


Computer	Programming	for
Beginners

Fundamentals	of	Programming	Terms	and
Concepts

Nathan	Clark



© 	Copyright	2018	Nathan	Clark.	All	rights	reserved.

No	part	of	this	publication	may	be	reproduced,	distributed,	or	transmitted	in	any
form	or	by	any	means,	including	photocopying,	recording,	or	other	electronic	or
mechanical	 methods,	 without	 the	 prior	 written	 permission	 of	 the	 publisher,
except	 in	 the	 case	 of	 brief	 quotations	 embodied	 in	 critical	 reviews	 and	 certain
other	noncommercial	uses	permitted	by	copyright	law.

Every	effort	has	been	made	to	ensure	that	the	content	provided	herein	is	accurate
and	helpful	for	our	readers	at	publishing	time.	However,	this	is	not	an	exhaustive
treatment	of	 the	subjects.	No	 liability	 is	assumed	 for	 losses	or	damages	due	 to
the	information	provided.

Any	trademarks	which	are	used	are	done	so	without	consent	and	any	use	of	the
same	 does	 not	 imply	 consent	 or	 permission	was	 gained	 from	 the	 owner.	 Any
trademarks	or	brands	found	within	are	purely	used	for	clarification	purposes	and
no	owners	are	in	anyway	affiliated	with	this	work.



Complementary	Books

https://www.amazon.com/dp/1987518977
https://www.amazon.com/dp/1542961548


https://www.amazon.com/dp/1978104472
https://www.amazon.com/dp/1975745086


https://www.amazon.com/dp/1974581217


Table	of	Contents

Introduction
1.	What	Is	a	Programming	Language?
2.	Why	Do	We	Need	a	Programming	Language?
3.	The	History	of	Programming	Languages
4.	Popular	Programming	Languages
5.	Understanding	the	Structure	of	a	Program
6.	What	Are	the	Different	Types	of	Programs?
7.	How	Is	a	Program	Built?
8.	How	Is	a	Program	Executed?
9.	What	Are	Program	Statements?
10.	What	Are	Data	Types?
11.	What	Are	Variables?
12.	What	Are	Operators?
13.	Working	with	Numbers
14.	The	Importance	of	Strings
15.	Making	Decisions	in	Programs
16.	Iterative	Programming
17.	Logical	Grouping	of	Code
18.	What	Are	Functions?
19.	Taking	Input
20.	Sending	Output
21.	What	Is	Functional	Programming?
22.	What	Is	Object	Oriented	Programming?
23.	What	Are	Client	Server	Applications?
24.	What	Is	Web	Programming?
25.	Managing	Data	in	a	Program
26.	Storing	Data	in	Files
27.	Storing	Data	in	Databases
28.	Data	Exchange	Formats
29.	Error	Handling



30.	Logging	in	Programs
31.	Logical	Grouping	of	Programs
32.	Deploying	Programs
33.	Programming	for	the	Internet
34.	Serverless	Programming
35.	Programming	for	Mobile	Devices
36.	Design	Practices
Conclusion
About	the	Author



Introduction

Welcome	 to	 your	 first	 steps	 into	 the	 world	 of	 programming.	 This	 guide	 has
specifically	been	created	for	someone	who	is	completely	new	to	programming.
We	 will	 cover	 all	 the	 concepts,	 terms,	 programming	 paradigms	 and	 coding
techniques	 that	 every	 beginner	 should	 know,	 and	 other	 guides	 assume	 you
already	do.	From	program	structure	to	error	handling,	from	web	programming	to
data	management,	and	everything	in-between.

This	 guide	 is	 the	 perfect	 primer	 to	 learning	 any	 programming	 language.	After
creating	beginner	guides	for	some	of	the	most	popular	programming	languages,	I
received	 several	 requests	 to	 create	 a	 guide	 that	 precedes	 those	 guides	 and
explains	 the	 basic	 concepts	 of	 programming.	 So	 here	 it	 is!	 I	 have	 taken
everything	a	complete	novice	needs	to	know	and	crammed	it	into	this	guide.

This	 comprehensive	 guide	 doesn’t	 focus	 on	merely	 one	 specific	 language,	 but
rather	the	principles	that	apply	to	all	programming	languages.	The	emphasis	has
been	placed	on	detailed	descriptions,	supported	by	working	code	samples	from
the	most	popular	languages	to	help	illustrate	concepts	and	terms.
This	guide	will	 form	 the	 foundation	 for	all	 future	programming	 languages	you
may	encounter.	I	have	put	a	lot	of	love	and	care	into	this	guide,	and	I	hope	you
enjoy	it!



1.	What	Is	a	Programming	Language?

A	 programming	 language	 is	 a	 language	 that	 has	 a	 set	 of	 instructions,	 that	 is
designed	 to	 give	 a	 desired	 output.	 Programming	 languages	 are	 used	 to	 give
instructions	 to	 the	 underlying	 computer	 they	 run	 on.	 The	 computer	 in	 turn
processes	the	information	and	then	provides	the	desired	output.

With	 a	 programming	 language,	 we	 would	 then	 develop	 a	 set	 of	 instructions
known	 as	 a	 program.	 This	 program	 would	 be	 designed	 based	 on	 a	 set	 of
requirements.	 Let’s	 say	 we	 wanted	 to	 create	 a	 system	 that	 could	 handle	 the
purchase	 orders	 created	 by	 a	 company.	We	 could	 then	write	 a	 program	 in	 the
programming	language	of	our	choice	to	achieve	this.

The	programming	language	itself	would	be	based	on	a	set	of	constructs,	and	we
would	 need	 to	 create	 the	 program	 based	 on	 these	 constructs.	 There	 is	 a	 wide
range	of	programming	 languages	 available,	 and	 it’s	 always	wise	 to	 choose	 the
right	 language	 based	 on	 the	 type	 of	 program	we	want	 to	 create.	 For	 example,
let’s	say	that	we	wanted	to	create	a	system	that	could	work	on	the	internet	and	be
accessible	 through	an	 internet	browser.	We	would	 then	choose	a	 language	 that
has	the	necessary	capabilities	we	need,	which	also	function	on	the	internet.
Some	of	the	features	that	define	a	good	programming	language	are:

Simplicity	 –	 This	 refers	 to	 the	 ease	 of	 use	 of	 the	 programming
language.	 If	 the	 language	 is	 easy	 to	 use,	 it	 becomes	more	 popular
amongst	 the	 various	 communities.	 If	 a	 language	 is	 hard	 to	 learn,	 it
becomes	 more	 difficult	 for	 people	 to	 adopt	 that	 language	 and	 its
usage	will	drop.

Functionality	–	The	programming	language	should	be	able	to	cater	to
the	wide	variety	of	functionality	required	by	programs.	For	example,
if	 we	 wanted	 to	 create	 a	 web-based	 application,	 then	 that
programming	 language	 should	 have	 all	 the	 features	 that	 allow	 it	 to
work	on	the	internet.	Or	if	we	wanted	to	create	a	simple	component
that	 could	 be	 plugged	 into	 another	 system,	 then	 the	 programming
language	should	be	able	to	have	the	functionality	to	create	pluggable
components.

Structure	–	A	good	programming	language	should	have	the	necessary
constructs	 to	 create	 a	 well-defined	 and	 structured	 program.	 A
cluttered	program	 is	difficult	 to	maintain.	Hence	a	properly	defined



and	structured	program	is	always	desirable.

Efficiency	 –	 This	 refers	 to	 how	 well	 the	 program	 runs	 on	 the
computer.	 This	 is	 an	 important	 concept.	 There	 is	 a	 no	 point	 in
creating	a	program	and	then	having	the	program	behave	inefficiently
when	 running.	 Luckily,	 most	 programming	 languages	 are	 created
with	performance	in	mind.	Since	many	users	normally	run	more	than
one	program	at	a	time,	it	is	important	for	the	language	to	function	as
efficiently	as	possible.

Continuous	updates	–	Since	our	environment	changes	continuously,
it	 has	 become	 important	 that	 updates	 are	 applied	 continuously	 to
programming	languages	as	well.	If	new	concepts	are	introduced,	then
these	concepts	should	also	be	present	in	the	programming	language.
Nowadays	 there	 are	 numerous	 open	 communities	 and	 forums	 that
lend	a	hand	in	updating	core	features	of	a	language.

Deployment	 –	 How	 easy	 a	 program	 can	 be	 deployed	 is	 also	 vital,
along	 with	 the	 ability	 to	 deploy	 it	 on	 multiple	 platforms.	 For
example,	a	program	that	runs	on	Windows	might	not	be	able	to	run
on	Mac	OS.	In	such	a	case,	 it	becomes	important	 to	ensure	 that	 the
underlying	programming	language	can	cater	 to	working	on	multiple
platforms.
Multiple	devices	–	The	programming	language	should	also	have	the
ability	 to	 create	 programs	 that	 can	 run	 on	 multiple	 devices.
Nowadays,	 people	 prefer	 to	 work	 on	 mobile	 devices	 rather	 than
computers.	 Hence,	 programming	 languages	 must	 be	 able	 to	 create
programs	that	work	on	both	traditional	computer	systems	and	mobile
devices.

Purpose	 –	 Each	 programming	 language	 must	 have	 an	 intended
purpose.	 It’s	 not	 enough	 to	 have	 a	 programming	 language	 for	 the
sake	 of	 having	 it.	 Many	 programming	 languages	 are	 built	 for	 a
specific	purpose.	For	example	in	manufacturing	industries,	we	would
find	 programming	 languages	 that	 are	 built	 specially	 to	 create
programs	for	that	industry.

Compactness	–	Ideally,	a	program	should	be	as	concise	as	possible.
Having	a	large	program	to	carry	out	a	minor	function	does	not	only
lead	to	performance	issues,	but	also	maintainability	issues.	In	such	a
case,	the	programming	language	should	be	able	to	provide	constructs



and	 structures	 that	 can	 be	 used	 to	 create	 programs	 that	 are	 concise
and	to	the	point.

Human	 translation	 –	 When	 we	 create	 a	 program,	 we	 want	 it	 to
emulate	exactly	what	we	want	it	to	do.	Hence	the	program	should	be
able	to	understand	what	we	are	trying	to	make	it	do.	This	means	that
the	programming	language	should	have	the	facility	to	represent	real-
world	objects.	For	example,	if	we	wanted	to	represent	a	person	in	a
program	 via	 a	 name,	 then	 the	 language	 should	 have	 the	 necessary
statements	to	define	this	representation.



2.	Why	Do	We	Need	a	Programming	Language?

Over	 the	 years,	 computers	 have	 become	 irreplaceable	 in	 our	 daily	 lives.	 They
were	 initially	 only	 used	 in	 large	 organization	 for	 computing	 purposes,	 but	 are
now	 even	 being	 used	 by	 children	 for	 gaming	 and	 social	 media.	 The	 original
intended	 use	 of	 the	 computer	 was	 for	 its	 power	 to	 execute	 computational
instructions.	These	instructions,	which	would	normally	have	taken	a	human	days
or	weeks	to	execute,	could	be	done	by	a	computer	within	a	fraction	of	a	second.

In	order	to	ensure	that	the	computer	could	understand	what	we	wanted	it	to	do,
we	had	to	give	it	a	predefined	set	of	instructions.	These	instructions	could	then
be	executed	by	the	computer.	But	in	order	to	create	that	set	of	 instructions,	we
needed	 to	 have	 a	 language	 of	 some	 kind.	 And	 that	 was	 the	 advent	 of
programming	 languages.	 The	 programming	 language	 could	 then	 be	 used	 to
create	a	set	of	instructions	that	could	be	understood	by	the	underlying	computer
system.

Some	of	the	other	reasons	why	a	programming	language	is	so	important	are:

When	we	create	instructions	for	the	computer	to	follow,	we	need	to
do	 it	 in	 a	 language	 that	 we	 are	 familiar	 with.	 Computers	 only
recognize	instructions	in	binary	language,	and	it	would	take	ages	for
a	 human	 to	 create	 a	 program	 in	 binary	 code.	 The	 programming
language	 would	 then	 have	 the	 duty	 of	 taking	 this	 program	 and
converting	 it	 to	 a	 language	 that	 could	 be	 understood	 by	 the
underlying	computer	system.
We	can	also	use	a	programming	language	to	express	objects	that	we
use	 in	our	daily	 lives.	For	example,	 if	we	wanted	 to	store	 the	name
and	age	of	a	person,	we	could	do	that	using	a	programming	language.
That	 language	 would	 have	 the	 necessary	 syntax	 and	 constructs	 to
ensure	 that	 real-world	 data	 can	 be	 represented	 using	 a	 simple
program.

Programs	can	also	be	used	to	express	relationships	between	objects.
Let’s	 say	 we	 wanted	 to	 know	 what	 items	 were	 purchased	 by	 a
specific	individual	in	a	company.	We	could	store	and	track	this	with
a	 simple	 program,	 and	 then	 extrapolate	 the	 information	 in	 a
meaningful	way.	Most	programming	languages	nowadays	allow	us	to
represent	objects	and	also	express	the	relationship	between	them.



There	are	so	many	different	systems	out	there	in	today’s	world,	that
we	need	to	ensure	that	data	is	made	available	across	various	systems.
Data	should	be	able	 to	 travel	across	systems	and	be	made	available
whenever	required.	This	can	be	implemented	easily	with	a	program,
and	we	need	 to	have	a	programming	 language	 that	can	create	 these
programs.

Programs	 are	 also	 not	 limited	 to	 running	 only	 on	 computers,	 if	we
look	at	the	number	of	smartphones	and	tablets	being	used	today.	So
how	can	we	represent	what	we	want	to	show	on	a	mobile	device?	We
can	do	this	with	the	help	of	a	program	that	is	compatible	with	mobile
devices.	But	since	 the	architecture	of	a	mobile	device	 is	completely
different	 to	 that	 of	 a	 traditional	 computer,	 we	 need	 to	 have	 a
programming	 language	 that	 can	 understand	 how	 the	mobile	 device
works.	 The	 language	 could	 then	 make	 the	 program	 run	 on	 the
particular	mobile	device.

Many	 industries	 need	 programs	 in	 order	 to	 do	 business	 on	 a	 daily
basis.	Right	from	manufacturing	facilities	with	automated	production
lines,	 to	 law	 firms	 that	use	office	and	accounting	 software.	We	can
see	programs	running	in	almost	every	part	of	the	world,	but	for	each
of	these	dimensions	the	programming	language	needs	to	be	different.
It	needs	to	understand	how	that	particular	dimension	of	the	industry
works.	 And	 hence	 we	 need	 programming	 languages	 in	 different
spaces	to	create	different	types	of	programs.

Nowadays	 it	 is	 impossible	 to	 imagine	a	 life	without	programs	or	programming
languages.	 As	 technology	 advances,	 so	 does	 the	 need	 for	 a	 programming
language	 to	 represent	 the	 advances	 in	 technology.	 Some	 languages	 are	 more
widely	adopted	than	others,	and	this	all	depends	on	how	well	the	programming
language	can	fit	its	intended	purpose.



3.	The	History	of	Programming	Languages

The	 first	 type	 of	 programming	 languages	 was	 known	 as	 first	 generation
programming	 languages.	 These	 were	 languages	 that	 were	 actually	 written	 in
binary	 form,	which	 could	 be	 understood	 by	 computers.	The	 problem	with	 this
type	of	programming	language	is	that	you	had	to	have	an	in-depth	understanding
of	computers	and	be	able	to	manage	the	memory	allocation.

The	 subsequent	 level	 of	 programming,	 or	 second	 generation,	 was	 known	 as
“Assembly	Language	Programming”.	These	programs	were	more	 readable	 and
did	 not	 have	 to	 be	 coded	 in	 binary.	 But	 again	 for	 this	 set	 of	 programming
languages,	you	needed	understand	the	underlying	architecture	of	the	machine	it
would	run	on.

The	very	first	popular	high-level	programming	language	was	a	language	known
as	FORTRAN.	It	was	invented	by	IBM	and	was	made	to	design	programs	that
could	 run	 on	 the	 world’s	 fastest	 supercomputers	 of	 the	 time.	 It	 was	 used	 to
develop	 programs	 in	 compute-intensive	 environments,	 such	 as	 numerical
weather	 prediction,	 finite	 element	 analysis,	 computational	 fluid	 dynamics,
computational	physics	and	crystallography.
Then	 from	 the	 1960’s	 to	 the	 1970’s	 a	 great	 deal	 of	 low-level	 programming
languages	were	developed.	Some	of	these	were:

APL	 (A	 Programming	 Language),	 which	 introduced	 array
programming	and	influenced	functional	programming.

ALGOL	which	was	a	structured	procedural	language.

Lisp,	which	was	the	first	dynamically	typed	functional	language.

Simula,	 which	 was	 the	 first	 language	 designed	 to	 support	 object-
oriented	programming.

C,	 which	 was	 developed	 between	 1969	 and	 1973	 as	 a	 system
language	 for	 the	Unix	operating	 system	and	 still	 remains	 a	 popular
language	to	date.

Then	came	the	age	of	object-oriented	programming	languages	during	the	1980’s.
During	 this	 time	C++	was	 introduced	 as	 an	 object-oriented	 language	 and	was
also	 used	 for	 systems	 programming.	 Following	 this,	 came	 the	 growth	 of	 the
Internet	 and	 the	 adoption	 of	websites.	Naturally	 there	 had	 to	 be	 programming
languages	that	could	support	the	applications	built	on	the	Internet.	Perl	was	one



of	 the	 first	 languages	 used	 for	 building	 dynamic	 websites.	 It	 was	 initially
intended	for	 the	Unix	platform,	but	 then	branched	out	 to	support	dynamic	web
applications.

The	 subsequent	 fourth	 generation	 of	 programming	 languages	 had	 additional
support	for	database	management,	report	generation,	mathematical	optimization,
GUI	 development,	 and	web	 development.	 Some	 of	 the	 general	 purpose	 fourth
generation	languages	were	Visual	Foxpro,	PowerBuilder	and	Uniface.

The	fifth	generation	languages	were	based	on	problem	solving.	Here,	constraints
were	given	to	the	program,	rather	than	using	an	algorithm	written	by	a	program.
The	reign	of	each	language	was	dependent	on	how	effective	it	was	at	fulfilling
its	purpose.	Some	older	programming	languages	are	still	being	used	to	this	day,
such	as	C	and	C++.	At	the	same	time,	to	keep	up	with	the	pace	of	technology,
new	 programming	 languages	 had	 to	 be	 devised.	 For	 example	 with	 mobile
devices,	a	programming	language	had	to	be	developed	to	ensure	that	compatible
programs	could	be	created.

As	time	progressed,	each	programming	language	also	had	to	be	updated	in	order
to	 keep	 up	 with	 technological	 trends.	 Java,	 for	 instance,	 has	 gone	 through
multiple	updates	and	 is	currently	 in	version	8	at	 the	 time	of	writing	 this	book.
Along	with	programming	languages,	application	and	web	servers	also	had	to	be
put	 in	 place	 to	 run	 these	 programs	 from	 a	 central	 point.	 So	 in	 addition	 to
ensuring	the	programming	languages	were	regularly	updated,	the	application	and
web	servers	that	hosted	these	programs	also	had	to	be	constantly	updated.
At	 present,	we	 have	 the	 advent	 of	 Serverless	 programming.	 This	 is	where	we
don’t	need	to	provide	any	infrastructure	to	run	the	program.	All	code	is	designed
to	run	on	a	serverless	cloud	platform.



4.	Popular	Programming	Languages

Now	that	we	have	a	fair	understanding	of	programming	languages,	let’s	look	at
some	of	the	more	popular	languages	used	by	developers.

4.1	The	C	Programming	Language

This	was	one	of	the	earliest	languages	developed,	and	many	systems	were	built
around	 the	C	 language.	 Some	 of	 the	 features	 of	 the	C	 programming	 language
are:

It	 has	 a	 rich	 set	 of	 built-in	 features	 and	 custom	 functions,	 which
allow	developers	to	create	elaborate	and	complex	programs.

It	 has	 numerous	 functions	 that	 can	 be	 used	 to	 interact	 with	 the
underlying	operating	system.	For	 this	 reason	 it	 is	used	substantially
in	systems	programming.
Programs	written	in	C	are	efficient	and	fast.	This	is	mainly	due	to	its
variety	of	data	types	and	powerful	operators.

It	 allows	 for	 the	 creation	 of	 various	 modules	 that	 can	 be	 used	 to
logically	separate	bits	of	code.

Even	 though	 the	 C	 language	 had	 many	 features	 at	 the	 time,	 the	 advent	 of
technology	 brought	 some	 pitfalls	 to	 light	 that	 necessitated	 a	 new	 set	 of
programming	 languages.	 One	 shortcoming	 of	 the	 C	 language	 was	 that	 the
programmer	had	 to	properly	manage	 the	memory	allocation	of	 the	program.	 If
this	was	not	managed	properly,	it	would	lead	to	undesirable	consequences	such
as	the	program	crashing	unexpectedly.

A	 significant	 limitation	 came	with	 the	need	 for	web-enabled	programs.	The	C
language	did	not	have	the	required	libraries	to	work	with	web	programming	and
hence	was	mostly	used	for	system	and	netw0rk	programming.

4.2	The	C#	Programming	Language

This	 language	was	 invented	 by	Microsoft	 to	 have	 all	 the	 features	 of	C,	 along
with	many	new	concepts.	Some	of	the	key	features	of	the	C#	language	are:

The	 ability	 of	 the	 environment	 itself	 to	 manage	 aspects	 such	 as
memory.	Now	the	memory	allocation	does	not	have	 to	be	managed



by	 the	programmer.	 Instead,	 the	underlying	environment,	known	as
the	runtime,	would	be	responsible	for	allocating	and	deallocating	the
memory	whenever	required.

It	is	an	object-oriented	language,	which	refers	to	its	ability	to	create
objects	 that	 represent	 real-life	 entities.	 The	 C#	 language	 does	 this
with	the	help	of	classes	and	objects.	So	if	we	wanted	to	represent	a
person	in	a	program,	it	could	be	done	via	the	definition	of	as	a	class.
This	class	would	have	properties	 that	could	 then	define	 the	real-life
properties	of	a	person,	such	as	their	name	and	surname.	Hence	each
individual	 could	 then	 be	 represented	 by	 creating	 an	 object	 of	 that
class.

It	has	the	ability	to	create	programs	for	both	desktop	and	web	users.
With	 modern	 technology,	 it	 is	 no	 longer	 realistic	 to	 only	 develop
programs	 that	 run	 on	 the	 desktop.	 C#	 has	 gained	 significant
popularity	because	it	was	designed	to	run	both	types	of	programs.

It	 is	 constantly	 being	maintained	 by	Microsoft	 and	 hence	 there	 are
always	updates	to	this	programming	language.	This	means	that	it	will
be	able	to	keep	up	with	new	technologies,	and	any	shortcomings	will
likely	be	addressed	as	they	crop	up.

To	 learn	more	 about	 programming	 in	 C#,	 be	 sure	 to	 check	 out	 our	 complete
series	that	will	take	you	from	beginner	to	expert	in	no	time.

https://www.amazon.com/dp/1975745086


4.3	The	Java	Programming	Language

This	language	was	initially	created	by	Sun	Microsystems,	but	is	now	owned	by
the	Oracle	Corporation.	 It	 has	 key	 features	 that	 are	 similar	 to	C#,	 such	 as	 the
ability	 to	 have	 classes	 and	objects,	 as	well	 as	memory	management.	But	what
makes	 this	 language	 even	 more	 popular,	 is	 the	 fact	 that	 it	 is	 an	 open	 source
programming	language.	This	allows	developers	to	see	how	Java	works	under	the
hood	and	contribute	to	its	growth.
Java	also	allows	for	its	programs	to	be	compatible	with	almost	any	platform,	by
only	 requiring	 the	 equivalent	 runtime	 to	 be	 installed	 that	 pertains	 to	 that
operating	 system.	 While	 C#	 was	 meant	 to	 work	 primarily	 on	 the	 Windows

https://www.amazon.com/dp/1981186379
https://www.amazon.com/dp/1984121405


operating	system,	the	Java	programs	were	meant	to	run	on	virtually	any	platform
via	the	Java	Runtime	Environment.

The	Java	language	also	has	different	editions	that	focus	on	specific	applications,
such	 as	 enterprises	 and	mobile	 platforms.	 Due	 to	 its	 open	 source	 framework,
Java	 has	 a	 large	 support	 community.	Hence	 if	 you	 encounter	 any	problems	or
issues,	you	have	the	support	from	a	large	online	community.

To	 learn	about	 the	programming	versatility	of	 Java,	 look	out	 for	our	 complete
series	on	Java	programming.

https://www.amazon.com/dp/1978104472
https://www.amazon.com/dp/1983683698


4.4	The	JavaScript	Programming	Language

This	is	a	client	scripting	language	that	runs	mostly	on	the	user-end	in	a	browser.
It	 is	one	of	the	three	core	technologies	the	web	is	based	on,	along	with	HTML
and	CSS.	It	is	used	for	applications	from	web	pages	to	video	games.	JavaScript
has	 truly	become	one	of	 the	most	 popular	 languages	 to	date.	Some	of	 the	key
features	of	the	language	are:

It	is	a	lightweight	programming	language.

It	gives	 the	user	more	control	over	what	can	 run	 in	 the	browser,	as
well	as	providing	dynamic	content	in	browsers.
It	negates	the	need	for	content	to	be	sent	to	a	server	to	be	processed.
Normally	 for	 client-server	 applications	 that	 use	 C#	 or	 Java,	 the
commands	need	to	be	sent	to	a	server	for	processing.	However	with
JavaScript,	most	 of	 this	 can	 be	 done	 locally	 on	 the	 client	machine
itself,	which	saves	a	lot	of	time.

It	is	also	an	object-oriented	language,	but	differs	slightly	in	the	way
objects	are	treated.

