	 images.	 The	 import	 looks	 a	 little	 bit
different	than	the	installation.

import	cv2	as	cv

Now	the	only	thing	we	need	to	prepare	is	a	28x28	image	of	a	handwritten	digit.
Then	we	can	start	coding.

image	=	cv.imread('digit.png')[:,:,0]

image	=	np.invert(np.array([image]))

We	 use	 the	 imread	 method	 to	 read	 our	 image	 into	 the	 script.	 Because	 of	 the
format	we	remove	the	last	dimension	so	that	everything	matches	with	the	input
necessary	 for	 the	 neural	 network.	 Also,	 we	 need	 to	 convert	 our	 image	 into	 a
NumPy	array	and	invert	it,	since	it	will	confuse	our	model	otherwise.

Finally,	we	just	have	to	use	the	predict	function	of	our	model	on	our	image	and
see	if	it	works.

prediction	=	model.predict(image)

print("Prediction:	{}".format(np.argmax(prediction)))

plt.imshow(image[0])

plt.show()

The	prediction	we	get	is	an	array	of	the	ten	different	probabilities	calculated	by
the	softmax	activation	function.	By	using	the	argmax	method,	we	get	the	index
of	the	highest	probability,	which	at	the	same	time	is	the	respective	digit.

Last	but	not	least,	we	use	Matplotlibs	imshow	function,	to	display	the	image	that
we	just	scanned.	The	result	is	very	satisfying.

Prediction:	7

If	you	are	looking	for	a	little	challenge,	you	can	try	to	do	the	same	thing	by	using
a	Support	Vector	Machine.	Usually	 it	performs	better	 than	a	neural	network	at
this	particular	task.	Otherwise	just	play	around	with	some	digits	and	have	fun.

8	–	OPTIMIZING	MODELS
In	 this	 final	 chapter	 we	 will	 talk	 about	 saving,	 loading	 and	 optimizing	 our
models.	Up	until	now	we	always	loaded	our	data,	trained	and	tested	our	model
and	 then	 used	 it.	 But	 sometimes	 (as	 you	 have	 probably	 noticed	 with	 neural
networks)	 the	 training	 is	 very	 time-intensive	 and	 we	 don’t	 want	 to	 train	 the
model	every	time	we	run	the	script	again.	Training	it	one	time	is	enough.

SERIALIZATION
For	 this	 reason,	 there	 is	 the	concept	of	serialization.	We	use	 it	 to	 save	objects
into	files	during	runtime.	By	doing	this,	we	are	not	only	saving	the	attributes	but
the	whole	state	of	the	object.	Because	of	that,	we	can	load	the	same	object	back
into	a	program	later	and	continue	working	with	it.

To	work	with	serialization	in	Python,	we	need	to	import	the	module	pickle:

import	pickle

SAVING	MODELS
As	 our	 example,	 we	 will	 use	 the	 breast	 cancer	 classification	 script	 that	 uses
SVMs.

import	pickle

from	sklearn.svm	import	SVC

from	sklearn.datasets	import	load_breast_cancer

from	sklearn.model_selection	import	train_test_split

data	=	load_breast_cancer()

X	=	data.data

Y	=	data.target

X_train,	X_test,	Y_train,	Y_test	=	train_test_split(X,	Y,

test_size=0.1)

model	=	SVC(kernel='linear',	C=3)

model.fit(X_train,	Y_train)

Here	we	have	fully	trained	our	model	and	we	could	also	go	ahead	and	score	it
but	we	don’t	want	to	use	it	right	now.	We	want	to	save	it	so	that	we	can	use	it	in
the	future	whenever	we	need	it.

with	open('model.pickle',	'wb')	as	file:

				pickle.dump(model,	file)

We	are	 opening	 a	 file	 stream	 in	 the	write	bytes	mode.	Then	we	 use	 the	dump
function	of	pickle,	to	save	our	model	into	the	specified	file.

LOADING	MODELS
Loading	our	model	 is	now	quite	simple.	We	can	write	a	completely	new	script
and	use	the	model	there.

import	pickle

with	open('model.pickle',	'rb')	as	file:

				model	=	pickle.load(file)

model.predict([...])

Here	we	open	a	file	stream	in	the	read	bytes	mode	and	use	the	load	function	of
the	pickle	module	to	get	the	model	into	our	program.	We	can	then	just	continue
and	work	with	it.

OPTIMIZING	MODELS
We	can	use	this	serialization	principle	in	order	to	train	our	model	in	the	best	way
possible	and	to	optimize	it.

best_accuracy	=	0

for	x	in	range(2500):

				X_train,	X_test,	Y_train,	Y_test	=	train_test_split(X,	Y,	test_size=0.1)

				model	=	SVC(kernel='linear',	C=3)

				model.fit(X_train,	Y_train)

				accuracy	=	model.score(X_test,	Y_test)

				if	accuracy	>	best_accuracy:

								best_accuracy	=	accuracy

								print("Best	accuracy:	",	accuracy)

								with	open('model.pickle',	'wb')	as	file:

												pickle.dump(model,	file)

The	 concept	 is	 quite	 simple.	We	 define	 a	 variable	 best_accuracy	 which	 starts
with	 the	value	zero.	Then	we	run	a	 loop	with	2500	 iterations	and	we	 train	our
model	over	and	over	again	with	a	different	split	for	our	data	and	different	seeds.

When	we	 test	 the	model,	 we	 check	 if	 the	 accuracy	 is	 higher	 than	 the	 highest
measured	accuracy	(starting	with	zero).	If	that	is	the	case,	we	save	the	model	and
update	 the	 best	 accuracy.	 By	 doing	 this,	 we	 find	 the	 model	 with	 the	 highest
accuracy.

Notice	that	we	are	still	only	using	our	training	data	and	our	test	data.	This	means
that	if	we	take	things	too	far,	we	might	overfit	the	model,	especially	with	simple
datasets.	 It	 is	 not	 impossible	 to	 reach	 an	 accuracy	 of	 100%	 but	 the	 question
remains	if	this	accuracy	also	applies	to	unknown	data.

WHAT’S	NEXT?
You’ve	come	quite	far!	You’ve	finally	finished	volume	four	of	this	Python	Bible
series.	 We	 covered	 a	 lot	 of	 machine	 learning	 material,	 from	 basic	 linear
regression,	 over	 support	 vector	 machines	 to	 neural	 networks.	 You	 have	 every
right	to	be	proud	of	yourself	that	you	have	made	it	that	far.

The	skills	you	possess	right	now	are	crucial	 in	today’s	economy.	They	are	rare
and	 very	 valuable.	 You	 are	 not	 only	 capable	 of	 developing	 advanced	 Python
scripts	but	also	of	developing	awesome	and	powerful	machine	learning	models
that	can	be	applied	to	complex	real-life	problems.

I	encourage	you	to	continue	your	journey.	Even	though	you	have	already	learned
quite	a	lot,	we	don’t	stop	here.	There	are	a	lot	of	topics	to	be	covered	yet	and	you
should	 not	 miss	 out	 on	 them.	 Practice	 what	 you’ve	 learned,	 play	 around	 and
experiment!

I	 wish	 you	 a	 lot	 of	 success	 on	 your	 programming	 journey!	 Stay	 tuned	 and
prepare	for	the	next	volume!

Last	but	not	 least,	a	 little	reminder.	This	book	was	written	 for	you,	so	 that	you
can	get	as	much	value	as	possible	and	learn	to	code	effectively.	If	you	find	this
book	 valuable	 or	 you	 think	 you	 learned	 something	 new,	 please	 write	 a	 quick
review	on	Amazon.	It	is	completely	free	and	takes	about	one	minute.	But	it	helps
me	produce	more	high	quality	books,	which	you	can	benefit	from.

Thank	you!

	

	

	

	

	

	

	

THE
PYTHON	BIBLE

VOLUME	FIVE

FINANCE

BY

FLORIAN	DEDOV

	

Copyright	©	2019

	

	

TABLE	OF	CONTENT
Introduction
1	–	Installing	Modules
Pandas
Pandas-Datareader
Matplotlib
MPL-Finance
Numpy
Scikit-Learn
Beautifulsoup4
Installation

2	–	Loading	Financial	Data
Reading	Individual	Values
Saving	and	Loading	Data
CSV
Excel
HTML
JSON
Loading	Data	From	Files

3	–	Graphical	Visualization
Plotting	Diagrams
Plotting	Style
Comparing	Stocks

4	–	Candlestick	Charts
Preparing	The	Data
Plotting	The	Data

The	Candlestick
Plotting	Multiple	Days

5	–	Analysis	and	Statistics
100	Day	Moving	Average
Nan-Values

Visualization
Additional	Key	Statistics
Percentage	Change
High	Low	Percentage

6	–	S&P	500	Index
Webscraping
Extracting	The	Data
Serializing	Tickers
Loading	Share	Prices
Compiling	Data
Visualizing	Data
Correlations
Visualizing	Correlations

7	–	Trendlines
8	–	Predicting	Share	Prices
What’s	Next?
	

	

INTRODUCTION
Who	wants	to	build	long-term	wealth	needs	to	invest	his	capital.	But	nowadays
investing	 isn’t	 done	 in	 the	 same	 way	 as	 it	 was	 a	 couple	 of	 decades	 ago.
Nowadays	 everything	 works	 with	 computers,	 algorithms,	 data	 science	 and
machine	 learning.	We	 already	 know	 that	 Python	 is	 the	 lingua	 franca	 of	 these
fields.

In	the	last	volumes	we	learned	a	lot	about	data	science	and	machine	learning	but
we	 didn’t	 apply	 these	 to	 anything	 from	 the	 real	world	 except	 for	 some	 public
datasets	 for	 demonstration.	This	 book	will	 focus	 on	 applying	data	 science	 and
machine	learning	onto	financial	data.	We	are	going	to	load	stock	data,	visualize
it,	analyze	it	and	also	predict	share	prices.

Notice	however	that	finance	and	investing	always	involves	risk	and	you	should
be	very	careful	with	what	you	are	doing.	I	am	not	taking	any	responsibility	for
what	 you	 are	 doing	with	 your	money.	 In	 this	 book	we	 are	 only	 going	 to	 talk
about	the	financial	analysis	with	Python.

After	 reading	 this	 book	 you	 will	 be	 able	 to	 apply	 the	 advanced	 Python
knowledge	 and	 the	 machine	 learning	 expertise	 that	 you’ve	 already	 got	 to	 the
finance	 industry.	 Take	 time	while	 reading	 this	 book	 and	 code	 along.	You	will
learn	much	more	 that	way.	 I	wish	 you	 a	 lot	 of	 fun	 and	 success	with	 this	 fifth
volume.

Just	one	little	thing	before	we	start.	This	book	was	written	for	you,	so	that	you
can	get	as	much	value	as	possible	and	learn	to	code	effectively.	If	you	find	this
book	 valuable	 or	 you	 think	 you	 have	 learned	 something	 new,	 please	 write	 a
quick	review	on	Amazon.	It	is	completely	free	and	takes	about	one	minute.	But	it
helps	me	produce	more	high	quality	books,	which	you	can	benefit	from.

Thank	you!

	

	

1	–	INSTALLING	MODULES
For	 this	 book	 we	 are	 going	 to	 use	 some	 libraries	 we	 already	 know	 from	 the
previous	volumes	but	also	some	new	ones.	We	will	need	the	following	list:

·									Pandas

·									Pandas-Datareader

·									Matplotlib

·									MPL-Finance

·									NumPy

·									Scikit-Learn

·									Beautifulsoup4
Now	 let’s	 take	 a	 look	 at	 the	 individual	 libraries.	 We	 will	 recap	 the	 ones	 we
already	know	and	also	explain	what	we	will	use	the	new	ones	for.

PANDAS
Pandas	is	a	library	that	we	have	already	used	in	the	past	two	volumes.	It	offers	us
the	powerful	data	structure	named	data	frame.	With	Pandas	we	can	manage	our
data	in	a	similar	way	to	SQL	tables	or	Excel	sheets.

PANDAS-DATAREADER
The	Pandas-Datareader	 is	 an	 additional	 library	which	we	 are	going	 to	use,	 in
order	to	load	financial	data	from	the	internet.	It	 loads	data	from	APIs	into	data
frames.

MATPLOTLIB

Matplotlib	is	a	library	that	we	use	to	visualize	our	data	and	our	models.	We	can
choose	from	a	variety	of	different	plotting	types	and	styles.

MPL-FINANCE
MPL-Finance	is	a	 library	 that	works	 together	with	Matplotlib	and	allows	us	 to
use	 special	 visualization	 for	 finance.	 We	 will	 use	 it	 for	 plotting	 candlestick
charts.

NUMPY
NumPy	is	our	fundamental	module	for	linear	algebra	and	dealing	with	arrays.	It
is	necessary	for	Matplotlib,	Pandas	and	Scikit-Learn.

SCIKIT-LEARN
Scikit-Learn	is	the	module	that	we	have	used	in	the	last	volume	of	The	Python
Bible	series.	It	offers	us	a	lot	of	different	classic	and	traditional	machine	learning
models.	We	 are	 going	 to	 apply	 these	models	 to	 our	 financial	 data	 in	 order	 to
make	predictions.

BEAUTIFULSOUP4
Last	but	not	 least,	we	are	using	a	new	module	with	 the	name	beautifulsoup4.	I
admit	 that	 this	 is	 a	 pretty	 stupid	 and	 misleading	 name	 but	 this	 library	 is	 a
powerful	web	scraping	library.	We	are	going	to	use	it	in	order	to	extract	financial
data	out	of	HTML	files.

INSTALLATION
These	are	the	installation	commands	(with	pip)	for	the	necessary	libraries:

pip	install	pandas

pip	install	pandas-datareader

pip	install	matplotlib

pip	install	mpl-finance

pip	install	scikit-learn

pip	install	beautifulsoup4

	

2	–	LOADING	FINANCIAL	DATA
Now	that	we	have	installed	the	necessary	libraries	we	are	going	to	start	by	taking
a	 look	at	how	 to	 load	 financial	data	 into	our	 script.	For	 this,	we	will	 need	 the
following	imports:

from	pandas_datareader	import	data	as	web
import	datetime	as	dt

We	 are	 importing	 the	data	module	 of	 the	 pandas_datareader	 library	 with	 the
alias	web.	This	module	will	be	used	to	get	our	data	from	the	Yahoo	Finance	API.
Also,	we	are	importing	the	datetime	module	so	that	we	can	specify	time	frames.
To	do	that,	we	use	the	datetime	function.

start	=	dt.datetime(2017,1,1)
end	=	dt.datetime(2019,1,1)

Here	we	have	defined	a	start	date	and	an	end	date.	This	is	our	timeframe.	When
we	load	the	data,	we	want	all	entries	from	the	1st	of	January	2017	up	until	the	1st
of	January	2019.	Alternatively,	we	could	also	use	the	datetime.now	function,	to
specify	the	present	as	the	end	date.

end	=	dt.datetime.now()

The	next	step	is	to	define	a	data	frame	and	to	load	the	financial	data	into	it.	For
this	we	need	to	know	four	things.	First:	The	ticker	symbol	of	the	stock	we	want
to	analyze.	Second:	The	name	of	the	API	we	want	to	receive	the	data	from.	And
last:	The	start	and	end	date.

df	=	web.DataReader('AAPL',	'yahoo',	start,	end)

We	are	creating	an	instance	of	DataReader	and	we	pass	the	four	parameters.	In
this	case,	we	are	using	the	Yahoo	Finance	API,	in	order	to	get	the	financial	data
of	the	company	Apple	(AAPL)	from	start	date	to	end	date.

To	now	view	our	downloaded	data,	we	can	print	a	couple	of	entries.

																		High									Low		...						Volume			Adj	Close

Date																																...																							

2017-01-03		116.330002		114.760002		...		28781900.0		111.286987

2017-01-04		116.510002		115.750000		...		21118100.0		111.162437

2017-01-05		116.860001		115.809998		...		22193600.0		111.727715

2017-01-06		118.160004		116.470001		...		31751900.0		112.973305

2017-01-09		119.430000		117.940002		...		33561900.0		114.008080

Warning:	Sometimes	the	Yahoo	Finance	API	won’t	respond	and	you	will	get	an
exception.	 In	 this	 case,	 your	 code	 is	 not	 the	 problem	 and	 you	 can	 solve	 the
problem	by	waiting	a	bit	and	trying	again.

As	you	can	see,	we	now	have	a	data	frame	with	all	the	entries	from	start	date	to
end	date.	Notice	 that	we	have	multiple	 columns	here	 and	not	 only	 the	 closing
share	 price	 of	 the	 respective	 day.	 Let’s	 take	 a	 quick	 look	 at	 the	 individual
columns	and	their	meaning.

Open:	That’s	the	share	price	the	stock	had	when	the	markets	opened	that	day.

Close:	That’s	the	share	price	the	stock	had	when	the	markets	closed	that	day.

High:	That’s	the	highest	share	price	that	the	stock	had	that	day.

Low:	That’s	the	lowest	share	price	that	the	stock	had	that	day.

Volume:	Amount	of	shares	that	changed	hands	that	day.

Adj.	 Close:	 The	 adjusted	 close	 value	 that	 takes	 things	 like	 stock	 splits	 into
consideration.

READING	INDIVIDUAL	VALUES
Since	 our	 data	 is	 stored	 in	 a	 Pandas	 data	 frame,	 we	 can	 use	 the	 indexing	we
already	 know,	 to	 get	 individual	 values.	 For	 example,	 we	 could	 only	 print	 the
closing	values.

print(df['Close'])

Also,	we	can	go	ahead	and	print	the	closing	value	of	a	specific	date	that	we	are
interested	in.	This	is	possible	because	the	date	is	our	index	column.

print(df['Close']['2017-02-14'])

But	we	could	also	use	simple	indexing	to	access	certain	positions.

print(df['Close'][5])

Here	we	would	print	the	closing	price	of	the	fifth	entry.

SAVING	AND	LOADING	DATA
With	Pandas	we	can	now	save	the	financial	data	into	a	file	so	that	we	don’t	have
to	request	it	from	the	API	every	time	we	run	our	script.	This	just	costs	time	and
resources.	For	this	we	can	use	a	bunch	of	different	formats.

CSV
As	we	have	already	done	in	the	previous	volumes,	we	can	save	our	Pandas	data
frame	into	a	CSV	file.

df.to_csv('apple.csv')

This	data	can	 then	be	viewed	by	using	an	ordinary	 text	editor	or	a	spreadsheet
application.	 The	 default	 setting	 is	 to	 separate	 the	 entries	 by	 commas.	We	 can
change	that	by	specifying	a	separator	in	case	our	values	contain	commas.

df.to_csv('apple.csv',	sep=";")

Here	we	would	separate	our	data	by	semi-colons.

EXCEL
If	we	want	to	put	our	data	into	an	Excel	sheet,	we	can	use	the	to_excel	function.

df.to_excel('apple.xlsx')

When	we	open	that	file	in	Excel,	it	looks	like	this:

We	can	now	analyze	it	further	in	the	spreadsheet	application.

HTML
If	for	some	reason	we	need	our	data	to	be	shown	in	browsers,	we	can	also	export
them	into	HTML	files.

df.to_html('apple.html')

The	result	is	a	simple	HTML	table.

JSON
Finally,	if	we	are	working	with	JavaScript	or	just	want	to	save	the	data	into	that
format,	we	can	use	JSON.	For	this,	we	use	the	to_json	function.

df.to_json('apple.json')

LOADING	DATA	FROM	FILES
For	 every	 file	 format	 we	 also	 have	 a	 respective	 loading	 or	 reading	 function.
Sometimes	we	will	find	data	in	HTML	format,	sometimes	in	JSON	format.	With
pandas	we	can	read	in	the	data	easily.

df	=	pd.read_csv("apple.csv",	sep=";")
df	=	pd.read_excel("apple.xlsx")
df	=	pd.read_html("apple.html")
df	=	pd.read_json("apple.json")

	

3	–	GRAPHICAL	VISUALIZATION
Even	though	tables	are	nice	and	useful,	we	want	to	visualize	our	financial	data,
in	 order	 to	 get	 a	 better	 overview.	We	want	 to	 look	 at	 the	 development	 of	 the
share	price.	For	this,	we	will	need	Matplotlib.

import	matplotlib.pyplot	as	plt

PLOTTING	DIAGRAMS
Actually	 plotting	 our	 share	 price	 curve	 with	 Pandas	 and	 Matplotlib	 is	 very
simple.	Since	Pandas	builds	on	top	of	Matplotlib,	we	can	just	select	the	column
we	are	interested	in	and	apply	the	plot	method.

df['Adj	Close'].plot()
plt.show()

The	results	are	amazing.	Since	the	date	is	the	index	of	our	data	frame,	Matplotlib
uses	it	for	the	x-axis.	The	y-values	are	then	our	adjusted	close	values.

As	you	can	see,	with	just	two	lines	of	code	we	plotted	the	two-year	development
of	the	Apple	share	price.

PLOTTING	STYLE
Now	we	 can	 improve	 the	 style	 of	 our	 plot.	 For	 this,	 let’s	 start	 by	 choosing	 a
style.	 At	 the	 following	 page	 you	 can	 take	 a	 look	 at	 the	 different	 pre-defined
Matplotlib	styles.

Styles:	https://bit.ly/2OSCTdm

But	 before	 we	 can	 apply	 one,	 we	 will	 need	 to	 import	 the	 style	module	 from
Matplotlib.

from	matplotlib	import	style

For	our	case,	ggplot	 is	probably	 the	best	 suited	style.	 It	has	a	grid,	nice	colors
and	it	looks	smooth.

style.use('ggplot')

The	next	thing	is	our	labeling.	Whereas	our	x-axis	is	already	labeled,	our	y-axis
isn’t	and	we	are	also	missing	a	title.

plt.ylabel('Adjusted	Close')
plt.title('AAPL	Share	Price')

Let’s	take	a	look	at	our	graph	now.

This	 looks	much	 better.	 It	 is	 now	way	 easier	 to	 understand	what	 these	 values
mean.	However,	there	is	a	much	better	way	to	plot	financial	data.	But	this	will	be
the	topic	of	the	next	chapter.

https://bit.ly/2OSCTdm

COMPARING	STOCKS
As	we	already	know,	we	can	plot	multiple	graphs	 into	one	 figure.	We	can	use
this	in	order	to	compare	the	share	price	development	of	two	companies.

style.use('ggplot')

start	=	dt.datetime(2017,1,1)
end	=	dt.datetime(2019,1,1)

apple	=	web.DataReader('AAPL',	'yahoo',	start,	end)
facebook	=	web.DataReader('FB',	'yahoo',	start,	end)

apple['Adj	Close'].plot(label="AAPL")
facebook['Adj	Close'].plot(label="FB")
plt.ylabel('Adjusted	Close')
plt.title('Share	Price')
plt.legend(loc='upper	left')
plt.show()

Here	we	 load	 the	 financial	 data	 of	Apple	 into	 one	 data	 frame	 and	 the	 data	 of
Facebook	 into	 another	 one.	 We	 then	 plot	 both	 curves.	 Notice	 that	 we	 are
specifying	a	label,	which	is	important	for	the	legend	that	helps	us	to	distinguish
between	 the	 two	companies.	By	using	 the	 legend	 function,	we	can	activate	 the
legend	and	specify	its	location.	The	result	looks	like	this:

It	looks	pretty	good.	The	problem	here	is	that	this	only	works	because	the	share
prices	 are	 quite	 similar	 here.	 If	 we	 would	 compare	 Apple	 to	 a	 company	 like
Amazon	or	Alphabet,	which	shares	cost	around	1000	 to	2000	dollars	each,	 the

graph	 wouldn’t	 give	 us	 much	 information.	 In	 that	 case,	 we	 could	 work	 with
subplots.

apple	=	web.DataReader('AAPL',	'yahoo',	start,	end)
amazon	=	web.DataReader('AMZN',	'yahoo',	start,	end)

plt.subplot(211)
apple['Adj	Close'].plot(color='blue')
plt.ylabel('Adjusted	Close')
plt.title('AAPL	Share	Price')

plt.subplot(212)
amazon['Adj	Close'].plot()
plt.ylabel('Adjusted	Close')
plt.title('AMZN	Share	Price')

plt.tight_layout()
plt.show()

What	we	do	here	 is	creating	 two	subplots	below	each	other	 instead	of	plotting
the	two	graphs	into	one	plot.	We	define	a	subplot	for	Apple	and	one	for	Amazon.
Then	we	 label	 them	 and	 at	 the	 end	we	 use	 the	 tight_layout	 function,	 to	make
things	prettier.	This	is	what	we	end	up	with:

Now	even	 though	 the	 share	 prices	 are	 radically	 different,	we	 can	 compare	 the
development	of	the	two	stocks	by	looking	at	the	two	graphs.

	

	

	

4	–	CANDLESTICK	CHARTS
The	best	way	to	visualize	stock	data	is	to	use	so-called	candlestick	charts.	This
type	of	chart	gives	us	information	about	four	different	values	at	the	same	time,
namely	 the	 high,	 the	 low,	 the	 open	 and	 the	 close	 value.	 In	 order	 to	 plot
candlestick	charts,	we	will	need	to	import	a	function	of	the	MPL-Finance	library.

from	mpl_finance	import	candlestick_ohlc

We	are	 importing	 the	candlestick_ohlc	 function.	Notice	 that	 there	also	exists	 a
candlestick_ochl	function	that	takes	in	the	data	in	a	different	order.

Also,	for	our	candlestick	chart,	we	will	need	a	different	date	format	provided	by
Matplotlib.	Therefore,	we	need	to	import	the	respective	module	as	well.	We	give
it	the	alias	mdates.

import	matplotlib.dates	as	mdates

PREPARING	THE	DATA
Now	in	order	 to	plot	our	stock	data,	we	need	 to	select	 the	four	columns	 in	 the
right	order.

apple	=	apple[['Open','High','Low','Close']]

Now,	we	have	our	 columns	 in	 the	 right	order	but	 there	 is	 still	 a	problem.	Our
date	doesn’t	have	the	right	format	and	since	it	is	the	index,	we	cannot	manipulate
it.	 Therefore,	 we	 need	 to	 reset	 the	 index	 and	 then	 convert	 our	 datetime	 to	 a
number.

apple.reset_index(inplace=True)
apple['Date']	=	apple['Date'].map(mdates.date2num)

For	 this,	we	 use	 the	 reset_index	 function	 so	 that	we	 can	manipulate	 our	Date
column.	Notice	that	we	are	using	the	inplace	parameter	to	replace	the	data	frame
by	 the	 new	 one.	 After	 that,	 we	 map	 the	 date2num	 function	 of	 the
matplotlib.dates	 module	 on	 all	 of	 our	 values.	 That	 converts	 our	 dates	 into
numbers	that	we	can	work	with.

PLOTTING	THE	DATA
Now	we	can	start	plotting	our	graph.	For	this,	we	just	define	a	subplot	(because
we	need	to	pass	one	to	our	function)	and	call	our	candlestick_ohlc	function.

ax	=	plt.subplot()
candlestick_ohlc(ax,	apple.values,	
																	width=5,
																	colordown='r',	colorup='g')
ax.grid()
ax.xaxis_date()
plt.show()

Besides	the	subplot,	we	are	also	passing	a	couple	of	other	parameters	here.	First
of	 all,	 our	 four	 financial	 values.	 We	 access	 these	 by	 referring	 to	 the	 values
attribute	of	our	data	 frame.	Additionally,	we	define	 the	width	of	 the	 individual
candlesticks	and	 the	colors	 for	upward	movements	and	downward	movements.
Last	but	not	least,	we	turn	on	the	grid	and	we	define	the	x-axis	as	the	date	axis
and	our	numerical	values	get	displayed	as	dates	again.	This	is	our	result:

This	might	 look	 a	 bit	 confusing	 right	 now	 but	 don’t	 worry	 we	will	 take	 care
about	that	in	a	minute.