It	 negates	 the	 need	 to	 compile	 a	 program	 before	 submitting	 the
changes,	which	allows	for	faster	deployment.

To	get	started	in	learning	how	to	program	in	JavaScript,	check	out	our	complete
series	that	covers	all	you	need	to	know	to	create	your	own	applications.

https://www.amazon.com/dp/1985574306


https://www.amazon.com/dp/1974581217
https://www.amazon.com/dp/1977703941


4.5	The	Python	Programming	Language

This	 is	 another	 extremely	 popular	 programming	 language	 that	 is	 used	 in	 a
variety	of	different	applications.	It	is	a	high-level	language	that	is	easy	to	learn
and	 easy	 to	 use.	 Python	 has	 also	 been	 around	 since	 1991	 and	 has	 built	 up	 a
considerable	 fanbase.	 This	 makes	 it	 easy	 for	 newcomers	 to	 get	 support	 when
they	are	stuck	or	their	applications	malfunction.	Some	of	the	important	features
of	this	language	are:

It	 has	 a	 simple	 language.	 The	 code	 statements	 used	 resembles	 the
English	 language,	 hence	 the	 programs	 are	 easier	 to	 read	 and
understand.

It	is	a	free	and	open	source	language.
The	 programs	 can	 be	 ported	 to	 a	wide	 range	 of	 operating	 systems,
without	the	need	for	major	changes.

It	 supports	 procedure-oriented	 programming	 and	 object-oriented
programming.

It	 has	 a	 wide	 variety	 of	 libraries	 available	 that	 can	 extend	 the
available	functionality.

To	learn	more	about	programming	in	one	of	the	most	popular	languages	in	the
community,	be	sure	to	look	out	for	our	complete	series	on	Python.

https://www.amazon.com/dp/1986205487


4.6	The	Angular	JS	Framework

This	is	a	framework	that	 is	built	around	the	JavaScript	programming	language,
and	 is	 created	 and	 maintained	 by	 Google.	 Many	 popular	 websites	 use	 this
framework	 to	build	dynamic	websites.	Some	of	 the	key	features	of	Angular	JS
are:

It	can	be	used	to	develop	rich	web-based	applications.

It	provides	an	easy	way	to	ensure	that	data	is	integrated	with	business
logic	code.
It	 uses	 HTML	 (Hyper	 Text	 Markup	 Language)	 to	 build	 user
interfaces.	

It	enables	developers	to	write	applications	with	less	code.

It	 is	very	easy	 to	 test	code,	due	 to	 the	Angular	 framework	 that	was
built	with	unit	testing	in	mind.

4.7	The	PHP	Programming	Language

This	is	a	server-side	scripting	language	that	was	designed	for	web	development,
but	is	also	used	for	general	programming.	It	is	most	notably	used	in	combination
with	 web	 content	 management	 systems,	 web	 template	 systems,	 and	 a	 diverse
array	of	web	frameworks.	Some	of	the	key	features	of	this	language	are:

It	 is	very	 simple	 and	easy	 to	use	when	compared	 to	other	 scripting

https://www.amazon.com/dp/1987518977


languages.

It	negates	the	need	to	compile	a	program	beforehand.	This	means	you
don’t	 need	 to	 prepare	 the	 program	 for	 running,	 you	 can	 make
changes	to	the	program	whenever	required	and	then	run	the	changed
program.

Its	 programs	 can	 be	 ported	 to	 a	 wide	 range	 of	 operating	 systems,
without	the	need	for	major	changes.

It	is	a	free	and	open	source	language.

4.8	The	Ruby	Programming	Language

Ruby	 is	 defined	 as	 a	 dynamic,	 reflective,	 object-oriented,	 general-purpose
language.	It	is	used	in	combination	with	a	set	of	libraries	known	as	Rails,	which
allows	 for	 much	 greater	 functionality.	 Some	 of	 the	 key	 features	 of	 this
programming	language	are:

It	is	completely	free	of	charge,	and	can	be	used,	copied	and	modified
quite	easily.

It	is	an	object-oriented	programming	language.

It	can	be	used	as	a	server-side	scripting	language.

It	can	be	embedded	into	HTML.

It	has	a	clean	and	easy	 to	understand	syntax,	 that	makes	 it	easy	 for
new	developers	to	learn.

It	is	quite	easy	to	write	and	maintain	complex	programs.



5.	Understanding	the	Structure	of	a	Program

Each	programming	language	normally	has	their	own	structure	and	constructs.	It
is	then	up	to	the	developer	to	ensure	that	they	learn	the	appropriate	programming
language	 constructs	 to	 develop	 a	 program.	 Generally,	 all	 programming
languages	 follow	 some	 common	 practices	 that	 help	 define	 and	 structure	 a
program.	Let’s	have	a	look	at	some	of	these	principles.

5.1	Blocks	of	Code

Normally	 each	 programming	 language	 uses	 the	 curly	 braces,	 {	 },	 to	 signify	 a
block	 of	 code.	This	 helps	 to	 ensure	 that	 code	 is	 structured	 and	 organized	 in	 a
program.

5.2	Separating	Code	into	Modules
Each	 programming	 language	 has	 a	 fundamental	 way	 of	 separating	 code	 into
modules.	 This	 is	 where	 logical	 pieces	 of	 code	 are	 split	 and	 contained	 inside
designated	modules.	Some	of	the	advantages	of	splitting	code	into	modules	are:

One	 advantage	 of	 splitting	 code	 into	modules,	 is	 that	 it	 makes	 the
code	 easier	 to	 maintain.	 So	 if	 a	 change	 has	 to	 be	 made	 in	 the
functionality	 of	 a	 program,	 it	 can	 be	made	 to	 only	 the	module	 that
contains	the	functionality,	instead	of	the	entire	program.

It	can	also	be	used	to	ensure	loose	coupling	in	a	program.	This	 is	a
way	of	ensuring	the	various	parts	of	a	program	aren’t	dependent	on
each	other.

It	 aids	 in	 separating	 the	 entire	 program	 into	 different	 functional
modules.

Below	is	a	sample	piece	of	code	on	how	a	module	looks	in	the	C#	language.
static	void	Add()
{

int	i=3;
int	j=4;

Console.WriteLine("The	sum	of	the	integers	is	"+	(i	+	j));
}

In	 this	sample,	 the	module	has	 the	functionality	of	adding	2	numbers	 together,



and	that	is	the	only	purpose	of	the	module.	The	module	also	has	a	name	and	can
be	invoked	at	any	point	in	the	program	via	this	name.

5.3	Using	Data	Placeholders

These	 are	 normally	 known	 as	 variables	 in	 a	 programming	 language.	 They	 are
used	 to	hold	values	 that	 can	 then	be	used	during	 the	course	of	a	program.	For
example,	if	we	have	a	program	that	adds	2	numbers,	then	we	would	define	two
data	placeholders	for	these	numbers.	Let’s	refer	to	our	code	snippet	from	before:
static	void	Add()
{

int	i=3;
int	j=4;

Console.WriteLine("The	sum	of	the	integers	is	"+	(i	+	j));
}

Here	we	have	two	data	placeholders,	namely	‘i’	and	‘j’.	We	then	assign	values	to
these	placeholders.	These	values	can	sometimes	change	during	the	course	of	the
program,	which	is	why	we	use	placeholders.

Most	 programming	 languages	 also	 have	 a	 concept	 known	 as	 ‘Data	 Types’,
which	defines	 the	 type	of	data	 that	can	be	 stored	by	 these	placeholders.	 In	 the
above	 sample	 the	 data	 type	 is	 ‘int’	 or	 Integer,	 which	 is	 a	 special	 form	 of	 a
number.	 One	 of	 the	 advantages	 of	 having	 data	 types	 associated	 with	 these
placeholders,	 is	 that	 it	keeps	a	 strict	 rule	of	what	 type	of	data	 the	variable	can
hold.

5.4	Using	Classes

Most	 programming	 languages	 also	 support	 ‘Classes’.	 This	 stems	 from	 a
programming	 language	 concept	 known	 as	 ‘Object	Oriented	 Programming’.	As
an	example,	let’s	say	we	have	a	program	that	needs	to	store	the	name	and	ID	of
20	students.	Without	 the	use	of	classes,	we	would	define	40	data	placeholders.
Not	 only	 is	 this	 inefficient,	 but	 it	 is	 difficult	 to	 maintain.	 Instead,	 we	 would
define	 a	 class	 with	 properties.	 These	 properties	 are	 nothing	 more	 than	 data
placeholders.

An	example	of	how	this	will	look	in	C#	is	shown	below:
class	Student
{
int	studentID;
string	studentName;



string	studentName;
}

In	 this	 code,	 the	 name	 of	 the	 class	 is	 ‘Student’.	 The	 class	 also	 has	 two	 data
placeholders,	namely	‘StudentID’	and	‘studentName’,	each	of	which	has	a	data
type.	Now	if	we	wanted	to	have	the	information	for	the	20	students,	we	would
create	 something	 known	 as	 objects.	 These	 objects	 would	 then	 contain	 the
information	of	the	students.

5.5	Using	Repetitive	Constructs

Repetitive	constructs	are	used	whenever	there	is	a	need	to	repeat	certain	lines	of
code,	a	certain	number	of	 times.	Most	programming	languages	have	constructs
in	place	that	can	do	this.	Below	is	an	example	of	a	repetitive	statement	in	Java.
int	i=0;
do
{

System.out.println("The	value	of	i	is	"+	i);
i++;

}
while(i<4);

In	the	above	code,	there	is	a	need	to	execute	the	following	line	multiple	times:
System.out.println("The	value	of	i	is	"+	i);

This	type	of	repetition	is	achieved	with	a	loop	construct,	known	as	a	‘do-while’
loop.	There	are	many	different	 loops	 in	each	programming	language.	In	a	 loop
construct	we	also	usually	have	a	condition	that	needs	to	be	met.	Only	once	the
condition	evaluates	to	true,	will	the	loop	be	iterated	a	specified	number	of	times.
In	our	prior	example,	the	condition	is	that	the	value	of	‘i’	should	be	less	than	4.

5.6	Using	Decision	Statements

Decision	statements	are	used	whenever	there	is	a	need	to	perform	a	decision	task
in	a	program.	Most	programming	languages	have	the	constructs	in	place	that	can
do	this.	Below	is	an	example	of	a	decision	statement	in	Java.
if	(i	<	5)	{
System.out.println("The	value	of	i	is	less	than	5");
}



In	this	code,	the	‘if’	decision	statement	verifies	a	condition.	Only	if	the	condition
evaluates	to	true,	will	the	statement	execute.

5.7	Evaluating	Errors

Another	 common	 programming	 practice	 which	 lends	 to	 the	 structure	 of	 a
program	 is	 the	 checking	 of	 errors.	 Errors	 are	 also	 sometimes	 known	 as
‘Exceptions’.	Our	primary	goal	is	to	attempt	to	catch	errors	as	early	as	possible
in	 the	 program	execution.	This	 ensures	 that	 the	 program	can	 continue	 running
without	being	interrupted.	Below	is	an	example	of	how	errors	can	be	caught	in
Java.
try	{

int[]	arr=new	int[3];
arr[4]=1;

}
catch	(Exception	exp)	{

System.out.println("An	exception	has	occurred");
}

The	above	piece	of	code	consists	of	three	main	statements:

try	-	This	block	identifies	a	block	of	code	in	which	the	exception	can
occur.	We	place	our	primary	code	in	the	try	block.
catch	-	This	block	is	used	to	handle	the	exception	if	it	occurs.

finally	 -	 This	 block	 is	 used	 to	 execute	 a	 given	 set	 of	 statements,
whether	an	exception	occurs	or	not.



6.	What	Are	the	Different	Types	of	Programs?

There	are	different	types	of	programs	that	can	be	created	for	different	purposes.
Normally	 each	 programming	 language	would	 have	 the	 ability	 to	 create	 all,	 or
most,	of	these	types	of	programs.	Let’s	have	a	look	at	the	different	categories	of
programs	that	can	be	created.

6.1	Web	Applications

This	is	probably	the	most	common	type	of	program.	The	primary	goal	is	to	have
a	 program	 that	 can	 be	 accessed	 via	 a	 web	 browser.	 Due	 to	 the	 widespread
availability	of	high-speed	internet,	web	applications	have	grown	considerably	in
popularity	 and	 necessity.	 Almost	 all	 programming	 languages	 support	 the
development	 of	 web-based	 programs.	 Some	 distinct	 advantages	 of	 web
applications	are:

There	is	no	need	to	install	any	software	on	the	client’s	machine.

There	is	no	need	to	download	any	software.
Most	of	the	processing	is	done	on	the	server	side.

One	consideration	to	keep	in	mind	is	that	in	order	for	the	web	program	to	work,
it	needs	to	be	hosted	on	a	web	application	server.	For	example,	when	using	C#
we	would	 need	 to	 host	 software	 known	 as	 Internet	 Information	 Services	 on	 a
server	to	make	the	program	accessible	over	the	internet.	Some	other	aspects	that
should	be	looked	at	when	developing	a	web	program	are:

Storage	 of	 data	 –	 Data	 storage	 is	 an	 important	 aspect	 of	 any	 web
application.	Let’s	assume	we	have	a	website	 that	sells	 items	online.
We	 would	 need	 a	 data	 store	 in	 order	 to	 store	 the	 information
pertaining	 to	 the	 items	 being	 sold	 on	 the	 website.	 This	 data	 store
would	be	 a	 separate	 entity,	 but	 still	maintain	 a	 connection	with	 the
web	application.

Storage	of	user	information	–To	create	a	better	user	experience,	some
web	applications	might	store	user	preferences.	So	when	users	return
to	 the	web	 program,	 they	would	 get	 the	 same	 experience	 they	 had
when	 they	visited	 the	program	earlier.	This	 can	be	done	by	 storing
something	known	as	cookies	on	the	client	machine	or	storing	cookies
as	a	separate	entity	on	the	server.



Design	for	performance	–	Since	most	web	programs	are	created	to	be
used	 by	 multiple	 users,	 they	 should	 be	 designed	 for	 maximum
performance	 and	 efficiency.	 If	 the	 environment	 that	 hosts	 the
program	 becomes	 unstable	 due	 to	 bad	 programming	 practices,	 it
could	affect	all	the	users	who	are	accessing	the	application.

Security	 –	Web	 applications	 are	 designed	primarily	 to	 run	over	 the
internet	which	makes	 security	 a	 critical	 aspect,	 especially	when	we
are	 working	 with	 commercial	 based	 web	 programs.	 Applications
should	 hence	 be	 designed	 to	 protect	 the	 information	 being
transferred.

Device	 compatibility	 –	 These	 days,	 applications	 are	 accessed	 on	 a
variety	 of	 different	 devices	 other	 than	 just	 traditional	 computers.
Because	of	this,	programs	should	be	developed	with	all	these	devices
in	mind	and	how	the	application	will	function	on	these	devices.

Being	mindful	of	changes	–	Since	web	programs	are	used	by	multiple
users,	care	should	be	taken	when	changes	are	made	to	 the	program.
So	when	changes	are	implemented	to	address	one	group	of	users,	we
should	also	consider	how	these	changes	will	affect	all	possible	users.

6.2	Client	Server	Applications

These	 types	 of	 programs	 are	 developed	 to	 run	 primarily	 on	 a	 local	 machine.
When	compared	to	web	applications,	they	tend	to	require	more	resources	than	a
typical	 web	 program.	 So	 if	 a	 program	 needs	 to	 have	 extremely	 high-end
functionality	and	processing	capabilities,	then	having	the	program	run	in	a	web
browser	may	 not	 be	 the	 ideal	 approach.	 In	 such	 a	 case,	 having	 a	 client-server
program	is	preferred.

An	 example	 of	 a	 client-server	 application	 is	 an	 Enterprise	 Resource	 Planning
system.	The	client	software	is	installed	on	each	user’s	system,	and	then	interacts
with	 a	 server	 software	 for	 data	 related	 artifacts.	 Normally	 these	 types	 of
applications	 are	 transactional-based	 systems,	 wherein	 each	 client	 would	 make
calls	and	changes	to	data	on	a	server-based	system.	Some	of	the	disadvantages	of
these	types	of	programs	are:

Since	 the	 client	 program	 has	 a	 lot	 of	 functionality	 built	 in,	 it	 can
become	somewhat	bulky	and	difficult	to	maintain.

The	 client	 program	 also	 needs	 to	 be	 installed	 for	 every	 user,	 and



constantly	updated	for	every	installation.

6.3	Scripting	Programs

Scripting	 programs	 are	 used	 for	 automating	 tasks	 and	 are	 built	 to	 perform	 a
specific	task.	As	an	example,	if	we	have	a	requirement	to	create	a	daily	backup
of	a	data	source,	we	could	simply	create	a	script	 to	perform	this	 task.	Some	of
the	advantages	of	developing	such	programs	are:

The	 script	 is	 generally	 short,	 hence	 it	 is	 easier	 to	 develop	 and
maintain	than	a	full	blown	application.

Since	 the	 requirements	 are	 very	 specific,	 it	 is	 easy	 to	 finalize	 a
project	and	move	on	to	the	next	one.

Since	 scripting	 programs	 are	 simple	 to	 create,	 it	 could	 lead	 to	 developers
creating	a	great	deal	of	 scripts	 to	automate	 tasks.	This	could	 in	 turn	become	a
nightmare	to	maintain.



7.	How	Is	a	Program	Built?

In	most	 programming	 languages,	 we	 need	 to	 perform	 a	 process	 of	 building	 a
program	 before	 it	 can	 be	 executed.	 This	 process	 normally	 involves	 something
known	as	compilation	and	then	the	subsequent	building	of	the	program.	So	what
exactly	 is	 the	 compilation	 process?	This	 process	 basically	 checks	 the	 program
for	any	form	of	syntactical	errors.

No	program	is	perfect,	and	there	can	always	be	a	case	where	a	program	is	built
with	 constructs	 that	 don’t	 conform	 to	 the	 underlying	 programming	 language.
Normally	 every	 programming	 language	 has	 a	 separate	 program	 or	 software
known	as	the	compiler.	When	a	program	needs	to	be	built,	it	is	submitted	to	the
compiler	which	then	checks	the	program	for	any	sorts	of	errors.

In	 Java,	 the	 compiler	 is	 a	 program	 known	 as	 ‘javac.exe’	 (pronounced	 "java-
see").	So	whenever	a	program	needs	to	be	compiled,	it	is	submitted	to	the	javac
compiler	 program.	 As	 an	 example,	 let’s	 say	 we	 have	 a	 program	 called
‘HelloWorld.java’	that	is	written	in	the	Java	programming	language.	In	order	to
build	the	program,	we	would	need	to	execute	the	following	command:
javac	HelloWorld.java

This	command	first	checks	the	program	for	any	sort	of	errors.	Now	let’s	say	we
have	the	following	program	that	needs	to	be	compiled:
public	class	HelloWorld	{

public	static	void	main(String[]	args)	{
//	Prints	"Hello,	World"	to	the	terminal	window.
System.out.printl("Hello,	World");

}
}

To	understand	 the	compilation	process,	we	have	specified	 the	wrong	name	for
the	‘println’	function	in	the	above	code	and	will	now	submit	this	program	to	the
compiler.	If	this	is	done,	we	will	get	the	following	output:

HelloWorld.java:5:	error:	cannot	find	symbol

System.out.printl("Hello,	World");

^

symbol:			method	printl(String)



location:	variable	out	of	type	PrintStream

1	error

From	the	above,	we	can	see	that	the	compiler	is	showing	an	error	on	a	particular
line	and	hence	cannot	continue	with	the	execution	of	the	program.	The	compiler
performs	a	critical	function	by	ensuring	that	programs	are	free	from	syntactical
errors	before	being	executed.

7.1	Compiler	in	the	IDE

Normally	 the	compiler	program	 is	 incorporated	 in	 the	 Integrated	Development
Environment	 (or	 IDE),	which	 is	 used	 for	 developing	 programs.	This	 helps	 the
developer	in	creating	and	compiling	programs	on	the	fly.	Below	is	a	snapshot	of
the	Visual	Studio	IDE,	which	is	used	for	developing	programs	in	C#.	Here	 the
compiler	 is	 built	 into	 the	 IDE	 itself.	 So	when	we	 try	 to	 build	 a	 program	 that
contains	an	error,	 it	will	come	up	in	the	error	list.	This	feature	can	be	found	in
most	IDE’s.

7.2	Compiling	Dependencies

Normally	when	we	create	a	program	and	it	grows	in	size,	it	is	preferable	to	split
the	program	into	smaller	sections.	We	then	compile	each	portion	separately,	 to
make	sure	it	works	as	intended.	When	the	entire	program	is	eventually	merged,



we	need	to	ensure	that	all	of	the	smaller	programs	are	included	in	the	compiler
process,	or	else	the	program	will	fail	to	compile.

We	are	essentially	ensuring	 that	 the	dependencies	of	 the	program	are	 in	place.
This	is	a	very	common	practice	in	the	world	of	programming.	As	an	example,	a
key	program	is	excluded	from	the	main	program	in	 the	snapshot	below,	which
will	result	in	a	compilation	error.

The	concept	of	including	dependent	programs	has	become	so	complex	in	many
cases,	that	special	software	has	been	developed	to	ensure	all	dependent	packages
and	 programs	 are	 present	 in	 the	 program.	One	 such	 program	 is	 called	NuGet.
This	is	a	package	manager	for	.Net	programs	and	is	responsible	for	downloading
and	maintaining	packages	and	dependent	programs	for	the	.Net	environment.

7.3	Program	Translation
Another	function	of	the	compiler	is	to	ensure	that	the	program	is	translated	into	a
language	that	can	be	understood	by	the	system	that	will	be	running	the	program.
This	differs	from	language	to	language.	When	a	Java	program	is	compiled,	it	is
converted	 to	 a	 class	 file	 that	 has	 the	 same	name	as	 the	 Java	program	 file.	For
example,	if	we	have	a	program	named	‘HelloWorld.java’	and	ran	the	command
below	to	compile	the	program:
javac	HelloWorld.java



Another	file	would	be	created	called	‘HelloWorld.class’.	This	is	the	file	that	will
be	 submitted	 to	 the	 subsequent	program	 for	 running	on	 the	 target	 system.	The
‘.class’	 file	 contains	 the	 necessary	 instructions	 based	 on	 the	 main	 program,
which	 allows	 it	 to	 be	 executed	 on	 the	 underlying	 operating	 system.	 So	 if	 a
program	 needs	 to	 run	 on	 Windows,	 the	 ‘.class’	 file	 will	 then	 contain	 the
instructions	that	can	be	understood	by	the	Windows	operating	system.

7.4	Immediate	Compilation

Nowadays	 we	 have	 access	 to	 underlying	 programming	 languages	 and
frameworks	where	the	compilation	process	can	happen	automatically.	One	such
framework	is	the	Angular	JS	language.	Here,	the	underlying	engine	that	runs	the
Angular	JS	program	has	the	ability	to	detect	changes	on	the	fly	and	then	compile
and	run	the	new	version	of	the	program.	Some	of	the	core	advantages	of	this	are:

Faster	deployment.	Since	we	don’t	need	to	compile	the	program	we
can	make	changes	directly	and	it	will	be	deployed.

We	can	deploy	many	changes,	more	frequently.
A	key	disadvantage	of	this	technique	is	that	we	could	deploy	the	wrong	changes.
Since	there	is	always	a	chance	that	we	might	make	mistakes,	having	the	changes
happen	 automatically	 could	 be	 disastrous.	 What’s	 even	 worse	 is	 that	 the
incorrect	 change	 could	 be	 reflected	 to	 all	 users.	 Hence	 when	 using	 these
programming	languages,	extra	precaution	should	be	taken	when	making	changes
to	the	underlying	program.



8.	How	Is	a	Program	Executed?

In	 the	 last	 section,	 we	 saw	 the	 various	 aspects	 that	 go	 into	 a	 program	 being
compiled	and	built.	Next,	we’ll	look	at	how	a	program	is	executed.	The	way	in
which	a	program	gets	executed	depends	on	the	type	of	program	and	the	type	of
programming	language.	Each	language	has	more	or	less	the	same	principles,	but
there	are	still	some	subtle	differences	on	how	the	program	gets	executed.

It	is	important	to	understand	the	various	parameters	that	are	required	to	ensure	a
program	 executes.	 Traditionally,	 programmers	 only	 had	 knowledge	 on	 how	 to
develop	the	program.	But	when	it	came	to	executing	and	deploying	the	program
on	 a	 large	 scale,	 they	 encountered	 some	 difficulty.	 Lately	 it	 has	 become
important	 for	all	developers	 to	not	only	understand	how	to	develop	a	program,
but	also	how	to	execute	and	deploy	a	program.

Some	of	the	important	considerations	for	program	execution	are:

Will	the	program	run	as	a	standalone	program?
Will	the	program	run	as	a	centralized	program	that	will	be	accessed
by	many	users?	In	so,	does	a	web	program	seem	more	feasible?

Will	the	program	be	executed	on	different	devices,	such	as	mobiles?

All	of	these	parameters	are	crucial	in	having	the	program	execute	successfully.
Let’s	 look	 at	 the	 execution	 of	 a	 program	 for	 the	 various	 types	 of	 programs
available.

8.1	Client	Based	Programs

These	are	programs	that	are	designed	to	run	on	the	user’s	system.	All	the	logic
and	processing	for	the	program	happen	on	the	client’s	side.	A	separate	program
is	also	required	most	of	the	time,	in	order	to	run	the	program.	For	example,	if	we
have	a	program	that	is	built	in	Java,	we	will	use	a	software	called	‘Java	Runtime
Environment’	to	run	the	program	on	the	user’s	system.

The	 Java	 Runtime	 Environment	 (or	 JRE)	 is	 available	 for	 different	 operating
systems.	So	if	the	program	is	intended	to	run	on	a	Windows	machine,	we	would
need	 to	 install	 the	 JRE	 for	 the	Windows	 operating	 system.	 The	 Java	Runtime
Environment	would	run	in	the	background	and	then	execute	the	necessary	Java
program.	Similarly,	when	 running	a	program	created	 in	C#,	we	would	need	 to
install	the	.Net	runtime	environment.



8.2	Web	Based	Programs

When	working	with	web-based	programs,	we	need	 to	have	a	separate	machine
running	a	software	for	hosting	the	web	program.	The	general	process	for	setting
up	a	web-based	program	is:

First	we	set	up	a	separate	machine	to	host	the	web-based	software.

Next	we	install	the	web-based	software	on	this	machine.	When	using
C#,	 we	 would	 install	 a	 software	 known	 as	 Internet	 Information
Services.

We	compile	and	build	the	web-based	program.
We	deploy	the	web-based	program	on	this	machine.

Finally,	 we	 get	 a	 URL	 that	 can	 be	 used	 by	 all	 users	 to	 access	 the
web-based	program.

When	 running	 a	 program	 on	 a	 centralized	 server,	 there	 are	 several	 important
aspects	to	keep	in	mind:

Ensure	the	right	settings	are	used	for	the	hosting	program,	as	this	can
influence	numerous	users	that	connect	to	the	server.

Pay	 special	 attention	 to	 the	 required	 specifications	 of	 the	 hosting
machine.	This	generally	depends	on	the	number	of	users	that	will	be
accessing	 the	 hosted	web	 program.	A	 high	 number	 of	 users	would
necessitate	a	high-end	machine	to	handle	the	traffic.

Since	the	web	program	will	be	used	by	multiple	users,	it	is	important
to	 design	 the	 program	with	 performance	 and	 efficiency	 in	mind.	 If
the	environment	that	hosts	the	program	becomes	unstable	due	to	bad
programming	practice,	it	would	negatively	affect	all	the	users	that	are
accessing	the	web	program.

Ensure	that	communication	with	the	hosting	server	is	secure.	In	this
day	 and	 age	 where	 data	 can	 be	 tampered	 with	 quite	 easily,	 it	 is
important	 to	 take	 additional	 precaution	when	 sending	 data	 over	 the
web.

8.3	Scripting	Programs
These	 are	 the	 easiest	 programs	 to	 deploy	 and	 execute.	 This	 is	 due	 to	 the



programs	 not	 needing	 any	 special	 software	 or	 procedures	 to	 run	 on	 the
underlying	system.	Since	most	of	these	programs	are	generally	built	directly	on
the	system	they	are	intended	to	run	on,	they	can	be	deployed	effortlessly.

8.4	Mobile	Based	Programs

For	 programs	 to	 be	 executed	 on	 a	 mobile	 device,	 the	 program	 needs	 to	 be
developed	 in	 a	 programming	 language	 that	 is	 geared	 towards	 mobile
development.	There	is	software	available,	such	as	Android	Studio,	which	helps
in	 the	 development	 of	 mobile-based	 programs.	 They	 have	 numerous	 features,
such	 as	 running	 the	 program	 on	 a	 virtual	 mobile	 device,	 to	 visualize	 how	 it
would	look	and	feel	when	executed	on	a	real	device.



9.	What	Are	Program	Statements?

When	a	program	is	created	using	a	programming	language,	it	is	constructed	with
the	use	of	 statements.	Each	 statement	 is	 an	 instruction	on	what	 the	program	 is
meant	to	do.	These	statements	are	then	taken	by	the	compiler	and	converted	to	a
language	 that	 can	 be	 understood	 by	 the	 operating	 system.	 There	 are	 different
types	of	statements	in	a	programming	language.	Let’s	look	at	some	examples.

Console.Write("Hello	World");
The	above	statement	is	an	example	taken	from	C#.	Its	purpose	is	to	display	the
string	‘Hello	World’	when	the	program	is	run.	Let’s	look	at	the	various	parts	of
this	statement:

The	statement	starts	by	setting	the	location	where	the	string	needs	to
be	displayed,	and	that	is	the	‘Console’	of	the	program.

The	next	part	of	the	statement	uses	a	method	called	‘Write’,	which	is
used	to	take	the	string	and	display	it	to	the	console.

Now	since	this	statement	makes	use	of	a	method,	it	needs	to	enclose
the	string	within	the	‘(‘	and	‘)’	brackets.
Next	is	the	string	that	needs	to	be	displayed	to	the	console.

And	finally	is	a	termination	of	the	statement	using	the	semi-colon	‘;’.

When	 the	 compiler	 receives	 this	 statement,	 it	 will	 break	 it	 into	 various	 parts
(also	 known	 as	 tokens).	 Each	 token	 is	 then	 placed	 in	 a	 respective	 area	 in	 the
memory	when	the	program	is	being	executed.	Let’s	look	at	another	example	of	a
statement.

class	Program
This	statement	above	is	very	simple.	Its	purpose	is	 to	tell	 the	compiler	that	 the
next	 lines	of	code,	which	will	come	after	 this	statement,	will	be	part	of	a	class
called	Person.	Normally	methods	and	classes	are	embedded	within	the	opening
and	closing	curly	braces	and	shown	below.	The	code	that	is	enclosed	within	the
opening	and	closing	curly	braces	then	becomes	part	of	the	class	program.
class	Program

{
//code
}



}

Now	let’s	look	at	an	assignment	statement.	Most	programming	languages	have
the	same	format	for	assignment	statements.	These	statements	are	normally	used
to	assign	values	to	literals.

i=5;
In	the	above	statement	we	have	a	variable	called	‘i’.	The	statement	then	assigns
a	 value	 of	 5	 to	 the	 variable	 ‘i’.	 Normally	 assignment	 statements	 are	 used	 to
assign	values	to	variables	during	the	course	of	the	program.

if	(i==10)
{
//code
}
Above	 is	 an	 example	 of	 a	 conditional	 statement;	 or	 more	 specifically	 an	 ‘if’
conditional	 statement.	 In	 this	 statement	we	 first	 have	 the	 ‘if’	 keyword,	 which
indicates	 the	 type	of	conditional	 statement,	 followed	by	 the	condition	 itself.	 In
our	example,	the	first	line	of	code	checks	if	the	value	of	‘i’	is	equal	to	10.
Then	 based	 on	 the	 outcome	 of	 the	 condition,	 we	 execute	 a	 set	 of	 statements.
These	 statements	 are	 enclosed	 in	 the	 opening	 and	 closing	 curly	 braces	 that
follow	 the	 condition.	 In	 our	 example,	 if	 the	 value	 of	 ‘i’	 is	 equal	 to	 10	 the
program	will	execute	‘//code’.

while	(count	<	10)
{
//code
}
Next	let’s	look	at	loop	iteration	statements.	These	types	of	statements	are	used	to
iterate	 through	 a	 set	 of	 statements	 a	 certain	 number	 of	 times.	 In	 the	 statement
above	we	first	have	the	‘while’	keyword	that	indicates	iteration,	followed	by	the
condition	 and	 then	 the	 code	 block	 to	 execute.	 In	 our	 example,	 as	 long	 as	 the
variable	‘count’	 is	 less	 than	10,	 the	‘//code’	statement	will	be	executed.	And	 it
will	continue	to	be	executed,	until	the	count	is	10	or	higher.

int	i;
The	 above	 statement	 is	 a	 declaration	 statement.	 They	 are	 used	 to	 declare
identifiers	in	a	program.	In	this	instance,	it	is	used	to	declare	an	identifier	called
‘i’	as	an	‘integer’.	There	are	many	different	data	types	available	for	identifiers.



We	will	look	at	this	in	greater	detail	in	the	Data	Types	chapter.

Comments
Next	 we	 have	 the	 comments	 statement	 shown	 above.	 This	 is	 used	 to	 declare
statements	that	will	not	be	executed.	They	are	purely	used	for	leaving	notes	and
to	 help	 make	 a	 program	 more	 maintainable	 in	 future.	 This	 is	 a	 great	 way	 to
remind	yourself	what	a	specific	section	of	code’s	purpose	is	when	you	refer	back
to	 it	 later.	And	 if	 someone	else	works	on	your	program	in	 the	 future,	 they	can
also	understand	the	intent	was.	Let’s	look	at	an	example	of	this.

//	This	is	a	statement	to	write	hello	world	to	the	console
Console.Write("Hello	World");
Here	 the	 double	 forward	 slash	 keyword	 ‘//’	 is	 used	 to	 denote	 that	 a	 comment
statement	 is	 being	 used	 and	 that	 the	 line	 will	 not	 form	 part	 of	 the	 executing
program.	This	is	an	example	of	a	single	comment	statement.	We	can	also	denote
a	multiple	 comment	 statement	by	enclosing	 the	comment	with	a	 forward	 slash
asterisk	 ‘/*’	 before,	 and	 an	 asterisk	 forward	 slash	 ‘*/’	 after,	 the	 comment	 as
shown	below.
/*	This	is	a	statement	to	write	Hello	world	to	the	console
In	this	statement	,	we	are	going	to	use	the	Console	statement	*/
Console.Write("Hello	World");

Below	is	a	snippet	of	a	program	in	C#	that	makes	use	of	the	various	statements
we	discussed.	This	program	is	used	 to	display	‘Hello	World’	and	 is	one	of	 the
first	programs	most	languages	will	teach.
using	System;
namespace	Demo
{

//	A	simple	application	using	C#
class	Program

{
//	The	main	function
static	void	Main(string[]	args)
{

//	Displaying	Hello	world	to	the
console

Console.Write("Hello	World");
Console.Read();
}

}
}



http://www.Amazon.com/gp/customer-reviews/write-a-review.html?asin=B07D6D5W99


10.	What	Are	Data	Types?

Data	 types	 are	 used	 to	 define	 what	 type	 of	 data	 is	 used	 within	 a	 program.
Depending	on	the	type	of	data	that	needs	to	be	stored,	the	computer	would	then
allocate	the	necessary	memory	for	it.	Normally	there	are	two	ways	in	which	data
can	be	stored.	It	can	be	done	either	directly	or	via	pointers.

The	 simplest	 way	 of	 storing	 data	 is	 directly	 in	 the	 memory	 location	 in	 the
system.	Alternatively	data	can	be	stored	 in	 the	memory	by	using	a	pointer	 that
directs	to	the	memory	location.	We	will	look	at	an	illustration	of	this	later	on	in
the	chapter.	First,	 let’s	go	over	the	different	data	types	to	understand	how	each
one	works.

10.1	Integer	Data	Type

This	 data	 type	 is	 used	 to	 denote	 the	 storage	 of	 numbers.	 Most	 programming
languages	allow	for	storing	numbers.	The	integer	data	type	is	normally	allocated
to	an	identifier,	which	then	assumes	the	data	type.	Below	is	an	example	of	how
this	is	done	in	C#.
int	i;

So	in	this	statement,	‘i’	is	known	as	the	identifier	and	the	data	type	is	specified
as	‘int’.	This	is	the	way	we	would	define	the	integer	data	type	for	the	identifier.
Once	 this	 has	 been	 done,	 we	 can	 assign	 a	 number	 to	 the	 identifier	 via	 an
assignment	statement	as	shown	below.
i=5;

Here	the	value	of	5	is	being	assigned	to	the	identifier.	Since	the	identifier	‘i’	was
defined	 as	 an	 integer	data	 type,	 it	 cannot	be	 assigned	 a	 string	 such	as	 ‘Hello’.
There	 is	 a	 separate	 string	 data	 type	 for	 this.	This	 is	 the	 entire	 concept	 of	 data
types,	 which	 ensures	 that	 the	 identifier	 can	 only	 assume	 that	 data	 type.	 If	 an
invalid	data	type	is	assigned,	it	will	result	in	an	error.

Some	programming	languages	have	two	ways	in	which	integers	can	be	defined.
One	is	using	the	‘int’	data	type	as	shown	above,	and	the	other	is	the	‘long’	data
type	that	is	used	to	denote	a	larger	number.	Each	data	type	has	a	certain	number
of	bytes	that	are	allocated	to	it	for	storing	the	number.



10.2	Double	or	Float	Data	Type

This	 data	 type	 is	 used	 to	 denote	 that	 the	 identifier	 can	 store	 a	 number	with	 a
decimal	point.	Below	is	an	example	that	shows	how	an	identifier	is	defined	as	a
float	 data	 type	 in	 C#.	 Then	 we	 assign	 a	 number	 with	 a	 decimal	 value	 to	 the
identifier.
float	f;
f=1.11;

Some	 programming	 languages	 have	 two	 data	 types	 for	 decimal	 values,	 one	 is
‘float’	and	the	other	is	‘double’.	The	double	data	type	has	a	higher	precision	and
can	store	numbers	with	a	larger	number	of	decimal	places.

10.3	Character	Data	Type
This	data	type	is	used	to	store	a	single	character.	Below	is	an	example	of	how	an
identifier	 is	 defined	 as	 a	 character	 data	 type	 in	 Java,	 and	 then	 assigned	 a
character.
char	c;
c=’A’;

10.4	String	Data	Type

This	 data	 type	 is	 used	 to	 store	 a	 string	 of	 characters.	 This	 is	 one	 of	 the	most
common	data	types	used	in	programming.	Below	is	an	example	of	how	to	define
an	 identifier	 as	 a	 string	 data	 type	 in	 Java.	Then	we	 also	 assign	 a	 string	 to	 the
identifier.
String	str;
str=”Hello	World”;

10.5	Boolean	Data	Type

This	data	type	is	used	to	store	a	Boolean	value	of	‘true’	or	‘false’.	Below	is	an
example	of	how	we	can	define	an	identifier	as	a	Boolean	data	type	in	Java,	along
with	assigning	a	Boolean	value	to	the	identifier.
boolean	b;
b=false;

Apart	from	the	simple	data	types	we’ve	seen	above,	there	are	also	complex	data



types	that	are	used	when	simple	data	types	just	aren’t	capable	of	representing	the
data	we	require.	Let’s	look	at	some	of	these	complex	data	types.

10.6	Structure	Data	Type

This	 is	 a	 composite	 data	 type	 that	 is	 used	 to	 hold	 a	 set	 of	 identifiers.	 For
instance,	 if	we	wanted	 to	store	 information	for	a	set	of	students	via	a	structure
data	type,	it	would	look	like	the	sample	below	when	using	C#.
struct	Students
{

public	int	ID;
public	String	Name;

}		

Here	the	keyword	‘struct’	is	used	to	denote	that	we	are	using	the	structure	data
type,	 and	 the	 name	 given	 to	 the	 structure	 is	 ‘Students’.	 Then	 the	 student	 data
structure	 has	 two	 properties	 (or	 identifiers)	 that	 have	 data	 types	 assigned	 to
them.	‘ID’	 is	defined	as	 integer	and	‘Name’	 is	defined	as	string.	This	structure
can	then	be	used	to	define	the	information	pertaining	to	the	students.

10.7	Class	Data	Type

This	data	type	is	also	used	to	hold	a	set	of	properties,	but	it	is	more	commonly
used	 than	 structures	 because	 it	 pertains	 to	 object-oriented	 programming.	 An
example	of	how	a	class	looks	in	C#	is	shown	below,	again	using	the	example	of
student	information.
Class	Students
{

public	int	ID;
public	String	Name;

}

As	with	the	structure	data	type,	the	class	has	two	properties	of	‘ID’	and	‘Name’,
each	with	their	own	data	type.	Some	of	the	main	differences	between	the	‘struct’
and	‘class’	data	types	are:

We	 can	 declare	members	 as	 ‘private’	 in	 a	 class.	 This	 prevents	 the
data	values	stored	in	the	data	members	from	being	tampered	with.

Concepts	such	as	 Inheritance	are	also	possible	 in	classes,	which	we
will	cover	later.



10.8	Storing	Data	Types

Now	is	a	good	time	to	go	over	 the	methods	of	storing	data	 types.	With	simple
data	types,	such	as	integers	and	float	data	types,	the	values	are	normally	stored
directly	 in	 the	 memory	 via	 a	 stack	 stored	 on	 the	 system.	 However,	 some
programming	languages	store	these	data	types	as	pointers.	In	these	situations,	if
we	declare	a	string	as	we	did	previously,	it	would	be	represented	in	the	memory
as	follows:
str	---->	Hello	World

Here	the	“Hello	World”	value	is	stored	in	a	memory	location	and	the	‘str’	literal
is	used	to	point	to	the	string	value.	So	if	we	had	to	change	the	value	of	“Hello
World”	 to	a	new	value,	a	new	memory	location	would	be	allocated	 to	 the	new
data	 value,	 instead	 of	 changing	 the	 value	 in	 the	 memory.	 The	 ‘str’	 variable
would	 then	point	 to	 the	new	data	 value.	The	 representation	of	 this	 in	memory
would	be	as	follows:
str	---->	New	Hello	World

Hello	World

The	original	value	would	still	be	in	memory	and	the	‘str’	literal	variable	would
then	 point	 to	 the	 new	 memory	 location.	 Hence	 in	 programming,	 it	 is	 always
important	to	understand	how	data	types	are	allocated.



11.	What	Are	Variables?

Variables	in	any	programming	language	are	used	to	hold	data	that	can	be	used	at
any	time	during	the	course	of	the	program.	Normally	these	variables	are	listed	as
identifiers	of	a	particular	data	type.	These	variables	then	hold	various	values	that
can	be	used	across	all	parts	of	a	program.	Let’s	look	at	an	example	of	a	variable
in	C#.
int	i;

In	the	above	statement,	‘i’	is	the	identifier	that	is	of	the	integer	data	type.	Values
can	 then	 be	 assigned	 to	 the	 variable	 with	 an	 assignment	 statement	 as	 shown
below
i=5;

Here	 the	 value	 of	 ‘i’	 is	 assigned	 a	 value	 of	 5.	 This	 variable	 can	 then	 be	 used
during	 the	 course	 of	 the	 program.	 For	 example,	 the	 value	 attached	 to	 this
variable	could	be	displayed	in	the	console	by	means	of	the	following	statement:
Console.Write(i);

In	 the	above	statement,	when	a	reference	 to	 ‘i’	 is	made,	 the	value	of	5	will	be
displayed.	The	value	assigned	to	the	variable	can	also	be	changed	at	any	point	in
time.	Let’s	look	at	how	easily	this	can	be	done.
int	i;
i=5;
Console.Write(i);
i=10;
Console.Write(i);

In	this	example,	we	are	first	declaring	the	variable	‘i’.	Then	we	assign	a	value	of
5	 to	 the	 variable	 before	 displaying	 the	 value	 in	 the	 console.	We	 then	 assign	 a
new	value	of	10	to	the	variable,	before	again	displaying	the	value	in	the	console.

11.1	Constants

There	 can	 come	 a	 time	 when	 we	 might	 not	 want	 the	 value	 of	 a	 variable	 to
change	during	the	course	of	a	program.	If	we	want	the	value	to	remain	constant,
we	can	define	the	variable	as	a	constant	so	that	the	value	cannot	be	changed.	In



Java,	we	can	do	 this	by	defining	 the	variable	with	 the	keywords	of	 ‘final’	and
‘static’.	This	will	look	like	the	following:
public	static	final	int	i	=	5;

In	this	example	we	have	the	variable	‘i’,	which	is	assigned	the	value	of	5.	But
since	 the	 variable	 has	 been	 defined	 as	 static	 and	 final,	 it	means	 that	 the	 value
cannot	 be	 changed.	 If	 we	 try	 to	 change	 the	 value	 during	 the	 course	 of	 the
program,	we	will	get	an	error	message.

11.2	Variable	Interactions

The	values	in	variables	can	also	interact	with	each	other.	Let’s	say	we	have	two
integer	variables	and	want	to	add	the	values	of	these	variables	together.	This	can
be	done	quite	easily	with	simple	mathematical	addition.	An	example	of	how	this
can	be	done	in	C#	is	shown	below.
int	a=5;
int	b=10;
int	c=a+b;

In	this	sample	code,	we	assign	the	value	of	5	to	the	variable	‘a’	and	we	assign
the	value	of	10	to	the	variable	‘b’.	We	then	create	the	variable	‘c’	and	assign	it
the	value	of	‘a’	and	‘b’.

11.3	Variable	Scope

Some	programming	languages	allow	us	to	define	a	scope	in	which	variables	are
not	 visible	 to	 other	 statements.	 To	 understand	 this	 better,	 let’s	 look	 at	 the
following	code	in	C#:
{

int	i=5;
}
Console.WriteLine(i);

In	this	sample	code,	we	first	declare	and	initialize	the	variable	‘i’	to	a	value	of	5.
But	note	that	we	are	doing	this	in	a	separate	code	block	within	curly	braces	‘{	}’.
This	means	that	the	visibility	of	this	declaration	is	only	within	the	curly	braces,
and	that	the	‘Console.Writeline’	statement	cannot	see	the	variable	declaration	of
’i’.	So	if	we	run	this	program	it	will	result	 in	an	error.	Let’s	consider	the	same
set	of	statements	and	see	what	would	ideally	work.



{
int	i=5;
Console.WriteLine(i);

}

Now	we	are	ensuring	that	we	also	add	the	‘Console.WriteLine’	statement	in	the
enclosed	 code	 block,	 in	which	 the	 variable	 ‘i’	 is	 declared	 and	 initialized.	 The
program	will	now	run	without	error	and	display	the	value	of	‘i’	 to	the	console.
One	big	advantage	of	this	arrangement	is	that	we	can	declare	separate	variables
inside	and	outside	of	the	code	block.	Below	is	an	example	of	this.
int	j=10;
{

int	i=5;
Console.WriteLine(i);

}
Console.WriteLine(j);

In	 this	 example,	we	 declare	 and	 access	 the	 variable	 ‘i’	 inside	 the	 code	 block,
while	 in	 the	 same	 program	 we	 can	 access	 the	 variable	 ‘j’	 that	 we	 declared
outside	the	code	block.



12.	What	Are	Operators?

Operators	are	used	to	carry	out	operations	on	the	data	stored	in	variables.	So	if
we	stored	numbers	in	two	different	variables,	we	could	use	operators	to	perform
mathematical	 tasks	 on	 them.	 There	 are	 different	 types	 of	 operators	 available.
Let’s	look	at	them	in	more	detail.

12.1	Arithmetic	Operators

These	 types	 of	 operators	 are	 used	 to	 carry	 out	 operations	 on	 number-based
variables.	Let’s	look	at	an	example	of	this	in	C#.
int	i	=	10;
int	j	=	3;
int	k=i+j;

In	this	sample	we	are	defining	three	variables:	‘i’,	‘j’	and	‘k’.	When	it	comes	to
variable	‘k’,	we	are	using	the	addition	operator	‘+’	to	add	the	values	assigned	to
‘i’	 and	 ‘j’	 together.	Most	programming	 languages	have	access	 to	 the	operators
used	 to	 perform	 normal	 arithmetic	 operations.	Below	 is	 a	 list	 of	 the	 operators
that	are	normally	available.

Arithmetic	Operators

Operator Operation

+ This	is	used	to	add	two	operands

- This	is	used	to	subtract	one	operand	from	another
* This	is	used	to	multiply	two	operands

/ This	is	used	to	divide	one	operand	by	another

% This	gives	the	remainder	value	after	a	division	operator

++ This	is	used	to	increment	a	value	by	one
-- This	is	used	to	decrement	a	value	by	one

12.2	Relational	Operators

These	 are	 operators	 that	 are	 used	 to	 compare	 variables	 based	 on	 their	 values.



Let’s	look	at	an	example	of	this	in	C#.
int	i	=	10;
int	j	=	3;
Console.WriteLine("Is	i	equal	to	j		"	+	(i==j));

In	 this	sample	we	are	defining	 two	variables,	namely	‘i’	and	‘j’,	and	assigning
values	 to	 these	 variables.	 We	 are	 then	 using	 a	 relational	 operator	 ‘==’	 to
compare	 the	 values	 stored	 in	 these	 variables.	 If	 the	 values	 are	 equal	 to	 one
another	we	will	get	a	response	of	‘True’	or	‘1’,	depending	on	the	programming
language	we	are	using.	Below	is	a	 list	of	 relational	operators	 that	are	normally
available	in	the	various	programming	languages.

Relational	Operators

Operator Operation
== This	is	used	to	check	if	two	operands	are	equal

!= This	is	used	to	check	if	two	operands	are	not	equal

> This	is	used	to	check	if	one	operand	is	greater	than
another

< This	is	used	to	check	if	one	operand	is	less	than	another
>= This	is	used	to	check	if	one	operand	is	greater	than	or

equal	to	another

<= This	is	used	to	check	if	one	operand	is	less	than	or	equal
to	another

12.3	Logical	Operators

These	are	operators	 that	are	used	 to	compare	Boolean	variables	based	on	 their
values.	 Remember	 that	 a	 Boolean	 variable	 can	 only	 have	 a	 ‘True’	 or	 ‘False’
value.	Let’s	look	at	an	example	of	this	in	C#.
Boolean	i	=	true;
Boolean	j	=	true;
Console.WriteLine("i	AND	j			"	+	(i&&j));

Similar	to	our	previous	sample,	we	are	defining	two	variables,	namely	‘i’	and	‘j’,
and	 assigning	 values	 to	 these	 variables.	 This	 time	 around	 the	 variables	 are



defined	as	Boolean	 instead	of	 integer.	We	 then	use	a	 logical	operator	 ‘&&’	 to
perform	 the	 AND	 operation	 on	 the	 variables.	 In	 this	 instance,	 because	 both
variables	are	 indeed	‘True’	we	will	get	a	response	of	‘True’.	Below	is	a	 list	of
logical	 operators	 which	 are	 normally	 available	 in	 the	 various	 programming
languages.