THE	CANDLESTICK
First	of	all,	we	need	to	understand	what	a	candlestick	is	and	how	it	works.

As	you	can	see,	we	have	two	types	of	candlesticks	–	the	green	one	and	the	red
one.	 If	 the	 share	price	went	up	on	 that	particular	day,	 the	candlestick	 is	green.
Otherwise	it	is	red.

One	 candlestick	 gives	 us	 the	 information	 about	 all	 four	 values	 of	 one	 specific
day.	The	highest	point	of	the	stick	is	the	high	and	the	lowest	point	is	the	low	of
that	day.	The	colored	area	is	the	difference	between	the	open	and	the	close	price.
If	 the	 stick	 is	 green,	 the	 close	 value	 is	 at	 the	 top	 and	 the	 open	 value	 at	 the
bottom,	since	the	close	must	be	higher	than	the	open.	If	it	is	red,	it	is	the	other
way	around.

PLOTTING	MULTIPLE	DAYS
Another	thing	that	we	can	do	with	this	kind	of	plot	is	to	plot	the	open,	high,	low
and	 close	 of	multiple	 days.	 For	 this,	 we	 can	 take	 one	 value	 like	 the	 adjusted
close	and	calculate	the	four	values	for	a	specific	amount	of	time.

apple	=	web.DataReader('AAPL',	'yahoo',	start,	end)
apple_ohlc	=	apple['Adj	Close'].resample('10D').ohlc()
	
apple_ohlc.reset_index(inplace=True)
apple_ohlc['Date']	=	apple_ohlc['Date'].map(mdates.date2num)

By	using	the	resample	function	we	stack	the	data	in	a	specific	time	interval.	In
this	case,	we	take	ten	days	(10D).	At	the	end	we	apply	the	ohlc	function,	to	get
the	four	values	out	of	our	entries.	Then	we	again	have	to	convert	our	date	into	a

numerical	format.

Additionally,	we	are	going	to	create	a	second	subplot	 this	time,	which	displays
the	volume	for	these	days.

apple_volume	=	apple['Volume'].resample('10D').sum()

This	 time	however	we	are	using	 the	sum	 function,	 since	we	don’t	want	 to	plot
another	candlestick	chart	but	only	the	volume	of	these	ten	days.

Now	we	 need	 to	 define	 the	 two	 subplots.	 For	 this,	 we	 are	 using	 the	 function
subplot2grid	which	makes	it	easier	to	align	the	plots.

ax1	=	plt.subplot2grid((6,1),(0,0),
																							rowspan=4,	colspan=1)
ax2	=	plt.subplot2grid((6,1),(4,0),
																							rowspan=2,	colspan=1,
																							sharex=ax1)
ax1.xaxis_date()

The	first	tuple	here	(6,1)	states	the	amount	of	rows	and	columns	of	the	window.
Here	we	 define	 six	 rows	 and	 one	 column.	 The	 second	 tuple	 defines	 at	 which
point	the	subplots	start.	The	first	one	takes	row	one	and	column	one,	whereas	the
second	 one	 takes	 row	 four	 and	 column	 one.	 The	 parameters	 rowspan	 and
colspan	define	across	how	many	rows	and	columns	our	plots	shall	stretch.	Also
notice	that	we	define	that	both	subplots	share	the	x-axis.

candlestick_ohlc(ax1,	apple_ohlc.values,	width=5,
																	colorup='g',	colordown='r')
ax2.fill_between(apple_volume.index.map(mdates.date2num),	
																	apple_volume.values)
	
plt.tight_layout()
plt.show()

We	again	just	use	the	same	function	to	plot	our	candlestick	charts	but	this	time
we	use	our	ten	day	values.	Also,	we	plot	our	volumes	on	the	second	subplot	by
using	 the	 fill_between	 function.	 This	 creates	 a	 type	 of	 chart	 that	 fills	 the	 area
below	the	graph.	Our	x-values	here	are	the	converted	dates	and	our	y-values	are
the	volumes.	This	is	the	result:

Since	we	only	have	one	 tenth	 the	amount	of	values	now,	 things	are	way	more
readable.	We	can	see	how	the	share	price	develops	in	a	ten	day	interval.

	

	

	

	

5	–	ANALYSIS	AND	STATISTICS
Now	let’s	get	a	little	bit	deeper	into	the	numbers	here	and	away	from	the	visual.
From	our	data	we	can	derive	some	statistical	values	that	will	help	us	to	analyze
it.

100	DAY	MOVING	AVERAGE
For	 this	 chapter,	we	are	going	 to	derive	 the	100	day	moving	average.	 It	 is	 the
arithmetic	mean	of	all	the	values	of	the	past	100	days.	Of	course	this	is	not	the
only	key	statistic	that	we	can	derive,	but	it	is	the	one	we	are	going	to	use	now.
You	can	play	around	with	other	functions	as	well.

What	we	are	going	to	do	with	this	value	is	to	include	it	into	our	data	frame	and
to	compare	it	with	the	share	price	of	that	day.

For	 this,	 we	 will	 first	 need	 to	 create	 a	 new	 column.	 Pandas	 does	 this
automatically	 when	 we	 assign	 values	 to	 a	 column	 name.	 This	 means	 that	 we
don’t	have	to	explicitly	define	that	we	are	creating	a	new	column.

apple['100d_ma']	=	apple['Adj	Close'].rolling(window	=	100,	min_periods	=	0).mean()

Here	we	define	a	new	column	with	the	name	100d_ma.	We	now	fill	this	column
with	the	mean	values	of	every	100	entries.	The	rolling	function	stacks	a	specific
amount	of	entries,	in	order	to	make	a	statistical	calculation	possible.	The	window
parameter	is	the	one	which	defines	how	many	entries	we	are	going	to	stack.	But
there	is	also	the	min_periods	parameter.	This	one	defines	how	many	entries	we
need	to	have	as	a	minimum	in	order	to	perform	the	calculation.	This	is	relevant
because	 the	 first	 entries	 of	 our	 data	 frame	 won’t	 have	 a	 hundred	 previous	 to
them.	By	setting	this	value	to	zero	we	start	the	calculations	already	with	the	first
number,	even	if	there	is	not	a	single	previous	value.	This	has	the	effect	that	the
first	value	will	be	just	the	first	number,	the	second	one	will	be	the	mean	of	the
first	two	numbers	and	so	on,	until	we	get	to	a	hundred	values.

By	using	the	mean	 function,	we	are	obviously	calculating	the	arithmetic	mean.
However,	we	can	use	a	bunch	of	other	functions	like	max,	min	or	median	if	we

like	to.

NAN-VALUES
In	 case	we	 choose	 another	 value	 than	 zero	 for	 our	min_periods	 parameter,	we
will	 end	 up	with	 a	 couple	 of	NaN-Values.	These	are	not	 a	 number	 values	 and
they	are	useless.	Therefore,	we	would	want	to	delete	the	entries	that	have	such
values.

apple.dropna(inplace=True)

We	do	this	by	using	the	dropna	function.	If	we	would	have	had	any	entries	with
NaN	values	 in	any	column,	 they	would	now	have	been	deleted.	We	can	 take	a
quick	look	at	our	data	frame	columns.

print(apple.head())

																		High									Low		...			Adj	Close					100d_ma

Date																																...																							

2017-01-03		116.330002		114.760002		...		111.286987		111.286987

2017-01-04		116.510002		115.750000		...		111.162437		111.224712

2017-01-05		116.860001		115.809998		...		111.727715		111.392380

2017-01-06		118.160004		116.470001		...		112.973305		111.787611

2017-01-09		119.430000		117.940002		...		114.008080		112.231705

VISUALIZATION
To	make	 this	 statistic	more	 readable	 and	 in	 order	 to	 compare	 it	 to	 our	 actual
share	prices,	we	are	going	to	visualize	them.	Additionally,	we	are	also	going	to
plot	our	volumes	again.	This	means	that	we	will	end	up	with	an	overview	of	the
share	price	compared	 to	our	100	day	moving	average	and	of	how	many	shares
changed	their	owners.	For	this,	we	will	again	use	two	subplots.

ax1	=	plt.subplot2grid((6,1),(0,0),
																							rowspan=4,	colspan=1)
ax2	=	plt.subplot2grid((6,1),(4,0),
																							rowspan=2,	colspan=1,
																							sharex=ax1)

Again	we	use	the	same	proportions	here.	Our	main	plot	will	take	up	two	thirds	of

the	window	and	our	volume	plot	will	take	up	one	third.	Now	we	just	need	to	plot
the	values	on	the	axes.

ax1.plot(apple.index,	apple['Adj	Close'])
ax1.plot(apple.index,	apple['100d_ma'])
ax2.fill_between(apple.index,	apple['Volume'])

plt.tight_layout()
plt.show()

The	result	is	a	very	nice	overview	over	price,	volume	and	our	statistical	value.

ADDITIONAL	KEY	STATISTICS
Of	 course	 there	 are	 a	 lot	 of	 other	 statistical	 values	 that	we	 can	 calculate.	This
chapter	 was	 focusing	 on	 the	 way	 of	 implementation.	 However,	 let	 us	 take	 a
quick	look	at	two	other	statistical	values.

PERCENTAGE	CHANGE
One	value	that	we	can	calculate	is	the	percentage	change	of	that	day.	This	means
by	how	many	percent	the	share	price	increased	or	decreased	that	day.

apple['PCT_Change']	=	(apple['Close']	-	apple['Open'])	/	apple['Open']

The	 calculation	 is	 quite	 simple.	 We	 create	 a	 new	 column	 with	 the	 name
PCT_Change	 and	 the	values	are	 just	 the	difference	of	 the	closing	and	opening
values	 divided	 by	 the	 opening	 values.	 Since	 the	 open	 value	 is	 the	 beginning
value	of	that	day,	we	take	it	as	a	basis.	We	could	also	multiply	the	result	by	100
to	get	the	actual	percentage.

HIGH	LOW	PERCENTAGE
Another	 interesting	 statistic	 is	 the	high	 low	percentage.	Here	we	 just	 calculate
the	 difference	 between	 the	 highest	 and	 the	 lowest	 value	 and	 divide	 it	 by	 the
closing	value.	By	doing	that	we	can	get	a	feeling	of	how	volatile	the	stock	is.

apple['HL_PCT']	=	(apple['High']	-	apple['Low'])	/	apple['Close']

These	 statistical	 values	 can	 be	 used	with	many	 others	 to	 get	 a	 lot	 of	 valuable
information	about	specific	stocks.	This	improves	the	decision	making.

6	–	S&P	500	INDEX
When	 we	 talk	 about	 how	 the	 markets	 are	 doing,	 we	 are	 usually	 looking	 at
indices.	One	of	the	most	important	indices	is	the	so-called	S&P	500	index	which
measures	 the	stock	performance	of	 the	500	 largest	companies	 listed	on	 the	US
stock	exchanges.

Up	until	now,	we	always	downloaded	financial	data	 for	 individual	stocks	from
the	internet.	But	when	we	are	doing	larger	calculations	many	times,	it	would	be
preferable	to	not	need	to	bother	the	Yahoo	Finance	API	every	time.

For	this	reason,	we	can	download	the	stock	data	of	the	500	companies	which	are
represented	in	the	S&P	500	right	now	and	save	them	into	files.	We	can	then	use
these	files	instead	of	making	requests	to	the	API	all	the	time.

WEBSCRAPING
The	 Yahoo	 Finance	 API	 doesn’t	 offer	 any	 possibilities	 to	 request	 all	 the
companies	of	the	S&P	500	index.	Therefore,	we	will	need	to	get	the	information
about	which	companies	are	represented	from	somewhere	else.	And	for	this,	we
will	need	something	called	webscraping.

With	 webscraping	 we	 are	 reading	 the	 HTML	 files	 of	 a	 website,	 in	 order	 to
extract	some	specific	information	we	are	looking	for.	In	this	case,	we	are	going
to	 use	 the	 Wikipedia	 page	 of	 the	 list	 of	 S&P	 500	 companies	 to	 get	 the
information	we	need.

Link:	https://en.wikipedia.org/wiki/List_of_S%26P_500_companies

On	 this	 page,	 we	 can	 find	 a	 table	 with	 all	 the	 500	 companies	 and	 different
information	about	them.	We	can	see	the	name	of	the	company,	the	industry,	the
headquarters	location	and	some	more	things.	What	we	need	however	is	the	ticker
symbol,	which	we	can	find	in	the	first	column	(make	sure	you	take	a	look	at	the
page	yourself,	since	the	structure	of	the	table	might	change	from	time	to	time).

To	now	understand	how	we	can	extract	the	information	out	of	this	website,	we
need	to	look	at	the	HTML	code.	For	this,	we	go	into	our	browser,	make	a	right

https://en.wikipedia.org/wiki/List_of_S%26P_500_companies

click	and	view	the	source	code	of	the	page.

There	we	 can	 see	 a	 table	with	 table	 rows	 (tr)	 and	within	 these	 rows	we	 have
table	data	(td).	So	we	can	find	a	way	to	filter	the	elements.

EXTRACTING	THE	DATA
For	webscraping	with	Python	we	will	need	the	library	beautifulsoup4,	which	we
installed	in	the	beginning	of	 this	book.	Also,	we	will	need	the	library	requests,
which	is	built-in	into	Core-Python.	We	will	use	requests	to	make	HTML	requests
and	beautifulsoup4	to	extract	data	out	of	the	responses.

import	bs4	as	bs
import	requests

First	 we	 need	 to	 get	 the	 HTML	 code	 into	 our	 program.	 For	 this,	 we	make	 a
request.

link	=	'https://en.wikipedia.org/wiki/List_of_S%26P_500_companies'
response	=	requests.get(link)

We	use	the	get	function	to	make	a	HTTP	request	to	the	website	and	it	returns	a
response	which	we	save	into	a	variable.

Now	 we	 need	 to	 create	 a	 soup	 object,	 in	 order	 to	 parse	 the	 content	 of	 the
response.

soup	=	bs.BeautifulSoup(response.text,	'lxml')

We	use	 the	BeautifulSoup	 constructor	 to	create	a	new	soup	object.	As	 the	 first
parameter	 we	 pass	 the	 text	 attribute	 of	 the	 response.	 The	 second	 parameter
defines	the	parser	that	we	choose.	In	this	case,	we	pick	lxml	which	is	the	default
choice.	However,	 it	may	 be	 the	 case	 that	 it	 is	 not	 installed	 on	 your	 computer.

Then	you	just	need	to	install	it	using	pip	as	always.

When	we	have	done	that,	we	define	a	table	object	which	filters	the	HTML	file
and	returns	only	the	table	we	are	looking	for.

table	=	soup.find('table',	{'class':	'wikitable	sortable'})

We	use	 the	 find	 function	 of	 our	 soup	 object	 to	 find	 a	 table	element.	Also,	we
pass	a	dictionary	with	the	requirements.	In	this	case,	we	want	a	table,	which	has
the	classes	wikitable	and	sortable.

If	you	want	to	exclude	other	tables	on	this	side,	you	can	also	define	the	id	if	you
want.

What	we	now	do	 is	creating	an	empty	 list	 for	our	 ticker	symbols.	We	 then	 fill
this	list	with	the	entries	from	the	table.

for	row	in	table.findAll('tr')[1:]:
				ticker	=	row.findAll('td')[0].text[:-1]
				tickers.append(ticker)

By	using	the	findAll	method	we	get	all	elements	which	are	a	table	row.	We	then
select	every	element	except	for	the	first	one,	since	it	is	the	header.	Then	we	use
the	 same	 function	 to	 get	 all	 the	 table	 data	 elements	 of	 the	 first	 column	 (index
zero).	Notice	that	we	are	using	the	[:-1]	notation	here	to	cut	of	the	last	two	letters,
since	they	contain	a	new	line	escape	character.	Finally,	we	save	our	tickers	into
our	array.

To	make	our	 script	more	 readable	 and	modular	 let’s	put	 all	of	our	 code	 into	 a
function.

def	load_sp500_tickers():

				link	=	'https://en.wikipedia.org/wiki/List_of_S%26P_500_companies'
				response	=	requests.get(link)

				soup	=	bs.BeautifulSoup(response.text,	'lxml')

				table	=	soup.find('table',	{'class':	'wikitable	sortable'})

				tickers	=	[]

				for	row	in	table.findAll('tr')[1:]:

								ticker	=	row.findAll('td')[0].text[:-1]
								tickers.append(ticker)

				return	tickers

Now	we	have	our	code	 in	a	 function,	which	we	can	call	whenever	we	need	 it.
This	is	useful	because	we	are	going	to	extend	our	program	a	bit	further.

SERIALIZING	TICKERS
So	that	we	do	not	have	to	scrape	our	ticker	list	over	and	over	again,	we	will	save
it	locally	and	then	read	it	out	whenever	we	need	it.	We	do	that	by	serializing	IT.
During	 serialization,	 we	 save	 an	 object,	 including	 the	 current	 state,	 in	 a	 file.
Then	 we	 can	 reload	 it	 in	 exactly	 that	 state	 whenever	 we	 want.	 For	 the
serialization,	we	use	pickle,	which	we	know	from	previous	volumes.

import	pickle

We	 now	 add	 two	 lines	 to	 our	 function	 before	 the	 return	 statement.	 These	 are
responsible	for	serializing	the	ticker	object.

with	open("sp500tickers.pickle",	'wb')	as	f:
				pickle.dump(tickers,	f)

Now	when	we	 scrape	 our	 tickers	 from	 the	Wikipedia	 page	 once,	we	 can	 save
them	in	a	file,	to	reload	them	whenever	we	want.	But	since	the	list	is	changing
from	time	to	time,	we	might	have	to	update	it.

LOADING	SHARE	PRICES
Up	until	now	we	only	have	the	ticker	symbols	and	nothing	more.	But	of	course
we	want	 all	 the	 financial	 data	 as	well.	 So	 now	we	 are	 going	 to	 download	 the
stock	data	for	each	ticker	symbol	from	the	Yahoo	Finance	API.	This	will	take	up
a	couple	of	hundred	megabytes	(depending	on	the	time	frame).	But	first	we	will
need	three	additional	imports.

import	os
import	datetime	as	dt
import	pandas_datareader	as	web

The	datetime	 and	 the	pandas_datareader	module	 should	 be	 obvious	 here.	But
we	are	also	 importing	 the	os	 library	which	provides	us	with	basic	 functions	of
the	operating	system.	We	will	use	it	for	directory	operations.

Now	we	are	going	to	create	a	second	function	for	loading	the	actual	share	prices.
We	start	by	getting	our	ticker	symbols	into	the	function.

def	load_prices(reload_tickers=False):

				if	reload_tickers:
								tickers	=	load_sp500_tickers()
				else:
								if	os.path.exists('sp500tickers.pickle'):
												with	open('sp500tickers.pickle',	'rb')	as	f:
																tickers	=	pickle.load(f)

Here	we	have	the	function	load_prices.	It	has	one	parameter	which’s	default	 is
False.	This	parameter	decides	if	we	are	going	to	scrape	the	tickers	anew	or	if	we
are	going	to	load	them	from	our	serialized	file.	If	we	want	to	scrape	it	again,	we
call	our	first	function.	Otherwise	we	check	if	our	pickle	file	exists	and	if	yes	we
load	 it.	 You	 can	 also	 define	 an	 else-tree	which	 defines	what	 happens	when	 it
doesn’t	exist.	Maybe	you	want	to	also	call	the	first	function	in	that	case.

The	next	thing	we	need	to	do	is	to	create	a	directory	for	our	files.	We	will	create
a	 CSV	 file	 for	 every	 single	 ticker	 symbol	 and	 for	 these	 files	 we	 want	 a	 new
directory.

if	not	os.path.exists('companies'):
				os.makedirs('companies')

We	again	use	the	function	os.path.exists	to	check	if	a	directory	named	companies
exists	 (you	 can	 choose	 any	 name	 you	 like).	 If	 it	 doesn’t	 exist,	 we	 use	 the
makedirs	method	to	create	it.

Now	 let’s	 get	 to	 the	 essence	of	 the	 function,	which	 is	 the	downloading	of	 our
data.

start	=	dt.datetime(2016,1,1)
end	=	dt.datetime(2019,1,1)

for	ticker	in	tickers:
		if	not	os.path.exists('companies/{}.csv'.format(ticker)):
				print("{}	is	loading...".format(ticker))
				df	=	web.DataReader(ticker,	'yahoo',	start,	end)
				df.to_csv('companies/{}.csv'.format(ticker))
		else:
				print("{}	already	downloaded!".format(ticker))

Here	we	defined	a	pretty	narrow	time	frame.	Three	years	are	not	enough	for	a

decent	 analysis.	 However,	 you	 can	 adjust	 these	 values	 as	 you	 want	 but	 the
broader	your	time	frame,	the	more	time	it	will	take	and	the	more	space	you	will
need.

Basically,	what	 this	 function	does	 is	 just	 checking	 if	 a	CSV	 file	 for	 a	 specific
ticker	symbol	already	exists	and	if	it	doesn’t	it	downloads	and	saves	it.

Now	when	you	run	this	script	and	it	starts	downloading,	you	may	notice	that	it
takes	quite	a	while.	One	interesting	idea	would	be	to	implement	a	faster	way	to
download	 the	 data	 using	 multithreading	 and	 queues.	 This	 would	 be	 a	 nice
exercise	 for	 you.	 If	 you	 need	 some	 help	 for	 doing	 this,	 check	 out	 the	 second
volume,	which	is	for	intermediates.

COMPILING	DATA
All	good	things	come	in	threes.	Therefore	we	are	going	to	write	a	third	and	last
function	 that	 compiles	 our	 data.	We	will	 take	 the	 data	 out	 of	 each	 of	 the	 500
CSV	 files	 and	 combine	 it	 into	 one	 data	 frame.	 Then	we	will	 export	 that	 data
frame	into	a	new	final	CSV	file.

Let’s	start	by	loading	the	ticker	symbols	into	our	function.

with	open('sp500tickers.pickle',	'rb')	as	f:
				tickers	=	pickle.load(f)

main_df	=	pd.DataFrame()

As	you	can	see,	we	create	a	new	empty	data	 frame	here.	This	main_df	will	 be
our	main	data	frame	which	contains	all	values.	We	are	now	going	to	extract	the
adjusted	close	value	from	every	CSV	file	and	add	this	column	to	our	main	data
frame.	This	means	 that	 in	 the	 end,	we	will	 have	 a	CSV	 file	with	 the	 adjusted
close	value	for	all	companies.

print("Compiling	data...")
for	ticker	in	tickers:
		df	=	pd.read_csv('companies/{}.csv'.format(ticker))
		df.set_index('Date',	inplace=True)

		df.rename(columns	=	{'Adj	Close':	ticker},	inplace=True)
		df.drop(['Open',	'High',	'Low',	'Close'],	1,	inplace=True)

		if	main_df.empty:
				main_df	=	df

		else:
				main_df	=	main_df.join(df,	how='outer')

Here	we	have	 a	 for	 loop	 that	 iterates	over	 all	 ticker	 symbols.	For	 every	 ticker
symbol	we	load	the	respective	CSV	file	into	a	data	frame.	Then	we	set	the	index
of	this	data	frame	to	be	the	Date	column,	since	we	will	need	a	common	index.
We	then	rename	the	Adj	Close	column	to	the	ticker	symbol.	This	is	because	we
will	have	one	big	CSV	files	with	500	columns	and	they	should	not	all	have	the
same	name.	Then	we	drop	all	 the	other	columns	except	 for	Date.	Last	but	not
least	we	check	if	our	main	data	frame	is	empty	or	not.	If	it	is	empty,	our	first	data
frame	becomes	the	main	data	frame.	Otherwise,	we	join	the	data	frame	onto	our
main	data	frame	using	an	outer	join.	We’ve	discussed	joins	in	previous	volumes.

main_df.to_csv('sp500_data.csv')
print("Data	compiled!")

At	the	end	we	save	our	main	data	frame	into	a	new	CSV	file	and	we’re	done.	We
can	now	run	our	functions.

load_prices(reload_tickers=True)
compile_data()

VISUALIZING	DATA
Now	we	have	a	 local	CSV	file	with	all	 the	S	&	P	500	 Index	 tickers.	So,	 for	a
while,	we	don’t	need	to	ask	the	Yahoo	Finance	API	for	past	data.

sp500	=	pd.read_csv('sp500_data.csv')
sp500['MSFT'].plot()
plt.show()

We	load	our	CSV	file	into	a	DataFrame	and	can	then,	simply	indicate	our	desired
ticker	 symbol	 in	 the	 square	 brackets.	 In	 this	 case,	 we	 draw	 the	 graph	 of
Microsoft.

CORRELATIONS
Finally,	 for	 this	 chapter,	 let's	 look	 at	 a	 very	 interesting	 feature	 of	Panda's	 data
frames.	This	function	is	called	corr	and	stands	for	correlation.

correlation	=	sp500.corr()

Here	 we	 create	 a	 correlation	 data	 frame,	 which	 contains	 the	 values	 of	 the
correlations	between	individual	share	prices.	In	a	nutshell	this	means	that	we	can
see	how	the	prices	influence	each	other.

print(correlation)

	

The	numbers	we	see	here	show	us	how	"similar"	the	change	in	the	prices	of	the
individual	 stocks	 is.	The	 stocks	MMM	and	MMM	have	a	correlation	of	100%
because	they	are	the	same	stock.	On	the	other	hand,	ABBV	and	MMM	have	only
about	93%	correlation,	which	is	still	a	lot.

If	you	look	at	the	whole	table,	you	will	find	that	there	are	some	correlations	that
are	 less	 than	1%	and	 even	 some	 that	 are	 negative.	This	means	 that	 if	 stock	A

falls,	stock	B	rises	and	vice	versa.	They	are	indirectly	proportional.

VISUALIZING	CORRELATIONS
This	 table	can	be	very	helpful	 in	analyzing	and	predicting	prices.	We	can	also
visualize	the	correlations	using	a	special	Matplotlib	function.

plt.matshow(correlation)
plt.show()

You	 can	 use	 the	Matplotlib	 window	 to	 zoom	 into	 the	 correlations.	 The	 more
yellow	a	point	is,	the	higher	the	correlation.

This	 is	 quite	 a	 nice	 way	 to	 visualize	 correlations	 between	 share	 prices	 of
different	companies.

	

	

	

7	–	REGRESSION	LINES
In	this	chapter,	we	are	going	to	use	linear	regression	in	order	to	plot	regression
lines.	These	indicate	in	which	direction	the	share	price	is	going	in	a	specific	time
frame.	For	this	chapter	we	are	going	to	need	NumPy.

import	numpy	as	np

First,	we	are	going	to	load	our	financial	data	again.

start	=	dt.datetime(2016,1,1)
end	=	dt.datetime(2019,1,1)

apple	=	web.DataReader('AAPL','yahoo',	start,	end)
data	=	apple['Adj	Close']

In	 this	 case,	we	 again	 choose	 the	 company	Apple.	As	 a	next	 step,	we	need	 to
quantify	our	dates	in	order	to	be	able	to	use	them	as	x-values	for	our	algorithm.
The	y-value	will	be	the	adjusted	close.

x	=	data.index.map(mdates.date2num)

Here	we	again	use	the	function	date2num	and	we	map	it	onto	our	Date	column.
The	next	step	is	to	use	NumPy	to	create	a	linear	regression	line	that	fits	our	share
price	curve.

fit	=	np.polyfit(x,	data.values,	1)
fit1d	=	np.poly1d(fit)

You	will	 notice	 that	 this	 implementation	 of	 linear	 regression	 is	 quite	 different
from	the	one,	we	already	used	in	the	last	volume	with	scikit-learn.	Here	we	use
NumPy.	 First	 we	 call	 the	 polyfit	 method	 to	 fit	 a	 model	 for	 the	 x-values	 (our
dates)	and	the	y-values	(the	prices).	The	last	parameter	(one)	is	the	degree	of	the
function.	 In	 this	 case,	 it	 is	 linear.	What	 this	 function	 returns	 to	 us	 is	 a	 list	 of
coefficients.	To	now	use	this	list	and	make	an	actual	function	of	it,	we	need	the
second	method	poly1d.	 It	 takes	 the	 list	 and	constructs	 a	 function	 for	x.	 So	our
variable	fit1d	is	actually	a	callable	function.