Logical	Operators

Operator Operation

&& This	is	the	logical	AND	operator
|| This	is	the	logical	OR	operator

! This	is	the	logical	NOT	operator

12.4	Assignment	Operators

These	are	operators	that	are	used	to	make	assignment	operations	easier.	We	have
already	 seen	 the	 simple	 assignment	 operator	 denoted	 by	 the	 equal	 sign	 ‘=’.
However,	 we	 can	 also	 combine	 the	 assignment	 and	 arithmetic	 operators	 to
execute	both	at	the	same	time.	Let’s	look	at	an	example	of	this	in	C#.
int	a	=	10;
int	b;
b	=	a;
b	+=	a;

In	this	sample	we	declare	a	variable	‘a’	and	assign	a	value	to	it.	We	also	declare
a	 variable	 ‘b’	 and	 assign	 it	 the	 value	 of	 ‘a’	 by	 using	 the	 simple	 assignment
operator.	Then	we	assign	a	new	value	 to	 ‘b’	by	using	 the	plus	equals	operator
‘+=’.	This	assigns	a	value	by	adding	‘a’	and	‘b’	together.	Thus	the	first	value	of
‘b’	 would	 be	 10	 and	 the	 second	 would	 be	 20.	 Below	 is	 a	 list	 of	 assignment
operators	which	are	normally	available	in	the	various	programming	languages.

Assignment	Operators

Operator Operation

= This	is	used	to	assign	the	value	of	an	operation	to	an
operand

+= This	is	used	to	carry	out	the	addition	and	assignment
operator	in	one	go



operator	in	one	go
-= This	is	used	to	carry	out	the	subtraction	and	assignment

operator	in	one	go

*= This	is	used	to	carry	out	the	multiplication	and
assignment	operator	in	one	go

/= This	is	used	to	carry	out	the	division	and	assignment
operator	in	one	go

%= This	is	used	to	carry	out	the	modulus	and	assignment
operator	in	one	go

12.5	Bitwise	Operators

These	are	operators	that	are	used	to	perform	bit	operations	on	operands.	In	other
words,	they	perform	an	action	on	the	bits	of	a	number	when	converted	to	binary.
As	such	they	are	not	commonly	used	in	real	life.	Let’s	look	at	an	example	of	this
in	C#.
int	i	=	14;
int	j	=	11;
Console.WriteLine("Showcasing	the	&	bit	operator		"	+	(i&j));

In	this	sample	we	are	defining	two	variables,	‘i’	and	‘j’	and	assigning	values	to
these	 variables.	 We	 then	 use	 the	 bitwise	 operator	 ‘&’	 to	 perform	 the	 AND
operation	on	 the	variables.	The	process	compares	 the	corresponding	bits	 in	 the
binary	equivalent	of	the	values	we	declared.	If	either	of	the	bits	is	0,	the	result	is
0.	Otherwise	the	result	is	1.

Our	binary	result	of	1010	is	then	converted	to	a	decimal	number,	giving	us	10.
Below	is	a	list	of	bitwise	operators	which	are	normally	available	in	the	various
programming	languages.



Bitwise	Operators

Operator Operation

& This	copies	a	bit	to	the	result	if	it	exists	in	both	operands
| This	copies	a	bit	to	the	result	if	it	exists	in	either

operands

^ This	copies	a	bit	to	the	result	if	it	exists	in	one	operands
but	not	in	both

<< Here	the	left	operands	value	is	moved	left	by	the	number
of	bits	specified	by	the	right	operand

>> Here	the	left	operands	value	is	moved	right	by	the
number	of	bits	specified	by	the	right	operand



13.	Working	with	Numbers

Working	with	 numbers	 is	 an	 integral	 part	 of	 any	 programming	 language.	 The
initial	 need	 for	 computers,	 and	 their	 computational	 power,	 was	 to	 work	 with
complex	numbers.	For	this	reason,	most	languages	have	the	ability	to	work	with
an	array	of	numbers.

In	programming	 languages,	 a	 number	 is	 represented	by	 a	number	of	 bits.	 It	 is
this	 number	of	 bits	 that	 determines	what	 range	of	 values	 can	be	 stored	 in	 that
number.	 A	 number	 is	 also	 defined	 by	 a	 specific	 data	 type,	 as	 we	 discussed
earlier.	 This	 data	 type	will	 determine	what	 type	 of	 number	 can	 be	 stored	 in	 a
variable.

To	illustrate	the	above	concepts,	 let’s	look	at	the	‘short’	data	type	used	in	C#.	
This	data	 type	can	 store	16	bits,	which	 translates	 to	a	number	 range	of	216	or
65,536.	Since	this	data	type	can	store	negative	as	well	as	positive	numbers,	the
range	 of	 values	 it	 can	 store	 is	 from	 -32,768	 to	 32,767.	 Numbers	 can	 also	 be
constituted	as	whole	or	decimal	values,	and	most	languages	have	the	facility	to
work	with	decimals.

13.1	Operations	on	Numbers
Number	operations	are	probably	the	most	common	and	most	used	aspects	when
working	with	numbers.	Most	programming	languages	make	provision	for	basic
number	operators.	The	table	below	provides	examples	of	the	operators	available
in	Java.

Arithmetic	Operators

Operator Operation

+ This	is	used	to	add	two	operands

- This	is	used	to	subtract	one	operand	from	another
* This	is	used	to	multiply	two	operands

/ This	is	used	to	divide	one	operand	by	another

% This	gives	the	remainder	value	after	a	division	operator

++ This	is	used	to	increment	a	value	by	one
-- This	is	used	to	decrement	a	value	by	one



As	 you	 can	 see,	 we’ve	 covered	 these	 operators	 in	 the	 previous	 chapter.
However,	let’s	look	at	a	quick	example	again	by	using	Java.
int	a=2;
int	b=3;
int	c=a+b;

In	 this	 sample	we	 are	 defining	 three	 variables	 as	 integers.	We	 also	 assign	 the
values	of	2	and	3	to	variables	‘a’	and	‘b’.	Then	we	use	the	addition	operator	‘+’
to	add	these	values	together	and	store	the	result	in	variable	‘c’.

13.2	Number	Functions

Programming	languages	also	provide	additional	functions	that	can	be	used	when
working	 with	 numbers.	 These	 functions	 provide	 common	 functionality	 that	 is
present	in	many	spreadsheet	applications.	For	example,	if	we	wanted	to	find	the
greatest	 value	 between	 two	 or	 more	 numbers,	 many	 programming	 languages
have	a	built-in	function	for	this.	In	C#,	we	would	use	the	‘max’	function	that	is
part	of	a	‘math’	library,	as	shown	below.
using	System;
namespace	Demo
{

class	Program
{

//	The	main	function
static	void	Main(string[]	args)
{
//	Defining	a	number
double	a	=	10;
double	b	=	20;
//	Using	the	max	function
Console.WriteLine("The	value	is	"	+

Math.Max(a,b));
Console.Read();
}

}
}

In	the	above	program,	we	are	first	defining	two	numbers	with	values	of	10	and
20	 respectively.	 Then	 we	 use	 the	 ‘Math.Max’	 function	 to	 find	 the	 maximum
value	out	of	these	numbers	and	output	the	result	to	the	console.	In	a	similar	way,
there	 are	 many	 more	 functions	 available	 for	 common	 operations.	 These



functions	reduce	the	amount	of	programming	needed	by	developers,	because	the
functions	are	built	into	the	programming	language.



14.	The	Importance	of	Strings

A	 string	 is	 another	 important	 type	 of	 data	 that	 can	 be	 stored	 by	 programs.
Almost	 all	 data	 contains	 strings	 in	 one	 form	 or	 another,	 and	 hence	 every
programming	language	has	the	ability	to	work	with	strings.	A	string	is	simply	a
series	of	characters	or	text.	Below	is	an	example	of	a	string	definition	in	C#.
string	str	=	"Hello";

In	this	sample,	‘string’	denotes	the	data	type,	‘str’	is	the	variable	name	we	chose,
and	‘Hello’	is	the	value	given	to	the	variable.	In	most	programming	languages,
strings	are	immutable.	This	means	that	the	value	of	the	string	technically	cannot
be	modified.	In	reality	it	cannot	be	modified	in	the	memory,	but	we	can	assign	a
new	value	to	the	variable.	To	illustrate,	have	a	look	at	the	following	code:
string	str	=	"Hello";
str=”Hello	World”;

We	are	 assigning	 a	value	of	 ‘Hello’	 to	 the	variable,	 and	 then	 assigning	 a	new
value	of	 ‘Hello	World’	 to	 the	 same	variable.	So	what	 is	happening	behind	 the
scenes?

The	programming	language	uses	the	variable	‘str’	as	a	pointer,	which	points	to	a
memory	location	in	the	system.	The	memory	location	is	then	populated	with	the
value	 of	 ‘Hello’.	When	 we	 change	 the	 value	 of	 the	 variable,	 a	 new	 memory
location	 is	populated	with	 the	value	of	 ‘Hello	World’.	The	‘str’	pointer	 is	 then
made	to	point	to	the	new	memory	location.	The	earlier	memory	location	now	has
no	pointer,	and	in	most	programming	languages	the	contents	will	be	deleted.

14.1	Concatenation	of	Strings

Combining	 strings	 is	 a	 very	 common	 practice	 in	 programming.	 Normally	 the
easiest	 way	 to	 combine	 strings	 is	 to	 use	 the	 addition	 ‘+’	 operator,	 and	 most
programming	 languages	 allow	 the	 concatenation	of	 strings	 using	 this	 operator.
Below	is	an	example	of	this	in	C#.
string	str	=”Hello”+”	World”;

Here	we	 have	 two	 strings	 being	 combined	 into	 one	 string,	 resulting	 in	 ‘Hello
World’,	and	then	assigned	to	the	‘str’	variable.	This	is	the	easiest	way	to	quickly



combine	strings.	However	programming	 languages	also	have	built-in	 functions
and	 methods	 that	 can	 do	 this.	 For	 example,	 C#	 has	 a	 method	 called
‘StringBuilder’	that	can	be	used	to	build	and	combine	strings.

14.2	Properties	and	Methods	on	Strings

Just	 like	 we	 have	 seen	 with	 numbers,	 there	 are	 also	 properties	 and	 methods
available	 in	 most	 programming	 languages	 to	 work	 with	 strings.	 Again,	 these
built-in	methods	help	in	performing	the	most	common	tasks	needed	with	strings.
For	 example	 to	 determine	 the	 number	 of	 characters	 in	 a	 string,	 most
programming	 languages	 have	 the	 ‘length’	 property	 that	 can	 be	 used	 for	 this
purpose.	An	example	of	this	in	C#	is	shown	below.
using	System;
namespace	Demo
{

class	Program
{

//	The	main	function
static	void	Main(string[]	args)
{
//	Defining	a	string
string	str	=	"Hello";
Console.WriteLine("The	length	is	"	+

str.length);
Console.Read();
}

}
}

In	this	sample	we	have	a	string	with	a	variable	named	‘str’	and	it	is	assigned	the
value	of	‘Hello’.	Then	we	use	the	‘length’	property	to	determine	the	number	of
characters	 in	 this	 string	 and	 write	 that	 number	 to	 the	 console.	 As	mentioned,
there	are	numerous	methods	available	to	use	with	strings.	Let’s	look	at	some	of
them	next.

14.2.1	Searching	in	Strings

Let’s	say	we	wanted	to	find	a	particular	word	in	a	string.	This	can	be	done	quite
easily	with	the	use	of	methods.	For	example,	C#	has	the	‘contains’	method	built
in	that	is	made	for	this	exact	purpose.	If	the	string	contains	the	desired	letter	or
word,	the	program	will	return	a	‘true’	value.	Let’s	look	at	an	example	of	this.
namespace	Demo
{



{
class	Program
{

//	The	main	function
static	void	Main(string[]	args)
{
//	Defining	a	string
string	str	=	"Hello";
//	Using	the	Contains	function
Console.WriteLine("String	contains	e	"	+

str.Contains("e"));
Console.Read();
}

}
}

14.2.2	Finding	the	Position	of	a	Character

We	can	also	find	the	position	value	of	a	character	in	a	particular	string	by	using
methods.	For	instance,	Java	has	the	‘indexOf’	method	built	 in	that	can	be	used
for	this	exact	purpose.	If	a	string	contains	the	desired	character,	the	program	will
return	the	index	number	of	that	character.
public	class	Demo
{

public	static	void	main(String	args[])
{

//	Defining	the	string
String	str="Hello	World";
System.out.println("The	index	is		"	+	str.indexOf('e'));

}
}

Normally	 strings	 start	 with	 an	 index	 value	 of	 0.	 So	 in	 our	 example,	 if	 the
program	 returns	 a	 value	 of	 1,	 the	 character	 is	 positioned	 second	 in	 the	 string.
This	method	returns	the	first	position	it	finds	the	desired	character	in.	There	are
also	functions	to	return	all	the	occurrences	of	a	character	from	within	a	particular
string.

14.2.3	Comparing	Strings
There	are	also	functions	in	programming	languages	that	can	be	used	to	compare
strings.	Normally	these	methods	compare	a	specified	string	with	a	source	string,
and	 then	 indicate	whether	 the	 query	precedes,	 follows,	 or	 appears	 in	 the	 same
position	in	the	sort	order	as	the	source	string.	The	results	of	these	comparisons



are	given	below.

If	the	value	is	less	than	zero,	it	means	that	the	query	string	precedes
the	source	value.

If	the	value	is	greater	than	zero,	it	means	that	the	query	string	follows
the	source	value.

If	 the	 value	 is	 equal	 to	 zero,	 then	 the	 query	 string	 has	 the	 same
position	in	the	sort	order	as	the	source	value.

Below	is	an	example	that	showcases	the	‘compareTo’	method	available	in	Java.
public	class	Demo
{

public	static	void	main(String	args[])
{

//	Defining	the	string
String	str="Hello";
System.out.println("The	output	is		"	+	str.compareTo("Hello"));

}
}

In	this	sample,	since	both	the	strings	are	the	same,	a	value	of	0	will	be	returned.
This	 is	 just	 one	 of	 many	 functions	 available	 for	 strings.	 Each	 programming
language	usually	has	a	wide	variety	of	functions	and	methods	that	can	be	used
on	strings.



15.	Making	Decisions	in	Programs

In	almost	every	program	there	is	a	need	to	make	decisions,	and	all	programming
languages	provide	a	wide	variety	of	statements	specifically	for	decision	making.
At	 the	heart	 of	 every	decision-making	 statement	 is	 a	 condition.	A	condition	 is
merely	a	yes/no	question,	such	as	“is	the	variable	equal	to	3?”	or	“is	the	variable
a	 number?”	 The	 condition	 is	 evaluated,	 and	 depending	 on	 the	 result,	 a	 set	 of
statements	will	be	executed.	Let’s	 look	at	 some	of	 the	most	common	forms	of
decision-making	statements	available.

15.1	The	If	Statement

This	is	the	most	basic	form	of	decision	making.	In	an	‘if’	statement,	we	have	a
condition	which	gets	evaluated.	Then	if	 the	condition	evaluates	to	‘True’,	a	set
of	statements	will	be	executed.	Below	is	a	diagram	that	illustrates	this	process.

The	most	general	syntax	of	the	‘if’	statement	is	given	below:
if(condition)
{
//Execute	code
}

Below	is	a	sample	of	the	‘if’	statement	in	C#:
int	i=3;
if(i==3)
Console.WriteLine("The	value	of	i	is	"	+	i);

In	this	code	sample	we	define	a	variable	‘i’	and	assign	a	value	of	3	to	it.	Then
we	use	the	‘if’	statement	to	check	the	value	of	‘i’.	If	the	value	is	equal	to	3,	the
program	will	display	the	specified	text	in	the	console.

15.2	The	If-Else	Statement



The	‘if-else’	statement	is	similar	to	the	standard	‘if’	statement,	except	it	adds	an
additional	option	to	execute	a	statement	if	the	condition	evaluates	to	‘False’.	So
again	we	start	with	a	condition	that	is	evaluated.	Then	if	the	condition	evaluates
to	‘True’,	a	set	of	statements	will	be	executed.	If	the	condition	does	not	evaluate
to	 ‘True’,	 a	 different	 set	 of	 statements	 are	 executed.	 Below	 is	 a	 diagram	 that
illustrates	this	process.

The	most	general	syntax	of	the	‘if-else’	statement	is	given	below:
if(condition)
{
//Execute	code
}
else
{
//Execute	code
}

Below	is	a	sample	of	the	‘if-else’	statement	in	C#:
int	i=4;
if(i==3)
Console.WriteLine("The	value	of	i	is	"	+	i);
else
Console.WriteLine("The	value	of	i	is	not	equal	to	3");

In	this	code	sample	we	define	a	variable	‘i’	and	assign	a	value	of	4	to	it.	Then
we	use	the	‘if’	statement	to	check	the	value	of	‘i’.	If	the	value	is	equal	to	3,	the



program	will	display	the	specified	text	in	the	console.	Due	to	the	‘else’	statement
the	program	will	display	an	alternate	text	if	the	value	is	not	equal	to	3.

15.3	The	Switch	Statement

The	 ‘switch’	 statement	 goes	 one	 step	 further	 than	 the	 ‘if-else’	 statement	 and
allows	us	to	evaluate	multiple	conditions	at	a	time,	and	then	execute	a	statement
that	corresponds	to	each	condition’s	outcome.	So	again	we	start	with	a	condition
that	 is	 evaluated.	Then	 if	 the	condition	evaluates	 to	 ‘True’,	 a	 set	of	 statements
will	be	executed.	If	the	condition	does	not	evaluate	to	‘True’,	the	program	moves
on	 to	 the	 next	 condition.	 This	 process	 is	 repeated	 for	 all	 conditions	 that	 we
declare.	If	the	program	reaches	the	last	condition	and	it	also	does	not	evaluate	to
‘True’,	a	default	statement	can	be	executed.	Below	is	a	diagram	that	 illustrates
this	process.

The	most	general	syntax	of	the	‘switch’	statement	is	given	below:
switch(expression)
{



case	constant-expression		:
statement(s);
break;

case	constant-expression		:
statement(s);
break;

default	:
statement(s);

}

Below	is	a	sample	of	the	‘switch’	statement	in	C#:
int	i=4;
switch	(i)
{

case	1:	Console.WriteLine("The	value	of	i	is	1");
break;

case	2:	Console.WriteLine("The	value	of	i	is	2");
break;

case	3:	Console.WriteLine("The	value	of	i	is	3");
break;

case	4:	Console.WriteLine("The	value	of	i	is	4");
break;

default:	Console.WriteLine("The	value	of	i	is	unknown");
break;

}

In	this	code	sample	we	define	a	variable	‘i’	and	assign	a	value	of	4	to	it.	Then
we	use	the	‘switch’	statement	to	evaluate	the	value	of	‘i’.	Each	case	statement	is
then	 defined	 for	 the	 different	 possible	 values	 of	 ‘i’.	 Finally	 we	 also	 define	 a
default	 statement	 that	 gets	 executed	 if	 none	 of	 the	 case	 statements	 match	 the
desired	expression.

15.4	Nesting	Statements

It	 is	 also	 possible	 to	 nest	 multiple	 decision-making	 statements	 within	 one
another.	 An	 example	would	 be	 placing	 one	 ‘if’	 statement	 inside	 a	 second	 ‘if’
statement.	So	if	the	condition	of	the	first	‘if’	statement	evaluates	to	true,	instead
of	a	code	statement	being	executed,	the	second	‘if’	statement	is	run.

There	are	multiple	combinations	of	 statements	 that	 can	be	used,	 and	all	of	 the
decision-making	 statements	we’ve	 discussed	 so	 far	 can	 be	 combined	with	 one



another.	Care	should	however	be	taken	when	using	nested	statements.	The	more
statements	 that	are	combined,	 the	more	complex	 the	program	becomes	and	 the
more	difficult	it	is	to	keep	track	of	the	conditions	being	evaluated.	An	example
of	nested	statements	in	C#	is	shown	below.
int	i=4;

if	(i	>	0)
{
if	(i	==	4)
{
Console.WriteLine("The	value	is	4");
}

}



16.	Iterative	Programming

Iterative	programming	refers	to	the	process	of	executing	a	set	of	code	statements
a	 certain	 number	 of	 times.	 There	 are	 a	 variety	 of	 uses	 for	 iteration,	 such	 as
stepping	 through	 a	 set	 of	 data	 records.	To	 illustrate,	 imagine	we	have	 a	 set	 of
data	records	(as	shown	below)	stored	in	our	program	and	want	to	display	the	ID
and	Name	of	each.

ID Name
1 Mark
2 John
3 James

We	would	use	an	iterative	loop	statement	to	move	through	the	data	records	and
then	display	them	accordingly.	The	first	part	of	this	process	is	to	determine	the
number	of	iterations	required.	If	we	have	three	records,	our	iteration	statements
would	repeat	three	times.	The	next	part	of	the	process	is	the	iteration	statements
themselves.	 Let’s	 look	 at	 some	 of	 the	 common	 iterative	 statements	 that	 are
available	across	most	programming	languages.

16.1	The	‘While’	Iterative	Loop

This	loop	statement	starts	by	evaluating	a	particular	condition.	If	the	condition	is
‘True’	then	a	set	of	statements	is	executed.	The	statements	will	be	executed	for
as	long	as	the	condition	evaluates	to	‘True’.	Below	is	a	diagram	that	 illustrates
this	process.



The	most	general	syntax	of	the	‘while’	statement	is	given	below:
While(condition)
{
//execute	code
}

Below	is	a	sample	of	the	‘while’	loop	statement	in	Java:
int	i=0;

while(i<4)
{
System.out.println("The	value	of	i	is	"+	i);
i++;

}

In	this	sample	program	we	define	a	variable	‘i’	and	assign	an	initial	value	of	0	to
it.	Then	we	use	the	‘while’	loop	to	evaluate	the	value	of	‘i’.	As	long	as	the	value
of	 ‘i’	 is	 less	 than	4,	 the	code	statement	 in	 the	 ‘while’	code	block	will	execute.
The	code	block	displays	the	value	of	‘i’	and	also	increments	the	value	of	‘i’.

16.2	The	‘Do-While’	Iterative	Loop

This	loop	statement	is	similar	to	the	‘while’	loop	statement.	The	main	difference
between	the	two	is	that	the	‘do-while’	loop	evaluates	the	condition	only	after	the
code	block	is	executed.	The	statements	will	then	be	executed	for	as	long	as	the
condition	evaluates	to	‘True’.	This	means	that	we	are	always	guaranteed	that	the



code	block	will	be	executed	at	least	once.

The	most	general	syntax	of	the	‘do-while’	statement	is	given	below:
do
{
//execute	code
}
While(condition);

Below	is	a	sample	of	the	‘do-while’	loop	statement	in	Java:
do

{
System.out.println("The	value	of	i	is	"+	i);
i++;
}

while(i<4);

In	this	sample	program	we	start	with	the	‘do’	keyword	to	indicate	that	this	is	the
beginning	of	 the	 ‘do-while’	 loop	 statement.	Then	we	have	 the	 statement	block
which	displays	the	value	of	‘i’	and	also	increments	 the	value	of	‘i’.	Finally	we
have	the	‘while’	statement	that	evaluates	the	value	of	‘i’.	If	the	value	of	‘i’	is	less
than	4,	the	program	will	loop	from	the	beginning.

In	both	 the	 ‘while’	and	 ‘do-while’	 statements	 it	 is	 important	 to	ensure	 that	 the
condition	can	evaluate	to	‘False’	at	some	point	in	the	program.	If	it	does	not,	the
program	will	run	indefinitely.	For	instance,	in	our	code	sample	we	increment	the
value	of	‘i’	so	it	will	eventually	equal	and	exceed	the	value	of	4.

16.3	The	‘For’	Iterative	Loop

The	‘for’	loop	statement	can	also	be	used	to	iterate	through	a	set	of	statements.
What	makes	this	loop	statement	different	from	the	preceding	statements	is	that	it
compresses	 all	 the	 required	 parts	 into	 a	 single	 statement.	 This	makes	 it	much
more	compact	than	the	other	loops.

The	 ‘for’	 statement	 consists	 of	 three	 main	 sections.	 The	 first	 is	 where	 we
‘initialize’	the	variable	and	assign	a	value	to	it.	The	second	is	the	‘condition’	that
needs	 to	 be	 evaluated.	 And	 lastly	 we	 ‘increment’	 the	 value	 of	 the	 variable.
Below	is	the	syntax	for	the	‘for’	statement	that	illustrates	this.
for(initialization;condition;incrementer)
{
//execute	code
}



}

A	diagram	representing	the	‘for’	loop	process	is	shown	below.

Below	is	a	sample	of	the	‘for’	loop	statement	in	Java:
for(int	i=0;i<4;i++)
{

System.out.println("The	value	of	i	is	"+	i);
}



In	 the	 above	 code	 sample	we	 start	with	 the	 ‘for’	 statement	 and	 its	 three	main
components.	First	we	initialize	the	variable	‘i’	and	assign	a	value	of	0	to	it.	We
then	state	the	condition	for	this	loop.	The	condition	tests	whether	the	value	of	‘i’
is	less	than	4.	Thirdly	we	increment	the	value	of	‘i’.	All	of	this	is	followed	by	the
statement	that	gets	executed	based	on	the	condition	testing	‘True”.

16.4	Nesting	Iterative	Statements

The	same	principles	used	in	nesting	decision	making	statements,	can	be	applied
when	nesting	iterative	statements.	An	example	here	would	be	placing	a	‘while’
statement	 inside	 a	 ‘for’	 statement.	 Again	 there	 are	 multiple	 combinations	 of
statements	 that	can	be	used,	and	all	of	 the	 iterative	statements	we’ve	discussed
so	 far	 can	 be	 combined	 with	 one	 another.	 An	 example	 of	 nested	 iterative
statements	in	C#	is	shown	below.
for(int	i=0;i<3;i++)

{
System.out.println("The	value	of	i	is

"+	i);
int	j=0;
while(j<3)
{
System.out.println("The	value	of	j

is	"+	j);
j++;

}
}

In	 this	 code	 sample	we	use	 a	 ‘for’	 loop	as	 the	outer	 iterative	 statement,	 and	a
‘while’	 loop	 as	 the	 inner	 iterative	 statement.	 So	 for	 each	 iteration	 of	 the	 ‘for’
loop	statement,	the	code	block	will	run	that	includes	the	‘while’	loop	statement.
The	‘while’	loop	will	then	go	through	its	iterations,	before	exiting	and	returning
to	the	‘for’	loop.	As	can	be	seen	here,	care	should	definitely	be	taken	when	using
nested	iterative	statements.



http://www.Amazon.com/gp/customer-reviews/write-a-review.html?asin=B07D6D5W99


17.	Logical	Grouping	of	Code

Every	 program	 should	 be	 created	 with	 a	 specific	 purpose	 and	 a	 set	 of	 key
requirements.	 As	 an	 example,	 if	 we	 intended	 to	 build	 an	 e-commerce
application,	we	could	come	up	with	the	following	requirements:

Have	an	inventory	maintained	for	products

Have	products	posted	online	for	purchase

Enroll	and	maintain	customer	data
Allow	customers	to	buy	products

Generate	invoices

Track	payments

Generate	reports

So	here	we	have	our	high-level	requirements.	If	we	move	onto	the	design	stage
of	the	application,	we	could	develop	these	requirements	further	by	creating	sub-
requirements	and	even	sub-sub-requirements.	 It	 is	however	easy	 to	 start	 losing
focus	of	our	primary	goals	as	the	program	becomes	larger	and	more	complex.	In
these	cases,	we	should	consider	breaking	a	program	into	logical	pieces	of	code
by	using	the	available	structures	in	a	programming	language.

Let’s	 continue	 with	 our	 example	 by	 exploratory	 the	 ‘Enroll	 and	 maintain
customer	 data’	 requirement	 we	 mentioned	 above.	 By	 examining	 this
requirement,	 we	 could	 break	 it	 down	 further	 into	 the	 following	 sub-
requirements:

Get	Customer	Data

Add	a	new	customer
Edit	details	of	the	customer

Delete	existing	customer	details

Generate	reports	on	customer	data

Instead	of	combining	all	of	these	sub-requirements	in	one	code	block,	we	should
ideally	 segregate	 and	group	 the	 code	 for	 each	of	 these	 items.	One	of	 the	most



common	practices	 is	 to	 develop	methods	or	modules	 to	 segregate	 the	 code.	 In
our	example,	we	can	define	the	following	modules:
Input_customer_data()

{
//Enter	code	here
}

Add_new_customer()
{
//Enter	code	here
}

Edit_customer_data()
{
//Enter	code	here
}

Delete_customer_data()
{
//Enter	code	here
}

Generate_reports
{
//Enter	code	here
}

Now	we	have	five	separate	modules	for	our	‘Enroll	and	maintain	customer	data’
requirement.	 Each	 method	 will	 then	 have	 the	 necessary	 code	 to	 perform	 the
functionality	 required	 for	 each	 sub-requirement.	 These	 methods	 can	 also	 be
called	 from	 other	 modules,	 making	 the	 program	 much	 more	 efficient.	 Some
other	benefits	of	modularizing	your	code	in	this	way	are	given	below:

Easy	 Maintenance	 –	 Since	 each	 section	 of	 code	 has	 a	 defined
purpose,	 it	becomes	easier	 to	modify	the	program	at	a	later	point	 in
time.	Instead	of	searching	through	thousands	of	lines	of	code	to	find
the	correct	statement,	you	simply	have	to	search	through	the	various
modules.	This	way	 there’s	 also	 less	of	 a	 chance	 to	break	 the	 entire
application	when	trying	to	modify	one	particular	section.

Easy	 Readability	 –	 It	 becomes	 considerably	 easier	 to	 “read”	 and
understand	 a	 program	when	 it’s	 divided	 into	 blocks	 of	 code,	 rather
than	one	large	chunk	of	code.
Code	 Reusability	 -	 This	 is	 a	 big	 selling	 point.	 Since	 the	 code	 is
separated	 into	modules	 that	 can	be	 called	 at	 any	point	 in	 time,	you
don’t	need	to	write	the	same	piece	of	code	over	and	over	again.



17.1	Using	Namespaces

Normally	 it’s	 not	 only	 requirements	 that	 are	 broken	 down	 and	 written	 in
modules,	 but	 also	 recurring	 functions.	 If	 a	 particular	 functionality	 needs	 to	 be
written	and	used	across	several	sections	of	an	application,	common	practice	is	to
write	the	code	into	a	module	and	share	it	across	the	application.

For	 example,	 the	 process	 of	 retrieving	 data	 can	 be	 a	 common	 task	 that	 is
required	 numerous	 times	 in	 an	 application.	 In	 our	 example	 above,	 we	 would
need	 to	 retrieve	data	 for	both	 customers	 and	products.	We	could	 then	 create	 a
method	called	‘Input_data’	that	can	be	used	for	both	the	customer	requirements
and	product	requirements.

Since	 this	 method	 will	 be	 used	 across	 multiple	 requirements,	 we	 would	 need
some	way	to	distinguish	it	from	the	other	code.	We	can	do	this	at	the	top	level,
by	making	use	of	 classes	or	 even	 specific	 structures	provided	 in	programming
languages.	 C#,	 for	 instance,	 allows	 for	 the	 use	 of	 something	 known	 as
‘namespaces’.	This	can	be	used	specifically	 to	segregate	 functionality	which	 is
common	across	multiple	modules.
Let’s	look	at	an	example	using	our	method	called	‘Input_data’.
using	System;

//	One	namespace
namespace	NameA{

public	class	ClassA
{
public	void	FunctionA(){

Console.WriteLine("This	is	namespace	A");
}
}

}

//	Second	namespace
namespace	NameB{

public	class	ClassB
{

public	void	FunctionA()
{
Console.WriteLine("This	is	namespace	B");
}

}
}

With	 the	 above	 program	 we	 are	 defining	 two	 namespaces,	 the	 one	 being



‘NameA’	and	 the	other	 ‘NameB’.	Each	namespace	has	a	class	defined	and	 the
same	function	defined.	We	can	call	each	function	via	the	namespace	through	the
main	calling	program.

17.2	Anonymous	Code	Blocks

There	are	times	when	it	might	be	preferred	to	limit	the	scope	of	a	variable	and
use	 a	 code	 block	 only	 once.	Most	 programming	 languages	 have	 the	 ability	 to
define	code	blocks	in	a	way	that	they	cannot	be	used	anywhere	else.	Below	is	an
example	of	how	this	looks	in	C#.
void	function()
{
{
int	i	=	0;
i	=	i	+	1;

}
{
int	k	=	0;
k	=	k	+	1;

}
}



18.	What	Are	Functions?

In	the	previous	chapter,	we	looked	at	how	we	can	use	methods	to	segregate	code
into	logical	groupings.	Well,	these	methods	are	also	referred	to	as	‘functions’.	A
function	is	simply	a	named	section	of	code	that	performs	a	specific	operation	or
task.	We	can	write	our	own	functions	as	we	did	in	 the	previous	chapter,	or	we
can	choose	from	a	library	of	prewritten	functions.	Most	programming	languages
come	with	built-in	functions,	but	libraries	can	also	be	imported.

In	this	chapter	we	will	look	at	the	basic	semantics	of	functions	and	how	they	can
be	used.	Their	application	is	similar	across	multiple	programming	languages,	so
our	 discussion	 doesn’t	 need	 to	 focus	 on	 a	 specific	 language.	We	will	 start	 by
looking	at	the	definition	of	a	function.	The	syntax	is	defined	below.
FunctionName()
{
//code	block
}

A	 function	will	 have	 a	 function	 name,	 which	 is	 usually	 linked	 to	 the	 type	 of
functionality	 that	 is	 carried	 out	 by	 the	 function.	 In	 a	 previous	 example,	 our
function	was	used	to	import	information	from	different	sources.	The	name	given
to	the	function	could	then	be	‘Input_data()’.	Inside	the	brackets	of	the	function,
we	have	our	code	block	that	will	be	executed.	This	is	the	code	that	performs	the
necessary	functionality.
These	 are	 the	 basics	 of	 functions.	 Other	 intricacies	 to	 functions	 are	 concepts
such	as	 ‘input	parameters’,	 ‘returns	values’	and	 ‘visibility’.	Let’s	 look	at	 these
aspects	in	more	detail.

18.1	Input	Parameters

There	 are	 instances	 when	 we	 might	 need	 to	 pass	 data	 to	 a	 function.	 Certain
functions	 require	 data	 in	 order	 to	 perform	 their	 tasks	 properly.	 One	 of	 the
simplest	examples	of	 this	would	be	a	function	that	adds	two	numbers	 together.
The	function	requires	the	data	of	the	two	numbers	it	will	be	using.	This	can	be
done	 by	 passing	 the	 numbers	 to	 the	 function	 as	 parameters.	 Let’s	 look	 at	 an
example	of	this.
Add(int	i,int	j)
{
int	k=i+j;
}



}

In	the	above	sample	code,	we	start	by	creating	a	function	with	a	name	of	‘Add’.
This	 function	 takes	 in	 two	 parameters	 of	 ‘i’	 and	 ‘j’,	 and	 each	 parameter	 is	 a
number,	which	 is	of	 the	 type	 ‘integer’.	The	code	block	 section	of	 the	 function
then	adds	these	numbers	together.	When	working	with	functions,	we	can	pass	a
variety	of	parameters	to	a	function.	These	parameters	can	be	passed	in	the	main
program	when	the	module	is	called.	This	can	be	done	in	the	following	way:
Add(2,3);

Here,	 the	values	of	2	and	3	are	passed	 to	 the	‘Add’	method.	The	‘i’	parameter
will	receive	the	value	of	2,	and	the	‘j’	parameter	will	receive	the	value	of	3.

18.2	Returning	Values
Apart	from	taking	in	parameters,	we	can	also	use	a	function	to	return	values	to
the	calling	program.	Let’s	look	at	an	example	of	this.
int	Add(int	i,int	j)
{
int	k=i+j;
return	k;
}

In	the	above	sample	code,	we	start	by	creating	a	function	with	a	name	of	‘Add’.
This	time,	there	is	an	additional	keyword	in	front	of	the	‘Add()’	function.	This	is
a	data	 type	 that	specifies	what	 the	 type	of	value	will	be	 that	 is	 returned	by	 the
function.	 The	 function	 itself	 takes	 in	 two	 parameters	 of	 ‘i’	 and	 ‘j’.	 Each
parameter	is	a	number,	which	is	of	the	type	‘integer’.	The	code	block	section	of
the	 function	 then	 adds	 these	 numbers	 together,	 and	 also	 returns	 the	 resultant
number.	This	time	around,	when	we	call	the	module	in	the	main	program,	it	will
look	the	following	way:
int	out;
out=Add(2,3);

Here	we	are	specifying	that	another	variable	should	be	defined	that	is	of	the	type
‘integer’.	This	variable	will	accept	the	return	value	sent	by	the	‘Add’	method.

When	using	return	types	you	need	to	ensure	the	following:



First.	 If	 you	 specify	 that	 the	method	 returns	 a	 value	 by	 adding	 the
prefix	 to	 the	name,	you	need	 to	 return	a	value	 in	 the	 function	code
block.

Second.	The	main	calling	program	should	have	the	facility	to	take	the
result	from	the	function.	And	the	return	type	accepted	by	the	calling
program	 should	 be	 the	 same	 as	 the	 return	 type	 specified	 by	 the
function.

18.3	Visibility

Most	programming	languages	allow	us	to	change	who	is	able	to	view	and	access
a	function.	It	is	a	core	aspect	of	writing	object-oriented	programs.	Functions	(or
methods)	 are	 normally	 contained	 within	 classes,	 which	 are	 used	 as	 the
encapsulating	 entity.	 It	 is	 within	 the	 class	 that	 we	 define	 the	 visibility	 of	 a
function.	In	C#	it	is	done	through	using	a	class	modifier.	Class	modifiers	can	be
used	to	define	the	visibility	of	properties	and	methods	in	a	class.	Below	are	the
various	modifiers	available.

Private	–	With	 a	 private	 class,	 the	properties	 and	methods	 are	 only
available	to	the	class	itself.
Protected	 –	With	 a	 protected	 class,	 the	 properties	 and	methods	 are
available	 to	 the	 class	 itself	 and	 any	 subclasses	 derived	 from	 that
class.

Public	–	With	a	public	class,	the	properties	and	methods	are	available
to	all	classes.	So	any	program	will	have	access	to	the	methods	within
the	class.

Let’s	look	at	an	example	of	how	a	public	class	can	be	defined	in	C#.
class	Program
{
public	void	Display()

{
//Enter	code	here

}
}

Here	we	have	a	class	called	‘Program’,	which	has	the	method	called	‘Display’.
Notice	that	it	has	been	assigned	a	modifier	of	‘public’.	This	means	that	any	other



class	 can	 also	 call	 this	 method	 within	 the	 program.	 Let’s	 look	 at	 the	 same
program,	but	this	time	with	a	different	access	modifier.
class	Program
{
public	void	Display()

{
//Enter	code	here

}
}

This	time	we	have	defined	the	access	modifier	as	‘private’.	This	means	that	the
‘Display’	 method	 cannot	 be	 used	 anywhere	 else	 outside	 of	 this	 class.	 Best
practice	in	programming	is	implementing	the	principle	of	‘least	privilege’.	This
means	to	assign	the	lowest	level	of	access	necessary	to	a	function.	If	a	function
doesn’t	need	to	be	accessed	outside	of	its	class,	it	should	be	defined	as	private.



19.	Taking	Input

Most	programs	will	need	to	take	some	form	of	input	from	the	user,	in	order	for	it
to	be	processed	by	the	functions	we	discussed	earlier.	The	way	in	which	input	is
taken	by	the	program,	will	differ	depending	on	the	type	of	program	we	created.
A	 web	 application,	 for	 instance,	 would	 take	 input	 differently	 compared	 to	 a
console-based	 script.	 Let’s	 look	 at	 the	 different	 ways	 input	 can	 be	 processed,
depending	on	the	type	of	program	being	developed.

19.1	Console	Based	Applications

So	let’s	start	simple,	with	console-based	applications.	There	are	different	ways
in	which	input	can	be	taken	here.	One	of	the	most	common	methods	is	when	the
program	 is	 being	 executed.	Most	 programming	 languages	 have	 the	 facility	 to
accept	 input	 data	when	 the	 program	 is	 being	 run	 for	 the	 first	 time.	This	 input
data	 is	 then	accepted	by	 the	main	code	block	of	 the	program.	Let’s	 look	at	 an
example	of	how	this	is	done	in	Java.
public	class	Program	{

public	static	void	main(String[]
args)	{

//	Code	block
}

}

In	the	above	program,	we	first	have	our	definition	of	the	class.	In	the	class	we
have	the	main	block	program;	this	is	the	entry	point	for	the	program.	The	main
method	 then	 accepts	 an	 argument	 named	 ‘args’,	 which	 is	 an	 array	 of	 strings.
When	we	call	the	main	program,	we	can	do	it	in	the	following	way	by	adding	a
value:
Program	One	Two

The	value	of	‘One’	and	‘Two’	will	now	be	passed	to	the	program.	If	we	wanted
to	 see	what	values	are	being	passed	 to	 the	main	program,	we	can	output	 them
back	to	the	screen	as	shown	in	the	code	snippet	below.	Here	we	have	our	main
program,	but	this	time	we	are	using	a	‘for’	loop	to	go	through	all	the	values	of
the	array	and	print	them	to	the	screen.
public	class	Program	{

public	static	void	main(String[]	args)	{
for	(String	s:	args)	{



for	(String	s:	args)	{
System.out.println(s);
}

}
}

Another	way	we	can	input	values	in	a	console-based	application	is	by	using	the
input	 streams	 that	 are	 accepted	 by	 the	 programming	 language.	An	 example	 of
this	in	Java	is	shown	below,	by	using	the	following	method:
System.console().readLine();

This	method	can	be	used	to	read	a	line	of	text	from	the	console.	So	the	user	will
enter	the	text	in	the	console	and	this	can	be	then	read	by	the	main	program.

19.2	Web	Based	Applications
Next	we	will	look	at	the	most	common	type	of	application	out	there,	and	that	is
web-based	 applications.	 When	 a	 web	 application	 requests	 input,	 it	 normally
presents	the	user	with	a	form	to	fill	in.	The	data	in	the	form	is	then	read	by	the
application	and	stored	accordingly.	Below	is	a	snapshot	of	a	simple	HTML	form
that	could	be	found	on	many	HTML	websites.	HTML	was	the	first	language	that
was	used	to	accept	data.

If	you	look	at	the	HTML	form,	you	will	notice	that	it	has	two	input	fields.	One	is
for	a	first	name	and	one	is	for	a	last	name.	We	also	have	a	‘Submit’	button	that
transfers	the	data	to	our	program	to	be	processed.	The	program	that	is	linked	to
this	form	would	look	something	like	this:



<!DOCTYPE	html>
<html>
<body>

<form	action="/action_page.php">
First	name:<br>
<input	type="text"	name="firstname">
<br>
Last	name:<br>
<input	type="text"	name="lastname">
<br><br>
<input	type="submit"	value="Submit">

</form>

</body>
</html>

This	is	an	HTML	code	page,	which	is	used	to	generate	the	form.	Each	element
in	 the	 form	 is	generated	via	HTML	code.	Then	we	have	a	 JavaScript	program
that	is	used	to	process	the	data	on	the	front	end.	The	JavaScript	code	can	be	used
to	verify	that	the	data	entered	in	the	input	form	is	correct,	before	it	can	be	sent	to
the	main	program.	This	 is	an	 important	 step	 in	order	 to	minimize	errors	 in	 the
data.

For	 instance,	 the	 JavaScript	 code	 would	 need	 to	 detect	 if	 a	 user	 attempts	 to
submit	a	blank	value,	and	then	prompt	them	to	enter	the	data	correctly.	There	are
numerous	aspects	that	could	be	important	to	check	before	data	is	sent	back	to	the
main	program.	Another	example	would	be	 if	we	needed	 the	user	 to	enter	 their
email	address.	The	email	 ID	should	 ideally	contain	 the	 ‘@’	symbol,	which	 the
JavaScript	code	can	check	 for.	So	patterns	can	also	be	used	 to	verify	 the	data,
before	sending	it	back	to	the	main	program.

19.3	Taking	in	Data	from	Files

There	 are	 instances	 where	 it	 might	 be	 necessary	 to	 retrieve	 data	 from	 files.
Programming	languages	have	many	file	input	and	output	classes	that	can	be	used
to	read	data	from	files.	Let’s	 take	an	example	from	C#.	There	are	a	number	of
ways	we	can	interact	with	files	in	this	programming	language.	Let’s	look	at	an
example	code	snippet.
static	void	Main(string[]	args)
{

//	Opening	the	file	in	read	only	mode
StreamReader	src	=	new

StreamReader(@"G:\newHello.html");



//	Displaying	the	first	line	of	the	file
Console.WriteLine(src.ReadLine());

}

Don’t	 worry	 too	 much	 about	 the	 underlying	 code	 statements	 used	 in	 the
program.	 In	 a	 nutshell,	 this	 is	what	 the	 program	 does.	 It	 first	 uses	 a	C#	 class
called	‘StreamReader’	to	open	a	file	called	‘newHello.html’.	Then	the	same	class
is	used	to	read	the	contents	of	the	file,	one	line	at	a	time.

Sometimes	the	data	within	files	can	follow	a	certain	structure.	This	is	true	when
you	have	XML	or	JSON	structured	files.	Programming	languages	have	separate
ways	of	dealing	with	 these	files.	Since	 these	files	have	a	definite	structure,	 the
programming	language	makes	it	easy	to	read	the	file	in	that	defined	structure.

As	a	final	note,	always	be	careful	in	the	way	you	handle	input	data.	Remember
to	always	validate	 the	data,	because	 if	 the	wrong	 type	of	data	 is	entered	 in	 the
program,	 it	 could	 lead	 to	 the	 wrong	 output	 or	 cause	 the	 entire	 program	 to
become	unstable.



20.	Sending	Output

Now	that	we’ve	looked	at	taking	input	in	our	previous	chapter,	we	will	look	at
the	opposite	process	of	sending	output	from	a	program.	The	way	in	which	output
is	 given	 by	 the	 program,	 will	 differ	 depending	 on	 the	 type	 of	 program	 we
created.	 So	 again,	 let’s	 look	 at	 the	 different	 ways	 output	 can	 be	 processed,
depending	on	the	type	of	program	being	developed.

20.1	Console	Based	Applications

We	 will	 start	 again	 with	 the	 simplest	 form,	 that	 being	 console	 based
applications.	Most	 programming	 languages	 have	 methods	 that	 can	 be	 used	 to
write	data	to	the	console.	This	process	is	very	important	when	it	comes	to	testing
the	behavior	of	a	program	and	making	sure	it	operates	as	intended.	Let’s	look	at
an	example	of	how	this	is	done	in	C#.
static	void	Main(string[]	args)
{
Console.Write(“Hello	World”);
}

The	above	program	is	very	simple	and	uses	the	‘Console’	class	that	is	available
in	C#.	This	class	contains	a	method	called	‘Write’,	which	then	writes	the	string
‘Hello’	to	the	console.	The	‘Console’	class	also	has	the	facility	to	write	data	to
different	lines	using	the	‘WriteLine’	method.	Let’s	look	at	a	code	snippet	which
will	write	‘Hello’	on	the	first	line	and	‘World’	now	on	a	second	line.
static	void	Main(string[]	args)
{
Console.WriteLine(“Hello”);
Console.WriteLine(“World”);
}

20.2	Web	Based	Applications

When	 it	comes	 to	HTML	based	applications,	we’ve	already	seen	how	 to	 input
data	with	 an	 input	 form.	But	 certain	 programming	 languages,	 such	 as	C#	 and
Java,	have	added	functionality	to	dynamically	generate	output	that	can	be	sent	to
the	 user.	 There	 are	 web-based	 frameworks	 which	 are	 available	 in	 these
programming	languages	specifically	designed	for	 this	purpose.	For	example,	 in
C#	 we	 can	 use	 the	 code	 snippet	 below	 to	 send	 ‘Hello	 World’	 to	 the	 user



whenever	they	request	a	particular	webpage.
html	xmlns="http://www.w3.org/1999/xhtml">
<head	runat="server">

<title></title>
</head>
<body>

<form	id="form1"	runat="server">
<%	Response.Write("Hello	World");	%>
<div>
</div>

</form>
</body>
</html>

Don’t	worry	too	much	about	the	underlying	code.	What	is	important	to	note	here
is	the	line	‘Response.Write("Hello	World")’.	‘Response’	is	a	special	class	in	C#
that	can	be	used	to	write	data	back	to	the	webpage	requested	by	the	user.	In	our
example	 the	 string	 ‘Hello	 World’	 will	 be	 displayed	 on	 the	 webpage.	 This
functionality	 extends	 far	 beyond	 lines	 of	 text.	We	 can	 generate	 entire	 HTML
pages	and	send	it	back	to	the	user.

20.3	Sending	Data	Output	to	Files

In	the	same	way	that	data	can	be	read	from	files,	we	can	have	data	written	back
to	files.	Programming	languages	have	many	file	input	and	output	classes	that	can
be	used	to	write	data	to	files.	Let’s	take	an	example	from	C#.	There	are	a	number
of	ways	we	can	interact	with	files	in	this	programming	language.	Let’s	look	at	an
example	code	snippet	used	to	write	data	to	a	file.
static	void	Main(string[]	args)

{

//	Opening	the	file	in	append	mode
StreamWriter	src	=	new

StreamWriter(@"G:\newHello.html");

//	Writing	contents	to	the	file
src.WriteLine("Hello	World");

}

Again	don’t	worry	too	much	about	the	underlying	contents	of	the	program.	In	a
nutshell,	the	program	uses	a	C#	class	called	‘StreamWriter’	to	open	a	file	called
‘newHello.html’.	Then	the	same	class	is	used	to	write	the	line	‘Hello	World’	to
the	file.



21.	What	Is	Functional	Programming?

Functional	programming	is	computing	paradigm	or	way	of	thinking.	It	focusses
on	pure	functions	and	avoids	changing-state	and	mutable	data.	To	explain	all	of
this,	let’s	have	a	look	at	the	key	aspects	of	functional	programming.

21.1	Immutability

The	 first	 key	 aspect	 is	 that	 functional	 programming	 is	 considered	 to	 be
immutable.	An	immutable	object’s	state	cannot	be	changed	after	it	is	created.	To
illustrate,	imagine	we	defined	a	function	in	a	program	with	a	specific	purpose.	If
the	 state	 of	 the	 output	 is	 the	 same	 whenever	 the	 input	 is	 the	 same,	 then	 that
function	follows	the	functional	programming	paradigm.	If	the	function	changes
the	 state	 of	 data	 and	 gives	 a	 different	 output	 for	 the	 same	 input,	 then	 that
function	does	not	follow	the	functional	programming	paradigm.

21.2	No	Side	Effects
Another	important	aspect	of	functional	programming	is	not	having	side	effects.
So	what	 exactly	 is	 a	 side	 effect?	 It	 is	when	 a	 function	 does	 something	 that	 is
outside	the	boundaries	of	what	it	is	supposed	to	do.

Let’s	 say	 we	 defines	 a	 function	 called	 ‘GetStudentData’,	 which	 takes	 in	 a
student	 ID	 and	 then	 gives	 the	 student	 name	 as	 the	 result.	 If	 this	 function	 is
defined	 properly,	 the	 student	 name	 should	 always	 be	 the	 same	 for	 the	 same
student	 ID.	But	 if	 the	 function	does	 further	 internal	processing,	 like	modifying
the	 student	 ID	 based	 on	 other	 parameters	 before	 retrieving	 the	 student	 name,
then	this	could	result	in	a	different	output.	This	is	an	undesired	side	effect	of	the
function.