We	 can	 now	use	what	we	 have	 in	 order	 to	 plot	 our	 share	 price	 graph	 and	 the

regression	line	for	it.

plt.grid()
plt.plot(data.index,	data.values,	'b')
plt.plot(data.index,	fit1d(x),'r')
plt.show()

First	we	just	plot	our	price	graph	in	blue	color.	Then	we	plot	our	regression	line.
Here	our	x-values	are	also	 the	dates	but	 the	y-values	are	 the	result	of	our	 fit1d
function	for	all	input	values,	which	are	our	numerical	dates.	The	result	looks	like
this:

Now	we	just	need	to	be	able	to	choose	the	time	frame	for	which	we	want	to	draw
the	regression	line.

SETTING	THE	TIME	FRAME
So	first	we	need	to	define	two	dates	 in	between	of	which	we	want	 to	draw	the
regression	line.	We	do	this	as	always	with	the	datetime	module.

rstart	=	dt.datetime(2018,	7,	1)
rend	=	dt.datetime(2019,	1,	1)

In	this	case,	we	want	to	look	at	the	six	months	from	the	1st	of	June	2018	to	the
1st	of	January	2019.	What	we	now	need	to	do	may	be	a	bit	confusing.	We	will
create	a	new	data	frame	and	cut	off	all	other	entries.

fit_data	=	data.reset_index()
pos1	=	fit_data[fit_data.Date	>=	rstart].index[0]
pos2	=	fit_data[fit_data.Date	<=	rend].index[-1]

fit_data	=	fit_data.iloc[pos1:pos2]

Here	we	create	the	data	frame	fit_data	which	starts	by	copying	our	original	data
frame	and	resetting	its	index.	Then	we	calculate	two	positions	by	querying	data
from	our	new	data	frame.	We	are	looking	for	the	first	position	(index	zero)	in	our
data	frame,	where	the	Date	column	has	a	value	greater	or	equal	to	our	start	date.
Then	we	are	 looking	for	 the	 last	position	(index	negative	one)	where	our	Date
column	has	a	value	 less	or	 equal	 to	our	 end	date.	Finally,	we	cut	out	 all	other
entries	from	our	data	frame	by	slicing	it	from	position	one	to	position	two.

Now	we	of	course	need	to	rewrite	our	fit	functions	a	little	bit.

dates	=	fit_data.Date.map(mdates.date2num)

fit	=	np.polyfit(dates,	fit_data['Adj	Close'],	1)
fit1d	=	np.poly1d(fit)

We	 again	 create	 a	 new	 variable	dates	which	 contains	 the	 dates	 from	 our	 time
frame	in	numerical	format.	Then	we	fit	the	regression	model	with	our	data	again.

plt.grid()
plt.plot(data.index,	data.values,	'b')
plt.plot(fit_data.Date,	fit1d(dates),'r')
plt.show()

At	 the	 end,	we	 again	 plot	 our	 two	 graphs.	But	 this	 time	we	 refer	 to	 the	Date
column	 specifically	 since	 it	 is	 no	 longer	 the	 index	 of	 the	 fit_data	 data	 frame.
This	is	the	result:

This	time	we	can	clearly	see	that	the	slope	is	negative,	since	the	prices	go	down
in	that	time	frame.

	

	

	

	

8	–	PREDICTING	SHARE	PRICES
Now	in	this	last	chapter,	we	will	use	machine	learning	to	predict	our	share	price
development.	 However,	 this	 prediction	 won’t	 be	 reliable,	 since	 it	 is	 quite
simplistic	and	it	is	generally	very	hard	to	predict	the	markets.	This	is	more	about
learning	how	 to	 apply	machine	 learning	 to	 financial	 data.	For	 this	 chapter,	we
will	need	the	following	libraries	in	addition	to	the	ones	we	already	used:

from	sklearn	import	preprocessing
from	sklearn.model_selection	import	train_test_split
from	sklearn.linear_model	import	LinearRegression

You	 should	 be	 familiar	 with	 these	 from	 the	 previous	 volume.	 We	 have	 one
library	 for	 preprocessing	 our	 data,	 one	 for	 splitting	 our	 data	 into	 training	 and
testing	 data	 and	 one	 library	 which	 provides	 the	 machine	 learning	 algorithm
itself.

LOADING	AND	PREPARING	DATA
We	are	going	to	use	linear	regression	again.	But	first,	of	course,	we	will	need	to
load	our	data	again.

start	=	dt.datetime(2016,1,1)
end	=	dt.datetime(2019,1,1)

apple	=	web.DataReader('AAPL','yahoo',	start,	end)
data	=	apple['Adj	Close']

Now	how	are	we	going	to	predict	our	share	prices?	Our	approach	will	be	quite
simple.	We	are	going	to	choose	an	amount	of	days	and	then	shift	our	prices	by
that	amount.	Then	we	can	look	at	the	data	and	see	how	they	have	developed	in
past	times	and	predict	how	they	are	going	to	do	it	in	future	times.

days	=	50
data['Shifted']	=	data['Adj	Close'].shift(-days)
data.dropna(inplace=True)

Here	we	defined	50	days.	We	create	a	new	column	Shifted	which	contains	our

prices	shifted	upwards	by	50	days	using	the	shift	function.	At	the	end,	we	drop
the	Nan	values	which	we	have	in	this	new	column.

The	next	step	is	to	prepare	our	data	so	that	our	model	can	learn	from	it.	For	this,
we	will	need	to	convert	it	into	NumPy	arrays.

X	=	np.array(data.drop(['Shifted'],1))
Y	=	np.array(data['Shifted'])
X	=	preprocessing.scale(X)

Our	x-value	will	be	the	adjusted	close	share	price.	For	this,	we	drop	the	shifted
column.	 As	 a	 y-value	 we	 choose	 only	 the	 shifted	 values.	 In	 order	 to	 make
computations	more	efficient,	we	scale	our	x-values	down.	We	normalize	them.

TRAINING	AND	TESTING
Now	we	are	going	to	split	our	data	into	training	data	and	into	test	data.

X_train,	X_test,	Y_train,	Y_test	=	train_test_split(X,Y,test_size=0.2)

We	are	using	a	test	size	of	20%,	which	means	that	we	use	80%	of	the	data	for
training	and	20%	for	calculating	the	accuracy.

clf	=	LinearRegression()
clf.fit(X_train,	Y_train)
accuracy	=	clf.score(X_test,	Y_test)
print(accuracy)

We	create	a	linear	regression	model	and	then	fit	it	to	our	training	data.	After	that
we	use	the	score	method	to	calculate	our	accuracy.

0.8326191580805993

Most	of	the	time	the	result	will	be	around	85%	which	is	actually	not	that	bad	for
predicting	share	prices	based	on	share	prices.

PREDICTING	DATA
We	can	now	use	our	trained	model	to	make	predictions	for	future	prices.	Notice
however	that	this	is	not	a	tool	or	model	that	you	should	be	using	for	real	trading.
It	is	not	accurate	enough.

X	=	X[:-days]
X_new	=	X[-days:]

Here	we	cut	out	the	last	50	days	and	then	create	a	new	array	X_new	which	takes
the	 last	50	days	of	 the	 remaining	days.	We	will	use	 these	 for	predicting	 future
values.	For	this,	we	will	use	the	predict	function	of	our	model.

prediction	=	clf.predict(X_new)
print(prediction)

The	results	we	get	are	our	predicted	prices	for	the	next	upcoming	days:

[185.41161298	185.06584397	184.52124063	187.43442155	188.80890817
	190.08825219	190.66744184	190.21792733	188.69649258	188.29022104
	189.19786639	187.83204987	187.91852237	186.22418294	186.13775077
	183.50119313	184.20140126	183.30238569	182.8355713		180.4583505
	182.41201333	182.17861958	183.33694511	182.99983276	184.78920724
	181.97114204	183.25051294	185.4721155		187.72833126	187.52951038
	185.39433999	188.11731637	188.37665321	188.01359776	188.48038526
	187.57273991	188.85211081	188.47174204	188.61870362	189.82028557
	191.39357963	190.86626272	188.07410028	187.14914161	187.47763764
	197.16804184	202.25960924	202.77828293	203.71189826	202.01758572]

	

	

WHAT’S	NEXT?
With	 this	 volume	 finished,	 you	 can	 consider	 yourself	 a	 very	 advanced	Python
programmer.	You	 are	 able	 to	write	 high	 level	 code	 and	 apply	 it	 to	 real-world
problems	 and	 use	 cases.	With	 the	 knowledge	 gained	 from	 this	 book,	 you	 can
even	develop	your	own	portfolio	analysis	or	management	tool.	You	can	use	data
science	and	machine	learning	to	program	your	own	financial	software.

The	skills	you	possess	right	now	are	crucial	 in	today’s	economy.	They	are	rare
and	very	valuable.	I	encourage	you	to	continue	your	journey.	Even	though	you
have	already	learned	quite	a	lot,	we	don’t	stop	here.	There	are	a	lot	of	topics	to
be	 covered	 yet	 and	 you	 should	 not	 miss	 out	 on	 them.	 Practice	 what	 you’ve
learned,	play	around	and	experiment!

I	 wish	 you	 a	 lot	 of	 success	 on	 your	 programming	 journey!	 Stay	 tuned	 and
prepare	for	upcoming	volumes.

Last	but	not	 least,	a	 little	reminder.	This	book	was	written	 for	you,	so	 that	you
can	get	as	much	value	as	possible	and	learn	to	code	effectively.	If	you	find	this
book	 valuable	 or	 you	 think	 you	 learned	 something	 new,	 please	 write	 a	 quick
review	on	Amazon.	It	is	completely	free	and	takes	about	one	minute.	But	it	helps
me	produce	more	high	quality	books,	which	you	can	benefit	from.

Thank	you!

	

	

	

	
	
	
	

THE
PYTHON	BIBLE

	
VOLUME	SIX

NEURAL	NETWORKS

BY

FLORIAN	DEDOV

	

Copyright	©	2020

	

TABLE	OF	CONTENT
Introduction
This	Book
How	To	Read	This	Book

1	–	Basics	of	Neural	Networks
What	Are	Neural	Networks?
Structure	of	Neurons
Activation	Functions
Sigmoid	Activation	Function
ReLU	Activation	Function

Types	of	Neural	Networks
Feed	Forward	Neural	Networks
Recurrent	Neural	Networks
Convolutional	Neural	Networks

Training	and	Testing
Error	and	Loss
Gradient	Descent
Backpropagation

Summary
2	–	Installing	Libraries
Development	Environment
Libraries

3	–	Handwritten	Digit	Recognition
Required	Libraries
Loading	and	Preparing	Data
Building	The	Neural	Network

Compiling	The	Model
Training	And	Testing
Classifying	Your	Own	Digits

4	–	Generating	Texts
Recurrent	Neural	Networks
Long-Short-Term	Memory	(LSTM)
Loading	Shakespeare’s	Texts
Preparing	Data´
Converting	Text
Splitting	Text
Convert	to	NumPy	Format

Build	Recurrent	Neural	Network
Helper	Function
Generating	Texts
Results

5	–	Image	and	Object	Recognition
Workings	of	CNNs
Convolutional	Layer
Pooling	Layer

Load	and	Prepare	Image	Data
Building	Neural	Network
Training	and	Testing
Classifying	Own	Images

6	–	Review	and	Resources
Review:	Basics
Review:	Neural	Networks
Review:	Recurrent	Neural	Networks
Review:	Convolutional	Neural	Networks
NeuralNine

What’s	Next?
	

INTRODUCTION
Machine	learning	is	one	of	the	most	popular	subjects	of	computer	science	at	the
moment.	 It	 is	 fascinating	 how	 computers	 are	 able	 to	 learn	 to	 solve	 complex
problems,	without	specific	instructions	but	just	by	looking	at	training	data.	With
machine	 learning	we	made	 computers	 able	 to	 recognize	 and	 reproduce	 human
voices,	 to	 recognize	 objects	 and	 to	 drive	 cars.	 Wherever	 big	 advances	 and
achievements	are	made,	we	hear	the	term	deep	learning.	Rarely	do	we	hear	that
we	 made	 some	 radical	 progress	 with	 linear	 regression	 or	 with	 a	 basic
classification	 algorithm.	 The	 technologies	 used	 are	 almost	 always	 neural
networks.

Deep	 learning	 is	 a	 sub-field	 of	 machine	 learning,	 which	 is	 all	 about	 neural
networks.	These	neural	networks	are	 inspired	by	 the	human	brain	and	produce
extraordinary	 results.	 They	 beat	 professional	 chess	 players,	 drive	 cars	 and
outperform	humans	even	in	complex	video	games	like	Dota	2.

Furthermore,	the	speed	of	progress	that	we	make	in	these	fields	makes	it	almost
impossible	to	predict	where	all	of	this	is	going	over	the	next	couple	of	decades.
But	 one	 thing	 is	 for	 sure:	Those	who	 understand	machine	 learning	 and	 neural
networks	will	 have	huge	 advantages	over	 those,	who	will	 be	overrun	by	 these
developments.	 Therefore,	 it	makes	 a	 lot	 of	 sense	 to	 educate	 yourself	 on	 these
subjects.

THIS	BOOK
In	this	book,	you	will	 learn	what	neural	networks	are	and	how	they	work	from
scratch.	 You	 will	 also	 learn	 how	 to	 build	 and	 use	 them	 in	 the	 programming
language	 Python.	 We	 will	 work	 with	 impressive	 examples	 and	 you	 will	 be
astonished	by	some	of	the	results.

What	 you	 will	 need	 for	 this	 book	 are	 advanced	 Python	 skills	 and	 a	 basic
understanding	of	machine	learning.	Fundamental	math	skills	are	also	beneficial.
If	 you	 lack	 these	 skills,	 I	 recommend	 reading	 the	 previous	 volumes	 of	 this
Python	Bible	Series,	before	proceeding.	The	first	couple	of	volumes	focus	on	the
basic	 and	 intermediate	 concepts	 of	 Python.	 Then	 we	 learn	 some	 things	 about
data	science,	machine	learning	and	finance	programming.	This	book	is	the	sixth
volume	and	a	lot	of	knowledge	from	the	previous	volumes	is	required.	However,
you	 can	 also	 try	 to	 learn	 these	 skills	 from	other	 sources.	 In	 this	 book	 though,
there	won’t	be	any	explanations	of	basic	Python	syntax	or	fundamental	machine
learning	concepts.

Amazon	Author	Page:	https://amzn.to/38D209r

https://amzn.to/38D209r

HOW	TO	READ	THIS	BOOK
Fundamentally,	it	is	your	own	choice	how	you	go	about	reading	this	book.	If	you
think	that	the	first	few	chapters	are	not	interesting	to	you	and	don’t	provide	any
value,	feel	free	to	skip	them.	You	can	also	just	read	the	whole	book	without	ever
writing	a	single	line	of	code	yourself.	But	I	don’t	recommend	that.

I	would	 personally	 recommend	 you	 to	 read	 all	 the	 chapters	 in	 the	 right	 order
because	 they	built	on	 top	of	each	other.	Of	course,	 the	code	works	without	 the
theoretical	understanding	of	the	first	chapter.	But	without	it	you	will	not	be	able
to	understand	what	you	are	doing	and	why	it	works	or	why	it	doesn’t.

Also	 I	 highly	 recommend	you	 to	 actively	 code	 along	while	 reading	 this	 book.
That’s	the	only	way	you	will	understand	the	material.	In	the	later	chapters,	there
will	 be	 a	 lot	 of	 code.	 Read	 through	 it,	 understand	 it	 but	 also	 implement	 it
yourself	and	play	around	with	it.	Experiment	a	little	bit.	What	happens	when	you
change	 some	 parameters?	 What	 happens	 when	 you	 add	 something?	 Try
everything.

I	think	that’s	everything	that	needs	to	be	said	for	now.	I	wish	you	a	lot	of	success
and	 fun	while	 learning	about	neural	networks	 in	Python.	 I	hope	 that	 this	book
will	help	you	to	progress	in	your	career	and	life!

Just	one	little	thing	before	we	start.	This	book	was	written	for	you,	so	that	you
can	get	as	much	value	as	possible	and	learn	to	code	effectively.	If	you	find	this
book	 valuable	 or	 you	 think	 you	 have	 learned	 something	 new,	 please	 write	 a
quick	review	on	Amazon.	It	is	completely	free	and	takes	about	one	minute.	But	it
helps	me	produce	more	high	quality	books,	which	you	can	benefit	from.

Thank	you!

If	 you	 are	 interested	 in	 free	 educational	 content	 about	 programming	 and
machine	learning,	check	out:	https://www.neuralnine.com/

https://www.neuralnine.com/

1	–	BASICS	OF	NEURAL	NETWORKS

WHAT	ARE	NEURAL	NETWORKS?
Before	we	start	talking	about	how	neural	networks	work,	what	types	there	are	or
how	to	work	with	them	in	Python,	we	should	first	clarify	what	neural	networks
actually	are.

Artificial	 neural	 networks	 are	mathematical	 structures	 that	 are	 inspired	 by	 the
human	brain.	They	consist	of	so-called	neurons,	which	are	interconnected	with
each	 other.	 The	 human	 brain	 consists	 of	 multiple	 billions	 of	 such	 neurons.
Artificial	neural	networks	use	a	similar	principle.

Fig.	1.1:	Structure	of	an	artificial	neural	network

The	structure	of	a	neural	network	is	quite	simple.	In	the	figure	above,	we	can	see
multiple	 layers.	 The	 first	 one	 is	 the	 input	 layer	 and	 the	 last	 one	 is	 the	 output
layer.	In	between	we	have	multiple	so-called	hidden	layers.

The	 input	 layer	 is	 for	 the	data	 that	we	want	 to	 feed	 into	 the	neural	network	 in
order	to	get	a	result.	Here	we	put	all	of	the	things	that	are	“perceived”	by	or	put
into	the	neural	network.	For	example,	if	we	want	to	know	if	a	picture	shows	a	cat
or	a	dog,	we	would	put	all	the	values	of	the	individual	pixels	into	the	input	layer.
If	we	want	to	know	if	a	person	is	overweight	or	not,	we	would	enter	parameters
like	height,	weight	etc.

The	output	layer	then	contains	the	results.	There	we	can	see	the	values	generated

by	the	neural	network	based	on	our	inputs.	For	example	the	classification	of	an
animal	or	a	prediction	value	for	something.

Everything	 in	between	 are	 abstraction	 layers	 that	we	 call	 hidden	 layers.	These
increase	the	complexity	and	the	sophistication	of	the	model	and	they	expand	the
internal	decision	making.	As	a	rule	of	thumb	we	could	say	that	the	more	hidden
layers	and	the	more	neurons	we	have,	the	more	complex	our	model	is.

STRUCTURE	OF	NEURONS
In	order	to	understand	how	a	neural	network	works,	we	need	to	understand	how
the	individual	neurons	work.

Fig.	1.2:	Structure	of	an	artificial	neuron

As	you	can	see	every	neuron	gets	a	certain	input,	which	is	either	the	output	of	a
previous	neuron	or	the	raw	input	of	the	input	layer.

This	 input	 is	 a	 numerical	 value	 and	 it	 then	 gets	multiplied	 by	 each	 individual
weight	(w1,	w2,	w3…).	At	the	end	we	then	subtract	the	bias	(b).	The	result	is	the
output	of	that	particular	connection.	These	outputs	are	that	forwarded	to	the	next
layer	of	neurons.

What	 I	 just	explained	and	what	you	can	see	at	 the	 figure	above	 is	an	outdated
version	of	a	neuron,	called	the	perceptron.	Nowadays	we	are	using	much	more
complex	neurons	like	the	sigmoid	neurons,	which	use	mathematical	functions	to
calculate	the	result	for	the	output.

You	can	probably	imagine	how	complex	a	system	like	this	can	get	when	all	of
the	 neurons	 are	 interconnected	 and	 influence	 each	 other.	 In	 between	 our	 input
and	output	 layer	we	oftentimes	have	numerous	hidden	 layers	with	hundreds	or
thousands	of	neurons	each.	These	abstraction	layers	then	lead	to	a	final	result.

ACTIVATION	FUNCTIONS
There	are	a	lot	of	different	so-called	activation	functions	which	make	everything
more	complex.	These	functions	determine	the	output	of	a	neuron.	Basically	what
we	do	is:	We	take	the	input	of	our	neuron	and	feed	the	value	into	an	activation
function.	This	function	then	returns	the	output	value.	After	that	we	still	have	our
weights	and	biases.

SIGMOID	ACTIVATION	FUNCTION
A	 commonly	 used	 and	 popular	 activation	 function	 is	 the	 so-called	 sigmoid
activation	function.	This	function	always	returns	a	value	between	zero	and	one,
no	matter	what	the	input	is.	The	smaller	the	input,	the	closer	the	output	will	be	to
zero.	The	greater	the	input,	the	closer	the	output	will	be	to	one.

Fig	1.3:	Sigmoid	Activation	Function

The	mathematical	formula	looks	like	this:

You	don’t	have	to	understand	this	function	100%	if	you	don’t	want	to.	But	what
you	can	easily	see	is	that	the	one	in	the	numerator	indicates	that	the	output	will
always	 lie	 in	 between	 zero	 and	 one,	 since	 the	 denominator	 is	 always	 positive.
This	function	is	much	smoother	than	the	basic	perceptron.

RELU	ACTIVATION	FUNCTION
The	 probably	 most	 commonly	 used	 activation	 function	 is	 the	 so-called	ReLU
function.	This	 stands	 for	 rectified	 linear	unit.	 This	 function	 is	 very	 simple	 but
also	 very	 useful.	 Whenever	 the	 input	 value	 is	 negative,	 it	 will	 return	 zero.
Whenever	it	is	positive,	the	output	will	just	be	the	input.

Fig	1.4:	ReLU	activation	function

The	mathematical	formula	looks	like	this:

Even	though	that	function	is	that	simple,	it	oftentimes	fulfils	its	purpose	and	it	is
commonly	used	as	the	go-to	activation	function	for	hidden	layers.

Of	course	 there	are	also	a	 lot	of	other	activation	 functions.	But	 the	purpose	of
this	chapter	is	not	to	show	you	all	of	them	but	to	give	you	a	basic	understanding
of	what	 activation	 functions	 are	 and	 how	 they	work.	We	will	 talk	 about	more
activation	functions	in	later	chapters,	when	we	are	using	them.

TYPES	OF	NEURAL	NETWORKS
Neural	 networks	 are	 not	 only	 different	 because	 of	 the	 activation	 functions	 of
their	individual	layers.	There	are	also	different	types	of	layers	and	networks.	In
this	book	we	are	going	to	take	a	deeper	look	at	these.	For	now,	we	will	get	a	first
overview	of	them	in	this	chapter.

FEED	FORWARD	NEURAL	NETWORKS
The	so-called	feed	forward	neural	networks	could	be	seen	as	 the	classic	neural
networks.	Up	 until	 now	we	 have	 primarily	 talked	 about	 these.	 In	 this	 type	 of
network	the	information	only	flows	into	one	direction	–	from	the	input	layer	to
the	output	layer.	There	are	no	circles	or	cycles.

Fig	1.5:	Feed	Forward	Neural	Network

Above	you	can	see	 the	 figure	 that	we	already	 talked	about.	 If	you	 look	closer,
you	 will	 see	 that	 the	 connections	 are	 pointed	 into	 one	 direction	 only.	 The
information	flows	from	left	to	right.

RECURRENT	NEURAL	NETWORKS
So-called	recurrent	neural	networks	on	the	other	hand	work	differently.	In	these
networks	we	have	layers	with	neurons	that	not	only	connect	to	the	neurons	next
layer	but	also	to	neurons	of	the	previous	or	of	their	own	layer.	This	can	also	be
called	feedback.

If	we	take	the	output	of	a	neuron	and	use	it	as	an	input	of	the	same	neuron,	we
are	talking	about	direct	feedback.	Connecting	the	output	to	neurons	of	the	same

layer	 is	 called	 lateral	 feedback.	 And	 if	 we	 take	 the	 output	 and	 feed	 it	 into
neurons	of	the	previous	layer,	we	are	talking	about	indirect	feedback.

Fig.	1.6:	Recurrent	neural	network	(direct	feedback)

The	advantage	of	such	a	recurrent	neural	network	is	that	it	has	a	little	memory
and	doesn’t	only	take	the	immediate	present	data	into	account.	We	could	say	that
it	“looks	back”	a	couple	of	iterations.

This	 kind	 of	 neural	 networks	 is	 oftentimes	 used	 when	 the	 tasks	 requires	 the
processing	of	sequential	data	like	text	or	speech.	The	feedback	is	very	useful	in
this	 kind	 of	 tasks.	 However	 it	 is	 not	 very	 useful	 when	 dealing	 with	 image
recognition	or	image	processing.

CONVOLUTIONAL	NEURAL	NETWORKS
For	this	purpose	we	have	the	so-called	convolutional	neural	networks.	This	type
is	primarily	used	for	processing	images	and	sound.	It	is	especially	useful	when
pattern	recognition	in	noisy	data	is	needed.	This	data	may	be	image	data,	sound
data	or	video	data.	It	doesn’t	matter.

We	 are	 going	 to	 talk	 about	 how	 this	 type	 of	 neural	 network	 works	 in	 the
respective	chapter,	but	for	now	let	us	get	a	superficial	quick	overview.

Fig.	1.7:	Xs	and	Os	for	classification

Let’s	look	at	a	simple	example.	Here	we	have	multiple	Xs	and	Os	as	examples	in
a	16x16	pixels	format.	Each	pixel	is	an	input	neuron	and	will	be	processed.	At
the	end	our	neural	network	shall	classify	the	image	as	either	an	X	or	an	O.

Of	course	 this	example	 is	 trivial	and	could	probably	even	be	solved	with	a	K-
Nearest-Neighbors	classification	or	a	support	vector	machine.	However,	we	are
going	to	use	it	just	to	illustrate	the	principle.

For	us	humans	it	is	very	easy	to	differentiate	between	the	two	shapes.	All	of	the
Xs	and	all	of	the	Os	are	quite	similar.	We	easily	spot	the	patterns.	For	a	computer
however,	 these	 images	 are	 totally	 different	 because	 the	 pixels	 do	 not	 match
exactly.	In	this	case,	this	is	not	a	problem,	but	when	we	try	to	recognize	cats	and
dogs,	things	get	more	complex.

What	 convolutional	 neural	 networks	 now	 do	 is:	 Instead	 of	 just	 looking	 at	 the
individual	pixels,	they	look	for	patterns	or	features.

Most	of	the	Xs	for	example	have	a	similar	center	with	four	pixels	which	splits	up
into	four	lines.	Also	they	have	long	diagonal	lines.	Os	on	the	other	hand	have	an
empty	center	and	shorter	lines.	If	we	were	classifying	cats	(in	comparison	with
dogs)	we	could	look	for	pointy	ears	or	whiskers.

As	 I	 already	 said,	 this	 explanation	 is	quite	 superficial	 and	we	are	going	 to	get
into	the	details	in	the	respective	chapter.	But	what	we	basically	do	is	just	looking
for	the	most	important	features	and	classifying	the	images	based	on	these.

TRAINING	AND	TESTING
In	order	to	make	a	neural	network	produce	accurate	results,	we	first	need	to	train
and	test	it.	For	this	we	use	already	classified	data	and	split	it	up	into	training	and
testing	data.	Most	of	the	time	we	will	use	20%	of	the	data	for	testing	and	80%
for	 training.	 The	 training	 data	 is	 the	 data	 that	 we	 use	 to	 optimize	 the
performance.	 The	 testing	 data	 is	 data	 that	 the	 neural	 network	 has	 never	 seen
before	and	we	use	it	to	verify	that	our	model	is	accurate.

If	we	take	the	example	of	pictures	of	cats	and	dogs,	we	could	take	8000	images
that	were	classified	by	human	experts	and	then	show	these	to	the	neural	network
(we	are	going	to	talk	about	the	technical	details	in	a	second).	Then	we	could	use
2000	images	as	testing	data	and	compare	the	results	of	our	neural	network	with
the	answers	that	we	know	to	be	true.

ERROR	AND	LOSS
When	 evaluating	 the	 accuracy	 or	 the	 performance	 of	 our	 model,	 we	 use	 two
metrics	–	error	and	loss.

I	am	not	going	to	get	too	deep	and	theoretical	into	the	definition	of	these	terms,
since	especially	the	concept	of	loss	confuses	a	lot	of	people.	Basically	you	could
say	 that	 the	 error	 indicates	 how	 many	 of	 the	 examples	 were	 classified
incorrectly.	This	is	a	relative	value	and	it	is	expressed	in	percentages.	An	error	of
0.21	for	example	would	mean	that	79%	of	the	examples	were	classified	correctly
and	21%	incorrectly.	This	metric	is	quite	easy	to	understand	for	humans.

The	loss	on	the	other	hand	is	a	little	bit	more	complex.	Here	we	use	a	so-called
loss	 function	 to	 determine	 the	 value.	 This	 value	 then	 indicates	 how	 bad	 our
model	is	performing.	Depending	on	the	loss	function,	this	value	might	look	quite
different.	 However,	 this	 is	 the	 value	 that	 we	 want	 to	 minimize	 in	 order	 to
optimize	our	model.

GRADIENT	DESCENT
The	minimization	of	 this	value	 is	done	with	 the	help	of	 the	 so-called	gradient
descent	algorithm.	The	mathematics	behind	this	algorithm	is	quite	confusing	for
a	lot	of	people	but	I	will	do	my	best	to	explain	it	to	you	as	simple	as	possible.

Imagine	a	loss	function	that	looks	like	this	(trivial	example):

Fig	1.8:	Trivial	example	for	a	loss	function

Of	 course	 no	 loss	 function	 on	 earth	would	 look	 like	 this	 because	 this	 doesn’t
make	any	sense	at	 all.	But	we	are	going	 to	use	 this	 function	as	an	example	 to
illustrate	the	concept	of	the	gradient	descent.

As	I	already	said,	our	goal	is	to	minimize	the	output	of	that	function.	This	means
that	 we	 are	 looking	 for	 the	 x-value	 which	 returns	 the	 lowest	 y-value.	 In	 this
example,	it	is	easy	to	see	that	this	value	is	zero,	which	returns	negative	one.	But
how	can	our	algorithm	see	this?

Fig.	1.9:	Visualization	of	gradient	descent

Since	 our	 computer	 doesn’t	 see	 the	 graph	 like	we	 do,	 it	 will	 just	 start	 with	 a
random	 initial	 point	 A.	We	 then	 calculate	 the	 gradient	 of	 the	 function	 in	 that
particular	 point.	 This	 tells	 us	 in	which	 direction	we	 need	 to	move	 in	 order	 to

increase	 the	 output	 of	 the	 function	 the	 most.	 Since	 we	 want	 to	 minimize	 the
output,	 we	 take	 a	 small	 step	 into	 the	 opposite	 direction.	 At	 the	 new	 point,	 in
which	we	end	up,	we	repeat	this	process.	We	continue	to	do	this	until	we	reach
the	valley	where	the	gradient	will	be	zero.	This	is	the	local	minimum.

You	can	imagine	it	to	be	like	a	ball	that	rolls	down	the	function’s	graph.	It	will
inevitably	 roll	 into	 the	 local	minimum.	The	 emphasis	 is	 on	 local.	 Let’s	 take	 a
look	at	another	function.

Fig.	1.10:	Another	trivial	loss	function	example

The	 problem	with	 this	 function	 is	 that	 it	 has	 multiple	 local	 minima.	 There	 is
more	than	one	valley.	In	which	one	we	land	depends	on	the	initial	starting	point.
In	this	case	it	might	be	easy	to	figure	out	which	one	is	the	best,	but	we	will	see	in
a	second	why	this	random	approach	doesn’t	work	that	easily.

Fig.	1.11:	Three	different	initial	starting	points

Here	we	can	see	 three	different	 starting	points	 in	 the	same	 function.	When	we
start	at	point	B,	we	will	get	into	a	local	minimum	but	this	local	minimum	is	not
even	close	to	the	minimum	that	we	would	get	when	starting	at	A.	Also	we	have
the	starting	point	C,	which	might	 lead	into	an	even	lower	minimum	(if	 it	 leads
into	a	minimum	at	all).

Multiple	Features

Up	until	now	 the	 functions	 that	we	 looked	at,	 all	had	one	 input	value	and	one
output	 value.	 In	 a	 neural	 network	 however,	 we	 have	 thousands,	 if	 not	 more,
weights,	biases	and	other	parameters,	which	we	can	tweak	in	order	to	change	the
outputs.	The	actual	loss	function	gets	the	weights	and	biases	as	parameters	and
then	returns	the	loss,	based	on	the	estimated	and	the	actual	results.

To	 get	 a	 better	 intuition	 about	 all	 of	 this,	 let	 us	 first	 take	 a	 look	 at	 a	 three-
dimensional	function.

Fig.	1.12:	Three-dimensional	function

Here	 we	 apply	 the	 same	 principle.	 We	 have	 one	 point	 (this	 time	 in	 three
dimensions)	and	this	point	shall	roll	down	to	the	local	minimum.	The	difference
here	 is	 that	we	cannot	only	go	 left	or	 right	but	 into	all	directions	of	 the	plane.
Therefore	 we	 need	 to	 determine	 the	 gradient	 for	 each	 axis.	 Mathematically
speaking	we	need	to	work	with	partial	derivatives.

First	 of	 all	 we	 look	 at	 the	 point	 and	 how	 the	 resulting	 value	 (vertical	 axis)
changes,	when	we	tweak	the	value	of	 the	first	axis.	Which	direction	 is	 the	one
that	causes	 the	greatest	 increase	of	 the	output?	We	find	 this	direction	and	 then
negate	it,	since	we	want	to	go	the	opposite	way.	We	repeat	the	same	process	for
the	second	input	axis.	At	the	end	we	take	a	tiny	step	into	the	resulting	direction.
This	is	the	one	with	the	steepest	descent.	Thus	we	inevitably	roll	 into	the	local
minimum.

Now	 try	 to	 imagine	 that	 process	 in	 multiple	 thousands	 of	 dimensions.	 Each
weight	and	each	bias	would	be	one	axis	and	therefore	one	additional	dimension.
Our	algorithm	needs	to	tweak	all	of	these	parameters	in	order	to	produce	the	best
possible	output.	Of	course	as	humans	we	can’t	 imagine	anything	 that	 is	higher
than	three	or	four	dimensions,	let	alone	visualize	it.

The	Mathematics
We	are	not	going	to	get	too	deep	into	the	mathematics	here	but	it	might	be	quite
beneficial	 for	 you	 to	 get	 a	 little	 bit	 more	 familiar	 with	 the	 mathematical
notations.

Let’s	imagine	our	loss	function	to	be	the	following	one:

What	 this	 function	 basically	 does	 is	 the	 following:	 We	 pass	 the	 weights	 and
biases	 as	 parameters.	 Then	 we	 calculate	 all	 the	 differences	 between	 the
predictions	of	the	models	and	the	actually	desired	results.	In	this	case	f(x)	is	the
prediction	 of	 the	 network	 and	 y	 is	 the	 actual	 result.	We	 calculate	 the	 absolute
value	 of	 the	 difference	 so	 that	we	 are	 dealing	with	 a	 positive	 value.	 Then	we
square	 that	difference.	We	do	 this	 for	every	single	example	and	we	add	all	 the
differences	up	so	that	we	get	the	sum.	At	the	end	we	then	divide	it	by	twice	the
amount	of	examples.

Let	me	 explain	 it	 again	 a	 little	 bit	 simpler.	We	 take	 all	 the	 differences,	 square
them,	sum	them	up	and	divide	it	by	twice	the	amount	of	examples	in	order	to	get
the	mean	squared	error.	This	is	also	the	name	of	this	loss	function.

Now	 we	 want	 to	 minimize	 the	 output	 of	 this	 function,	 by	 tweaking	 the
parameters	with	the	gradient	descent.

)

We	want	to	calculate	the	gradient	of	this	function.	This	gradient	is	composed	of
all	the	partial	derivatives	of	the	loss	function	C	(stands	for	the	alternative	name
of	cost	function).	The	vectors	v1,	v2	etc.	are	the	vectors	of	the	individual	weights
and	biases.

The	only	thing	that	we	need	to	do	now	is	to	make	a	tiny	step	into	the	opposite
direction	of	that	gradient.

We	take	the	negative	gradient	and	multiply	it	with	a	minimal	value.

Don’t	 panic	 if	 you	 don’t	 understand	 everything	 about	 the	 mathematics.	 The
focus	 of	 this	 book	 is	 the	 application	 of	 these	 principles.	 Therefore	 you	 can
continue	reading	even	if	you	don’t	understand	the	mathematics	at	all.

BACKPROPAGATION
We	now	understand	what	is	needed	to	optimize	our	neural	network.	The	question
remains	though,	how	we	are	going	to	implement	all	of	that.	How	are	we	going	to
calculate	the	gradient?	How	are	we	going	to	tweak	the	parameters?	For	this	we
are	going	to	use	the	backpropagation	algorithm.	Here	I	will	also	 try	 to	explain
everything	as	simple	as	possible.

Basically	 backpropagation	 is	 just	 the	 algorithm	 that	 calculates	 the	 gradient	 for
the	 gradient	 descent	 algorithm.	 It	 determines	 how	 and	 how	much	we	 need	 to
change	which	parameters	in	order	to	get	a	better	result.

First	 of	 all	we	 take	 the	prediction	of	 the	model	 and	compare	 it	 to	 the	 actually
desired	result.

Fig.	1.13:	Comparing	the	outputs

What	we	see	in	the	figure	above	is	the	comparison	of	the	output	layer	(consisting
of	two	neurons)	and	the	desired	results.	Let’s	say	the	first	neuron	is	the	one	that
indicates	that	 the	picture	is	a	cat.	In	this	case	the	prediction	would	say	that	 the
picture	is	a	dog	(since	the	second	neuron	has	a	higher	activation)	but	the	picture
is	actually	one	of	a	cat.

So	we	look	at	how	the	results	need	to	be	changed	in	order	to	fit	the	actual	data.
Notice	 however	 that	 we	 don’t	 have	 any	 direct	 influence	 on	 the	 output	 of	 the
neurons.	We	can	only	control	the	weights	and	the	biases.

We	now	know	that	we	want	to	increase	the	value	of	the	first	neuron	and	decrease
the	value	of	the	second	neuron.	For	this	we	will	need	to	look	back	one	layer.

Fig.	1.14:	Looking	back	one	layer

In	 order	 to	 change	 the	 value	 of	 neurons	we	 can	 either	 tweak	 the	weights	 and
biases	or	we	can	try	to	change	the	inputs.

Let’s	take	a	look	at	how	the	value	of	the	final	output	neurons	gets	calculated.	We
will	notice	that	some	connections	increase	this	value,	whereas	some	connections
decrease	 it.	 Put	 differently:	 There	 are	 some	 neurons	 in	 the	 previous	 layer	 that
will,	 when	 tweaked	 into	 a	 certain	 direction,	 change	 the	 value	 of	 the	 output
neurons	towards	the	desired	results.

So	 we	 now	 again	 think,	 how	 the	 value	 of	 each	 neuron	 should	 be	 changed	 in
order	 to	 move	 towards	 the	 desired	 result.	 Keep	 in	 mind	 that	 we	 still	 cannot
directly	influence	these	values.	We	can	only	control	the	weights	and	biases	but	it
still	makes	sense	to	think	about	the	ideal	changes	that	we	would	like	to	make.

Also	keep	in	mind	that	up	until	now	everything	we	are	doing	is	just	for	a	single
training	example.	We	will	have	to	look	at	every	single	training	example	and	how
this	 example	 will	 want	 to	 change	 all	 these	 values.	 This	 has	 to	 be	 done	 for
multiple	 thousands	 of	 examples.	 What	 we	 are	 actually	 doing	 is	 therefore
determining	 the	 change	 that	 is	 the	 best	 for	 all	 the	 training	 examples	 at	 once.
Basically	the	mean	or	average.

For	example	if	7000	examples	want	a	certain	neuron	to	have	a	higher	value	and

3000	examples	want	it	to	have	a	lower	value,	we	will	increase	it	but	not	as	much
as	we	would	increase	it	if	10,000	examples	demanded	it.

When	we	do	this	for	every	single	neuron	of	that	layer,	we	know	how	we	need	to
change	each	of	 those.	Now	we	need	 to	go	back	one	more	 layer	and	 repeat	 the
same	process.	We	do	this	until	we	get	to	the	input	layer.

Fig.	1.15:	One	more	layer	back

When	we	continue	to	do	this	process	until	we	reach	the	input	layer,	we	will	get
the	on	average	demanded	changes	 for	all	weights	and	biases.	This	 is	 the	exact
same	thing	as	 the	negative	gradient	of	 the	gradient	descent	algorithm.	We	then
take	a	tiny	step	and	repeat	the	whole	process.	Depending	on	the	machine	we	are
working	on	and	some	other	parameters	this	might	take	a	while.	We	do	this	over
and	over	again	until	we	are	satisfied	with	the	results.

SUMMARY
Since	 we	 covered	 a	 lot	 of	 different	 theoretical	 topics	 in	 this	 chapter,	 let	 us
summarize	the	essential	things:

·	 	 	 	 	 	 	 	 	Activation	functions	determine	 the	activation	of	a	neuron	which	then
influences	the	outputs.

·	 	 	 	 	 	 	 	 	The	 classic	 neural	 networks	 are	 feed	 forward	 neural	 networks.	 The
information	only	flows	into	one	direction.

·									In	recurrent	neural	networks	we	work	with	feedback	and	it	is	possible	to
take	 the	 output	 of	 future	 layers	 as	 the	 input	 of	 neurons.	 This	 creates
something	like	a	memory.

·									Convolutional	neural	networks	are	primarily	used	for	images,	audio	data
and	other	data	which	requires	pattern	recognition.	They	split	the	data	into
features.

·	 	 	 	 	 	 	 	 	Usually	we	use	80%	of	the	data	we	have	as	training	data	and	20%	as
testing	data.

·	 	 	 	 	 	 	 	 	 The	 error	 indicates	 how	 much	 percent	 of	 the	 data	 was	 classified
incorrectly.

·	 	 	 	 	 	 	 	 	The	loss	is	a	numerical	value	which	is	calculated	with	a	loss	function.
This	is	the	value	that	we	want	to	minimize	in	order	to	optimize	our	model.

·	 	 	 	 	 	 	 	 	 For	 the	 minimization	 of	 the	 output	 we	 use	 the	 gradient	 descent
algorithm.	It	finds	the	local	minimum	of	a	function.

·	 	 	 	 	 	 	 	 	Backpropagation	is	the	algorithm	which	calculates	the	gradient	for	the
gradient	descent	algorithm.	This	is	done	by	starting	from	the	output	layer
and	reverse	engineering	the	desired	changes.

2	–	INSTALLING	LIBRARIES

DEVELOPMENT	ENVIRONMENT
Now	after	all	that	theory,	let	us	get	into	the	implementation.	First	of	all,	we	are
going	to	set	up	our	development	environment.	Actually	it	is	your	choice	which
IDE	 you	 are	 going	 to	 use.	However	 I	 highly	 recommend	 using	 a	 professional
environment	like	PyCharm	or	Jupyter	Notebook.

PyCharm:	https://www.jetbrains.com/pycharm/download/

Anaconda:	https://www.anaconda.com/distribution/

https://www.jetbrains.com/pycharm/download/
https://www.anaconda.com/distribution/

LIBRARIES
Also,	 we	 are	 going	 to	 need	 some	 external	 libraries	 for	 our	 projects.	 It	 is
important	 that	we	 understand	 all	 the	 theory	 behind	 neural	 networks	 but	 it	 is	 a
waste	of	time	to	reinvent	the	wheel	and	code	everything	from	scratch.	Therefore
we	will	use	professional	libraries	that	do	most	of	the	work	for	us.

For	 this	 book	we	will	 need	 Tensorflow,	which	 is	 the	most	 popular	 library	 for
working	with	neural	networks.	We	will	use	pip	for	the	installation:

pip	install	tensorflow

In	 the	 course	 of	 this	 book	 we	 will	 also	 oftentimes	 use	 some	 of	 the	 external
libraries	that	we	have	already	used	in	the	previous	volumes.	If	we	use	additional
libraries,	we	are	going	to	mention	that	an	installation	is	needed	in	the	respective
chapter.	The	following	libraries	are	yet	pretty	important	and	should	be	part	of	the
stack	of	every	Python	programmer.

pip	install	numpy

pip	install	matplotlib

pip	install	pandas

All	these	libraries	will	do	a	lot	of	the	work	for	us.	We	almost	don’t	have	to	deal
with	any	mathematics	or	 theory	at	 all.	With	 these	 libraries	we	are	operating	at
the	use-case	level.

3	–	HANDWRITTEN	DIGIT	RECOGNITION
Let	us	now	finally	get	into	some	real	programming.	In	this	chapter	our	goal	is	to
build	 and	 train	 a	 neural	 network,	 which	 recognizes	 handwritten	 digits	 with	 a
mind-blowing	accuracy.	It	will	be	able	to	recognize	the	digits	from	0	to	9.

REQUIRED	LIBRARIES
For	this	chapter	we	will	need	the	following	imports:

import	cv2
import	numpy	as	np
import	tensorflow	as	tf
import	matplotlib.pyplot	as	plt

Tensorflow	is	the	main	library	here.	We	will	use	it	to	load	data	sets,	build	neural
networks,	 train	 them	 etc.	 The	 other	 three	 libraries	 are	 not	 necessary	 for	 the
functionality	of	the	neural	network.	We	are	only	using	them	in	order	to	load	our
own	images	of	digits	at	the	end.

Numpy	will	be	used	for	reformatting	our	own	images	and	Matplotlib	will	be	used
for	their	visualization.

CV2	is	the	OpenCV	library	and	it	will	allow	us	to	load	our	images	into	the	script.
You	will	need	to	install	this	module	separately:

pip	install	opencv-python

LOADING	AND	PREPARING	DATA
Before	we	start	building	and	using	our	neural	network,	we	need	to	first	get	some
training	data	and	prepare	it.

For	this	chapter	we	are	going	to	use	the	MNIST	dataset	which	contains	60,000
training	 examples	 and	 10,000	 testing	 examples	 of	 handwritten	 digits	 that	 are
already	classified	correctly.	These	images	have	a	resolution	of	28x28	pixels.	We
will	use	the	keras	module,	in	order	to	load	the	dataset.

mnist	=	tf.keras.datasets.mnist
(X_train,	y_train),	(X_test,	y_test)	=	mnist.load_data()

In	order	 to	get	 the	dataset,	we	access	 the	mnist	object	 from	 the	keras.datasets.
Then	we	call	the	load_data	function.	This	function	automatically	splits	the	data
appropriately	 and	 returns	 a	 tuple	 with	 the	 training	 data	 and	 a	 tuple	 with	 the
testing	data.

In	order	to	make	the	whole	data	easier	to	process,	we	are	going	to	normalize	it.
This	means	that	we	scale	down	all	the	values	so	that	they	end	up	between	0	and
1.

X_train	=	tf.keras.utils.normalize(X_train,	axis=1)
X_test	=	tf.keras.utils.normalize(X_test,	axis=1)

For	 this	we	use	 the	normalize	 function	of	keras.utils.	We	have	now	 structured
and	normalized	our	data	so	that	we	can	start	building	our	neural	network.

BUILDING	THE	NEURAL	NETWORK
Let’s	think	about	what	kind	of	structure	would	make	sense	for	our	task.	Since	we
are	dealing	with	images,	it	would	be	reasonable	to	build	a	convolutional	neural
network.	When	we	take	a	look	at	the	official	website	of	the	MNIST	dataset	we
will	find	a	table	of	the	various	different	types	and	structures	of	neural	networks
and	how	well	they	perform	at	this	task.

MNIST	Website:	http://yann.lecun.com/exdb/mnist/

There	we	can	see	that	in	fact	convolutional	neural	networks	are	one	of	the	best
ways	to	do	this.	However	we	are	going	to	use	an	ordinary	feed	forward	neural
network	for	 this	 task.	First	of	all,	because	 it	 is	certainly	enough	and	second	of
all,	 because	 we	 will	 come	 back	 to	 convolutional	 neural	 networks	 in	 a	 later
chapter.	It	makes	sense	to	start	with	the	fundamental	structures	first.

model	=	tf.keras.models.Sequential()

We	 use	 the	models	module	 from	 keras	 to	 create	 a	 new	 neural	 network.	 The
Sequential	constructor	 does	 this	 for	 us.	Now	we	 have	 a	model,	which	 doesn’t
have	any	layers	in	it.	Those	have	to	be	added	manually.

model.add(tf.keras.layers.Flatten(input_shape=(28,28)))

We	start	out	by	adding	a	so-called	Flatten	layer	as	our	first	layer.	In	order	to	add
a	layer	to	our	model,	we	use	the	add	function.	Then	we	can	choose	the	kind	of
layer	 that	 we	want	 from	 the	 layers	 module.	 As	 you	 can	 see,	 we	 specified	 an
input	 shape	 of	 28x28	 which	 represents	 the	 resolution	 of	 the	 images.	 What	 a
flattened	 layer	 basically	 does	 is	 it	 flattens	 the	 input	 and	 makes	 it	 one
dimensional.	So	instead	of	a	28x28	grid,	we	end	up	with	784	neurons	lined	up.
Our	goal	is	now	to	get	to	the	right	result	based	on	these	pixels.

model.add(tf.keras.layers.Dense(units=128,	activation=tf.nn.relu))
model.add(tf.keras.layers.Dense(units=128,	activation=tf.nn.relu))

In	the	next	step	we	now	add	two	Dense	layers.	These	are	our	hidden	layers	and
increase	the	complexity	of	our	model.	Both	layers	have	128	neurons	each.	The
activation	 function	 is	 the	ReLU	 function	 (see	 chapter	 1).	Dense	 layers	 connect
every	neuron	of	this	layer	with	all	the	neurons	of	the	next	and	previous	layer.	It
is	basically	just	a	default	layer.

http://yann.lecun.com/exdb/mnist/

model.add(tf.keras.layers.Dense(units=10,	activation=tf.nn.softmax))

Last	but	not	 least	we	add	an	output	 layer.	This	one	 is	also	a	dense	 layer	but	 it
only	has	 ten	neurons	and	a	different	 activation	 function.	The	values	of	 the	 ten
neurons	indicate	how	much	our	model	believes	that	the	respective	number	is	the
right	classification.	The	first	neuron	is	for	the	zero,	the	second	for	the	one	and	so
on.

The	activation	 function	 that	we	use	here	 is	 the	softmax	 function.	This	 function
scales	 the	 output	 values	 so	 that	 they	 all	 add	 up	 to	 one.	Thus	 it	 transforms	 the
absolute	values	into	relative	values.	Every	neuron	then	indicates	how	likely	it	is
that	this	respective	number	is	the	result.	We	are	dealing	with	percentages.

model	=	tf.keras.models.Sequential()
model.add(tf.keras.layers.Flatten(input_shape=(28,28)))
model.add(tf.keras.layers.Dense(units=128,	activation=tf.nn.relu))
model.add(tf.keras.layers.Dense(units=128,	activation=tf.nn.relu))
model.add(tf.keras.layers.Dense(units=10,	activation=tf.nn.softmax))

In	 a	 nutshell,	 we	 have	 a	 flattened	 input	 layer	 with	 784	 neurons	 for	 the	 input
pixels,	followed	by	two	hidden	layers	and	one	output	layer	with	the	probabilities
for	each	digit.

COMPILING	THE	MODEL
Before	we	start	training	and	testing	our	model,	we	need	to	compile	it	first.	This
optimizes	it	and	we	can	also	choose	a	loss	function.

model.compile(optimizer='adam',	loss='sparse_categorical_crossentropy',	metrics=['accuracy'])

We	are	not	going	to	get	too	deep	into	the	optimizers	and	the	loss	functions	here.
The	parameters	that	we	chose	here	are	pretty	good	for	our	task.	Also,	we	define
the	 metrics	 that	 we	 are	 interested	 in.	 In	 this	 case,	 we	 only	 care	 about	 the
accuracy	of	our	model.

TRAINING	AND	TESTING
Now	we	get	to	the	essential	part	of	the	whole	project	–	the	training	and	testing.
For	this,	we	just	have	to	use	the	fit	function	of	our	model.

model.fit(X_train,	y_train,	epochs=3)

Here	we	pass	our	x-	and	y-values	as	the	training	data.	Then	we	also	define	the
number	of	epochs	that	we	want	to	go	through.	This	number	defines	how	many
times	our	model	is	going	to	see	the	same	data	over	and	over	again.

loss,	accuracy	=	model.evaluate(X_test,	y_test)
print(loss)
print(accuracy)

After	that	we	use	the	evaluate	method	and	pass	our	testing	data,	to	determine	the
accuracy	and	the	loss.	Most	of	the	time	we	get	an	accuracy	of	around	95%	(try	it
yourself).	This	is	pretty	good	if	you	take	into	account	that	mere	guessing	would
give	us	a	10%	chance	of	being	right.	Our	model	performs	quite	well.

model.save('digits.model')

Instead	of	training	the	model	over	and	over	again	every	single	time	we	run	the
script,	we	can	save	it	and	load	it	later	on.	We	do	this	by	using	the	save	method
and	specifying	a	name.

model	=	tf.keras.models.load_model('digits.model')

If	we	now	want	to	load	the	model,	we	can	just	use	the	 load_model	 function	of
keras.models	and	refer	to	the	same	name.

CLASSIFYING	YOUR	OWN	DIGITS
Now	that	we	know	that	our	model	works	and	performs	quite	well,	 let	us	 try	to
predict	our	own	handwritten	digits.	For	 this	you	can	either	use	a	program	 like
Paint,	and	set	the	resolution	to	28x28	pixels,	or	you	can	actually	use	a	scanner,
scan	a	real	digit	and	scale	the	picture	down	to	that	format.

img	=	cv2.imread('digit.png')[:,:,0]

img	=	np.invert(np.array([img]))

In	 order	 to	 load	 our	 image	 into	 the	 script,	 we	 use	 the	 imread	 function	 of
OpenCV.	We	specify	the	file	name	and	use	the	index	slicing	at	the	end	in	order
to	choose	just	one	dimension,	in	order	to	fit	the	format.	Also	we	need	to	invert
the	 image	 and	 convert	 it	 into	 a	 NumPy	 array.	 This	 is	 necessary	 because
otherwise	it	will	see	the	image	as	white	on	black	rather	than	black	on	white.	That
would	confuse	our	model.

prediction	=	model.predict(img)

print("Prediction:	{}".format(np.argmax(prediction)))

plt.imshow(img[0])

plt.show()

Now	 we	 use	 the	 predict	 method	 to	 make	 a	 prediction	 for	 our	 image.	 This
prediction	consists	of	the	ten	activations	from	the	output	neurons.	Since	we	need
to	generate	a	 result	out	of	 that,	we	are	going	 to	use	 the	argmax	 function.	This
function	returns	the	index	of	the	highest	value.	In	this	case	this	is	equivalent	to
the	 digit	with	 the	 highest	 probability	 or	 activation.	We	 can	 then	 visualize	 that
image	with	the	imshow	method	of	Matplotlib	and	print	the	prediction.