21.3	Expression	Based

Another	trait	of	functional	programming	is	that	a	functional	program	deals	more
with	expressions	 than	statements.	To	 illustrate,	 let’s	 look	at	a	simple	statement
based	program.
string	result;
if(value>0)
result	="Greater	than	0"
else
result="Less	than	0"



In	the	above	program	we	define	a	variable	called	‘result’,	which	is	a	string	data
type.	Then	we	state	a	condition	for	the	variable	called	‘value’.	We	assign	a	string
to	the	variable	‘result’	depending	on	whether	the	value	is	greater	or	less	than	0.
Now	let’s	look	at	the	same	piece	of	code,	but	this	time	using	expressions.
var	result=value>0?"positive":"negative"

So	here	we	are	implementing	the	same	logic,	but	programming	languages	have
expressions	available	that	can	achieve	the	same	result.	In	our	example	we	have	a
ternary	expression,	which	accomplishes	the	same	as	the	set	of	statements	defined
earlier.	 One	 advantage	 of	 using	 expressions	 is	 that	 the	 code	 becomes	 more
concise	and	manageable.

21.4	Higher-Order	Functions

Next	 we’ll	 look	 at	 the	 concept	 of	 higher-order	 functions.	 These	 are	 functions
that	 can	 either	 take	 other	 functions	 as	 arguments	 or	 return	 them	 as	 results.	 In
functional	programming,	functions	are	deemed	as	first	class	citizens.	This	means
that	they	are	allowed	to	appear	anywhere	in	the	code.	They	can	also	be	used	as
parameters	 to	other	 functions.	For	example,	 the	Python	code	below	shows	 that
we	can	define	functions	that	call	other	functions.
def	a(x)
return	x+5
def	b(c,x)
return	c(x)*2
print(b(a,30))

Probably	the	most	common	place	you	might	have	seen	this	 is	when	generating
Fibonacci	 numbers.	 The	 code	 below	 is	 used	 to	 generate	 the	 10	 Fibonacci
numbers	using	complete	functional	programming	in	PHP.
function	fib(int	$n)	:	int	{

return	($n	===	0	||	$n	===	1)	?	$n	:	fib($n	-	1)	+	fib($n	-	2);
}
for	($i	=	0;	$i	<=	10;	$i++)	echo	fib($i)	.	PHP_EOL;

21.5	Pure	Functions

A	 major	 selling	 point	 for	 functional	 programming	 is	 having	 pure	 functions.
These	 are	 small	 functions	 that	 have	 been	 built	 for	 a	 specific	 purpose.	 To
elaborate,	assume	we	wanted	to	decide	if	a	value	is	less	than	or	greater	than	0.



We	could	define	the	function	as	shown	below.
bool	decide(int	value)
{
string	result;
if(value>0)
result	="Greater	than	0"
else
result="Less	than	0"
return	result
}

We	 have	 seen	 a	 similar	 piece	 of	 code	 earlier.	 Here	 we	 pass	 the	 value	 to	 the
function	and	then	return	the	desired	result.	Now	we	could	very	well	also	define
two	pure	functions	instead	by	splitting	up	the	above	functionality.	One	function
would	determine	 if	 the	 value	was	 greater	 than	0	 and	 the	 other	 function	would
determine	if	the	value	was	less	than	0.	This	program	would	look	something	like
this:
bool	decidegreater(int	value)
{
if(value>0)	return	true	else	return	false;
}
bool	decideless(int	value)
{
if(value<0)	return	true	else	return	false;
}



22.	What	Is	Object	Oriented	Programming?

Object-oriented	programming	is	the	most	common	programming	paradigm	used
in	the	world	today.	One	of	the	earliest	languages,	C++,	was	made	to	incorporate
this	 paradigm.	 The	 foundation	 of	 object-oriented	 programming	 is	 the	 use	 of
classes.	A	class	is	defined	as	an	entity	representation,	which	can	have	properties
and	methods.

To	 get	 a	 better	 idea	 of	 classes,	 imagine	 you	 are	 working	 on	 an	 e-commerce
application.	As	part	of	the	requirements	you	need	to	manage	the	orders.	So	each
order	 would	 classify	 as	 an	 entity.	 Now	 you	 need	 some	 way	 to	 represent	 that
entity	in	a	programming	language.	This	can	be	done	by	using	classes	and	can	be
represented	as	shown	below.
class	Orders
{
//code
}

Here,	‘Orders’	is	the	name	given	to	the	class.	The	orders	will	have	information
pertaining	to	them,	such	as	the	order	ID	and	description.	In	a	class,	these	can	be
represented	by	properties	of	the	class.	These	properties	can	then	be	used	to	hold
information	about	the	object.	We	can	incorporate	properties	for	an	order	ID	and
description	into	our	previous	example,	which	will	now	look	as	follows:
class	Orders
{
int	orderID;
string	orderDesc;
}

Obviously	if	an	entity	has	data,	there	need	to	be	actions	to	act	upon	that	data.	For
this	 purpose	 classes	 can	 have	 methods	 which	 are	 used	 to	 work	 on	 data.	 To
continue	 our	 example,	 let’s	 say	 we	 wanted	 to	 display	 the	 order	 ID	 and
description.	We	would	then	change	our	program	as	follows:
class	Orders
{
int	orderID;
string	orderDesc;
void	Display()
{
//Code	to	display	the	Order	ID	and	description
}



}
}

Now	we	have	a	method	in	the	‘Orders’	class,	which	is	used	to	display	the	order
ID	 and	 description.	 There	 are	 many	 more	 aspects	 to	 object-oriented
programming	and	uses	for	classes.	We	will	now	look	at	those	in	greater	detail.

22.1	Encapsulation

This	refers	to	the	encapsulation	or	bundling	of	data	and	methods	into	classes.	An
integral	part	of	this	mechanism	is	the	visibility	of	this	data	in	the	class.	There	are
situations	where	we	don’t	want	 to	directly	 allow	other	 code	 to	 access	 the	data
defined	in	the	class.	In	such	cases,	we	only	want	data	to	be	accessed	via	methods
defined	in	the	class.	There	are	different	levels	of	visibility	which	are	defined	by
class	modifiers.	There	are:

Private	–	With	private,	the	properties	and	methods	are	only	available
to	the	class	itself.

Protected	-	With	protected,	the	properties	and	methods	are	available
to	the	class	itself	and	subclasses	derived	from	that	class.
Public	-	With	public,	the	properties	and	methods	are	available	to	all
classes.

An	example	of	how	data	can	be	encapsulated	in	a	C#	class	is	shown	below.	In
this	code	we	define	the	student	ID	and	the	student	Name	as	private	members	so
that	they	cannot	be	accessed	directly.	If	any	other	code	wants	to	see	the	ID	and
name	values,	they	can	call	the	‘Display’	method	of	the	class.

class	Student
{

//	The	members	of	the	class
private	int	studentID;
private	string	studentName;

//	Declaring	a	member	function
public	void	Display()
{

Console.WriteLine("The	ID	of	the	student	is	"	+	studentID);
Console.WriteLine("The	name	of	the	student	is	"	+	studentName);

}
}



22.2	Inheritance

The	next	concept	we	will	look	at	is	inheritance.	This	simply	means	that	we	can
define	a	class	 to	 inherit	 the	properties	and	methods	of	another	class.	The	main
advantage	of	this	is,	not	having	to	define	the	properties	and	methods	again	when
defining	a	new	class.

Imagine	we	have	a	class	named	 ‘Person’,	which	has	a	property	called	 ‘Name’
and	a	method	called	‘Display’.	By	way	of	inheritance	we	can	define	a	new	class
named	 ‘Student’	 and	 have	 it	 inherit	 the	 property	 and	 method	 of	 the	 ‘Person’
class.	 The	 Student	 class	 could	 then	 define	 its	 own	 additional	 members	 if
required.	Let’s	look	at	a	code	snippet	of	this	in	C#.

//	Defining	the	base	class
class	Person
{

public	string	Name;
}

class	Student:Person
{

public	int	ID;

//	Declaring	a	member	function
public	void	Display()
{

//	Code
}

};		

With	 the	 above	 program	 we	 define	 a	 class	 called	 ‘Person’,	 which	 has	 one
member	called	‘Name’.	This	is	normally	known	as	the	base	class.	A	base	class	is
the	 primary	 class	 from	 which	 a	 second	 class	 inherits	 its	 data.	 We	 then	 use
inheritance	 to	 define	 the	 ‘Student’	 class,	 which	 will	 get	 the	 properties	 and
methods	of	the	‘Person’	class.	Notice	that	we	now	define	another	property	called
‘ID’.	Lastly	in	the	‘Display’	function,	note	that	we	can	use	the	‘Name’	property
without	the	need	for	defining	it	in	the	‘Student’	class	again.

22.3	Polymorphism

The	 last	 concept	 we	 will	 discuss	 is	 polymorphism.	 This	 refers	 to	 a	 situation
where	a	base	class	and	derived	class	can	have	the	same	function	with	the	same
name.	The	function	that	gets	called	in	the	program,	depends	on	the	type	of	class
from	which	the	function	gets	called.	Let’s	look	at	a	simple	example	of	this	using



C#.
class	Person

{
public	int	ID;
public	void	Display()

{
//	Write	Code	here							

}
};

class	Student:Person	{
public	new	void	Display()
{

//Code	here				
}

};

class	Program
{

//	The	main	function
static	void	Main(string[]	args)
{

Student	stud1=new	Student();
stud1.ID	=	1;
stud1.Display();

Person	per1=new	Person();
per1.ID	=	2;
per1.Display();

}
}

}

Don’t	worry	too	much	about	the	details	of	the	program.	The	main	aspects	to	take
note	of	are	that	there	are	two	classes,	the	one	being	‘Person’	and	the	other	being
‘Student’.	Both	classes	define	 the	 same	method	called	 ‘Display’,	but	when	we
use	either	class,	the	method	called	depends	on	the	type	of	class	being	used.



23.	What	Are	Client	Server	Applications?

One	of	the	most	important	decisions	to	make	when	designing	an	application,	is
whether	it	will	be	a	client-server	application	or	a	web-based	application.	In	this
chapter	 we	 will	 look	 at	 client-server	 applications	 in	 greater	 detail,	 with	 web
programming	covered	in	the	next	chapter.

A	client-server	application,	in	its	simplest	form,	will	consist	of	two	components.
The	first	is	the	server	component.	This	is	usually	a	rather	powerful	computer	that
processes	network	traffic.	This	is	where	all	of	the	business	and	program	logic	is
hosted.	The	second	component	is	the	client	portion,	which	is	usually	a	standard
PC	 or	 workstation.	 This	 is	 where	 the	 client	 program	 will	 be	 installed	 that
interacts	 with	 the	 server	 component.	 The	 below	 diagram	 shows	 this
representation.

Sometimes	it	is	beneficial	to	design	client-server	applications.	One	of	the	biggest
design	considerations	is	the	amount	of	data	flow	between	the	client	and	server.
Client-server	applications	can	handle	a	significant	amount	of	data	compared	web
applications,	where	web	 applications	 are	 limited	by	bandwidth	 and	 connection
quality.	Client-server	 applications	 are	particularly	popular	 to	use	 for	 enterprise
resourcing.
There	 are	 a	 number	 of	 disadvantages	 to	 these	 applications	 as	 well.	 Since	 the
client	 program	 is	 designed	 to	 contain	 a	 lot	 of	 functionality,	 it	 sometimes
becomes	a	little	bulky	and	difficult	to	maintain.	The	client	program	also	needs	to
be	 installed	for	every	user,	as	well	as	updated	for	every	user	with	every	single
revision.

Nevertheless,	 programming	 languages	 have	 been	 created	 with	 the	 ability	 to
design	and	work	with	client-based	applications.	Using	a	 language	 like	C#,	you
can	develop	simple	console-based	applications	or	even	forms-based	applications.



These	 programs	 can	 also	 make	 use	 of	 underlying	 libraries	 to	 interact	 with
networking	 components	 and	 database	 components.	 Below	 is	 a	 snapshot	 for	 a
very	simple	forms-based	application	developed	in	C#.

This	form	is	extremely	simple	and	only	has	input	for	an	ID	and	name,	along	with
a	 submission	button.	When	 the	button	 is	pressed,	 the	details	of	 the	 ID	and	 the
name	 can	 be	 sent	 for	 further	 processing.	 Normally	 when	 you	 develop	 such
forms-based	applications,	you	also	get	a	 lot	of	 skeleton	code	 that	comes	along
with	 it.	 For	 example,	 for	 the	 above	 form	 in	 C#	 you	 would	 already	 have	 the
below	skeleton	code.
using	System;

using	System.Windows.Forms;

namespace	WindowsFormsApp1
{

public	partial	class	Form1	:	Form
{

public	Form1()
{
InitializeComponent();
}

private	void	label2_Click(object	sender,	EventArgs	e)
{

}

private	void	Form1_Load(object	sender,	EventArgs	e)
{

}
}

}



Again,	 there’s	 no	 need	 to	 delve	 into	 the	 detail	 of	 the	 above	 code.	 What	 is
important	 to	 understand	 is	 that	 there	 are	 ‘events’	 code	 put	 in	 place	 for	 the
different	controls	in	the	form.

A	program	type	that	could	be	considered	a	client-server	application,	is	actually
an	Integrated	Development	Environment	such	as	Visual	Studio.	Since	it	has	the
ability	to	connect	to	various	resources	such	as	Microsoft	SQL	Server	on	certain
ports	and	retrieve	data,	it	can	be	considered	a	client-server	application.

If	you	decide	to	opt	for	a	client-server	application,	it’s	important	to	ensure	that
the	programming	 language	you	 intend	 to	use	has	 the	 capability	 to	 create	 these
applications.	Most	of	the	programming	languages	such	as	C++,	C#,	Python	and
Java	support	client-server	applications.



24.	What	Is	Web	Programming?

Now	that	we’ve	discussed	client-server	applications	in	the	previous	chapter,	we
will	 look	 at	 web-based	 applications	 next.	 This	 is	 probably	 the	 most	 common
type	 of	 program	 today,	 especially	 since	 the	 increased	 availability	 of	 internet
access	around	the	world.

A	web-based	application	is	a	program	that	has	been	developed	so	that	it	can	be
accessed	 via	 a	 web	 browser,	 rather	 than	 existing	 on	 a	 client’s	 workstation.	 A
small	part	of	 the	application	could	 still	be	downloaded	onto	 the	user’s	 system,
however	all	of	the	processing	is	handled	on	an	external	server.

A	big	advantage	of	web-based	applications	is	that	the	program	can	be	accessed
by	 a	 wide	 variety	 of	 web	 browsers,	 making	 it	 easy	 for	 users	 to	 access	 the
program.	 This	 also	 means	 that	 it’s	 not	 necessary	 to	 download	 or	 install	 any
major	software	on	the	client’s	machine.	As	mentioned,	most	of	the	processing	is
done	on	the	server	side.	This	means	the	application	won’t	slow	down	the	user’s
system,	 if	 the	 system	 wouldn’t	 normally	 be	 capable	 of	 running	 the	 program.
Below	is	the	simplest	representation	of	a	web-based	application.

The	 underlying	 web	 server	 being	 used	 depends	 largely	 on	 the	 type	 of
programming	language	adopted.	Some	of	the	most	popular	web	serving	software
are	given	below.

Apache	Tomcat	 -	This	 is	an	open	source	Java	servlet	container	 that



functions	 as	 a	 web	 server.	 A	 Java	 servlet	 is	 a	 Java	 program	 that
extends	 the	 capabilities	 of	 a	 server.	 With	 Java	 servlets	 you	 can
generate	dynamic	web	pages.

NGINX	-	This	is	a	popular	web	server	that	relies	on	an	asynchronous
event-driven	architecture	to	help	power	its	goal	of	handling	massive
concurrent	sessions.

Apache	HTTP	Server	 -	This	has	been	 the	most	popular	web	 server
since	1996	and	is	still	popular	to	date.

IIS	-	This	web	server	is	used	for	hosting	ASP.Net	based	applications.
Node.js	 -	 This	 is	 a	 server-side	 JavaScript	 environment	 for	 network
applications	such	as	web	servers.

Almost	 all	 programming	 languages	 support	 web-based	 programs.	 Each
programming	language	has	a	different	representation	of	the	code	that	is	used	to
generate	web	pages,	but	all	languages	allow	for	the	dynamic	generation	of	web
pages.	Below	is	an	example	of	a	web-based	application	in	C#.
using	System;

namespace	WebApplication2
{

public	partial	class	WebForm1	:	System.Web.UI.Page
{

protected	void	Page_Load(object	sender,	EventArgs	e)
{
Response.Write("Welcome	to	the	world	of	web

programming");
}

}
}

When	we	execute	the	code	in	the	Visual	Studio	IDE,	we	would	get	the	following
output:



Once	a	program	such	as	the	one	above	has	been	developed,	it	needs	to	be	hosted
on	a	web	server.	The	process	involves	transferring	the	files	to	the	server	in	order
to	access	the	link	from	the	web	server.	Each	programming	language	has	a	series
of	 steps	 in	 order	 to	 transfer	 and	 port	 applications	 onto	 their	 respective	 web
hosting	platforms.	For	example,	the	following	steps	are	generally	followed	when
deploying	a	Java	based	application	onto	a	Tomcat	web	server:

Package	the	Java	application	into	a	.war	file.	This	can	be	done	via	the
Integrated	Development	Environment.

Copy	the	.war	file	into	the	$CATALINA_HOME\webapps	directory
on	the	Tomcat	web	server.

Restart	 the	 server.	Whenever	 Tomcat	 is	 started,	 it	 will	 unpack	 the
.war	 file	 it	 found	 in	 the	 \webapps	 directory	 and	 launch	 the
application.

Some	of	 the	other	various	aspects	 that	 should	be	 looked	at	when	developing	a
web	program	are:

Storage	of	 data	 –	 It’s	 important	 to	maintain	 and	manage	 the	 stored
data,	as	it	will	be	a	central	access	point	for	users.
Storing	 of	 user	 information	 –	 Sometimes	 to	 create	 a	 better	 user
experience,	 some	 web	 programs	 might	 store	 user	 preferences.	 The
purpose	 is	 for	 returning	 users	 to	 get	 the	 same	 experience	 they	 had
when	 they	visited	 the	program	earlier.	This	 can	be	done	by	 storing
something	known	as	cookies	on	the	client	computer	or	server.

Design	for	performance	–	Since	the	web	program	would	be	used	by
multiple	 users,	 the	 program	 should	 be	 designed	 for	 maximum
performance	 and	 efficiency.	 If	 the	 environment	 which	 hosts	 the
program	 becomes	 unstable	 due	 to	 bad	 programming	 practices,	 it
could	affect	all	users	who	are	accessing	the	application.

Security	–	Since	most	web	programs	are	designed	to	be	used	over	the
internet,	 the	program	must	be	designed	and	developed	with	security
in	mind.	This	 is	not	only	 to	protect	 the	application	from	tampering,
but	the	information	that	might	be	contained	in	its	databases.

Usage	 on	 different	 devices	 –	 These	 days,	 programs	 are	 not	 only
accessed	 from	 computers,	 but	 also	 from	 mobile	 devices	 such	 as



phones	and	tablets.	So	if	a	web	application	might	be	accessed	from	a
phone,	 this	 should	 be	 taken	 into	 account	 when	 developing	 the
program.

Being	careful	with	changes	–	Because	a	web	program	can	be	used	by
multiple	 users,	 care	 should	 be	 taken	 when	 making	 changes	 to	 the
application.	 A	 change	 could	 potentially	 fix	 errors	 for	 some	 users,
while	creating	problems	for	others.



25.	Managing	Data	in	a	Program

Working	 with	 data	 is	 an	 integral	 part	 of	 programming.	 Data	 is	 used	 for
processing,	it’s	passed	between	components	and	modules	within	a	program,	and
even	 passed	 between	 programs.	 But	 the	 most	 important	 aspect	 of	 data	 is	 its
storage.	In	this	chapter	we	will	look	at	the	various	ways	in	which	we	can	store
data	in	a	program.

25.1	Single	Values

One	of	the	simplest	ways	of	storing	data,	is	storing	singular	values	as	numbers
or	strings.	In	order	to	do	this,	we	would	define	a	variable	of	a	particular	data	type
that	 would	 be	 used	 to	 store	 the	 value.	 As	 an	 example,	 consider	 the	 C#	 code
snippet	below.
int	i=5;
String	str=”Mark”;

Here	we	have	 two	definitions	of	data.	The	 first	definition	 is	 that	of	 a	number,
which	has	a	value	of	5.	This	value	is	then	stored	in	a	variable	called	‘i’.	The	next
definition	is	that	of	a	string	“Mark”.	This	is	stored	in	a	variable	called	‘str’.	This
is	 one	 of	 the	 simplest	 representations	 of	 data	 in	 a	 program.	 The	 data	 can	 be
modified	and	used	in	other	aspects	of	the	program	as	well.

25.2	Data	Array

There	are	times	when	single	values	might	not	be	sufficient	for	your	needs,	and	it
would	be	necessary	 to	 store	 a	 set	 of	 values.	The	 representation	of	 this	 type	of
data	is	done	via	an	array.	Almost	all	programming	languages	have	the	capability
of	using	arrays	 to	 store	a	 contiguous	 set	of	values.	Below	 is	 a	 code	 snippet	 in
Java	showing	how	an	array	can	be	declared	and	defined.
//	Declaring	the	Array
int[]	arr=new	int[3];
//	Defining	the	elements	of	the	array
arr[0]=1;	//	The	first	element	of	the	array
arr[1]=2;	//	The	second	element	of	the	array
arr[2]=3;	//	The	third	element	of	the	array

Here	we	 are	 defining	 an	 array	 that	 can	 hold	 three	 values.	We	 can	 then	 assign
separate	values	to	each	part	of	the	array.	This	array	can	be	used	across	the	span



of	 the	entire	program	at	any	point	 in	 time.	Using	arrays	help	negate	setting	up
multiple	variables	and	values	for	each.	Programming	languages	allow	arrays	to
be	defined	for	multiple	data	types,	including	numbers	and	string.

25.3	Collections

This	is	a	more	advanced	way	of	storing	data	and	is	useful	to	store	a	collection	of
data.	 It’s	similar	 to	an	array,	but	more	dynamic	 in	nature.	One	limitation	of	an
array	is	that	you	need	to	define	the	number	of	elements	of	the	array	beforehand.
However	 in	 the	 case	 of	 a	 collection,	 you	 can	 define	 the	 elements	 of	 the	 array
dynamically	 as	 you	 progress.	Below	 is	 a	 code	 snippet	 in	C#	 showing	 how	 an
‘ArrayList’	collection	can	be	defined.
ArrayList	ar	=	new	ArrayList();

//	Adding	elements	to	the
array	list

ar.Add(1);
ar.Add(2);
ar.Add(3);

Here	we	first	define	an	‘ArrayList’,	which	is	a	special	collection	available	in	C#.
Notice	that	when	declaring	the	array	list	we	don’t	need	to	define	the	number	of
array	elements	beforehand.	We	can	simply	add	elements	 to	 the	array	 list	using
the	predefined	methods	 available	 for	 that	 collection.	So	 in	 the	 above	 scenario,
we	are	using	the	‘Add’	method	to	add	data	elements	to	the	array	list.	There	are
different	types	of	collections	available	in	the	various	programming	languages	to
meet	the	needs	of	almost	any	program.

25.4	Classes

Now	we	come	to	by	far	the	most	popular	way	to	store	data.	Classes	represent	an
encapsulation	of	data.	With	collections	and	arrays,	we	can	only	define	one	type
of	 data	 element	 at	 a	 time.	 So	 let’s	 say	 we	want	 to	 store	 the	 ID	 and	 name	 of
several	customers.	We	would	need	to	define	two	separate	arrays	or	collections,
one	for	the	ID	and	the	other	for	the	name.	However	with	classes	we	can	group
these	 two	elements,	and	 then	create	properties	 for	each.	Let’s	 take	an	example
from	C#	to	illustrate.
Class	Customer
{
int	ID;
String	Name;
}



}

In	 the	 above	 code	 segment,	 we	 define	 a	 class	 called	 ‘Customer’.	 This	 class
encapsulates	 two	properties,	 one	 is	 called	 ‘ID’	 and	 the	other	 is	 called	 ‘Name’.
They	both	have	their	own	corresponding	data	types.	Now	if	we	want	to	capture
the	 data	 for	 a	 particular	 student,	 we	 would	 define	 an	 object	 for	 the	 class	 as
shown	below.
Customer	customer1-new	Customer();
customer1.ID=1;
customer1.Name=Mark;

You	can	also	make	use	of	a	combination	of	classes	and	collections	to	define	an
entire	collection	of	customer	objects.	So	you	can	see	that	there	are	multiple	ways
to	store	data	in	a	program.	It	all	depends	on	the	type	of	data	you	want	to	store
and	the	way	you	want	to	access	the	data.



26.	Storing	Data	in	Files

In	the	previous	chapter	we	looked	at	storing	data	in	a	program.	After	a	program
stops	executing,	the	data	in	the	program	will	be	disposed	of	and	will	no	longer
be	available.	Hence	there	should	be	some	way	of	making	the	data	available	even
after	the	program	terminates.	This	is	where	disk	storage	becomes	important,	and
one	of	the	ways	of	doing	this	is	by	storing	data	in	files.

Almost	all	programming	 languages	have	 the	ability	 to	store	data	 in	 files.	They
provide	 a	 plethora	of	 functions	 that	 can	be	used	 to	 read	 and	write	 data	 to	 and
from	files.	If	we	look	at	C#	as	an	example,	it	has	classes	called	‘Stream’	classes
that	are	used	for	this	exact	purpose.	The	diagrams	below	show	the	depiction	of
these	streams.

First	we	have	the	‘Read’	stream.	Here	the	program	ensures	that	there	is	a	stream
that	flows	from	the	file	on	the	hard	disk	to	the	program.	Whenever	a	request	is
made	from	the	program	to	read	contents	from	a	file,	the	stream	reads	the	bytes	of
data	from	the	file	and	then	transfers	it	back	to	the	program.	An	example	of	what
a	stream	reader	looks	like	in	C#	is	given	below.
StreamReader	src	=	new	StreamReader(@"G:\newHello.html");
//	Displaying	the	first	line	of	the	file
Console.WriteLine(src.ReadLine());

In	 the	 above	 code	 snippet	 we	 first	 have	 the	 definition	 of	 the	 ‘StreamReader’
object.	 This	 is	 used	 to	 ensure	 that	 a	 stream	 is	 established	 to	 the	 file	 called
‘newHello.html’.	Then	the	‘ReadLine’	method	of	the	stream	reader	class	is	used
to	read	a	line	from	the	file.



Similar	to	the	‘Read’	stream,	we	also	have	the	‘Write’	stream.	When	a	request	is
made	from	the	program	to	write	contents	to	a	file,	the	stream	takes	the	data	from
the	program	and	then	writes	the	data	to	the	file.	An	example	of	the	stream	writer
class	in	C#	is	given	below.
StreamWriter	src	=	new	StreamWriter(@"G:\newHello.html");
//	Writing	contents	to	the	file
src.WriteLine("Hello	World");

In	 the	 above	 code	 snippet	 we	 first	 have	 the	 definition	 of	 the	 ‘StreamWriter’
object.	 This	 is	 used	 to	 ensure	 that	 a	 stream	 is	 established	 to	 the	 file	 called
‘newHello.html’.	Next,	the	‘WriteLine’	method	of	the	stream	writer	class	is	used
to	write	a	line	to	the	file

One	 point	 to	 note	 about	 the	 above	 streams	 is	 that	 the	 ‘StreamReader’	 and
‘StreamWriter’	 classes	 do	 the	 job	 of	 converting	 the	 strings	 to	 bytes	 and	 vice
versa.	Remember	 that	 in	 the	end,	 the	data	 in	 the	file	 is	stored	as	bytes.	That	 is
why	we	use	these	classes	to	convert	our	data.	There	are	also	classes	that	allow
direct	interaction	with	the	file	in	bytes.	In	C#	we	use	the	‘FileStream’	class	for
this	purpose.
Obviously	this	adds	another	level	of	complexity	to	the	program,	but	as	you	start
developing	more	 and	more	 programs,	 classes	 like	 these	will	 become	 easier	 to
use.	Below	is	an	example	of	the	‘FileStream’	class	in	C#.
//	Opening	the	file	in	read	only	mode
FileStream	src	=	new	FileStream(@"G:\Hello.html",FileMode.Open,	FileAccess.Read);
//	Number	of	bytes	in	the	file
int	numBytes	=	(int)src.Length;
//	This	will	be	used	to	get	the	number	of	bytes	read
int	i	=	0;
//	Storing	the	bytes	in	an	array
byte[]	bytes	=	new	byte[src.Length];
src.Read(bytes,	i,	numBytes);
string	result	=	System.Text.Encoding.UTF8.GetString(bytes);



string	result	=	System.Text.Encoding.UTF8.GetString(bytes);

It’s	not	necessary	 to	 fully	understand	 the	 inner	working	of	 the	above	program,
but	 in	 a	 nutshell	 it	 does	 the	 following.	We	open	 the	 file	 ‘Hello.html’	with	 the
options	 ‘FileMode.Open,	 FileAccess.Read’	 so	 that	 we	 can	 read	 from	 the	 file.
The	variable	‘bytes’	is	then	used	to	store	all	the	bytes	that	are	read	from	the	file.
The	function	‘System.Text.Encoding.UTF8.GetString’	is	used	to	convert	the	list
of	bytes	into	a	string.

Once	you	become	more	accustomed	to	working	with	files,	it	will	become	much
easier	 to	 work	 with	 the	 various	 methods.	 Depending	 on	 the	 type	 of	 data	 you
want	 to	 store,	 you	 should	 choose	 the	 type	 of	 file	 access	 that	 suits	 your	 needs
best.	If	you	are	working	with	simple	text	files,	then	use	the	‘StreamReader’	and
‘StreamWriter’	classes.	 If	you	are	working	with	XML	data	and	want	 to	ensure
the	file	size	is	as	small	as	possible,	then	use	the	‘FileStream’	class.



27.	Storing	Data	in	Databases

Apart	 from	 storing	 data	 in	 files,	 another	 popular	 way	 of	 storing	 data	 is	 in
databases.	 There	 are	 a	 number	 of	 benefits	 when	 using	 a	 database	 over	 a	 file
system.	These	are	discussed	next.

Easy	 retrieval	 –	Getting	 data	 from	 a	 database	 is	 simpler	 and	 easier
than	 getting	 it	 from	 a	 file.	 If	 you	wanted	 to	 get	 a	 certain	 aspect	 of
data	 from	a	 file,	you	would	normally	need	 to	go	 through	 the	entire
file	to	search	for	the	data.	This	is	a	lengthy	process,	especially	if	it	is
a	 large	 life.	 Databases,	 on	 the	 other	 hand,	 have	 special	 commands
that	 can	 be	 issued	 to	 search	 for	 data.	 They	 also	 have	 specific
techniques	to	speed	up	data	retrieval.

Storing	large	amounts	of	data	–	Databases	are	designed	to	store	large
amounts	of	data.	Files	normally	have	limitations	on	size	based	on	the
format	 and	 operating	 system	 used,	 but	 databases	 can	 support	 large
amounts	of	data.

Structured	 data	 –	 Databases	 allow	 you	 to	 structure	 your	 data	 in	 a
proper	way.	So	 if	 you	wanted	 to	 store	 all	 information	pertaining	 to
customers,	 you	 could	 have	 a	 separate	 table	 dedicated	 to	 customer
data	only.
Having	 dependencies	 –	 Databases	 allow	 you	 to	 have	 relationships
between	data,	such	as	a	specific	link	between	customers	and	orders.

Databases	make	use	of	tables	in	order	to	store	data.	For	example,	we	could	have
a	table	called	Customers	that	stores	the	following	data:

CustomerID CustomerName
1 Mark
2 Joe

In	 relational	database	systems	 ‘CustomerID’	and	 ‘CustomerName’	are	 referred
to	as	the	columns	of	the	table,	while	the	remaining	values	form	the	rows	of	the
table.	The	following	basic	operations	can	be	performed	on	tables:

Select	 operation	 –	This	 is	 used	 to	 select	 or	 retrieve	 a	 piece	 of	 data



from	a	table.	It	is	normally	used	as	part	of	a	query	that	retrieves	data.

Insert	operation	–	This	is	used	to	put	data	into	a	table.	So	if	we	need
to	add	a	new	customer	to	the	table,	we	would	use	this	operation.

Update	operation	–	This	 is	used	 to	update	a	particular	data	value	 in
the	table.

Delete	operation	–	This	is	used	to	delete	a	particular	value	from	the
table.

Some	of	the	most	popular	database	systems	are	given	below.

Oracle	 Database	 -	 This	 is	 a	 multi-model	 database	 management
system	 produced	 and	 marketed	 by	 Oracle	 Corporation.	 It	 is	 the
world's	 most	 popular	 database	 for	 running	 online	 transaction
processing	 (OLTP),	 data	 warehousing	 (DW)	 and	 mixed	 database
workloads	(OLTP	&	DW).

MySQL	 -	 This	 is	 an	 open-source	 relational	 database	 management
system	(RDBMS).

Microsoft	 SQL	 Server	 -	 This	 is	 a	 relational	 database	 management
system	 developed	 by	 Microsoft.	 As	 a	 database	 server,	 its	 primary
function	is	storing	and	retrieving	data	as	requested	by	other	software
applications.	 These	 applications	 may	 run	 either	 on	 the	 same
computer	or	on	another	computer	across	a	network.

PostgreSQL	 -	 This	 is	 an	 object-relational	 database	 management
system	(ORDBMS)	with	an	emphasis	on	extensibility	and	standards
compliance.

MongoDB	-	This	is	a	free	and	open-source	cross-platform	document-
oriented	 database	 program.	 It	 is	 classified	 as	 a	 NoSQL	 database
program	and	uses	JSON-like	documents.

Almost	 all	 programming	 languages	 provide	 support	 for	 the	 various	 databases.
When	working	with	databases	in	any	programming	language	there	are	a	series	of
steps	that	should	be	followed.	Let’s	look	at	these	steps	using	C#	as	an	example.

Step	1:	Establishing	a	connection
The	first	and	foremost	step	is	to	establish	a	connection	to	the	database.	Once	a



connection	is	established,	we	can	continue	to	interact	with	the	database.	The	C#
code	snippet	below	shows	how	to	establish	a	connection	to	a	database.
using(SqlConnection	conn	=	new	SqlConnection())
{

conn.ConnectionString	=	"Server=[server_name];Database=
[database_name];Trusted_Connection=true";
}

In	 the	above	example,	we	first	use	 the	 ‘SqlConnection’	class	 in	C#	 to	create	a
new	connection	 to	 the	database.	Each	database	connection	 is	associated	with	a
connection	string.	This	string	defines	the	necessary	information	that	is	required
to	 establish	 a	 connection	 with	 the	 database.	 The	 connection	 string	 normally
contains	 the	server	name	where	 the	database	 is	hosted,	as	well	as	 the	database
name.

Step	2:	Creating	a	command	object

This	 is	 used	 to	 express	 what	 type	 of	 operation	 we	 want	 to	 perform	 on	 the
database.	Whether	we	want	data	 from	a	particular	 table	or	 to	put	a	 record	 in	a
table,	 this	 is	 where	 we	 specify	 the	 operations	 mentioned	 earlier.	 Below	 is	 an
example	of	a	command	object	where	we	ask	to	retrieve	a	list	of	customers	from
the	customer	table.
SqlCommand	command	=	new	SqlCommand("SELECT	*	FROM	Customers",	conn);

Step	3:	Reading	data

Once	the	data	we	want	has	been	retrieved,	we	can	use	additional	statements	 to
read	and	process	the	data.	For	instance,	if	we	retrieve	multiple	rows	of	data,	we
could	use	 a	 statement	 like	 the	one	 shown	below	 to	 read	 the	data	one	 row	at	 a
time.
using	(SqlDataReader	reader	=	command.ExecuteReader())
{

while	(reader.Read())
{
//Read	the	data
}

}

Step	4:	Insert,	delete	or	update	statements

Other	 actions	 that	 can	 be	 performed	 on	 the	 data	 is	 to	 insert	 new	 data,	 or	 to



update	or	delete	existing	data.	Below	is	an	example	of	inserting	a	new	row	into
the	customer	table.
SqlCommand	insertCommand	=	new	SqlCommand("INSERT	INTO	Customers	(CustomerID,
CustomerName)	VALUES	(1,	'John')",	conn);

Databases	 are	 by	 far	 the	 most	 popular	 storage	 method,	 and	 the	 available
database	 options	 keep	 growing	 day	 by	 day.	 There	 are	 databases	 that	 are	 even
completely	serverless	in	concept.	This	means	that	the	underlying	server	capacity
doesn’t	need	to	be	managed,	only	the	data	itself.	An	example	is	the	DynamoDB
database	from	Amazon	Web	Services.

If	you	are	interested	in	learning	more	about	databases	and	SQL,	be	sure	to	check
out	our	beginner’s	guide	on	the	subject.

https://www.amazon.com/dp/1540323447


28.	Data	Exchange	Formats

It	is	not	uncommon	for	applications	to	exchange	data	with	other	applications	in
one	 form	or	another.	Exchanging	data	within	a	program	 is	quite	 simple,	as	we
have	 seen	 with	 arrays,	 collections	 and	 classes.	 However	 when	 it	 comes	 to
exchanging	data	between	programs,	there	are	a	few	specific	aspects	that	need	to
be	 considered	 beforehand.	 These	 considerations	 can	 be	 summarized	 into	 the
following	questions:

What	type	of	data	needs	to	be	transferred?

Does	the	destination	program	have	the	ability	to	understand	the	data
being	sent	by	the	source	program?

Does	the	source	program	have	the	ability	to	transform	the	data	into	a
format	that	the	destination	program	can	understand?
What	is	the	total	amount	of	data	being	transferred?

What	is	the	size	of	each	data	item	being	transferred?

Is	 the	 source	 program	 and	 destination	 program	written	 in	 the	 same
programming	language?

All	of	the	above	are	key	questions	that	should	be	answered	when	looking	at	data
exchange.	Let’s	take	an	example	of	a	source	program	that	needs	to	transfer	a	set
of	purchase	orders	to	a	destination	program.	The	questions	can	then	be	applied	to
our	example	as	follows:

Are	we	sending	a	sequence	of	strings	that	contain	the	order	data,	or
do	we	need	to	send	the	entire	order	information	such	as	the	order	ID,
order	quantity	etc.	separately?



How	does	 the	 destination	 program	know	 that	we	 are	 sending	 order
information?	And	how	does	it	dissect	and	process	the	different	pieces
of	order	information?

Does	 the	 source	 program	 have	 the	 capability	 of	 sending	 the	 order
information	 in	 a	 way	 that	 it	 can	 be	 understood	 by	 the	 destination
program?

How	many	orders	need	to	be	sent	between	the	source	and	destination
program?

What	is	the	size	of	each	purchase	order	that	needs	to	be	sent?
The	source	program	is	written	in	.Net	and	the	destination	program	is
written	in	Java.	Will	the	data	exchange	still	work?

Over	the	years,	numerous	data	exchange	formats	have	been	invented	for	sending
information	 from	 one	 program	 to	 another.	 Let’s	 look	 at	 some	 of	 the	 most
popular.

28.1	XML

The	 most	 famous	 data	 exchange	 format	 over	 the	 years	 has	 been	 the	 XML
markup	 language.	The	XML	document	contains	 the	data	 to	be	 transferred,	and
the	 XML	 language	 defines	 the	 structure	 of	 the	 document.	Most	 programming
languages	have	the	capability,	either	built-in	or	as	an	add-on,	to	work	with	XML
data.

For	example,	if	we	have	a	source	program	developed	in	.Net,	there	are	libraries
available	 for	 .Net	 that	 can	 construct	XML	documents.	These	XML	documents
would	 then	be	sent	 to	 the	destination	program.	 If	 the	destination	program	is	 in
Java,	it	would	have	its	own	libraries	to	dissect	the	XML	documents.



A	sample	XML	document	is	given	below.
<PurchaseOrder	PurchaseOrderNumber="101">
<Address	Type="Shipping">
<Name>Mark</Name>
<Street>123	Street</Street>

</Address>
<Items>

<Item	Part="123">
<ProductName>Shaver</ProductName>
<Quantity>1</Quantity>
<USPrice>18.95</USPrice>

</Item>
</PurchaseOrder>

The	 XML	 document	 is	 similar	 to	 an	 HTML	 document	 which	 has	 tags.	 You
might	notice	that	the	document	is	structured	in	a	way	that	makes	it	easy	to	break
into	logical	segments.	So	in	our	document	above	we	have	a	purchase	order,	an
address,	 an	 item,	 and	 the	 details	 of	 the	 item.	 We	 could	 also	 have	 multiple
purchase	orders	in	a	single	XML	document.

28.2	JSON

JSON	stands	for	JavaScript	Object	Notation,	and	is	an	extremely	popular	format
for	 transmitting	data	between	programs.	With	 JSON	objects	 are	 transmitted	 as
simple	key	value	pairs.	An	example	of	a	JSON	document	is	given	below.
{
"firstName":	"Mark",
"lastName":	"Smith",
"age":	27,
"address":	{
"streetAddress":	"1st	Street",
"city":	"New	York",
"postalCode":	"10021-31"

},
"phoneNumbers":	[
{
"type":	"home",
"number":	"312	555-1234"

},
{
"type":	"office",
"number":	"647	555-4567"

},
{
"type":	"mobile",
"number":	"124	456-7890"



"number":	"124	456-7890"
}

]
}

The	 JSON	 syntax	 is	 very	 similar	 to	 JavaScript.	 The	 JSON	 document	 is	 also
structured	 in	 a	 way	 that	 makes	 it	 easy	 to	 break	 into	 logical	 segments.	 In	 the
above	 JSON	 document	we	 define	 a	 person	with	multiple	 attributes.	 There	 are
single	attributes,	such	as	first	name	and	last	name.	And	then	there	are	combined
attributes,	such	as	phone	numbers.

28.3	YAML

This	is	known	as	‘Yet	Another	Markup	Language’	and	is	a	human-readable	data
serialization	language.	It	is	commonly	used	for	configuration	files,	but	can	also
be	used	in	many	applications	where	data	is	stored	or	transmitted.	An	example	of
a	YAML	document	is	given	below.
database:

username:	admin
password:	password

memcached:
host:	10.0.0.101

workers:
-	host:	10.0.0.103
port:	2301

-	host:	10.0.0.104
port:	2302

In	 the	above	YAML	document,	we	have	a	configuration	 file	defined.	This	 file
contains	 information	 such	 as	 a	 database	 username	 and	 password,	 and	 host
information	for	a	Memcached	solution.

Choosing	a	data	exchange	format	is	highly	dependent	on	the	languages	you	will
be	using.	For	example,	JSON	makes	most	sense	when	working	with	JavaScript.
The	type	and	size	of	the	data	being	transferred	will	also	play	a	big	part	in	your
decision.	JSON	is	better	for	processing	large	data	sets,	but	XML	is	better	suited
for	 sounds	 and	 images.	 In	 the	 end,	 unless	 you	 are	 forced	 by	 external	 web
services	to	use	a	specific	format,	it	might	just	come	down	to	personal	preference.



29.	Error	Handling

Every	program	is	prone	to	errors,	no	matter	how	meticulous	we	might	be.	It	 is
just	impossible	to	test	for	every	error	condition	and	ensure	that	a	program	works
flawlessly,	 especially	when	we	consider	 that	 an	unpredictable	end	user	will	be
using	 the	 application.	 Hence	 we	 should	 always	 code	 in	 a	 way	 that	 tries	 to
anticipate	 errors	 and	 provides	 a	 way	 to	 resume	 the	 program	 if	 an	 unexpected
error	occurs.	 It’s	not	a	great	user	experience	 if	 the	program	terminates	after	an
error.

In	most	programming	languages	there	are	ways	for	programs	to	intercept	errors
and	handle	them	accordingly.	These	types	of	errors	are	known	as	exceptions,	and
programming	 languages	 have	 statements	 that	 are	 designed	 to	 catch	 these
exceptions	and	deal	with	them	accordingly.

For	example,	 if	we	created	a	program	that	has	 to	access	a	file	on	the	 local	file
system,	the	program	should	ideally	first	check	for	the	existence	of	a	file	before
proceeding	ahead.	But	let’s	say	that	the	user	can	proceed	without	selecting	a	file.
The	program	will	then	throw	an	error	when	it	tries	to	access	the	non-existent	file.
In	 such	 a	 case,	 the	 program	 should	 try	 to	 handle	 the	 error	 appropriately	 by
requesting	the	user	to	select	a	file,	rather	than	terminating	the	program.
Almost	all	programming	languages	have	a	system	for	catching	exceptions.	It	is
most	commonly	known	as	‘try’	and	‘catch’	blocks.	The	code	that	is	anticipated
to	cause	an	error	would	be	placed	in	the	‘try’	block,	while	the	code	that	is	meant
to	execute	in	case	of	an	error	is	placed	in	the	‘catch’	block.

Let’s	look	at	an	example	in	C#	to	illustrate	this	concept.	The	code	below	is	used
to	assign	a	value	to	an	array	variable.	If	we	foresee	that	this	code	might	cause	an
error,	we	could	place	it	inside	a	‘try’	block.
try
{

i[3]	=	3;
}

We	could	then	declare	the	array	as	shown	below.	This	is	a	legal	statement	and
will	pass	the	‘try’	block.
int[]	i	=	new	int[2];

Alternatively	we	could	declare	 the	array	as	 shown	below.	This	code	 statement



will	cause	an	error.	That	is	because	the	array	is	only	designed	to	hold	values	up
to	an	index	value	of	3,	but	we	are	trying	to	assign	a	value	to	the	array	index	of	4.
int[]	i	=	new	int[4];

If	we	were	to	execute	this	code,	we	would	get	an	error	stating	that	the	index	is
outside	the	bounds	of	the	array,	after	which	the	program	would	exit.	Hence	we
have	to	make	provision	for	this	error	in	our	program.	So	in	addition	to	the	‘try’
block,	we	would	need	to	add	a	‘catch’	block	to	our	program.	When	an	exception
occurs	in	the	program,	the	exception	would	then	be	passed	to	the	‘catch’	block.
The	 code	 in	 the	 ‘catch’	 block	will	 then	 enable	 the	 program	 to	 proceed	 ahead
without	closing.	By	adding	the	‘catch’	block,	our	program	will	look	like	this:
int[]	i	=	new	int[2];
try
{

i[3]	=	3;
}
catch(Exception	ex)
{

Console.WriteLine(ex.Message);
}

Our	‘catch’	block	simply	displays	an	error	message,	but	the	good	part	is	that	the
code	will	still	continue	working	as	it	should	and	not	terminate	abruptly.
Each	 programming	 language	 has	 pre-defined	 exceptions	 already	 built	 in	 to
handle	specific	types	of	errors.	This	means	we	can	use	these	classes	to	deal	with
common	errors	instead	of	writing	our	own	from	scratch.	The	table	below	shows
the	different	types	of	exceptions	defined	in	C#.

Exceptions	in	C#

Exception Description
System.IO.IOException This	is	used	to	handle	I/O

errors
System.IndexOutOfRangeException This	is	used	to	handle

errors	generated	when	a
method	refers	to	an	array
index	out	of	range

System.ArrayTypeMismatchException This	is	used	to	handle
errors	generated	when	the



errors	generated	when	the
array	type	is	mismatched

System.NullReferenceException This	is	used	to	handle
errors	generated	from
referencing	a	null	object

System.DivideByZeroException This	is	used	to	handle
errors	generated	from
dividing	a	dividend	with
zero

System.InvalidCastException This	is	used	to	handle
errors	generated	during
typecasting

System.OutOfMemoryException This	is	used	to	handle
errors	generated	from
insufficient	free	memory

System.StackOverflowException This	is	used	to	handle
errors	generated	from
stack	overflow

It’s	 not	 necessary	 to	 go	 into	 depth	 into	 the	 different	 classes	 for	 exception
handling.	For	our	purposes,	let’s	look	at	how	our	code	can	be	written	if	we	use	a
built-in	class.
int[]	i	=	new	int[2];
try
{
i[3]	=	3;

}
catch	(System.IndexOutOfRangeException	ex)
{

Console.WriteLine(ex.Message);
}

By	 using	 one	 of	 these	 built-in	 classes,	 we	 would	 need	 to	 know	 the	 type	 of
potential	error	we	may	get	in	order	to	use	the	correct	class.	But	what	if	we	don’t
know	what	type	of	error	we	may	get?	Some	program	languages	have	the	ability
to	define	a	default	block	that	can	be	used	for	any	type	of	error.	This	is	known	as
the	‘finally’	block	and	is	used	to	deal	with	errors	that	cannot	be	caught	in	any	of
the	‘catch’	blocks.	The	‘finally’	block	is	placed	after	the	‘try’	and	‘catch’	blocks.
An	example	of	this	in	C#	is	given	below.



string	path	=	@"C:\test.txt";
System.IO.StreamReader	file	=	new	System.IO.StreamReader(path);
char[]	buffer	=	new	char[10];
try

{
file.ReadBlock(buffer,	index,	buffer.Length);

}
catch	(System.IO.IOException	e)
{

Console.WriteLine("Error	reading	from	file");
}

finally
{

if	(file	!=	null)
{
file.Close();

}
}

So	in	this	program	we	are	trying	to	read	from	a	file	called	‘test.txt’,	as	per	our
‘try’	 block.	 Unfortunately	 there	 are	 numerous	 types	 of	 errors	 that	 can	 occur
when	working	with	files.	Because	we	believe	that	an	I/O	error	would	be	the	most
likely	 to	 occur,	 we	 defined	 an	 ‘IOException’	 in	 our	 ‘catch’	 block.	 But	 if	 the
‘catch’	 block	 never	 gets	 called,	 the	 error	will	 still	 slip	 through	 and	 potentially
crash	 the	 program.	 For	 this	 reason	 we	 define	 a	 ‘finally’	 block,	 which	 will
forcefully	close	the	file.

Here’s	the	bottom	line	when	it	comes	to	working	with	errors.

Always	expect	that	errors	can	occur	in	a	program.

Ensure	that	you	write	code	to	handle	all	types	of	error	conditions.



http://www.Amazon.com/gp/customer-reviews/write-a-review.html?asin=B07D6D5W99


30.	Logging	in	Programs

One	 of	 the	 most	 important	 concept	 in	 programming,	 is	 logging	 of	 what	 is
happening	in	the	program.	Logging	helps	one	to	understand	how	the	program	is
behaving	 and	whether	 it’s	 performing	 as	 per	 its	 requirements.	 In	 the	 previous
section,	we	 looked	at	error	handling	 in	programs.	 In	order	 to	ensure	 that	 these
errors	 are	 recorded	 somewhere,	 we	 need	 to	 have	 a	 facility	 to	 log	 the	 errors.
Programming	 languages	 provide	 a	 few	different	methods	 that	 enable	 us	 to	 log
data.	We’ll	look	at	some	of	them	next.