Prediction:	7

Fig.	2.1:	Classified	Digit	7

Even	 though	 our	 model	 is	 pretty	 accurate	 it	 might	 still	 make	 some	 mistakes,
especially	 if	 you	 tend	 to	 write	 digits	 in	 a	 very	 unusual	 way.	 However	 this
example	should	have	helped	you	to	better	understand	neural	networks	and	also
to	get	a	feeling	of	how	to	work	with	them	in	Python.

4	–	GENERATING	TEXTS
In	machine	 learning	we	are	oftentimes	dealing	with	 sequential	data.	Not	every
input	is	looked	at	separately	but	in	context	of	the	previous	data.

RECURRENT	NEURAL	NETWORKS
We	already	mentioned	that	for	these	kinds	of	tasks,	recurrent	neural	networks	are
the	best	choice.	Remember:	Recurrent	layers	not	only	forward	their	output	to	the
next	layer	but	can	also	send	it	to	their	own	or	to	the	previous	layer.

This	type	of	network	is	therefore	especially	effective	when	we	are	dealing	with
time-dependent	data.	Examples	for	this	are	weather	data,	stock	prices	and	other
values	that	change	sequentially.

In	this	chapter	however	we	are	going	to	focus	on	the	generation	of	texts.	Texts
can	 also	 be	 seen	 as	 sequential	 data,	 since	 after	 every	 combination	 of	 letters	 a
certain	“next	letter”	follows.	So	here	we	are	not	just	looking	at	the	last	one	letter
but	at	the	last	20	or	30	letters.

What	we	want	to	do	here	is	to	get	our	neural	network	to	generate	texts	similar	to
those	of	 the	 famous	poet	Shakespeare.	For	 this	we	 are	 just	 going	 to	 show	our
model	original	texts	and	then	train	it	to	generate	similar	texts	itself.

LONG-SHORT-TERM	MEMORY	(LSTM)
When	we	talked	about	recurrent	neural	networks	in	the	first	chapter,	we	looked
at	the	most	basic	version	of	recurrent	neurons.	These	were	ordinary	neurons	that
were	just	connected	to	themselves	or	to	neurons	of	the	previous	layer.

These	are	definitely	useful	but	for	our	purposes	another	type	is	better	suited.	For
this	 task	we	 are	 going	 to	 use	 so-called	LSTM	 neurons.	 This	 stands	 for	 Long-
Short-Term	Memory	and	indicates	that	these	neurons	have	some	sort	of	retention.

The	problem	with	ordinary	recurrent	neurons	is	that	they	might	forget	important
information	 because	 they	 don’t	 have	 any	 reliable	 mechanisms	 that	 prioritize
information	 based	 on	 relevance.	 Let’s	 look	 at	 a	 quick	 example.	 Read	 the
following	review	of	a	product:

Awesome!	This	drink	tastes	wonderful	and	reminds	me	of	a	mixture	of	kiwis	and
strawberries.	I	only	drank	half	of	it	but	I	will	definitely	buy	it	again!

When	you	read	this	review	and	you	want	to	tell	a	friend	about	it	in	a	couple	of
days,	you	will	definitely	not	remember	every	single	word	of	it.	You	will	forget	a
lot	of	words	like	“I”,	“will”	or	“this”	and	their	position,	unless	you	read	the	text
multiple	times	and	try	to	memorize	it.

Primarily	you	will	remember	the	terms	like	“awesome”,	“wonderful”,	“mixture
of	kiwis	 and	 strawberries”	and	“definitely	buy	 it	 again”.	This	 is	because	 these
are	the	essential	words.	And	an	LSTM	network	does	the	same	thing.	It	filters	out
the	 unimportant	 information	 and	 only	 remembers	 the	 essential	 content.	 These
words	and	phrases	are	the	most	important	things	to	look	at,	in	order	to	determine
if	 this	 review	is	positive	or	negative.	Words	 like	“I”,	“will”	or	“this”	may	also
appear	in	a	negative	review.

We	are	not	going	to	talk	too	much	about	the	detailed	workings	of	LSTMs.	This
would	 be	 too	 much	 for	 this	 chapter	 and	 this	 book.	 For	 our	 purposes	 it	 is
important	 to	 understand	 that	 LSTMs	 have	 mechanisms	 that	 focus	 on	 the
retention	 of	 the	 essential	 data.	 Therefore	 we	 use	 these	 neurons	 instead	 of	 the
default	recurrent	neurons.

LOADING	SHAKESPEARE’S	TEXTS
As	I	already	mentioned,	we	are	going	to	need	a	decent	amount	of	Shakespeare’s
texts,	 in	order	 to	 train	our	model.	Thus	we	will	now	start	 to	 load	this	data	 into
the	script.	We	are	going	to	use	the	file	that	is	also	used	by	the	official	Tensorflow
Keras	tutorials.

Link:	https://bit.ly/37IjtMs

This	 is	 a	 shortened	 link	 to	 the	 file.	 However,	 don’t	 bother	 downloading	 it
manually,	since	we	are	going	to	load	it	directly	into	the	script,	using	the	full	link.

Of	course,	you	can	also	use	all	kinds	of	different	text	files	here.	You	can	export
WhatsApp	chats	and	use	 them	as	 training	data,	you	can	download	speeches	of
Donald	Trump	and	use	these.	Feel	free	to	use	whatever	you	like.	The	output	will
then	be	similar	to	the	training	data.

For	this	chapter	we	will	need	the	following	imports:

import	random
import	numpy	as	np
import	tensorflow	as	tf
from	tensorflow.keras.models	import	Sequential
from	tensorflow.keras.optimizers	import	RMSprop
from	tensorflow.keras.layers	import	Activation,	Dense,	LSTM

We	 are	 going	 to	 talk	 about	 the	 individual	 classes	 and	modules,	 when	 we	 use
them.	The	first	step	is	to	now	download	the	file.

filepath	=	tf.keras.utils.get_file('shakespeare.txt',
'https://storage.googleapis.com/download.tensorflow.org/data/shakespeare.txt')
	
text	=	open(filepath,	‘rb’)\
				.read().decode(encoding=’utf-8’).lower()

We	use	the	get_file	method	of	keras.utils	in	order	to	download	the	file.	The	first
parameter	 is	 the	 filename	 that	we	choose	and	 the	second	one	 is	 the	 link.	After
that	we	open	 the	 file,	 decode	 it	 and	 save	 it	 into	 a	variable.	Notice	 that	we	are
using	 the	 lower	 function	at	 the	end.	We	do	 this	because	 it	drastically	 increases
the	performance,	 since	we	have	much	 less	possible	 characters	 to	 choose	 from.
And	for	the	semantics	of	the	text	the	case	is	irrelevant.

https://bit.ly/37IjtMs

PREPARING	DATA´
The	problem	 that	we	have	 right	now	with	our	data	 is	 that	we	are	dealing	with
text.	We	cannot	 just	 train	a	neural	network	on	 letters	or	sentences.	We	need	 to
convert	all	of	 these	values	 into	numerical	data.	So	we	have	 to	come	up	with	a
system	that	allows	us	 to	convert	 the	 text	 into	numbers,	 to	 then	predict	 specific
numbers	based	on	 that	data	and	 then	again	convert	 the	resulting	numbers	back
into	text.

Also	I	am	not	going	to	use	the	whole	text	file	as	training	data.	If	you	have	the
capacities	 or	 the	 time	 to	 train	 your	 model	 on	 the	 whole	 data,	 do	 it!	 It	 will
produce	much	 better	 results.	But	 if	 your	machine	 is	 slow	or	 you	 have	 limited
time,	you	might	consider	just	using	a	part	of	the	text.

text	=	text[300000:800000]

Here	 we	 select	 all	 the	 characters	 from	 character	 number	 300,000	 up	 until
800,000.	 So	we	 are	 processing	 a	 total	 of	 500,000	 characters,	which	 should	 be
enough	for	pretty	decent	results.

CONVERTING	TEXT
Now	we	need	to	start	building	a	system,	which	allows	us	to	convert	characters
into	numbers	and	numbers	 into	characters.	We	are	not	going	 to	use	 the	ASCII
codes	but	our	own	indices.

characters	=	sorted(set(text))

char_to_index	=	dict((c,	i)	for	i,	c	in	enumerate(characters))
index_to_char	=	dict((i,	c)	for	i,	c	in	enumerate(characters))

We	create	a	sorted	set	of	all	the	unique	characters	that	occur	in	the	text.	In	a	set
no	 value	 appears	 more	 than	 once,	 so	 this	 is	 a	 good	 way	 to	 filter	 out	 the
characters.	After	 that	we	define	 two	 structures	 for	 converting	 the	values.	Both
are	dictionaries	that	enumerate	the	characters.	In	the	first	one,	the	characters	are
the	 keys	 and	 the	 indices	 are	 the	 values.	 In	 the	 second	 one	 it	 is	 the	 other	way
around.	 Now	 we	 can	 easily	 convert	 a	 character	 into	 a	 unique	 numerical
representation	and	vice	versa.	Notice	that	the	enumerate	function	doesn’t	use	the
ASCII	values	but	just	indexes	every	single	character.

SPLITTING	TEXT

In	this	next	step,	we	will	need	to	split	our	text	into	sequences,	which	we	can	use
for	training.	For	this,	we	will	define	a	sequence	length	and	a	step	size.

SEQ_LENGTH	=	40
STEP_SIZE	=	3

sentences	=	[]
next_char	=	[]

Our	goal	is	to	create	a	list	of	multiple	sequences	and	another	list	of	all	the	“next
characters”	that	follow	these	sequences.	In	this	case,	we	chose	a	sequence	length
of	 40	 and	 a	 step	 size	 of	 three.	 This	means	 that	 our	 base	 sentences	will	 be	 40
characters	 long	 and	 that	 we	 will	 jump	 three	 characters	 from	 the	 start	 of	 one
sentence	in	order	to	get	to	the	start	of	the	next	sentence.	A	step	size	that	is	too
small	might	result	in	too	many	similar	examples	where	as	a	step	size	that	is	too
large	 might	 cause	 bad	 performance.	 When	 choosing	 the	 sequence	 length	 we
must	also	try	to	find	a	number	that	produces	sentences	that	are	long	enough	but
also	not	too	long	so	that	our	model	doesn’t	rely	on	too	much	previous	data.

Now	we	are	going	to	fill	up	the	two	empty	lists	that	we	just	created.	These	will
be	the	features	and	the	targets	of	our	training	data.	The	text	sequences	will	be	the
input	or	the	features	and	the	next	characters	will	be	the	results	or	the	targets.

for	i	in	range(0,	len(text)	-	SEQ_LENGTH,	STEP_SIZE):
				sentences.append(text[i:	i	+	SEQ_LENGTH])
				next_char.append(text[i	+	SEQ_LENGTH])

Here	we	run	a	for	loop	and	iterate	over	our	text	with	the	given	sequence	length
and	 step	 size.	 The	 control	 variable	 i	 gets	 increased	 by	 STEP_SIZE	with	 each
iteration.

Additionally,	 in	 every	 iteration,	 we	 add	 the	 sequence	 from	 i	 up	 to	 i	 plus	 the
sequence	length,	to	our	list.	In	our	case	we	start	with	the	first	40	characters,	save
them,	then	shift	the	start	by	three	characters,	save	the	next	40	characters	and	so
on.	Also	we	save	every	“next	character”	into	our	second	list.

CONVERT	TO	NUMPY	FORMAT
This	training	data	now	needs	to	be	converted	into	numerical	values	and	then	into
NumPy	arrays.

x	=	np.zeros((len(sentences),	SEQ_LENGTH,
														len(characters)),	dtype=np.bool)

y	=	np.zeros((len(sentences),
														len(characters)),	dtype=np.bool)

For	this	we	first	create	two	NumPy	arrays	full	of	zeroes.	These	zeroes	however
are	 actually	 False	 values,	 because	 our	 data	 type	 is	 bool	 which	 stands	 for
Boolean.	The	x	array	is	three-dimensional	and	it	shapes	is	based	on	the	amount
of	sentences,	 the	 length	of	 those	and	 the	amount	of	possible	characters.	 In	 this
array	we	store	the	information	about	which	character	appears	at	which	position
in	which	sentence.	Wherever	a	character	occurs,	we	will	set	the	respective	value
to	one	or	True.

The	 y	 array	 for	 the	 targets	 is	 two-dimensional	 and	 its	 shape	 is	 based	 on	 the
amount	of	sentences	and	the	amount	of	possible	characters.	Here	we	also	work
with	bools.	When	a	character	is	the	next	character	for	a	given	sentence,	we	set
the	position	 to	one	or	True.	Now	we	need	 to	 fill	 up	 these	 two	arrays	with	 the
proper	values.

for	i,	satz	in	enumerate(sentences):
				for	t,	char	in	enumerate(satz):
								x[i,	t,	char_to_index[char]]	=	1
				y[i,	char_to_index[next_char[i]]]	=	1

This	 code	 does	 exactly	 what	 I	 just	 described	 above.	 We	 use	 the	 enumerate
function	two	times	so	that	we	know	which	indices	we	need	to	mark	with	a	one.
Here	we	use	our	char_to_index	dictionary,	in	order	to	get	the	right	index	for	each
character.

To	make	all	of	that	a	little	bit	more	clear,	let	us	look	at	an	example.	Let’s	say	the
character	 ‘g’	has	gotten	 the	 index	17.	 If	 this	 character	 now	occurs	 in	 the	 third
sentence	 (which	means	 index	 two),	 at	 the	 fourth	 positon	 (which	means	 index
three),	we	would	set	x[2,3,17]	to	one.

BUILD	RECURRENT	NEURAL	NETWORK
Now	 our	 training	 data	 is	 perfectly	 prepared	 and	 has	 the	 right	 format	 that	 our
neural	network	can	work	with.	But	this	network	has	to	be	built	yet.	Let’s	look	at
the	needed	imports	again	and	talk	a	little	bit	about	their	role:

import	random
import	numpy	as	np
import	tensorflow	as	tf
from	tensorflow.keras.models	import	Sequential
from	tensorflow.keras.optimizers	import	RMSprop
from	tensorflow.keras.layers	import	Activation,	Dense,	LSTM

The	library	random	will	be	used	later	on	in	a	helper	function.	We	have	already
used	numpy.	We	used	the	basic	tensorflow	library	was	used	to	load	the	data	from
the	internet.

For	building	our	neural	network,	we	will	once	again	need	the	Sequential	model
from	Keras.	This	 time	 however,	we	will	 use	 a	 different	 optimizer,	 namely	 the
RMSprop.	And	of	course	we	also	import	the	layer	types,	which	we	are	going	to
use.

model	=	Sequential()
model.add(LSTM(128,
															input_shape=(SEQ_LENGTH,
																												len(characters))))
model.add(Dense(len(characters)))
model.add(Activation('softmax'))

Our	model	 is	 actually	quite	 simple.	The	 inputs	go	directly	 into	an	LSTM	 layer
with	128	neurons.	We	define	the	input	shape	to	be	the	sequence	length	times	the
amount	 of	 possible	 characters.	We	 already	 talked	 about	 how	 this	 layer	works.
This	layer	is	the	memory	of	our	model.	It	is	then	followed	by	a	Dense	layer	with
as	many	neurons	as	we	have	possible	characters.	This	is	our	hidden	layer.	That
adds	complexity	and	abstraction	to	our	network.	And	then	last	but	not	least	we
have	the	output	layer,	which	is	an	Activation	layer.	In	this	case	it	once	again	uses
the	softmax	function	that	we	know	from	the	last	chapter.

model.compile(loss='categorical_crossentropy',
														optimizer=RMSprop(lr=0.01))

model.fit(x,	y,	batch_size=256,	epochs=4)

Now	we	compile	our	model	and	optimize	it.	We	choose	a	learning	rate	of	0.01.
After	that	we	fit	our	model	on	the	training	data	that	we	prepared.	Here	we	choose
a	 batch_size	 of	 256	 and	 four	 epochs.	 The	 batch	 size	 indicates	 how	 many
sentences	we	are	going	to	show	the	model	at	once.

HELPER	FUNCTION
The	model	is	now	trained	and	ready	to	generate	some	predictions.	However,	the
output	that	we	get	is	not	really	satisfying.	What	our	network	gives	us	as	a	result
is	actually	just	the	next	character	in	the	numerical	format.

def	sample(preds,	temperature=1.0):
				preds	=	np.asarray(preds).astype('float64')
				preds	=	np.log(preds)	/	temperature
				exp_preds	=	np.exp(preds)
				preds	=	exp_preds	/	np.sum(exp_preds)
				probas	=	np.random.multinomial(1,	preds,	1)
				return	np.argmax(probas)

I	copied	this	function	from	the	official	Keras	tutorial.

Link:	https://keras.io/examples/lstm_text_generation/

This	function	will	later	on	take	the	predictions	of	our	model	as	a	parameter	and
then	choose	a	“next	character”.	The	second	parameter	temperature	indicates	how
risky	or	how	unusual	 the	pick	 shall	 be.	A	 low	value	will	 cause	 a	 conservative
pick,	whereas	a	high	value	will	cause	a	more	experimental	pick.	We	will	use	this
helper	function	in	our	final	function.

https://keras.io/examples/lstm_text_generation/

GENERATING	TEXTS
The	neural	network	 that	we	have	 returns	as	a	 result	an	array	with	bool	values.
From	those	we	need	to	extract	the	choice	using	our	helper	function.	But	then	we
still	 end	up	with	a	numerical	value	which	 represents	 just	one	character.	So	we
need	to	convert	 this	number	into	a	readable	representation	and	we	also	need	to
produce	not	just	one	“next	character”	but	multiple.

def	generate_text(length,	temperature):
				start_index	=	random.randint(0,	len(text)	-	SEQ_LENGTH	-	1)
				generated	=	''
				sentence	=	text[start_index:	start_index	+	SEQ_LENGTH]
				generated	+=	sentence
				for	i	in	range(length):
								x_predictions	=	np.zeros((1,	SEQ_LENGTH,	len(characters)))
								for	t,	char	in	enumerate(sentence):
												x_predictions[0,	t,	char_to_index[char]]	=	1

								predictions	=	model.predict(x_predictions,	verbose=0)[0]
								next_index	=	sample(predictions,
																																	temperature)
								next_character	=	index_to_char[next_index]

								generated	+=	next_character
								sentence	=	sentence[1:]	+	next_character
				return	generated

This	is	the	function	that	we	are	going	to	use	for	that.	It	looks	more	complicated
than	 it	 actually	 is.	 So	 don’t	 panic.	We	 will	 analyze	 it	 step-by-step.	 	 First	 we
generate	 a	 random	 entry	 point	 into	 our	 text.	 This	 is	 important	 because	 our
network	 needs	 some	 starting	 sequence	 in	 order	 to	 generate	 characters.	 So	 the
first	part	will	be	copied	 from	 the	original	 text.	 If	you	want	 to	have	 text	 that	 is
completely	 generated,	 you	 can	 cut	 the	 first	 characters	 out	 of	 the	 string
afterwards.

We	 then	 convert	 this	 initial	 text	 again	 into	 a	NumPy	array.	After	 that	we	 feed
these	x-values	into	our	neural	network	and	predict	the	output.	For	this	we	use	the
predict	 method.	 This	 will	 output	 the	 probabilities	 for	 the	 next	 characters.	We
then	 take	 these	 predictions	 and	 pass	 them	 to	 our	 helper	 function.	 You	 have
probably	noticed	that	we	also	have	a	temperature	parameter	in	this	function.	We
directly	pass	that	to	the	helper	function.

In	 the	 end	we	 receive	 a	 choice	 from	 the	 sample	 function	 in	 numerical	 format.
This	 choice	 needs	 to	 be	 converted	 into	 a	 readable	 character,	 using	 our	 second
dictionary.	 Then	 we	 add	 this	 character	 to	 our	 generated	 text	 and	 repeat	 this
process	until	we	reach	the	desired	length.

RESULTS
Let’s	take	a	look	at	some	samples.	I	played	around	with	the	parameters,	in	order
to	diversify	 the	 results.	 I	 am	not	going	 to	 show	you	all	 of	 the	 results,	 but	 just
some	snippets	that	I	found	interesting.

print(generate_text(300,	0.2))
print(generate_text(300,	0.4))
print(generate_text(300,	0.5))
print(generate_text(300,	0.6))
print(generate_text(300,	0.7))
print(generate_text(300,	0.8))
	
Settings:	Length:	300,	Temperature:	0.4	(Conservative)

ay,	marry,	thou	dost	the	more	thou	dost	the	mornish,
and	if	the	heart	of	she	gentleman,	or	will,
the	heart	with	the	serving	a	to	stay	thee,
i	will	be	my	seek	of	the	sould	stay	stay
the	fair	thou	meanter	of	the	crown	of	manguar;
the	send	their	souls	to	the	will	to	the	breath:
the	wry	the	sencing	with	the	sen
	

Settings:	Length:	300,	Temperature:	0.6	(Medium)

warwick:
and,	thou	nast	the	hearth	by	the	createred
to	the	daughter,	that	he	word	the	great	enrome;
that	what	then;	if	thou	discheak,	sir.
	
clown:
sir	i	have	hath	prance	it	beheart	like!
	

Settings:	Length:	300,	Temperature:	0.8	(Experimental)

i	hear	him	speak.
what!	can	so	young	a	thordo,	word	appeal	thee,
but	they	go	prife	with	recones,	i	thou	dischidward!
has	thy	noman,	lookly	comparmal	to	had	ester,
and,	my	seatiby	bedath,	romeo,	thou	lauke	be;
how	will	i	have	so	the	gioly	beget	discal	bone.
	
clown:
i	have	seemitious	in	the	step--by	this	low,

As	you	can	see,	the	results	are	far	away	from	perfection.	But	considering	the	fact
that	our	computer	doesn’t	even	understand	what	words	or	sentences	are,	 this	is
quite	impressive	nevertheless.	Most	sentences	don’t	make	a	lot	of	sense	and	you
can	find	some	made	up	words	but	the	texts	are	unique	and	it	learned	to	generate
those	just	by	reading	some	Shakespeare	literature.

Now	it	 is	your	 turn!	Experiment	around	with	 that	code.	Tweak	 the	parameters.
Use	different	training	texts.	Maybe	you	want	to	export	your	WhatsApp	chats	and
train	the	model	on	those.	The	text	you	use	for	training	drastically	influences	the
final	generated	texts.

5	–	IMAGE	AND	OBJECT	RECOGNITION
In	 the	first	chapter	we	 talked	about	convolutional	neural	networks	and	 the	fact
that	 this	 type	 of	 neural	 network	 is	 especially	 effective	when	 processing	 image
and	sound	data.	They	excel	at	recognizing	patterns	and	segmenting	the	data	into
so-called	 features.	 Thus	 they	 perform	much	 better	 than	 ordinary	 feed	 forward
neural	networks.

WORKINGS	OF	CNNS
Convolutional	neural	networks	derive	their	name	from	the	fact	that	they	consist
of	 convolutional	 layers.	 These	 oftentimes	 followed	 by	 pooling	 layers,	 which
filter	 the	 resulting	 information	and	simplify	 it.	A	convolutional	neural	network
may	consist	of	multiple	such	combinations.	For	example,	we	could	have	an	input
layer,	 followed	 by	 a	 convolutional	 layer,	 followed	 by	 a	 pooling	 layer	 and	 this
combination	 repeats	 three	 times.	After	 that	we	add	a	couple	of	dense	 layers	at
the	end	and	a	final	output	layer.

CONVOLUTIONAL	LAYER
Similar	 to	 an	 ordinary	 layer,	 convolutional	 layers	 also	 get	 their	 input	 from
previous	neurons,	process	it	and	send	the	result	to	the	next	layer.	The	processing
of	convolutional	layers	is	called	convolution.	We	are	going	to	talk	about	this	in	a
second.

Most	of	 the	 time	convolutional	 layers	are	 two-	or	 three-dimensional.	When	we
load	 black-and-white	 images	 and	 classify	 those,	 we	 are	 dealing	 with	 two
dimensions.	 Working	 with	 colored	 images	 happens	 in	 three	 dimensions.	 The
individual	values	represent	the	pixels.

Let’s	take	a	superficial	look	at	how	such	a	processing	could	look	like.

Fig.	5.1:	Image	of	a	car

When	you	 look	 at	 this	 picture,	 you	 immediately	 recognize	 that	 it	 shows	 a	 car.
This	is	because	you	have	already	seen	numerous	cars	throughout	your	whole	life
and	you	now	the	label	“car”.	For	a	computer	that	isn’t	so	obvious.	If	we	have	ten
possible	 objects	 for	 classification	 (car,	 plane,	 cat,	 dog,	 table	 etc.),	 it	 will	 be

impossible	for	it,	to	classify	these	objects	by	nature.

With	ordinary	feed	forward	neural	networks	it	would	just	look	at	all	the	pixels,
try	to	make	some	connections	and	then	make	a	prediction,	which	will	probably
be	inaccurate.	What	works	when	it	comes	to	handwritten	digits	doesn’t	work	as
easily	 in	more	complicated	examples.	Handwritten	digits	 are	 just	 clear	 shapes,
black	on	white.	Images	of	a	car	or	a	dog	can	be	shot	from	different	perspectives
on	different	 backgrounds	with	different	 colors.	Sometimes	 the	pictures	will	 be
brighter	and	sometimes	darker.	This	will	 inevitably	confuse	an	ordinary	neural
network.

What	stays	the	same	though,	are	all	the	features,	attributes	and	patterns	of	those
objects.	A	car	has	tires,	wheels,	side	mirrors,	a	windshield	etc.	The	perspective
might	always	be	different	but	most	of	the	features	can	always	be	found.	And	this
is	 exactly	 what	 convolutional	 neural	 networks	 do.	 They	 extract	 the	 relevant
features	from	the	images.

Fig.	5.2:	Example	of	feature	extraction

When	you	think	about	it,	this	is	the	exact	same	process	that	we	humans	do.	We
don’t	look	at	every	single	“pixel”	of	our	field	of	view.	Instead	we	look	at	the	big
picture	and	 recognize	 the	 features	of	a	car.	We	see	wheels,	 a	 license	plate,	 the
shape	and	before	we	even	have	time	to	think	about	it,	we	know	that	what	we	see
is	a	car.

Let’s	 get	 a	 little	 bit	 deeper	 into	 the	 technical	 details	 of	 convolutional	 layers.
Fundamentally	a	convolutional	layer	is	just	a	matrix	that	we	apply	onto	our	data.

0.762 0.561 0.022
0.675 0.132 0.982
0.111 0.671 0.231

We	will	take	this	3x3	Matrix	as	an	example.	This	matrix	is	now	our	filter	or	our
convolutional	 layer.	 Additionally	 we	 can	 also	 imagine	 a	 picture	 which	 is
encoded	 in	 the	 same	way.	Each	pixel	would	have	a	value	 in	between	0	and	1.
The	higher	 the	value,	 the	brighter	 the	pixel	and	the	 lower	 the	value,	 the	darker
the	pixel	would	be.	Zero	would	then	equal	black	and	one	would	equal	white.

What	 we	 now	 do	 is	 we	 apply	 our	 matrix	 onto	 each	 3x3	 field	 of	 our	 image.
Applying	it	means	calculating	 the	scalar	product	of	both	matrices.	We	take	 the
first	 3x3	 pixels	 of	 our	 image	 and	 calculate	 the	 scalar	 product	 with	 our	 filter.
Then	we	shift	our	selection	by	one	column	and	apply	the	same	operation	to	the
next	3x3	pixels.	The	scalar	product	is	then	the	new	resulting	pixel.

Now	you	are	probably	asking	yourself	 two	questions.	First	of	all:	Why	are	we
doing	all	of	 that?	And	second	of	all:	Where	do	we	get	 the	values	for	our	filter
from?	The	answer	to	both	of	this	question	is	kind	of	the	same.

Initially	we	use	random	and	irrelevant	values.	Therefore	the	filtering	has	no	real
effect	in	the	beginning.	But	we	are	operating	in	the	world	of	machine	learning.
So	we	start	filtering	our	images	with	random	values.	Then	we	look	at	the	results
and	evaluate	 the	accuracy	of	our	model.	Of	course	 it	 is	going	 to	be	quite	 low.
Thus	we	 tweak	 the	 parameters	 using	 backpropagation	 over	 and	 over	 again,	 so
that	our	results	approve.	This	works	because	our	filters	become	pattern	detectors
over	time	because	of	all	this	training.	When	certain	patterns	occur	over	and	over
again	in	different	pictures,	the	respective	values	in	our	filters	and	channels	will
be	accordingly	high.

Most	of	 the	 time	 these	 filters	are	not	3x3	matrices	but	64x64	matrices	or	even
bigger	ones.	And	a	convolutional	layer	consists	of	multiple	such	filters.	Also,	we
oftentimes	 line	 up	many	 convolutional	 layers	 in	 a	 row.	 Thus,	 everything	 gets
kind	of	complex	and	sophisticated	and	very	effective.

POOLING	LAYER
Pooling	 layers	 are	 the	 layers	 that	 usually	 follow	 convolutional	 layers.	 Their
primary	role	is	to	simplify	the	output	of	those.	Roughly	speaking	we	could	say
that	 these	 layers	 make	 sure	 that	 our	 model	 is	 focusing	 on	 the	 essential	 parts
before	we	forward	our	data	even	further.

The	most	popular	type	of	pooling	is	the	so-called	max-pooling.	Here	we	take	2x2
matrices	 of	 our	 images	 and	 only	 take	 on	 the	 one	 highest	 value	 for	 further

processing.

Pooling	 reduces	 the	 required	 space,	 increases	 the	 computational	 speed	 and
counteracts	 overfitting.	 In	 general	 it	 saves	 resources	 without	 causing	 worse
performance.

Fig.	5.3:	Structure	of	a	convolutional	neural	network

Here	we	see	what	a	convolutional	neural	network	could	 look	 like.	 Initially	 the
inputs	 flow	 into	 a	 convolutional	 layer	 which	 uses	 eight	 128x128	 filters.	 The
result	is	then	forwarded	into	a	max-pooling	layer	which	reduces	it	to	its	essential
parts.	 After	 that	 we	 repeat	 the	 process	 with	 two	 more	 layers	 in	 a	 smaller
resolution.	Then	we	feed	the	information	into	two	dense	layers	and	end	up	with	a
final	classification.

LOAD	AND	PREPARE	IMAGE	DATA
Let	us	now	get	to	the	implementation	part	of	the	chapter.	In	this	chapter	we	are
going	 to	 use	 another	 Keras	 dataset,	 which	 contains	 numerous	 images	 of	 ten
different	categories.	These	are	the	following:

['Plane',	'Car',	'Bird',	'Cat',	'Deer',
'Dog',	'Frog',	'Horse',	'Ship',	'Truck']

This	dataset	contains	tens	of	thousands	of	images	of	different	objects	with	their
respective	class.	Our	goal	here	is	to	train	a	convolutional	neural	network	on	that
data,	in	order	to	then	classify	other	images	that	the	model	has	never	seen	before.

For	this	we	will	need	the	following	libraries:

import	cv2	as	cv
import	numpy	as	np
import	matplotlib.pyplot	as	plt
from	tensorflow.keras	import	datasets,	layers,	models

If	 haven’t	 installed	OpenCV	 yet,	 you	 need	 to	 do	 this.	 For	 this	 just	 open	 your
command	line	and	enter:

pip	install	opencv-python

We	again	receive	the	data	already	split	up	into	two	tuples,	when	we	load	it	from
Keras.

(train_images,	train_labels),	(test_images,	test_labels)	=	datasets.cifar10.load_data()
train_images,	test_images	=
train_images	/	255.0,	test_images	/	255.0

This	 time	 we	 load	 the	 cifat10	 dataset	 with	 the	 load_data	 method.	 We	 also
normalize	this	data	immediately	after	that,	by	dividing	all	values	by	255.	Since
we	are	dealing	with	RGB	values,	and	all	values	lie	in	between	0	and	255,	we	end
up	with	values	in	between	0	and	1.

Next,	we	define	the	possible	class	names	in	a	list,	so	that	we	can	label	the	final
numerical	 results	 later	 on.	 The	 neural	 network	 will	 again	 produce	 a	 softmax
result,	which	means	that	we	will	use	the	argmax	function,	to	figure	out	the	class
name.

class_names	=	['Plane',	'Car',	'Bird',	'Cat',	'Deer',

															'Dog',	'Frog',	'Horse',	'Ship',	'Truck']

Now	we	can	visualize	a	section	of	the	data,	to	see	what	this	dataset	looks	like.

for	i	in	range(16):
				plt.subplot(4,4,i+1)
				plt.xticks([])
				plt.yticks([])
				plt.imshow(train_images[i],	cmap=plt.cm.binary)
				plt.xlabel(class_names[train_labels[i][0]])

plt.show()

For	this	we	run	a	for	 loop	with	16	iterations	and	create	a	4x4	grid	of	subplots.
The	 x-ticks	 and	 the	 y-ticks	 will	 be	 set	 to	 empty	 lists,	 so	 that	 we	 don’t	 have
annoying	 coordinates.	 After	 that,	 we	 use	 the	 imshow	method,	 to	 visualize	 the
individual	images.	The	label	of	the	image	will	then	be	the	respective	class	name.

	Fig.	5.4:	Images	of	the	Cifar10	dataset	with	labels

This	dataset	 contains	a	 lot	of	 images.	 If	your	computer	 is	not	high-end	or	you
don’t	want	to	spend	too	much	time	on	training	the	model,	I	suggest	you	only	use
a	part	of	the	data	for	training.

train_images	=	train_images[:20000]
train_labels	=	train_labels[:20000]
test_images	=	test_images[:4000]
test_labels	=	test_labels[:4000]

Here	for	example	we	only	use	the	first	20,000	of	the	training	images	and	the	first
4,000	of	the	test	images.	Of	course	your	model	will	be	way	more	accurate	if	you
use	all	the	images.	However,	for	weak	computers	this	might	take	forever.

BUILDING	NEURAL	NETWORK
Now	that	we	have	prepared	our	data,	we	can	start	building	the	neural	network.

model	=	models.Sequential()
model.add(layers.Conv2D(32,	(3,	3),	activation='relu',
																								input_shape=(32,	32,	3)))
model.add(layers.MaxPooling2D((2,	2)))
model.add(layers.Conv2D(64,	(3,	3),	activation='relu'))
model.add(layers.MaxPooling2D((2,	2)))
model.add(layers.Conv2D(64,	(3,	3),	activation='relu'))

model.add(layers.Flatten())
model.add(layers.Dense(64,	activation='relu'))
model.add(layers.Dense(10,	activation='softmax'))

Here	 we	 again	 define	 a	 Sequential	 model.	 Our	 inputs	 go	 directly	 into	 a
convolutional	layer	(Conv2D).	This	layer	has	32	filters	or	channels	in	the	shape
of	3x3	matrices.	The	activation	function	is	the	ReLU	function,	which	we	already
know	 and	 the	 input	 shape	 is	 32x32x3.	 This	 is	 because	we	 our	 images	 have	 a
resolution	 of	 32x32	 pixels	 and	 three	 layers	 because	 of	 the	 RGB	 colors.	 The
result	 is	 then	 forwarded	 into	 a	MaxPooling2D	 layer	 that	 simplifies	 the	 output.
Then	the	simplified	output	is	again	forwarded	into	the	next	convolutional	layer.
After	 that	 into	another	max-pooling	 layer	and	 into	another	convolutional	 layer.
This	 result	 is	 then	 being	 flattened	 by	 the	Flatten	 layer,	which	means	 that	 it	 is
transformed	into	a	one-dimensional	vector	format.	Then	we	forward	the	results
into	one	dense	hidden	layer	before	it	finally	comes	to	the	softmax	output	layer.
There	we	find	the	final	classification	probabilities.

TRAINING	AND	TESTING
Now	we	are	almost	done.	We	just	need	to	train	and	test	the	model	before	we	can
use	it.

model.compile(optimizer='adam',
														loss='sparse_categorical_crossentropy',
														metrics=['accuracy'])

Here	we	again	use	the	adam	optimizer	and	 the	sparse	categorical	crossentropy
loss	function.

model.fit(train_images,
										train_labels,
										epochs=10,
										validation_data=(test_images,	test_labels))

We	 now	 train	 our	model	 on	 our	 training	 data	 in	 ten	 epochs.	 Remember:	 This
means	 that	 our	 model	 is	 going	 to	 see	 the	 same	 data	 ten	 times	 over	 and	 over
again.

test_loss,	test_acc	=	model.evaluate(test_images,
																																					test_labels,
																																					verbose=2)

We	use	 the	 evaluate	 function	 to	 test	 our	model	 and	 get	 the	 loss	 and	accuracy
values.	We	set	the	parameter	verbose	to	2,	so	that	we	get	as	much	information	as
possible.

-	1s	-	loss:	0.8139	-	acc:	0.7090

Your	 results	 are	 going	 to	 slightly	 differ	 but	 in	 this	 case	 I	 got	 an	 accuracy	 of
around	70%.	This	is	quite	impressive	when	you	keep	in	mind	that	we	have	ten
possible	classifications	and	the	chance	to	be	right	by	guessing	is	10%.	Also	this
task	 is	 way	more	 complicated	 that	 classifying	 handwritten	 digits	 and	 we	 also
have	some	similar	image	types	like	car	and	truck	or	horse	and	deer.

CLASSIFYING	OWN	IMAGES
However,	the	interesting	part	starts	now.	Since	our	model	is	trained,	we	can	now
go	ahead	and	use	our	own	images	of	cars,	planes,	horses	etc.	for	classification.
These	 are	 images	 that	 the	 neural	 network	 has	 never	 seen	 before.	 If	 you	 don’t
have	your	own	images,	you	can	use	Google	to	find	some.

Fig.	5.5:	Car	and	horse

I	chose	these	two	pictures	from	Pixabay,	since	they	are	license-free.

The	 important	 thing	 is	 that	we	get	 these	 images	down	to	32x32	pixels	because
this	is	the	required	input	format	of	our	model.	For	this	you	can	use	any	software
like	Gimp	or	Paint.	You	can	either	crop	the	images	or	scale	them.

Fig.	5.6:	Images	in	32x32	pixels	resolution

Now	we	just	have	to	load	these	images	into	our	script,	using	OpenCV.

img1	=	cv.imread('car.jpg')
img1	=	cv.cvtColor(img1,	cv.COLOR_BGR2RGB)
img2	=	cv.imread('horse.jpg')
img2	=	cv.cvtColor(img2,	cv.COLOR_BGR2RGB)
plt.imshow(img1,	cmap=plt.cm.binary)
plt.show()

The	function	imread	 loads	the	image	into	our	script.	Then	we	use	the	cvtColor
method,	in	order	to	change	the	default	color	scheme	of	BGR	(blue,	green,	red)	to

RGB	(red,	green,	blue).

plt.imshow(img1,	cmap=plt.cm.binary)
plt.show()

With	 the	 imshow	 function,	 we	 can	 show	 the	 image	 in	 our	 script,	 using
Matplotlib.

Fig.	5.7:	Horse	in	Matplotlib

We	can	now	use	the	loaded	images	as	the	input	for	our	model,	in	order	to	get	a
prediction.

prediction	=	model.predict(np.array([img1])	/	255)
index	=	np.argmax(prediction)
print(class_names[index])

First	we	use	 the	predict	 function	 to	 get	 the	 softmax	 result.	Notice	 that	we	 are
converting	our	image	into	a	NumPy	array	and	dividing	it	by	255.	This	is	because
we	need	to	normalize	it,	since	our	model	was	trained	on	normalized	values.	Then
we	use	 the	argmax	 function	 to	 get	 the	 index	of	 the	highest	 softmax	 activation
value.	Finally,	we	print	the	class	name	of	that	index	as	a	result.

Car	Horse

The	 results	 speak	 for	 themselves.	 These	 pictures	 were	 classified	 absolutely
correct.	Of	 course	 this	will	 not	 always	 be	 the	 case.	 Sometimes	 a	 deer	will	 be
classified	 as	 a	 horse	 and	vice	versa.	But	 the	performance	of	 our	model	 is	 still
pretty	impressive.

Again	 I	encourage	you	 to	experiment	and	play	around	with	 that	model.	Try	 to

change	the	parameters	of	the	network.	Try	to	classify	other	images.	Maybe	use
completely	different	training	data	with	different	possible	class	names.	Make	sure
that	you	feel	comfortable	using	convolutional	neural	networks.

6	–	REVIEW	AND	RESOURCES
We	have	 learned	quite	a	 lot	 in	 these	five	chapters	and	some	of	 the	 topics	were
quite	complex.	Thus	we	are	going	to	quickly	review	all	the	concepts	in	this	final
chapter	and	add	some	additional	information	and	resources.

REVIEW:	BASICS
The	 first	 chapter	 was	 probably	 the	 most	 confusing	 one,	 since	 it	 was	 highly
theoretical	and	mathematical.	It	is	your	choice	how	deep	you	want	to	go	into	that
matter.

If	you	 really	want	 to	become	a	machine	 learning	expert,	 innovate	and	develop
new	technologies	in	this	field,	a	solid	understanding	of	the	detailed	mathematics
is	probably	necessary.

However,	if	you	are	not	interested	in	the	details	of	machine	learning	theory	and
you	just	want	to	apply	the	technologies,	 this	is	not	necessary.	For	example	you
won’t	 need	 any	 higher	 mathematical	 skills	 for	 developing	 a	 basic	 fitness	 app
which	uses	machine	learning.	You	only	need	to	know	how	to	use	Tensorflow	and
other	libraries	properly.

As	soon	as	you	go	 into	 research	or	 innovation	 though,	 there	 is	no	way	around
math.

At	this	point	check	if	you	really	understand	the	following	concepts:

·									Neural	networks	and	their	structure
·									Structure	of	perceptrons
·									Activation	functions
·									Training	and	testing	models
·									Error	and	loss
·									Gradient	descent	algorithm
·									Backpropagation

If	 there	 is	anything	 that	you	feel	you	didn’t	quite	understand,	 read	 through	 the
first	 chapter	 one	 more	 time.	 Also	 learn	 to	 google	 and	 research	 problems	 and
questions	properly.	Every	programmer	encounters	a	 lot	of	errors,	mistakes	and
confusions	while	coding.	You	cannot	cover	all	of	these	in	one	book.	Therefore,
don’t	 be	 afraid	 to	 use	 Google,	 StackOverflow,	 Documentations	 and	YouTube.
Professional	developers	do	this	as	well.

REVIEW:	NEURAL	NETWORKS
In	 the	 third	 chapter	we	 talked	 about	 the	 basics	 of	Tensorflow.	We	built	 a	 first
simple	 neural	 network	 and	 used	 it	 to	 classify	 handwritten	 digits.	 If	 you	 didn’t
understand	something	at	 this	point,	you	probably	also	had	some	problems	with
the	following	chapters,	since	they	build	on	this	one.	So	make	sure	that	you	really
master	this	chapter.

Ask	yourself	if	you	understand	the	following	concepts:

·									Loading	datasets	from	Keras
·									Splitting	training	and	testing	data
·									Building	neural	networks	with	Tensorflow
·									Compiling	models
·									Training	and	testing	models	in	code
·									Loading	and	preparing	your	own	images

Also	take	some	time	to	be	creative	and	think	about	ways	in	which	you	could	use
all	of	that	knowledge.	What	can	you	use	neural	networks	for?	What	problem	can
you	 solve?	 What	 data	 could	 you	 predict?	 We	 did	 just	 one	 example	 in	 this
chapter.	Research	some	datasets	and	play	around	with	them.

Keras	Datasets:	https://keras.io/datasets/

Scikit-Learn	Datasets:
https://scikit-learn.org/stable/datasets/index.html

https://keras.io/datasets/
https://scikit-learn.org/stable/datasets/index.html

REVIEW:	RECURRENT	NEURAL	NETWORKS
Here	the	topics	got	more	interesting.	We	started	using	recurrent	neural	networks
and	thus	adding	a	memory	to	our	model.	We	used	the	model	to	generate	poetic
texts	like	those	of	Shakespeare.

A	big	part	of	the	work	in	this	chapter	was	preprocessing	and	preparing	our	data
and	also	working	with	the	output	in	a	proper	way.

The	 challenge	 wasn’t	 really	 with	 building	 recurrent	 neural	 networks.	 It	 was
pretty	 easy	 to	 add	 an	 LSTM	 layer.	 But	 converting	 our	 text	 into	 a	 numerical
format,	then	transforming	it	into	NumPy	arrays,	training	the	network,	then	again
converting	the	output	and	generating	text	was	a	challenge.	But	you	need	to	get
used	 to	 that.	Oftentimes	 the	machine	 learning	model	 is	very	easy	 to	build.	But
when	 we	 need	 to	 work	 with	 real-world	 data	 instead	 of	 perfect	 datasets	 from
Keras,	things	become	harder.	In	the	real	world	the	data	is	chaotic	and	not	at	all
preprocessed	or	prepared.	So	it	is	very	crucial	that	you	master	this	part	as	well.

Ask	yourself	if	you	understand	the	following	concepts:

·									Loading	online	data	into	the	Python	script
·									Preprocessing	and	structuring	data	so	that	it	can	be	further	processed	by

neural	networks
·									Basic	advantages	of	LSTM	layers
·									Workings	of	recurrent	neural	networks

Of	 course,	 here	 you	 should	 also	 experiment	 a	 little	 bit.	 Use	 different	 data.
Everything	 that	 is	 sequential	will	work	 in	 some	way.	Maybe	 you	want	 to	 use
different	 texts	 or	 a	 different	 network	 structure.	 Maybe	 you	 want	 to	 predict
weather	data	or	stock	prices.	Be	creative	and	work	on	your	own	mini-projects	to
master	the	skills.

REVIEW:	CONVOLUTIONAL	NEURAL	NETWORKS
Last	 but	 not	 least	 we	 also	 used	 convolutional	 neural	 networks.	 These	 are
especially	 useful	when	we	 need	 to	 recognize	 patterns	 like	 in	 images	 or	 audio
files.

We	used	a	Keras	dataset	with	numerous	pictures	of	ten	different	possible	object
types.	Our	neural	network	was	able	to	classify	these	objects	with	an	accuracy	of
70%,	which	is	pretty	impressive.

Ask	yourself	if	you	understand	the	following	concepts:

·									Convolutional	layers
·									Pooling	layers	and	pooling	functions
·									Filtering	or	channels	and	matrices

And	once	again:	Experiment!	Maybe	create	your	own	set	of	pictures	and	labels.
Then	use	it	as	training	data	and	build	a	model	that	classifies	the	people	of	your
family	or	the	different	tools	on	your	desk.	Use	other	datasets	and	research	how	to
use	convolutional	neural	networks	for	audio	processing.	Maybe	you	can	build	a
voice	or	speech	recognition	bot.

NEURALNINE
One	place	where	you	can	get	a	 ton	of	additional	 free	 resources	 is	NeuralNine.
This	 is	 my	 brand	 and	 it	 has	 not	 only	 books	 but	 also	 a	 website,	 a	 YouTube
channel,	 a	 blog,	 an	 Instagram	page	 and	more.	On	YouTube	 you	 can	 find	 high
quality	video	tutorials	for	free.	If	you	prefer	text,	you	might	check	out	my	blog
for	free	information.	The	neuralnine	Instagram	page	is	more	about	infographics,
updates	and	memes.	Feel	free	to	check	these	out!

YouTube:	https://bit.ly/3a5KD2i

Website:	https://www.neuralnine.com/

Instagram:	https://www.instagram.com/neuralnine/

Can’t	wait	to	see	you	there!	J

https://bit.ly/3a5KD2i
https://www.neuralnine.com/
https://www.instagram.com/neuralnine/

WHAT’S	NEXT?
When	you	have	understood	the	concepts	in	this	book	and	are	able	to	apply	them,
you	have	progressed	in	your	programming	career	a	 lot.	You	have	made	a	huge
step.	These	skills	are	invaluable	in	today’s	world	but	even	more	so	in	the	future.

You	are	able	to	digitalize	data	from	the	real	world,	process	it,	forward	it	 into	a
neural	 network	 and	 then	 make	 predictions	 or	 decisions	 based	 on	 that.	 Some
might	argue	that	this	is	a	little	bit	like	magic.

Depending	on	the	field	of	application	that	you	are	interested	in,	you	will	need	to
learn	some	additional	skills.	No	book	on	earth	can	teach	you	everything.	If	you
want	to	apply	that	knowledge	in	the	finance	field,	you	will	need	to	learn	about
stocks,	insurances	etc.	If	you	want	to	use	it	for	medical	or	sports	purposes,	you
will	need	to	educate	yourself	on	that.	Computer	science	and	mathematics	alone
will	probably	not	get	you	very	far,	unless	you	go	into	research.	However,	it	is	the
basis	of	everything	and	you	should	now	have	this	basis.	Whether	you	choose	to
predict	the	weather	or	build	the	next	space	exploration	company	is	up	to	you.

If	 you	 are	 interested	 in	 finance	programming	however,	 check	out	my	Amazon
author	page.	There	I	have	some	additional	books	and	one	of	them	(volume	five)
is	about	 finance	programming	 in	Python.	Alternatively	you	can	also	 find	 them
on	the	NeuralNine	website.

Books:	https://www.neuralnine.com/books/

Last	but	not	 least,	a	 little	reminder.	This	book	was	written	 for	you,	so	 that	you
can	get	as	much	value	as	possible	and	learn	to	code	effectively.	If	you	find	this
book	 valuable	 or	 you	 think	 you	 learned	 something	 new,	 please	 write	 a	 quick
review	on	Amazon.	It	is	completely	free	and	takes	about	one	minute.	But	it	helps
me	produce	more	high	quality	books,	which	you	can	benefit	from.

Thank	you!

https://www.neuralnine.com/books/

	

	

	

	
	
	
	
	

THE
PYTHON	BIBLE

	
VOLUME	SEVEN

COMPUTER	VISION

BY

FLORIAN	DEDOV

	

Copyright	©	2020

	

TABLE	OF	CONTENT
Introduction
This	Book
How	To	Read	This	Book

Installing	Libraries
1	–	Loading	Images	and	Videos
Loading	Images
Showing	Images	With	Matplotlib
Converting	Color	Schemes
Loading	Videos
Loading	Camera	Data

2	–	Fundamental	Editing
Drawing
Drawing	With	Matplotlib
Copying	Elements
Saving	Images	And	Videos
Saving	Videos

3	–	Thresholding
Insert	Logo
Making	Poorly	Lit	Images	Readable

4	–	Filtering
Creating	A	Filter	Mask
Blurring	And	Smoothing
Gaussian	Blur
Median	Blur

Filtering	Camera	Data

5	–	Object	Recognition
Edge	Detection
Template	Matching
Feature	Matching
Movement	Detection
Object	Recognition
Loading	Ressources
Recognizing	Objects

What’s	Next?
NeuralNine

	

INTRODUCTION
Computer	vision	is	one	of	 the	most	exciting	and	interesting	topics	 in	computer
science.	This	 field	 focuses	on	how	computers	 perceive	 and	process	 image	 and
video	 data.	 The	 technologies	 of	 this	 area	 are	 fundamental	 for	 our	 future,	with
virtual	 reality	and	 internet	of	 things	becoming	more	and	more	 important.	With
computer	vision	we	can	make	unreadable,	fuzzy	and	poorly	lit	pictures	readable.
We	can	also	recognize	objects	and	faces	in	real-time.	And	we	can	apply	filters,
transformations	and	numerous	awesome	effects.

In	 the	 programming	 language	 Python	 we	 can	 use	 the	 library	 OpenCV	 (also
available	 for	 other	 programming	 languages),	 which	 allows	 us	 to	 see	 a	 lot	 of
impressive	results,	with	very	few	lines	of	code.

These	 skills	 are	 essential	 for	 many	 applications	 like	 surveillance	 and	 security
systems.	The	whole	field	of	robotics	is	largely	based	on	computer	vision	as	well.
But	 also	 in	medicine,	 image	processing,	 filmmaking,	 industry	 and	 automation,
computer	vision	is	very	important.

THIS	BOOK
In	 this	 book	 you	 are	 going	 to	 learn,	 how	 to	make	 interesting	 computer	 vision
applications,	using	Python	and	OpenCV.	Each	chapter	will	start	with	a	little	bit
of	theory,	followed	by	practical	examples	and	applications.

For	this	book	however,	you	will	need	some	advanced	Python	skills	already	and	a
basic	understanding	of	data	 science.	You	should	be	comfortable	using	NumPy,
Matplotlib	 and	 Pandas.	 If	 you	 are	 not,	 I	 recommend	 reading	my	 data	 science
book	 (volume	 three)	 or	 learning	 the	material	 from	 other	 sources.	We	will	 use
some	of	 these	 libraries	 in	 this	 book,	 but	 I	 am	not	 going	 to	 explain	 their	 basic
workings	in	detail	here.

Also,	if	you	are	missing	some	Python	skills,	you	can	take	a	look	at	my	Amazon
author	page.	There	you	will	find	the	full	Python	Bible	series	which	contains	two
volumes	 for	 the	 basics	 of	 Python,	 followed	 by	 volumes	 about	 data	 science,
machine	 learning	 and	 financial	 analysis	 with	 Python.	 Of	 course	 you	 can	 also
learn	these	things	from	other	sources.	However,	in	this	book	there	won’t	be	any
explanations	 of	 basic	 Python	 syntax	 or	 the	 data	 science	 libraries	 mentioned
above.

My	Amazon	Author	Page:	https://amzn.to/38yY9cG

https://amzn.to/38yY9cG

HOW	TO	READ	THIS	BOOK
Essentially	it	is	up	to	you	how	you	are	going	to	read	this	book.	If	you	think	that
the	 initial	 chapters	 are	 not	 interesting	 to	 you	 or	 that	 you	 already	 know
everything,	you	can	skip	them.	Also	you	can	read	the	book	from	cover	to	cover
without	ever	writing	a	single	line	of	code	yourself.	But	I	don’t	recommend	all	of
this.

I	personally	recommend	you	to	read	all	the	chapters	in	the	right	order,	since	they
build	 on	 top	 of	 each	 other.	 The	 code	 samples	 also	work	without	 the	 previous
chapters	but	 then	you	will	 lack	 the	understanding	of	 the	material	 and	you	will
have	no	clue	why	something	works	or	not.

Additionally	 it	 is	 tremendously	 important	 that	 you	 code	 along	 while	 reading.
That’s	the	only	way	you	will	really	understand	the	topics	of	this	book.	There	will
be	a	lot	of	code	in	the	individual	chapters.	Read	through	it,	understand	it	but	also
implement	it	on	your	own	machine	and	experiment	around.	What	happens	when
you	tweak	individual	parameters?	What	happens	when	you	add	something?	Try
everything!

That’s	 all	 that	 needs	 to	 be	 said	 for	 now.	 I	 wish	 you	 a	 lot	 of	 success	 and	 fun
learning	about	computer	vision	in	Python.	I	hope	that	this	book	will	help	you	to
progress	in	your	programming	career.

Just	one	little	thing	before	we	start.	This	book	was	written	for	you,	so	that	you
can	get	as	much	value	as	possible	and	learn	to	code	effectively.	If	you	find	this
book	 valuable	 or	 you	 think	 you	 have	 learned	 something	 new,	 please	 write	 a
quick	review	on	Amazon.	It	is	completely	free	and	takes	about	one	minute.	But	it
helps	me	produce	more	high	quality	books,	which	you	can	benefit	from.

Thank	you!

If	 you	 are	 interested	 in	 free	 educational	 content	 about	 programming	 and
machine	learning,	check	out:	https://www.neuralnine.com/

https://www.neuralnine.com/

INSTALLING	LIBRARIES
For	this	book	we	will	need	a	couple	of	 libraries	 that	are	not	part	of	 the	default
core	stack	of	Python.	This	means	that	we	need	to	 install	 them	separately	using
pip.

First	of	all,	we	are	going	to	install	the	data	science	stack:

pip	install	numpy

pip	install	matplotlib

pip	install	pandas

As	 mentioned	 in	 the	 introduction,	 you	 should	 be	 comfortable	 using	 these
libraries	already.	They	are	not	the	main	focus	of	this	book	but	they	are	going	to
help	us	a	lot	with	certain	tasks.	The	main	library	that	we	will	need	for	this	book
is	OpenCV.	We	also	install	it	using	pip:

pip	install	opencv-python

All	these	libraries	will	do	a	lot	of	the	work	for	us	that	we	would	otherwise	have
to	do	ourselves.

1	–	LOADING	IMAGES	AND	VIDEOS
Before	we	start	with	the	processing	of	images	and	videos,	we	will	need	to	learn
how	to	load	the	respective	data	into	our	script.	This	is	what	we	are	going	to	learn
in	this	first	chapter.

For	this	chapter	we	will	need	the	following	imports:

import	cv2	as	cv
import	matplotlib.pyplot	as	plt

Notice	that	OpenCV	was	named	opencv-python	in	the	installation	but	in	order	to
use	 it	we	 import	cv2.	 I	 chose	 to	 use	 the	cv	 alias	 here,	 so	 that	 the	 code	 is	 also
compatible	with	eventual	future	versions.	Also,	we	import	Matplotlib,	which	is
useful	when	working	with	images.

LOADING	IMAGES
In	 order	 to	 load	 an	 image,	 we	 first	 need	 to	 prepare	 one.	 Here	 you	 can	 just
download	images	from	the	internet	or	use	your	own	photos.	For	this	book	I	will
use	license-free	images	from	Pixabay	or	images	that	I	made	myself.

img	=	cv.imread('car.jpg',	cv.IMREAD_COLOR)

To	now	load	the	image	into	our	script,	we	use	the	imread	function	of	OpenCV.
First	we	pass	our	file	path,	followed	by	the	color	scheme	that	we	want	to	use.

In	 this	 case	 we	 choose	 IMREAD_COLOR	 because	 we	 want	 to	 work	 with	 the
colored	version	of	the	image.	We	can	now	go	ahead	and	show	the	image.

cv.imshow('Car',	img)
cv.waitKey(0)
cv.destroyAllWindows()

For	this	we	use	the	imshow	 function,	which	accepts	 the	title	of	 the	images	(the
identifier)	 and	 the	 image	 itself.	 After	 that	 you	 can	 see	 two	 more	 commands,
which	we	 are	 going	 to	 use	 quite	 often.	 The	 first	 one	 is	 the	waitKey	 function,
which	waits	for	a	key	to	be	pressed,	before	the	script	continues.	The	parameter	it
takes	 is	 the	 delay.	 In	 this	 case	 we	 chose	 zero.	 After	 that,	 we	 have	 the
destroyAllWindows	function,	which	does	what	the	name	says.

Fig.	1.1:	Image	of	a	car	in	OpenCV

If	 we	 choose	 to	 use	 the	 IMREAD_GRAYSCALE	 color	 scheme,	 instead	 of	 the
IMREAD_COLOR	color	scheme,	our	image	would	look	like	this.

Fig.	1.2:	Grayscale	version	of	the	image

Of	course	if	you	are	reading	a	black-and-white	version	of	this	book,	you	will	not
see	a	difference.	So	run	the	code	yourself	to	see	the	difference.

SHOWING	IMAGES	WITH	MATPLOTLIB
Another	way	of	showing	our	images	is	by	using	Matplotlib.	Here	we	also	have
and	imshow	function,	which	visualizes	images.

plt.imshow(img)
plt.show()

The	 problem	 that	 we	 will	 encounter	 here	 however	 is,	 that	 Matplotlib	 uses	 a
different	color	scheme	from	the	one	OpenCV	uses.	This	results	in	the	following
image.

Fig.	1.3:	Image	of	a	car	in	Matplotlib

Again	if	you	are	reading	a	non-color	version	of	this	book,	you	might	not	see	the
clear	difference	here.	In	this	case,	you	need	to	execute	the	code.

CONVERTING	COLOR	SCHEMES
While	OpenCV	uses	 the	RGB	color	scheme	(red,	green,	blue),	Matplotlib	uses
the	BGR	color	 scheme	 (blue,	green,	 red).	This	basically	means	 that	 the	values
for	 blue	 and	 red	 are	 swapped	 in	 our	 image.	 In	 order	 to	 change	 that,	 we	 can
convert	the	color	scheme.

img	=	cv.cvtColor(img,	cv.COLOR_RGB2BGR)

By	using	the	cvtColor	function,	we	can	convert	our	image.	For	this	we	first	pass
the	image	itself,	followed	by	the	conversion	that	we	want	to	happen.	In	this	case
we	choose	COLOR_RGB2BGR,	since	we	want	to	convert	our	image	from	RGB
to	BGR.	After	that	we	can	see	the	right	colors	in	Matplotlib.

LOADING	VIDEOS
Besides	images,	we	can	also	load	videos	into	our	script,	using	OpenCV.

import	cv2	as	cv

video	=	cv.VideoCapture('city.mp4')

while	True:
				ret,	frame	=	video.read()

				cv.imshow('City	Video’,	frame)

				if	cv.waitKey(30)	==	ord(‘x’):
								break

video.release()
cv.destroyAllWindows()

Here	we	use	the	VideoCapture	object	and	pass	the	file	path	of	our	video.	Then
we	run	an	endless	loop	which	constantly	reads	one	frame	after	 the	other,	using
the	read	function.	We	then	show	this	frame	with	the	imshow	method.	At	the	end
of	 our	 loop,	 we	 then	 use	 the	waitKey	 function	 that	 checks	 if	 the	 ‘x’	 key	was
pressed	(replacable).	If	we	press	it,	the	script	terminates.	As	a	delay	we	choose
30,	 which	means	 that	 we	 will	 wait	 30	milliseconds	 before	 we	 show	 the	 next
frame.	One	second	has	1000	milliseconds.	When	we	show	one	frame	every	30
milliseconds,	we	end	up	with	 an	FPS	 rate	of	33	 frames	per	 second.	Of	 course
you	 can	 change	 the	 values	 if	 you	 want.	 Last	 but	 not	 least,	 we	 then	 call	 the
release	function	to	release	our	capture.	This	is	like	closing	a	stream.

Fig.	1.4:	Screenshot	of	the	video

Now	we	have	one	problem.	When	the	video	is	finished	and	we	don’t	terminate	it
manually,	our	 script	crashes	and	we	get	an	error.	We	can	easily	 fix	 this	with	a
little	if-statement,	which	checks	for	return	values.

while	True:
				ret,	frame	=	video.read()

				if	ret:
								cv.imshow('City	Video’,	frame)

								if	cv.waitKey(30)	==	ord(‘x’):
												break
				else:
								break

Alternatively	we	can	also	 run	 the	same	video	over	and	over	again	 in	 the	 loop.
This	is	done	by	replacing	the	break	with	a	line	that	resets	the	video.

while	True:
				ret,	frame	=	video.read()

				if	ret:
								cv.imshow('City	Video',	frame)

								if	cv.waitKey(30)	==	ord('x'):
												break
				else:
								video	=	cv.VideoCapture('city.mp4')

Now	every	time	the	video	is	finished,	it	will	start	all	over	again.

LOADING	CAMERA	DATA
Last	but	not	least	let	us	talk	about	getting	our	camera	data	into	the	script.	Instead
of	 specifying	a	 file	path	 in	our	VideoCapture	 object,	we	can	 specify	a	number
(index	of	the	camera),	in	order	to	view	the	data	of	our	camera	in	real-time.

import	cv2	as	cv

video	=	cv.VideoCapture(0)

while	True:
				ret,	frame	=	video.read()

				if	ret:
								cv.imshow('City	Video’,	frame)

								if	cv.waitKey(1)	==	ord(‘x’):
												break
				else:
								video	=	cv.VideoCapture(‘city.mp4’)

video.release()
cv.destroyAllWindows()

Here	we	choose	zero	as	the	video	source,	which	will	be	the	primary	camera.	If
you	have	two,	three	or	more	cameras,	you	can	change	that	index,	to	select	those.

We	can	also	tweak	the	delay	of	the	waitKey	function,	in	order	to	adjust	the	FPS.
If	you	are	installing	a	camera	for	surveillance,	you	might	want	to	choose	a	lower
FPS	rate	(and	thus	a	higher	delay)	because	the	cameras	are	running	24/7	and	you
don’t	want	 to	waste	 too	much	disk	space.	But	 if	you	want	 to	play	around	with
some	filters	or	effects,	you	will	choose	a	delay	of	around	one	second.

2	–	FUNDAMENTAL	EDITING
Now	 that	we	know	how	 to	 load	 images,	 videos	 and	 camera	data,	we	 can	 start
talking	about	some	fundamental	editing.

DRAWING
Let’s	first	take	a	look	at	how	to	draw	on	our	images.	With	OpenCV	we	can	paint
simple	shapes	like	lines,	rectangles	and	circles	onto	our	pictures.

cv.line(img,	(50,50),	(250,250),	(255,255,0),	15)
cv.rectangle(img,	(350,450),	(500,350),	(0,255,0),	5)
cv.circle(img,	(500,	200),	100,	(255,0,0),	7)

For	 this	we	use	 the	 functions	 line,	rectangle	and	circle.	But	of	 course	we	also
have	others	like	fillPoly	to	fill	polygons.

The	parameters	vary	from	function	to	function.	To	line	and	rectangle	we	pass	the
two	points	right	after	the	image	in	form	of	a	tuple.	These	are	the	starting	point
and	the	end	point.	The	two	values	are	the	x-	and	the	y-coordinates.	Then	we	also
pass	a	triple	with	the	RGB	values	for	the	color.	Finally,	we	specify	the	thickness
of	the	line.

For	the	circle	on	the	other	hand,	we	first	need	to	specify	one	point	(which	is	the
center)	and	then	the	radius.	At	the	end,	we	again	specify	the	line	thickness.

Fig.	2.1:	Drawing	shapes	with	OpenCV

In	 the	figure	above	you	can	see	what	 this	 looks	 like.	This	primitive	drawing	is
primarily	 useful	 when	 we	 want	 to	 highlight	 something	 specific.	 For	 example
when	we	want	to	but	a	box	around	a	certain	object	when	it	is	recognized.	We	are
going	to	do	this	in	a	later	chapter.

DRAWING	WITH	MATPLOTLIB
It	is	also	possible	to	use	Matplotlib	for	our	drawings.	I	am	not	going	to	get	into
the	details	of	Matplotlib	plotting	here,	since	I	covered	it	in	volume	three	already.
However,	let’s	look	at	a	quick	example	of	plotting	a	function	onto	our	image.

x_values	=	np.linspace(100,900,50)
y_values	=	np.sin(x_values)	*	100	+	300

plt.imshow(img,	cmap='gray')
plt.plot(x_values,y_values,	'c',	linewidth=5)
plt.show()

Here	for	example	we	plot	a	modified	sine	function	onto	our	car.	Of	course	this
doesn’t	make	any	sense	in	this	particular	case	but	there	are	definitely	scenarios
in	which	that	might	be	useful.

Fig.	2.2:	Plotting	function	over	the	image

COPYING	ELEMENTS
What	we	can	also	do	with	OpenCV	is	to	copy	or	cut	certain	parts	of	the	image
and	then	use	them	elsewhere.	This	is	done	with	index	slicing.

img[0:200,	0:300]	=	[0,	0,	0]

In	this	example	we	replace	all	the	pixels	from	0	to	200	on	the	y-axis	and	from	0
to	 300	 on	 the	 x-axis	 with	 black	 pixels.	We	 assign	 a	 list	 with	 three	 zeros	 that
represent	the	RGB	color	codes.

Fig.	2.3:	Replaced	upper-left	corner

With	index	slicing,	as	we	just	used	it,	we	can	also	move	or	copy	various	parts	of
our	image.

copypart	=	img[300:500,	300:700]

img[100:300,	100:500]	=	copypart

With	 this	code	we	store	all	 the	pixels	 from	300	 to	500	on	 the	y-axis	and	 from
300	to	700	on	the	x-axis	in	a	temporary	variable.	Then	we	assign	these	values	to
another	part	of	the	image,	which	has	the	same	resolution.

img[300:500,	300:700]	=	[0,0,0]

If	you	want	to	move	the	part,	instead	of	copying	it,	you	should	replace	the	initial
pixels	 with	 black	 color.	 However,	 be	 careful	 with	 intersections	 because	 you
might	overwrite	the	part	you	just	moved.	It	is	probably	a	better	idea	to	first	black
out	the	initial	part	and	then	paste	the	copied	piece.

Fig.	2.4:	Moving	and	copying	of	image	parts

The	 difference	 is	 obvious.	 On	 the	 one	 picture	 we	 just	 copied	 and	 pasted	 the
section,	whereas	we	replaced	it	on	the	other	one.

SAVING	IMAGES	AND	VIDEOS
When	we	are	done	with	the	processing	of	our	images	and	videos,	we	will	want	to
export	them.	For	images	this	is	quite	easy.

cv.imwrite('car_new.jpg',	img)

We	 just	 use	 the	 imwrite	 method	 of	 OpenCV.	 Depending	 on	 the	 file	 type	 we
specify,	the	image	will	be	encoded	accordingly.

SAVING	VIDEOS
Saving	 videos	 is	 also	 not	 really	 complex.	 But	 here	 we	 need	 to	 define	 some
additional	things.

capture	=	cv.VideoCapture(0)
fourcc	=	cv.VideoWriter_fourcc(*'XVID')
writer	=	cv.VideoWriter('video.avi',	fourcc,	60.0,	(640,480))

Besides	the	VideoCapture	we	also	need	to	specify	the	so-called	FourCC.	This	is
the	codec	that	we	are	going	to	use	to	encode	the	video	data	and	it	specifies	the
format.	 In	 this	 case	 we	 pick	 XVID.	 This	 is	 an	 open-source	 variation	 of	 the
MPEG-4	codec.

Additionally,	 we	 also	 need	 to	 define	 a	 VideoWriter.	 To	 this	 we	 pass	 the	 file
name,	the	codec,	the	frame	rate	and	the	desired	resolution.	In	this	case	we	save
our	video	into	the	video.avi	file	with	60	FPS	and	a	resolution	of	640x480	pixels.

while	True:
				ret,	frame	=	capture.read()

				writer.write(frame)

				cv.imshow('Cam',	frame)

				if	cv.waitKey(1)	==	ord('x'):
								break

In	our	endless	loop	we	then	call	the	write	function	with	each	iteration,	in	order	to
write	our	frames	into	the	file.

capture.release()
writer.release()
cv.destroyAllWindows()

Last	but	not	least,	we	release	all	the	components	and	close	all	windows.	That	is
how	we	save	video	data	into	a	file	with	OpenCV.

	

3	–	THRESHOLDING
Now	we	are	getting	into	one	of	 the	most	 interesting	topics	of	computer	vision,
which	is	thresholding.	Here	everything	is	about	segmenting	our	image	data.	This
is	 important	 fr	 technologies	 like	 object	 and	 face	 recognition	 but	 also	 for	 the
filtering	of	information	and	the	optimization	of	poorly	taken	images.

INSERT	LOGO
In	the	following	section	we	are	going	to	use	thresholding	in	order	to	make	a	logo
partly	transparent	and	then	insert	it	into	an	image.

Fig.	3.1:	Image	of	a	workspace

This	license-free	image	is	the	main	background	and	we	want	to	insert	the	logo	in
the	upper-left	corner.

Fig.	3.2:	Sample	logo

This	will	be	our	sample	logo.	It	is	a	white	M	on	blue	background.	What	we	now
want	 is	 the	 M	 to	 be	 transparent,	 so	 that	 we	 can	 look	 through	 it	 onto	 our
background.	For	this	we	will	use	thresholding.	We	will	find	the	white	area	with
OpenCV	and	then	make	it	transparent.

img1	=	cv.imread('laptop.jpg')
img2	=	cv.imread('logo.png')

For	this	we	first	load	both	of	the	images	into	our	script.	In	the	next	step	we	get	to
thresholding.

logo_gray	=	cv.cvtColor(img2,	cv.COLOR_RGB2GRAY)
ret,	mask	=	cv.threshold(logo_gray,	180,	255,	cv.THRESH_BINARY_INV)

We	are	converting	the	logo	into	the	grayscale	color	scheme	because	we	are	only
interested	 in	 the	 while	 color.	 For	 this	 we	 use	 the	 color	 mode
COLOR_RGB2GRAY.	 Then	 we	 use	 the	 threshold	 function.	 To	 it	 we	 pass	 the
grayscale	 logo	 and	 also	 from	which	 color	 value,	we	want	 to	 change	 to	which
color	value.	In	this	example,	we	choose	to	convert	every	pixel	that	has	a	higher
value	 than	 180	 (light	 gray)	 to	 255	 (totally	 white).	 For	 this	 we	 use	 the
THRESH_BINARY_INV	procedure.

As	 one	 of	 the	 return	 values	 we	 get	 the	 mask	 of	 this	 image,	 which	 we	 can
visualize.

cv.imshow('Mask',	mask)

Fig.	3.3:	Mask	after	thresholding

In	order	 to	understand	 the	next	step	here,	we	first	need	 to	understand	what	we
are	 actually	 trying	 to	 accomplish	 here.	 We	 want	 to	 get	 the	 blue	 background
unchanged	and	we	want	 to	completely	 remove	 the	white	area.	For	 this	we	can
use	the	bitwise	AND.	This	is	a	logical	operation,	which	returns	True,	when	both
operands	 are	 True.	 In	 our	 context	 the	 color	 black	 means	 False	 and	 the	 color

white	means	True.	When	we	perform	a	logical	AND	with	the	white	color,	we	get
as	a	result	the	other	operand,	since	white	accepts	everything.	So	when	we	apply
a	logical	AND	operation	to	our	background	and	the	white	color,	 the	result	will
be	the	background	itself.

With	the	black	color	it	is	the	exact	opposite.	Since	this	number	represents	False,
the	result	will	be	adapted	to	zero	percent	and	nothing	changes.

If	you	have	understood	this	basic	principle,	you	should	recognize	what	is	wrong
with	our	mask.	It	is	the	exact	opposite	of	what	it	should	be.	We	need	a	white	M
so	 that	 it	 can	 become	 transparent	 and	 we	 need	 a	 black	 background	 so	 that	 it
doesn’t	change.	Therefore,	we	will	invert	the	mask.

mask_inv	=	cv.bitwise_not(mask)
mask_inv	=	np.invert(mask)	#	Alternative	way

Here	 we	 can	 either	 use	 the	 bitwise_not	 function	 of	 OpenCV	 or	 the	 invert
function	of	NumPy.	Just	don’t	use	both	because	then	you	invert	it	twice	and	end
up	with	the	original	mask.

Now	let’s	get	to	the	actual	inserting	of	the	logo.	First	we	need	to	determine	how
big	this	logo	is	and	select	the	proper	region	for	our	AND	operation.

rows,	columns,	channels	=	img2.shape
area	=	img1[0:rows,	0:columns]

We	 use	 the	 shape	 attribute	 of	 our	 logo	 in	 order	 to	 get	 the	 resolution	 and	 the
channels.	Then	we	save	the	respective	area	of	our	background	into	a	variable.

img1_bg	=	cv.bitwise_and(area,	area,	mask=mask_inv)
img2_fg	=	cv.bitwise_and(img2,	img2,	mask=mask)

Now	 we	 apply	 the	 bitwise	 operations.	 We	 define	 two	 parts	 of	 the	 upper-left
corner,	which	we	then	combine	in	the	end.	First	we	define	the	background	of	the
initial	picture,	by	applying	the	inverted	mask	to	the	selected	area.	This	makes	the
M	 transparent.	 The	 second	 line	 of	 code	 then	 adds	 the	 mask	 with	 the	 blue
background.

result	=	cv.add(img1_bg,	img2_fg)
img1[0:rows,	0:columns]	=	result

Last	 but	 not	 least,	 we	 use	 the	 add	 function	 to	 combine	 both	 layers.	 Then	we
assign	the	result	to	the	upper-left	corner	of	the	final	image.

cv.imshow('Result',	img1)

Fig.	3.4:	Result	of	the	thresholding

The	image	is	now	exactly	the	way	we	wanted	it	to	be.

MAKING	POORLY	LIT	IMAGES	READABLE
Let	us	now	get	to	an	example	that	is	a	little	bit	more	impressive	than	just	adding
a	logo.

Fig.	3.5:	Poorly	lit	book	page

Can	 you	 clearly	 read	 what	 is	 written	 on	 that	 book	 page?	 It’s	 not	 that	 it’s
impossible	 but	 it	 is	 pretty	 hard.	 The	 lighting	 conditions	 are	 pretty	 bad.	 With
thresholding	 however,	 we	 can	 fix	 that	 problem.	We	 can	make	 that	 text	 easily
readable.

One	 first	 idea	 would	 be	 to	 just	 convert	 the	 image	 to	 grayscale	 and	 apply	 the
binary	thresholding.

img	=	cv.imread('bookpage.jpg')
img_gray	=	cv.cvtColor(img,	cv.COLOR_RGB2GRAY)
ret,	threshold	=	cv.threshold(img_gray,	32,	255,	cv.THRESH_BINARY)

Every	 pixel	 that	 is	whiter	 than	 32	 (dark	 gray)	 is	 now	 being	 converted	 to	 255

(completely	white)	and	every	value	below	is	converted	to	0	(completely	black).

Fig.	3.6:	Result	after	binary	thresholding

As	you	can	see	the	result	isn’t	that	good.	Parts	of	the	image	that	we	want	to	be
white	 are	 black	 and	 vice	 versa.	 We	 obviously	 need	 a	 more	 dynamic	 way	 of
thresholding.

Here	the	adaptive	Gaussian	thresholding	comes	into	play.	This	algorithm	allows
us	the	use	the	binary	thresholding	more	dynamically.

gaus	=	cv.adaptiveThreshold(img_gray,	255,
																												cv.ADAPTIVE_THRESH_GAUSSIAN_C,
																												cv.THRESH_BINARY,	81,	4)

We	first	pass	our	gray	picture,	followed	by	the	maximum	value	(255	for	white).
Then	we	choose	 the	adaptive	algorithm	which	 is	 the	Gaussian	one	 in	 this	case
(ADAPTIVE_THRESH_GAUSSIAN_C).	 After	 that	 we	 choose	 the	 thresholding
that	we	want	 to	 use,	which	 is	 still	 the	 binary	 thresholding.	 	Now	 the	 last	 two
parameters	are	essential.	The	first	one	is	the	block	size	and	specifies	how	large
(in	pixels)	the	blocks	used	for	thresholding	shall	be.	The	larger	this	value	is,	the
more	will	be	taken	into	the	calculations.	Smaller	details	might	not	be	valued	as

that	 important	 then.	This	value	needs	 to	be	odd	and	 for	 this	case	81	 is	 a	good
choice.	 The	 last	 parameter	 is	 called	 C	 and	 it	 specifies	 how	 much	 shall	 be
subtracted	 from	 the	median	 value.	With	 this	 parameter	we	 oftentimes	 need	 to
experiment	a	little	bit.	It	sharpens	and	smooths	the	image.

cv.imshow('Gaus',	gaus)

Now	let	us	look	at	our	final	result.

Fig.	3.6:	Results	after	adaptive	thresholding

This	result	 is	actually	quite	 impressive.	 It	 is	not	perfect	but	we	can	easily	read
the	whole	text	without	any	problems.

By	the	way	the	book	page	that	you	see	here	is	from	the	book	Deep	Work	 from
Cal	Newport.

As	you	can	see	many	things	are	possible	with	thresholding.	Before	you	continue
with	 the	 next	 chapter,	 try	 to	 apply	what	 you	 have	 just	 learned	 onto	 your	 own

images.	Maybe	you	 could	make	 some	poorly	 lit	 images	 or	 come	up	with	 new
creative	ideas	for	the	application	of	thresholding.	Experiment	a	little	bit	and	play
around	with	these	technologies.

4	–	FILTERING
In	this	chapter	we	are	going	to	talk	about	filtering.	However	we	are	not	talking
about	the	filters	 that	people	use	on	social	media	to	make	their	pictures	prettier.
We	are	talking	about	actually	filtering	specific	information	out	of	pictures.

For	 example	we	might	want	 to	 extract	 all	 the	 red	 objects	 from	 a	 video	 or	 an
image.	Or	we	might	be	interested	in	those	parts	that	are	brighter	than	a	specific
limit.

Fig.	4.1:	Image	of	a	parrot

Let’s	use	this	simple	image	as	our	example.	Here	we	have	a	red	parrot	in	front	of
a	blue-green	background.	With	filtering	algorithms	we	can	now	try	to	extract	and
highlight	the	feathers.

This	 might	 be	 useful	 for	 a	 number	 of	 reasons.	 You	 might	 want	 to	 recognize
specific	object	or	patterns.	This	particular	example	is	trivial	but	it	will	illustrate
the	concept.

CREATING	A	FILTER	MASK
The	first	step	is	to	now	load	our	image	into	the	script.	At	the	end	of	this	chapter,
we	are	also	going	to	talk	about	filtering	videos	and	camera	data.

img	=	cv.imread('parrot.jpg’)
hsv	=	cv.cvtColor(img,	cv.COLOR_RGB2HSV)

What’s	 important	here	 is	 that	we	won’t	work	with	 the	RGB	color	 scheme.	We
are	 going	 to	 convert	 it	 into	 HSV.	 RGB	 stands	 for	Red,	Green,	 Blue,	 whereas
HSV	stands	for	Hue,	Saturation,	Value.

Fig.	4.2:	HSV	color	scheme	(Source:	Wikipedia)

The	H-value	 determines	 the	 color	we	 are	 choosing	 from	 the	 spectrum.	The	S-
value	 indicates	how	high	our	saturation	 is	or	how	“strong”	 the	colors	are.	And
the	V-value	states	how	bright	the	chosen	color	shall	be.

We	 are	 choosing	 this	 color	 scheme	 because	 it	 is	much	 easier	 to	 filter	 images,
using	these	three	parameters.

minimum	=	np.array([100,	60,	0])
maximum	=	np.array([255,	255,	255])

This	 takes	 us	 to	 the	 next	 step.	 Now	 we	 are	 going	 to	 define	 two	 limits	 or
boundaries	–	the	minimum	and	the	maximum.	The	color	value	than	has	to	be	in
between	of	those,	in	order	to	be	extracted.	In	our	case,	the	color	value	has	to	be
in	 between	 100	 and	 255.	This	 gives	 us	 all	 values	 that	 represent	 orange	 or	 red
colors.	Also	we	demand	a	saturation	of	at	least	60,	in	order	to	not	get	any	gray
values.	For	 this	 example	we	will	 ignore	 the	brightness	 and	 therefore	allow	 for

the	full	spectrum	from	0	to	255.

mask	=	cv.inRange(hsv,	minimum,	maximum)
result	=	cv.bitwise_and(img,	img,	mask	=	mask)

Next	we	are	going	to	define	a	mask	by	using	the	inRange	function.	This	function
sets	all	pixels	 that	match	our	requirements	 to	white	pixels	and	all	 the	others	 to
black	pixels.	Then	we	use	the	logical	bitwise_and	function,	in	order	to	AND	the
original	image	with	itself	and	apply	the	mask.

cv.imshow('Mask',	mask)

Let’s	take	a	quick	look	at	the	mask	we	created.

Fig.	4.3:	Resulting	filter	mask

The	white	pixels	are	the	ones	that	we	are	extracting	for	our	result.	For	this,	we
will	look	at	the	actual	result.

cv.imshow('Result',	result)

Fig.	4.4:	Resulting	image

Actually,	 that	 is	 a	 quite	 a	 nice	 result	 already.	 But	 we	 can	 still	 see	 individual
pixels	that	shouldn’t	be	there.	Especially	when	you	are	filtering	camera	data	in
real-time	you	will	notice	a	lot	of	background	noise.

BLURRING	AND	SMOOTHING
To	now	optimize	the	result	we	will	use	blurring	and	smoothing.	We	are	going	to
make	 our	 result	 less	 sharp	 but	 also	 reduce	 the	 background	 noise	 and	 the
unwanted	pixels.	The	first	step	for	this	is	to	create	an	array	for	the	averages.

averages	=	np.ones((15,	15),	np.float32)	/	225

Here	we	create	an	array	 full	of	ones	 that	has	 the	shape	15x15.	We	 then	divide
this	array	by	225	(the	product	of	15x15).	Then	we	end	up	with	a	factor	for	each
pixel	that	calculates	the	average.

The	goal	here	is	to	correct	individual	unwanted	pixels	by	looking	at	the	average
pixels	in	15x15	pixel	fields.

smoothed	=	cv.filter2D(result,	-1,	averages)

With	 the	 filter2D	 function	we	 apply	 this	 averages	 kernel	 onto	 our	 image.	The
second	parameter,	which	is	set	to	-1,	specifies	the	depth	of	the	image.	Since	we
choose	a	negative	value,	we	just	copy	the	depth	of	the	original	image.

cv.imshow('Smoothed',	smoothed)

Fig.	4.5:	Resulting	smoothed	image

As	you	can	 see,	most	of	 the	unwanted	pixels	are	gone.	But	 the	picture	 is	now
pretty	blurry.

Notice	 that	 the	 order	 of	 these	 steps	 is	 very	 relevant.	Here	we	 first	 applied	 the
mask	onto	our	image	and	then	smoothed	the	result.	We	could	also	do	it	the	other

way	around	and	first	make	the	mask	smoother.	Then	we	get	a	different	result.

smoothed2	=	cv.filter2D(mask,	-1,	averages)
smoothed2	=	cv.bitwise_and(img,	img,	mask=smoothed2)
	
cv.imshow('Smoothed2',	smoothed2)

Fig.	4.6:	Resulting	image	after	smoothing	the	mask

In	 this	 particular	 example,	 the	 second	 order	 is	 useless.	 We	 have	 many	 more
unwanted	 pixels	 than	 before	 the	 smoothing.	However,	 this	will	 be	 useful	with
other	algorithms.

GAUSSIAN	BLUR
Another	method	which	we	could	apply	here	is	the	Gaussian	blur.

blur	=	cv.GaussianBlur(result,	(15,	15),	0)

Here	we	 also	 pass	 the	 size	 of	 the	 blocks	 to	 blur.	 The	 result	 is	 a	 little	 bit	 less
blurry	than	the	previous	one.

MEDIAN	BLUR
The	 probably	most	 effective	 blur	 is	 the	median	blur.	 This	 one	 processes	 each
channel	of	an	image	individually	and	applies	the	median	filter.

median	=	cv.medianBlur(result,	15)
	
cv.imshow(‘Median’,	median)

Here	we	only	pass	the	image	and	the	block	size	which	is	quadratic.	In	this	case
we	again	have	15x15	pixels.

Fig.	4.7:	Resulting	image	after	median	blur

This	 result	 is	 definitely	 impressive,	 since	 there	 is	 no	 background	 noise	 left.
However,	we	can	do	even	better.	As	you	can	see	the	image	is	still	pretty	blurry
and	this	can	be	changed	by	changing	the	order	of	the	methods.

median2	=	cv.medianBlur(mask,	15)
median2	=	cv.bitwise_and(img,	img,	mask=median2)

cv.imshow('Median2',	median2)

Fig.	4.8:	Result	after	changing	the	order

This	is	by	far	the	best	result.	We	don’t	have	any	unwanted	pixels	and	the	picture
is	not	blurry	at	all.	For	this	particular	example,	 the	median	blur	turns	out	to	be
the	best	choice.

FILTERING	CAMERA	DATA
As	I	already	mentioned,	what	we	just	did	with	the	parrot	image	we	can	also	do
with	the	camera	data	in	real	time.

import	cv2	as	cv
import	numpy	as	np

camera	=	cv.VideoCapture(0)

while	True:
				_,	img	=	camera.read()
				hsv	=	cv.cvtColor(img,	cv.COLOR_RGB2HSV)

				minimum	=	np.array([100,	60,	0])
				maximum	=	np.array([255,	255,	255])

				mask	=	cv.inRange(hsv,	minimum,	maximum)

				median	=	cv.medianBlur(mask,	15)
				median	=	cv.bitwise_and(img,	img,	mask=median)

				cv.imshow('Median',	median)

				if	cv.waitKey(5)	==	ord('x'):
								break

cv.destroyAllWindows()
camera.release()

Again	we	just	create	a	capturing	object	and	read	the	frames	in	an	endless	loop.
Then,	 in	 every	 iteration,	 we	 applied	 the	 filter	 on	 the	 frame	 before	 actually
showing	it.	 If	you	try	 this	at	home	with	your	own	camera,	you	will	notice	 that
everything	that	is	not	red	or	orange	will	be	invisible.

As	always,	 I	 encourage	you	 to	play	around	with	 these	 filters	yourself.	Change
the	HSV	settings.	Use	different	images.	Tweak	all	the	parameters.	Learn	how	the
filters	work	and	which	are	the	most	effective	for	different	scenarios.

	

	

	

5	–	OBJECT	RECOGNITION
Now	we	get	into	one	of	the	most	interesting	subfields	of	computer	vision,	which
is	object	 recognition.	 In	 the	 beginning	 of	 this	 chapter	 we	 are	 going	 to	 cover
topics	 like	 edge	 detection,	 template	 and	 feature	 matching	 and	 background
subtraction.	At	the	end	we	will	then	use	cascading	to	recognize	actual	objects	in
images	and	videos.

EDGE	DETECTION
Let’s	 start	 talking	about	 edge	detection.	Oftentimes	 it	 is	quite	useful	 to	 reduce
our	images	and	videos	to	the	most	essential	information.	In	this	book	we	are	not
going	 to	write	 our	 own	 object	 recognition	 algorithms	 from	 scratch.	 But	 if	we
wanted	to	do	it,	detecting	edges	would	be	a	very	useful	tool.

Fig.	5.1:	Image	of	a	room

For	this	example	we	will	use	this	image	of	an	ordinary	room.	A	computer	is	not
really	interested	in	details	like	shadows	and	lighting.	Therefore	we	are	going	to
use	an	algorithm,	in	order	to	filter	out	the	essential	edges.

import	cv2	as	cv

img	=	cv.imread('room.jpg')
edges	=	cv.Canny(img,	100,	100)
cv.imshow('Edges',	edges)

cv.waitKey(0)
cv.destroyAllWindows()

The	Canny	 function	 of	OpenCV	 does	 this	 for	 us.	We	 pass	 the	 original	 image
followed	by	two	tolerance	values.	The	result	looks	quite	interesting.

Fig.	5.2:	Image	after	edge	detection

As	 you	 can	 see,	 all	 the	 essential	 information	 is	 still	 there	 but	 the	 image	 was
reduced	to	its	edges.

TEMPLATE	MATCHING
Another	 interesting	 technique	 is	 template	 matching.	 Here	 we	 give	 our	 script
some	templates	for	specific	objects,	which	it	then	has	to	find	in	the	images.	The
difference	 to	 object	 recognition	 however	 is	 that	 the	matching	 has	 to	 be	 pretty
accurate.	 It	 is	 looking	 for	 almost	 exact	 matches	 rather	 than	 similar	 patterns.
Thus,	this	technique	is	not	optimal	for	the	general	recognition	of	faces	or	clocks
for	example.

Fig.	5.3:	Image	of	a	workspace

Let’s	take	this	image	of	a	workspace	as	our	example.	Basically,	we	could	choose
any	object	we	want,	but	the	only	one	that	occurs	multiple	times	in	this	image	are
they	keys	of	the	laptop	keyboard.

Fig	5.4:	F-key	as	template

So	what	we	 do	 is	we	 crop	 out	 one	 of	 the	 keys	 using	 a	 program	 like	Gimp	or
Photoshop.	Then	we	use	this	key	as	our	template	image.

img_bgr	=	cv.imread('workspace.jpg')
img_gray	=	cv.cvtColor(img_bgr,	cv.COLOR_BGR2GRAY)

template	=	cv.imread('key.jpg',	0)
width,	height	=	template.shape[::-1]

First	we	load	the	main	picture	and	the	template	into	our	program.	Then	we	make
a	copy	of	the	image	and	convert	it	into	grayscale.	Also	we	save	the	width	and	the
height	of	the	template	in	pixels.

result	=	cv.matchTemplate(img_gray,	template,
																												cv.TM_CCOEFF_NORMED)

The	main	work	will	now	be	done	by	the	matchTemplate	function.	To	it	we	pass
our	image,	our	template	and	we	specify	the	method	that	we	are	going	to	use	for
matching.	In	this	case	TM_CCOEFF_NORMED.

What	we	get	as	a	result	is	an	array	with	the	respective	activations	of	the	image
parts,	in	which	this	template	occurs.

threshold	=	0.8
area	=	np.where(result	>=	threshold)

In	the	next	step	we	define	a	certain	threshold.	It	specifies	how	far	the	pixels	of
the	 grayscale	 image	 are	 allowed	 to	 deviate	 from	 the	 template.	 In	 this	 case	 0.8
means	that	the	area	needs	to	have	at	least	80%	similarity	with	our	template	to	be
recognized	 as	 a	match.	 You	 can	 tweak	 this	 value	 as	 you	 like	 and	 experiment
around.	The	function	where	from	NumPy	returns	the	indices	of	the	pixels,	which
are	close	enough.

for	pixel	in	zip(*area[::-1]):
				cv.rectangle(img_bgr,	pixel,	
																	(pixel[0]	+	width,	pixel[1]	+	height),
																	(0,	0,	255),	2)

Now	we	run	a	for	loop	over	the	zipped	version	of	our	area.	For	each	pixel	in	this
area,	which	has	a	high	enough	activation,	we	will	 then	draw	a	red	rectangle	of
the	width	and	height	of	the	template.	This	will	 then	indicate	that	our	algorithm
has	found	a	match	there.

cv.imshow('Result',	img_bgr)
cv.waitKey(0)
cv.destroyAllWindows()
	
Last	but	not	least,	we	can	look	at	our	result	with	all	the	matches.

Fig.	5.5:	Workspace	after	feature	matching

Again,	 if	 you	 are	 reading	 a	 grayscale	 version	 of	 this	 book,	 you	will	 probably
only	notice	the	gray	rectangles	around	some	of	the	keys.	When	you	execute	the
script	yourself,	you	will	see	that	they	are	red.

As	you	can	see,	our	algorithm	recognized	quite	a	lot	of	keys.	If	you	want	to	find
more	keys,	you	will	have	to	reduce	the	threshold.	In	this	case	however,	you	also
increase	the	likelihood	of	misclassifications.

FEATURE	MATCHING
Imagine	 having	 two	 pictures	 that	 show	 the	 exact	 same	 objects	 but	 from	 a
different	perspective.

Fig.	5.6:	Workspace	from	another	perspective

Here	 for	 example	we	have	 the	workspace	 from	a	 different	 perspective.	 For	 us
humans	 it	 is	 not	 hard	 to	 recognize	 that	 these	 objects	 are	 the	 same	 and	match
them	in	both	pictures.	But	for	our	computer	these	are	completely	different	pixels.

What’s	going	to	help	us	here	is	the	so-called	feature	matching.	Here,	algorithms
extract	all	 the	essential	points	and	descriptors	of	our	 images.	Then	 it	 looks	 for
the	same	points	in	the	other	image	and	connects	them.

img1	=	cv.imread('workspace1.jpg',	0)
img2	=	cv.imread('workspace2.jpg',	0)

orb	=	cv.ORB_create()

keypoints1,	descriptors1	=	orb.detectAndCompute(img1,	None)
keypoints2,	descriptors2	=	orb.detectAndCompute(img2,	None)

After	loading	our	images,	we	create	an	orientational	BRIEF	 (short	ORB).	This
will	 help	 us	 to	 determine	 the	 essential	 points.	We	 call	 the	 detectAndCompute
function	of	this	object	and	apply	it	to	both	our	images.	The	results	we	get	are	the
key	points	and	the	descriptors	for	both	images.

In	this	example,	we	import	the	images	in	black	and	white	(thus	the	zero).	We	do
this	because	we	can	then	better	see	the	colored	connections	in	the	end.	But	you

can	also	load	the	original	images	if	you	want.

matcher	=	cv.BFMatcher(cv.NORM_HAMMING,	crossCheck=True)
matches	=	matcher.match(descriptors1,	descriptors2)
matches	=	sorted(matches,	key	=	lambda	x:	x.distance)

Now	 we	 create	 an	 instance	 of	 the	 BFMatcher	 class	 and	 choose	 the
NORM_HAMMING	 algorithm.	 This	 matcher	 allows	 us	 to	 combine	 the	 key
points	 and	 determine	where	 the	 key	 points	 of	 one	 picture	 can	 be	 found	 in	 the
other	one.	The	result	will	 then	be	sorted	by	distance	in	the	last	line,	so	that	we
have	the	shortest	distances	first.	This	is	important	because	in	the	next	step	we	are
only	going	to	filter	out	a	couple	of	the	best	results.

result	=	cv.drawMatches(img1,keypoints1,
																								img2,keypoints2,
																								matches[:10],	None,	flags=2)

Last	but	not	 least,	we	visualize	 these	matches	with	 the	drawMatches	 function.
For	this	we	pass	both	images,	their	key	points	and	specify	which	matches	shall
be	visualized.	In	this	case	we	pick	the	first	ten	matches,	which	have	the	shortest
distance.

result	=	cv.resize(result,	(1600,900))
cv.imshow('Result',result)
cv.waitKey(0)

Now	we	scale	the	final	result	so	that	we	can	show	the	images	without	problems.

Fig.	5.7:	Feature	matching	of	both	images

It	is	very	hard	to	actually	see	the	lines	in	this	book.	Even	if	you	have	a	colored
version,	 you	 will	 struggle	 because	 OpenCV	 draws	 very	 thin	 lines	 here.
Therefore,	 go	 ahead	 and	 execute	 the	 code	 on	 your	 own	 machine	 to	 see	 the

results.

Basically	what	 is	happening	 is	 that	 the	most	 important	points	 in	 the	 left	 image
are	being	connected	to	the	most	important	points	in	the	right	image.	This	works
pretty	well	most	of	the	time	but	we	still	have	some	mistakes	in	our	result.	It’s	not
perfect!

MOVEMENT	DETECTION
Before	 we	 finally	 get	 to	 object	 recognition	 we	 will	 take	 a	 look	 at	 a	 very
interesting	 technique	when	 it	 comes	 to	movement	 detection.	This	 technique	 is
called	 background	 subtraction.	 Here	 we	 use	 an	 algorithm	 that	 looks	 at	 the
changes	in	pixels,	 in	order	to	determine	what	the	background	is.	Then	we	only
focus	on	the	foreground	or	at	those	pixels	that	are	changing	or	moving.

Fig.	5.8:	Screenshot	of	a	video

For	this	I	will	use	a	video	in	which	many	people	are	walking	at	a	public	place.
Of	course	you	can	use	your	own	videos	or	even	the	camera	data	as	input.

#	Alternative:	video	=	cv.VideoCapture(0)
video	=	cv.VideoCapture('people.mp4')
subtractor	=	cv.createBackgroundSubtractorMOG2(20,	50)

As	always	we	load	our	video	into	our	script.	Then	we	create	a	new	subtractor	by
using	 the	 function	 createBackgroundSubtractorMOG2.	 To	 it	 we	 (optionally)
pass	 two	parameters.	The	 first	one	 is	 the	 length	of	 the	history,	which	specifies
how	far	back	our	 subtractor	 shall	 look	 for	movements	or	changes.	The	 second
one	is	the	threshold.	Here	again	you	have	to	play	around	with	those	values	until
you	get	optimal	results.

while	True:
				_,	frame	=	video.read()
				mask	=	subtractor.apply(frame)

				cv.imshow('Mask',	mask)

				if	cv.waitKey(5)	==	ord('x'):
								break

cv.destroyAllWindows()
video.release()

Now	we	 can	 once	 again	 run	 our	 endless	 loop	 and	 show	 our	 results.	 The	 only
thing	that	we	do	here	is	to	apply	our	subtractor	to	the	current	frame.	The	result	is
our	mask.

Fig.	5.9:	Result	as	mask

Even	 though	 the	 result	 is	 not	 perfect	 and	 we	 can	 probably	 choose	 better
parameters,	the	subtractor	fulfills	its	purpose.	We	can	only	see	those	parts	of	the
video	that	are	changing.	This	is	the	foreground.	Try	it	yourself.	It	is	fun!

OBJECT	RECOGNITION
Now	we	finally	get	to	object	recognition.	Here	we	try	to	work	as	generalized	as
possible.	This	 is	 the	opposite	strategy	of	 template	matching.	Our	goal	 is	not	 to
find	 the	 same	 type	 of	 key	 or	 the	 same	 face	 but	 to	 generally	 recognize	 faces,
computers,	 keys	 etc.	 For	 this	 however,	 we	 need	 some	 advanced	 models	 and
training	data.	Since	 it	 takes	quite	a	 lot	of	effort	 to	build	 those	on	our	own,	we
will	use	resources	from	the	internet.

LOADING	RESSOURCES
We	will	make	use	of	so-called	HaarCascades,	which	have	 the	format	of	XML
files.	 In	 this	 book	we	 are	 going	 to	 use	 one	 of	 these	 cascades	 for	 recognizing
faces	and	one	of	 them	 to	 recognize	clocks.	For	 this,	we	will	use	 the	 following
links:

Face	Cascade:	https://bit.ly/3bkHNHs

Clock	Cascade:	https://bit.ly/3bdLQF8

If	for	some	reason	the	links	don’t	work	in	the	future,	you	can	just	look	up	some
HaarCascades	for	the	objects	that	you	want	to	recognize.

However,	 take	 care	 of	 the	 licensing	 of	 these	 files.	 The	 first	 file	 is	 from	 the
company	 Intel	 and	 has	 a	 copyright.	 As	 long	 as	 you	 use	 it	 for	 your	 private
learning,	this	should	not	be	a	problem	though.

faces_cascade	=	cv.CascadeClassifier('haarcascade_frontalface_default.xml')
clock_cascade	=	cv.CascadeClassifier('clock.xml')

We	now	create	two	CascadeClassifiers	for	both	objects	and	pass	both	XML-files
as	parameters.

RECOGNIZING	OBJECTS
	

https://bit.ly/3bkHNHs
https://bit.ly/3bdLQF8

Fig.	5.10:	Group	of	people

First	we	are	going	to	use	this	picture	of	people	in	order	to	recognize	some	faces.

img	=	cv.imread('people.jpg')
img	=	cv.resize(img,	(1400,	900))

gray	=	cv.cvtColor(img,	cv.COLOR_RGB2GRAY)
faces	=	faces_cascade.detectMultiScale(gray,	1.3,	5)

We	 scale	 the	 image	 and	 convert	 it	 into	 grayscale.	 Then	 we	 use	 the
detectMultiScale	 function	of	our	classifier,	 in	order	 to	 recognize	faces	with	 the
help	of	our	XML-file.	Here	we	pass	 two	optional	parameters.	First	 the	 scaling
factor	of	the	image	which	is	going	to	be	higher	the	better	our	image	quality	is.
And	second	the	minimum	amount	of	neighbor	classification	for	a	match.	That’s
actually	it.	We	now	just	have	to	visualize	everything.

for	(x,y,w,h)	in	faces:
				cv.rectangle(img,	(x,	y),
																	(x	+	w,	y	+	h),
																	(255,	0,	0),	2)
				cv.putText(img,	'FACE',
															(x,y+h+30),
															cv.FONT_HERSHEY_SIMPLEX,	0.8,
															(255,255,255),	2)

We	iterate	over	each	recognized	face	and	get	the	two	coordinates,	the	width	and
the	height.	Then	we	draw	a	rectangle	and	put	a	text	below	it.

Fig.	5.11:	Classified	faces

As	you	can	see,	the	result	is	pretty	amazing.	We	will	now	do	the	same	thing	with
clocks.

Fig.	5.12:	Image	of	a	room	with	a	clock

In	 this	 room	you	can	see	a	clock,	which	we	want	 to	 recognize	with	our	script.
We	repeat	the	procedure	and	add	some	parts	to	our	script.

In	diesem	Zimmer	befindet	sich	eine	Wanduhr,	welche	wir	von	unserem	Skript
erkennen	 lassen	möchten.	Wir	wiederholen	also	die	Vorgehensweise	und	fügen
Teile	zu	unserem	Skript	hinzu.

faces	=	faces_cascade.detectMultiScale(grau,	1.3,	5)
clock	=	clock_cascade.detectMultiScale(grau,	1.3,	10)

For	the	clock	we	use	ten	as	the	third	parameter,	because	otherwise	it	makes	some

misclassifications.

for	(x,y,w,h)	in	clocks:
				cv.rectangle(img,	(x,	y),
																	(x	+	w,	y	+	h),
																	(0,	0,	255),	2)
				cv.putText(img,	'CLOCK',
															(x,	y	+	h	+	30),
															cv.FONT_HERSHEY_SIMPLEX,	0.8,
															(255,	255,	255),	2)

Here	we	 also	 draw	 a	 rectangle	 and	 put	 a	 text	 below	 the	 clocks.	Of	 course	we
need	 to	 also	 change	 the	 file	 path	 of	 the	 image	 that	 we	 are	 loading	 in	 the
beginning.

Fig.	5.12:	Classified	clock

As	you	can	see	this	also	works	pretty	well.	Unfortunately	I	was	not	able	to	find	a
license-free	 picture	 with	 people	 and	 clocks	 on	 the	 wall	 at	 the	 same	 time.
However,	in	such	a	case	our	script	would	recognize	both	and	draw	rectangle	with
different	 colors	 and	 different	 texts	 on	 the	 right	 places.	 This	 also	 works	 with
videos	and	with	camera	data.

As	always	experiment	around	with	the	concepts	you	have	learned	about	in	this
chapter.	Use	different	images,	try	different	cascades	and	work	with	your	camera.
Be	creative	and	try	new	things	because	that	is	how	you	learn.

WHAT’S	NEXT?
If	you	have	understood	the	concepts	in	this	book	and	you	learned	how	to	apply
them,	you	have	made	a	huge	step	towards	becoming	a	master	programmer	and
computer	scientist.	The	skills	you	learned	are	invaluable	in	today’s	economy	but
also	in	the	future.

You	are	able	to	process	image	and	video	data	in	a	very	complex	way	and	extract
important	 information.	In	combination	with	machine	learning	and	data	science,
this	is	a	very	powerful	tool.

Depending	 on	 the	 application	 field,	 you	 will	 need	 to	 learn	 some	 extra	 skills,
since	 no	 book	 in	 the	whole	world	 could	 teach	 you	 everything.	 If	 you	 go	 into
natural	sciences,	you	will	need	to	learn	the	respective	skills	there.	It’s	the	same
for	 medicine,	 for	 sports	 and	 for	 every	 other	 field.	 Computer	 science	 and
mathematics	 alone	 are	 not	 going	 to	 get	 you	 very	 far,	 unless	 you	 go	 into
theoretical	 research.	 However,	 you	 should	 now	 have	 a	 solid	 basis	 in
programming	and	computer	science,	so	that	you	continue	to	progress	further	on
your	journey.	If	you	choose	to	build	surveillance	systems,	analyze	medical	data
or	do	something	completely	different,	is	up	to	you.

If	you	are	interested	in	more	machine	learning,	take	a	look	at	my	Amazon	author
page.	There	you	can	find	the	other	volumes	of	that	series	that	are	about	machine
learning,	data	science	and	neural	networks.

NEURALNINE
One	place	where	you	can	get	a	 ton	of	additional	 free	 resources	 is	NeuralNine.
This	 is	 my	 brand	 and	 it	 has	 not	 only	 books	 but	 also	 a	 website,	 a	 YouTube
channel,	 a	 blog,	 an	 Instagram	page	 and	more.	On	YouTube	 you	 can	 find	 high
quality	video	tutorials	for	free.	If	you	prefer	text,	you	might	check	out	my	blog
for	 free	 information.	 The	 @neuralnine	 Instagram	 page	 is	 more	 about
infographics,	updates	and	memes.	Feel	free	to	check	these	out!

YouTube:	https://bit.ly/3a5KD2i

Website:	https://www.neuralnine.com/

Instagram:	https://www.instagram.com/neuralnine/

Books:	https://www.neuralnine.com/books/

Can’t	wait	to	see	you	there!	J

Last	but	not	 least,	a	 little	reminder.	This	book	was	written	 for	you,	so	 that	you
can	get	as	much	value	as	possible	and	learn	to	code	effectively.	If	you	find	this
book	 valuable	 or	 you	 think	 you	 learned	 something	 new,	 please	 write	 a	 quick
review	on	Amazon.	It	is	completely	free	and	takes	about	one	minute.	But	it	helps
me	produce	more	high	quality	books,	which	you	can	benefit	from.

Thank	you!

https://bit.ly/3a5KD2i
https://www.neuralnine.com/
https://www.instagram.com/neuralnine/
https://www.neuralnine.com/books/

	

	

	

	

If	you	are	interested	in	free	educational	content	about	programming	and	machine
learning,	check	out	https://www.neuralnine.com/

There	we	have	free	blog	posts,	videos	and	more	for	you!	Also,	you	can	follow
the	@neuralnine	 Instagram	 account	 for	 daily	 infographics	 and	 memes	 about
programming	and	AI!

Website:	https://www.neuralnine.com/

Instagram:	@neuralnine

YouTube:	NeuralNine

Books:	https://www.neuralnine.com/books/

	

	

https://www.neuralnine.com/
https://www.neuralnine.com/
https://www.neuralnine.com/books/

	

	

	

	

	

	

	

	

If	this	book	benefited	your	programming	life	and	you	think	that	you
have	learned	something	valuable,	please	consider	a	quick	review	on

Amazon.

Thank	you!

	

	

	

	

	

If	you	are	interested	in	free	educational	content	about	programming	and	machine
learning,	check	out	https://www.neuralnine.com/

There	we	have	free	blog	posts,	videos	and	more	for	you!	Also,	you	can	follow
the	@neuralnine	 Instagram	 account	 for	 daily	 infographics	 and	 memes	 about
programming	and	AI!

Website:	https://www.neuralnine.com/

Instagram:	@neuralnine

YouTube:	NeuralNine

Books:	https://www.neuralnine.com/books/

	

https://www.neuralnine.com/
https://www.neuralnine.com/
https://www.neuralnine.com/books/

	1 THE PYTHON BIBLE for Beginners
	2 THE PYTHON BIBLE for Intermediates
	3 THE PYTHON BIBLE Data Science
	4 THE PYTHON BIBLE Machine Learning
	5 THE PYTHON BIBLE for Finance
	6 THE PYTHON BIBLE Neural Networks
	7 THE PYTHON BIBLE Computer Vision