30.1	Debugging	During	Development

Some	programming	languages,	such	as	C#,	provide	classes	 that	can	be	used	to
write	 debug	 statements	 to	 the	 console	 of	 the	 Integrated	 Development
Environment	as	the	program	runs.	This	helps	give	the	developer	a	good	insight
as	to	how	the	program	is	running.	Values,	and	how	they	flow	in	the	program,	can
be	seen	via	these	debug	statements.	For	example,	the	following	snippet	of	code
shows	 how	 to	 write	 a	 debug	 statement	 that	 outputs	 to	 the	 output	 window	 in
Visual	Studio.
class	Program

{
static	void	Main(string[]	args)
{

int	i	=	5;
Debug.WriteLine("The	value	of	i	is

"	+	i);
Console.Read();
}

}

In	the	above	program	we	are	using	the	‘Debug’	class,	as	well	as	the	‘WriteLine’
method	in	order	to	write	debug	statements	to	the	output	window.	This	enables	us
to	 see	 how	 the	 code	 is	 running.	 If	 you	 have	 a	 look	 at	 the	 output	 window	 in
Visual	Studio	shown	below,	you	will	be	able	to	see	the	statement	written	as	part
of	the	debug	statement.



30.2	Tracing	After	Deployment

Similar	 to	 debug	 statements,	 trace	 statements	 can	 also	 be	 used	 to	 write	 logs
during	the	program’s	execution.	Normally	debug	statements	are	used	during	the
development	 process.	They	 are	 used	by	developers	 to	 ensure	 that	 the	 program
will	 run	 as	 expected.	 But	 trace	 statements	 can	 be	 used	 after	 deploying	 the
program.	They	are	most	notably	used	by	administrators	to	log	program	behavior
in	 order	 to	 ensure	 that	 the	 program	 continues	 to	 run	 as	 intended.	 Trace
statements	also	have	the	option	to	generate	logging	automatically.

30.3	Logging	Different	Levels

Java	has	a	neat	feature	that	enables	you	to	log	different	types	of	events	based	on
different	log	levels.	The	log	levels	define	the	severity	of	a	message.	The	‘Level’
class	is	used	to	define	which	messages	should	be	written	to	the	log,	and	contain
the	following	levels	in	descending	order	of	severity:

SEVERE	(highest)
WARNING

INFO

CONFIG

FINE

FINER

FINEST	(lowest)



So	if	we	wanted	 the	program	to	only	 log	 the	most	severe	errors,	we	would	set
the	logging	to	‘SEVERE’.	This	is	done	by	means	of	the	following	piece	of	code:
import	java.util.logging.Level;
import	java.util.logging.Logger;
public	class	Demo	{
				private	static	final	Logger	LOGGER	=	Logger.getLogger(	Demo.class.getName()	);

public	static	void	main(String	args[])	{
								LOGGER.log(Level.INFO,	"Hello	logging");

}}

Again,	 there’s	 no	 need	 to	 dive	 too	 deep	 into	 this	 program.	 Just	 note	 the
following	 key	 points.	 First,	 we	 need	 to	 ensure	 that	 we	 import	 the
‘java.util.logging’	 package.	 This	 has	 the	 necessary	 classes	 used	 for	 logging.
Then	at	the	top	of	the	class	we	need	to	define	a	‘static’	identifier	for	the	logger.
Lastly,	we	set	the	logging	level	in	the	main	method	before	we	can	start	logging.

In	conclusion,	here	are	some	best	practices	to	follow	when	logging:

Try	 to	 use	 one	 of	 the	 existing	 frameworks	 for	 logging,	 as	 they
already	provide	a	lot	of	built-in	functionality.

Use	a	standard	structure	when	you	log	data.	Because	at	some	point	in
time	you	would	want	to	analyze	the	logs,	and	if	they	are	inconsistent
it	is	going	to	make	your	job	unnecessarily	difficult.
Ensure	to	log	only	what	is	necessary.	If	you	try	to	log	each	and	every
event,	the	logs	would	become	large	and	cumbersome	to	analyze.

Ensure	that	 logging	happens	as	a	backend	process	and	doesn’t	slow
down	your	main	application.



31.	Logical	Grouping	of	Programs

When	developing	programs	 that	 have	 a	 long	 list	 of	 requirements,	 it’s	 possible
for	the	programs	to	become	large	and	complex,	to	a	point	where	the	code	turns
into	 an	 unmanageable	mess.	 In	 an	 earlier	 chapter	we	 looked	 at	 grouping	 code
into	 various	modules.	However,	 sometimes	 it	 could	 also	make	 sense	 to	 group
programs	into	separate	logical	domains.

Programming	languages	have	the	capability	to	group	programs	into	completely
separate	 sections.	 To	 illustrate,	 let’s	 take	 a	 simple	 example	 of	 a	 class	 called
‘Person’.	 If	 we	 needed	 to	 have	 this	 class	 separated	 from	 other	 classes	 in	 a
program,	 we	 could	 use	 something	 known	 as	 ‘namespaces’.	 A	 simple	 code
snippet	of	this	concept	in	C#	is	shown	below.
namespace	NameA{

public	class	Person{
int	ID;
string	Name;
public	void	Display(){
}
}

}

In	 this	 program	we	have	 a	 class	 defined	 as	 ‘Person’,	which	 has	 attributes	 and
methods.	But	notice	that	we	now	encapsulate	the	class	inside	a	namespace	called
‘NameA’.	If	we	wanted	to	call	a	function	in	this	class,	 it	would	be	done	in	the
following	way:
NameA.Person	Per=	new	NameA.Person();

clsA.Display();

Java	also	has	a	similar	function	known	as	‘packages’	to	encapsulate	classes.	An
example	of	a	‘package’	is	shown	below,	where	we	have	everything	encapsulated
inside	a	package	called	‘demo’.
package	demo;
public	class	Person{
int	ID;
string	Name;
public	Display(){
}

}



Encapsulating	classes	provide	the	following	advantages:

It	can	be	used	to	categorize	classes	and	interfaces	so	that	they	can	be
easily	maintained.

It	can	be	used	to	provide	access	protection.

In	Java,	it	can	eliminate	naming	collisions.	So	if	we	have	classes	that
have	the	same	name,	they	can	be	separated	into	packages	so	both	can
exist	in	the	same	program.

31.1	Built-in	Namespaces
Most	 programming	 languages	 have	 built-in	 namespaces	 with	 classes	 inside
them.	This	 encapsulation	can	be	used	as	part	of	 the	normal	program	structure.
An	example	of	a	simple	program	in	C#	is	given	below.
using	System;
namespace	Demo
{

class	Program
{

static	void	Main(string[]	args)
{

Console.Read();
}

}

In	 this	program	we	defined	our	own	namespace	 ‘Demo’,	however	we	are	also
using	the	built-in	‘System’	namespace.	In	order	to	use	the	‘System’	namespace,
we	need	to	use	the	‘using’	keyword	in	C#.	If	we	didn’t	use	this	namespace,	the
program	would	simply	look	as	follows:
namespace	Demo
{

class	Program
{

static	void	Main(string[]	args)
{

System.Console.Read();
}

}

Now	 when	 using	 the	 ‘Console.Read’	 statement,	 we	 need	 to	 prepend	 the
‘System’	keyword	since	the	‘Console’	class	belongs	to	the	‘System’	namespace.



Here	 we	 can	 see	 that	 if	 we	 had	 multiple	 statements	 that	 used	 the	 ‘System’
namespace,	it	would	be	inefficient	to	keep	writing	the	‘System’	keyword	in	front
of	 every	 statement.	 That	 is	 why	 we	 use	 the	 ‘using’	 statement	 to	 import	 the
System	namespace.	In	Java,	we	can	use	the	‘import’	statement	to	import	classes
from	certain	namespaces.	An	example	is	shown	below.
import	java.util.*;
public	class	ArrayListExample	{
public	static	void	main(String	args[])	{
ArrayList<String>	obj	=	new	ArrayList<String>();
obj.add("Example1");
obj.add("Example2");
obj.add("Example3");

}
}

In	the	above	example,	we	need	to	use	a	class	known	as	‘ArrayList’.	This	class	is
in	a	namespace	called	‘java.util’.	So	in	order	to	use	the	array	list	class,	we	need
to	use	 the	 ‘import’	 statement	 in	order	 to	start	using	 the	 ‘ArrayList’	class.	As	a
final	note,	always	ensure	that	during	the	design	stage	of	your	program,	you	split
your	program	into	multiple	units	where	possible.



32.	Deploying	Programs

Depending	 on	 the	 type	 of	 program	 that’s	 being	 developed,	 the	 deployment
techniques	will	 differ.	 However	 the	 concept	 of	 deployment	 is	 very	 important,
especially	 since	 the	world	 of	 development	 is	moving	more	 and	more	 towards
automation.	These	days,	customers	want	more	features	that	need	to	be	deployed
at	 a	 faster	 rate.	When	 deploying	 programs	 the	 following	 needs	 to	 be	 kept	 in
mind.

What	 is	 the	 customer	 base,	 and	 will	 the	 application	 have	 the
capability	to	be	deployed	and	withstand	the	high	load	of	customers?

What	 is	 the	underlying	infrastructure	 to	which	the	program	is	being
deployed	 to?	 Does	 it	 have	 all	 the	 necessary	 components	 to	 ensure
that	the	program	will	work	as	expected?

When	 deploying	 changes	 to	 an	 existing	 program,	 is	 there	 any
downtime	 that	will	 be	 incurred?	Are	 the	 customers	happy	with	 this
downtime	in	the	application?
What	 is	 the	 deployment	 method	 that	 is	 best	 suited	 for	 the	 type	 of
application?

32.1	Deployment	Mechanisms

If	 we	 have	 a	 client-server	 program	 where	 the	 client	 program	 needs	 to	 be
distributed	 to	 every	 workstation,	 then	 we	 need	 to	 have	 a	 deployment	 plan	 in
place	which	can	ensure	that	the	client	program	is	distributed	as	required.	This	is
a	big	concern	when	it	comes	 to	client-server	applications,	because	you	need	 to
ensure	that	all	clients	get	the	same	version	of	the	program	at	the	same	time.

With	 web-based	 applications,	 we	 normally	 need	 a	 web	 server	 to	 host	 the
application.	Many	programming	languages	use	a	specific	service	in	order	to	host
the	 application.	 For	 example,	 C#	 programs	 require	 the	 Internet	 Information
Services	web	server.	There	are	different	ways	 to	deploy	a	web	program	onto	a
server.	When	using	Visual	Studio,	you	have	the	option	to	publish	or	deploy	the
web	 application	 from	 the	 Integrated	 Development	 Environment	 itself.	 The
screenshot	below	shows	the	different	publishing	options	that	are	available	for	C#
in	Visual	Studio.



Here	we	 also	 have	 the	 convenient	 option	 to	 deploy	 applications	 to	 the	Azure
cloud	service.	Since	most	 applications	are	now	being	hosted	on	 the	 internet,	 it
makes	 sense	 to	have	 this	option	 in	place.	You	also	have	options	 to	deploy	 the
web	application	directly	to	the	Internet	Information	Services	or	to	FTP	the	files
on	the	server	for	later	deployment.

If	we	now	look	at	Java,	there	are	a	couple	of	methods	available	for	deploying	a
Java	 based	 application.	 One	 method	 involves	 something	 known	 as	 a	 ‘WAR’
package,	which	bundles	the	contents	of	the	application	together.	The	‘WAR’	file
can	be	created	from	the	IDE	or	from	the	command	line.	This	file	is	then	copied
onto	the	web	directory,	and	when	the	server	is	restarted	it	will	be	unpacked	and
installed.

32.2	Deploying	Program	Changes

Normally	 the	 first	 time	deployment	of	a	new	program	is	 relatively	simple.	 It’s
the	deployment	of	 new	 features	 for	 the	program	 that	 can	become	problematic.
This	 is	because	normally	 the	older	version	of	 the	program	needs	 to	be	brought
down	 first	 and	 then	 replaced	 with	 the	 newer	 version.	 During	 this	 time,	 users
won’t	be	able	to	access	the	application.	Luckily	there	are	modern	day	design	and
deployment	techniques	available	to	make	the	deployment	of	new	features	quick
and	efficient.

Blue-Green	deployments



One	such	 technique	 is	 the	concept	of	Blue-Green	deployments.	Normally	your
current	 program,	 which	 is	 being	 used	 by	 all	 users,	 is	 referred	 to	 as	 the	 Blue
environment.	Then	you	deploy	a	new	environment,	which	has	the	newer	version
of	your	application,	side	by	side	to	your	current	version.	This	Green	environment
is	not	yet	released	to	the	users.	Then	when	the	new	version	needs	to	be	deployed,
all	users	are	directed	to	the	Green	environment	instead	of	the	Blue	environment
when	 they	 log	 on.	 Since	 this	 is	 a	 simple	 switch,	 there’s	 no	 need	 for	 any
downtime.	When	all	functionality	for	the	newer	version	has	been	confirmed,	the
older	environment	can	be	removed.

Containers

Containers	 are	 a	 way	 of	 designing	 and	 deploying	 your	 application	 into	 small
containers,	 and	 there	 is	 specialized	 software	 that	 can	 be	 used	 to	 host	 these
programs.	An	example	of	such	a	design	is	shown	below.

Here	we	have	two	functional	aspects	of	an	application,	which	has	been	split	into
two	 separate	 programs.	 One	 is	 called	 ‘Orders’	 and	 the	 other	 is	 called
‘Purchases’.	Both	are	running	the	first	version	of	their	programs	and	are	hosted
in	 a	 container	 environment.	 With	 containers,	 you	 can	 easily	 launch	 a	 new
version	of	one	of	the	programs,	let’s	say	the	‘Orders’	program.

When	 the	new	 ‘Orders’	 program	has	been	verified,	 the	older	 container	 can	be
deleted,	resulting	in	the	following	application.



33.	Programming	for	the	Internet

Programming	 for	 the	 internet	 is	 one	 of	 the	 most	 challenging	 aspects	 for	 any
developer.	Your	first	task	is	to	ensure	that	the	programming	language	you	intend
to	use	has	the	necessary	capabilities	to	work	with	the	resources	on	the	internet.
Fortunately	 most	 of	 the	 major	 languages,	 such	 as	 C#,	 Java,	 JavaScript,	 and
Angular	JS,	already	have	these	capabilities	built	in.

One	of	the	most	popular	languages	being	used	for	web	applications	nowadays	is
Angular	 JS.	 This	 is	 a	 JavaScript	 framework	 that	 was	 developed	 by	 Google,
which	 has	 a	 lot	 of	 neat	 features	 for	 web-based	 applications.	 Some	 of	 those
features	include:

Data	 Binding	 –	 This	 is	 the	 action	 of	 binding	 the	 data	 layer	 to	 the
controls	on	the	web	page.	Without	this	ability,	a	lot	of	code	is	needed
to	ensure	that	the	front-end	webpage	can	interact	with	the	associated
back-end	data.	Hence	 this	 saves	 a	 significant	 amount	of	 time	when
developing	web	applications.

MVC	 Behavior	 –	 The	 Model-View-Controller	 design	 pattern	 is
adopted	by	some	programming	frameworks,	and	Angular	JS	is	one	of
them.	This	allows	you	to	design	your	‘Model’	of	data,	as	well	as	how
the	data	will	be	‘Viewed’	by	the	user.	Then	the	‘Controller’	is	used	to
decide	how	the	logic	will	be	handled	from	within	the	application.
Directives	–	Directives	can	be	used	to	create	custom	HTML	tags	that
serve	 as	 new,	 custom	widgets.	They	 can	 also	 be	 used	 to	 ‘decorate’
elements	with	behavior	and	manipulate	DOM	attributes	in	interesting
ways.

An	example	of	a	simple	Angular	JS	program	is	given	below.
<!DOCTYPE	html>
<html>
<script	src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.4/angular.min.js"></script>
<body>
<div	ng-app="">
<p>Please	put	the	name	of	the	Tutorial</p>
<p>Name	:	<input	type="text"	ng-model="name"	placeholder="Enter	Here"></p>
<h1>The	name	of	the	tutorial	is	{{name}}</h1>
</div>
</body>
</html>



When	you	run	this	code	in	a	browser,	you	will	initially	get	the	following	page:

Then	when	you	type	in	the	text	box,	the	browser	window	will	automatically	pick
it	up	as	shown	below.

33.1	Cloud	Based	Platforms

Another	 aspect	 of	 programming	 for	 the	 internet	 is	 cloud-based	 programming.
This	 is	 being	 adopted	 by	 a	 large	 number	 of	 organizations.	 Cloud-based
computing	is	where	services	are	moved	to	a	third	party	cloud	service	rather	than
having	 to	 own	 and	manage	 them	yourself.	 These	 services	 are	 then	 completely
managed	by	external	vendors.	Some	of	the	big	players	in	this	space	are	Amazon
Web	Services,	Google	Cloud	Services	and	the	Microsoft	Azure	Platform.

Below	 are	 examples	 of	 cloud	 computing	 components	 available	 in	 one	 of	 the
most	popular	platforms,	Amazon	Web	Services.

Elastic	 Cloud	 Computing	 –	 This	 service	 allows	 you	 to	 manage
computing	resources	on	the	cloud,	such	as	to	provision	servers.	The
underlying	physical	infrastructure	is	managed	by	AWS	and	you	only
manage	the	virtual	servers.

Elastic	Block	Storage	–	These	are	data	volumes	that	can	be	attached



to	the	virtual	servers.

Simple	Storage	Services	–	This	is	object	storage	that	can	be	used	to
store	objects	such	as	files,	videos	and	images.

Elastic	Load	Balancing	 –	This	 service	 can	 be	 used	 to	 load	 balance
requests	to	applications.

The	 best	 advantage	 of	 using	 these	 platforms	 is	 their	 high	 availability	 and
durability.	 Since	 the	 infrastructure	 is	 completely	 managed	 by	 the	 vendor,	 it
removes	a	lot	of	headaches	for	the	developer	or	customer	not	having	to	manage
the	infrastructure.

33.2	IoT

IoT	is	another	concept	that	is	also	known	as	the	Internet	of	Things.	This	is	where
everything	 is	connected,	such	as	normal	household	appliances	being	connected
to	the	internet.	It’s	basically	the	need	to	connect	all	devices	to	the	internet.	Here
you	 would	 have	 different	 sensors	 installed	 on	 devices	 that	 would	 send	 data
across	to	central	hub	devices.	You	would	then	have	the	necessary	programming
languages	 interpret	 the	 data	 accordingly.	 Some	 of	 the	 most	 common
programming	languages	used	for	IoT	programming	are:

C	–	This	 is	 still	 the	most	 powerful	 language	 available	 for	 systems-
based	programming.	The	ability	of	 the	 libraries	available	within	 the
C	 language	 to	 interact	 directly	with	 the	 hardware	 is	what	makes	 it
best	suited	for	working	with	IoT	enabled	devices.

Java	–	This	has	always	been	the	most	portable	language.	Hence	it	can
be	used	on	all	sorts	of	chipsets,	which	are	used	to	build	 the	sensors
for	 IoT	based	devices.	The	embedded	edition	of	 Java	also	makes	 it
well	suited	for	IoT	based	applications.

Python	–	This	is	a	simple	and	powerful	programming	language.	It	is
pretty	light	in	its	implementation	and	hence	is	an	ideal	choice	when
working	with	small	devices.

The	internet	domain	is	continually	evolving	and	the	need	for	digitization	is	the
trend	 for	 many	 organizations.	 Again,	 depending	 on	 the	 requirements	 and	 the
type	of	application	being	developed,	the	right	programming	language	should	be
chosen.	Always	 take	 care	 to	 ensure	 that	 the	 libraries	used	 in	 the	programming
language	are	not	out	of	date,	otherwise	this	would	be	a	security	concern	for	the
application.



34.	Serverless	Programming

We	 briefly	 discussed	 cloud-based	 programming	 in	 the	 previous	 chapter.	 This
type	of	programming	can	also	be	referred	to	as	serverless	programming,	because
we	are	not	managing	any	infrastructure	when	implementing	applications.	In	this
chapter	we	will	delve	a	bit	deeper	into	this	concept.

Let’s	say	we	are	building	a	web-based	application	in	C#.	The	traditional	way	to
deploy	 the	 application	 would	 be	 to	 have	 a	 server	 that	 can	 host	 the	 Internet
Information	Services.	But	as	discussed	 in	 the	previous	chapter,	with	 serverless
programming	there’s	no	need	to	create	or	manage	a	server.	This	is	all	done	by	an
external	vendor,	such	as	Amazon	Web	Services.

But	how	does	this	work?
If	 we	 take	 Amazon	 Web	 Services	 as	 an	 example,	 they	 provide	 a	 serverless
programming	service	known	as	AWS	Lambda.	When	using	this	service,	all	you
need	to	do	is	write	the	code	and	upload	it.	You	can	then	run	the	code	as	it	is.

Behind	the	scenes,	when	you	submit	a	job	the	service	will	create	a	container	for
executing	the	code.	This	container	will	activate	the	necessary	web	server	which
will	 be	 used	 to	 execute	 the	 code.	 Once	 the	 code	 has	 finished	 execution,	 the
container	will	be	disposed	of.	Below	 is	a	 snapshot	 that	 shows	an	online	editor
available	 for	 AWS	 Lambda.	 This	 editor	 is	 used	 to	 create	 a	 program	 in	 the
Node.js	programming	language.

This	 specific	code	 is	a	 simple	 string	being	sent	 to	 the	console	of	 the	program.
The	editor	provides	the	opportunity	to	execute	the	code	and	also	see	the	output
from	the	program.	And	all	of	this	is	done	in	the	background	without	the	need	for
provisioning	 any	 underlying	 infrastructure.	 The	 Microsoft	 Azure	 Platform
provides	a	similar	service.	So	by	defining	the	code	below	in	C#,	we	can	get	the
resultant	output	from	running	it	in	the	cloud	as	shown	further	down.
using	System;

public	static	void	Run(TimerInfo	myTimer,	TraceWriter	log)



public	static	void	Run(TimerInfo	myTimer,	TraceWriter	log)
{

log.Info("Hello	World");
}

The	advantages	of	using	a	serverless	architecture	in	the	programming	world	are:

There’s	no	need	to	provision	the	underlying	servers	required	to	host
web	applications.	This	means	 that	you	don’t	need	 to	pay	 the	 initial
cost	to	acquire	and	set	up	these	servers.

Since	 you	 don’t	 need	 to	manage	 the	 underlying	 infrastructure,	 you
also	don’t	need	to	maintain	the	servers.	So	if	a	security	patch	needs
to	be	deployed	for	the	servers,	it	will	be	done	by	the	service	provider.

Normally	 if	 your	 application	 starts	 getting	 a	 lot	 of	 requests,	 you
would	need	to	add	more	server	capacity	to	keep	up	with	the	load.	But
with	 serverless	 architecture	 the	 provisioning	 of	 extra	 capacity	 is
almost	effortless,	as	the	capacity	is	most	likely	already	available	from
the	service	provider.



35.	Programming	for	Mobile	Devices

With	 the	 popularity	 and	 widespread	 availability	 of	 the	 internet	 on	 mobile
devices,	it	has	become	necessary	to	ensure	that	most	web-based	applications	are
also	compatible	with	mobile	devices.	Designing	web	applications	 to	be	mobile
friendly	is	luckily	not	that	hard.

On	the	Graphical	User	Interface	side	of	things,	there	are	JavaScript	frameworks
available	which	help	 in	designing	programs	 that	are	mobile	 friendly.	One	such
example	is	the	Bootstrap	framework.	This	is	an	open	source	and	free	library	for
designing	 websites	 and	 web-based	 applications.	 Bootstrap	 supports	 a	 concept
known	as	responsive	web	design.		This	is	where	web	pages	are	able	to	render	on
a	variety	of	devices	with	varying	window	and	screen	sizes.

The	 program	 thus	 needs	 to	 automatically	 detect	 the	 underlying	 device	 that	 is
used	to	display	and	render	the	webpage	accordingly,	as	well	as	the	window	size
used.	If	you	take	a	simple	webpage,	such	as	the	Amazon	webpage	for	this	book,
and	shrink	the	dimensions	of	the	page,	you	will	notice	that	the	contents	will	be
shifted	in	a	manner	that	keeps	it	displayed	properly	to	the	user.
The	 programming	 framework	 should	 hence	 also	 have	 the	 ability	 for	 this
functionality,	and	this	is	exactly	what	the	Bootstrap	framework	does.	In	order	to
apply	 this	 functionality	 to	 a	 webpage,	 you	 simply	 need	 to	 ensure	 that	 the
appropriate	client	libraries	are	added	to	the	webpage.	A	simple	example	is	given
below.
<!DOCTYPE	html>
<html	lang="en">
<head>
<title>Bootstrap	Example</title>
<meta	charset="utf-8">
<meta	name="viewport"	content="width=device-width,	initial-scale=1">
<link	rel="stylesheet"

href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css">
<script	src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery.min.js"></script>
<script	src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js"></script>

</head>
<body>
<div	class="container">
<h1>This	is	an	example</h1>

</div>
</body>
</html>



In	the	beginning	of	the	code,	you	will	notice	references	to	a	few	libraries.	It	 is
these	 libraries	 that	 ensure	 that	 the	 webpage	 is	 able	 to	 render	 under	 different
dimensions.	If	we	were	to	render	the	above	webpage,	it	will	initially	display	as
follows:

Then	if	you	further	reduce	the	size	of	the	page,	it	will	render	as	below.	Here	you
will	 notice	 that	 the	 text	 on	 the	 page	 has	 been	 adjusted	 to	 fit	 the	 size	 of	 the
window.



When	it	comes	to	mobile	app	development,	you	need	to	choose	a	programming
language	 based	 on	 the	 mobile	 operating	 system	 you	 are	 developing	 an
application	for.	Let’s	look	at	the	two	most	popular	operating	systems.

35.1	Android

If	you	want	to	develop	a	program	that	will	work	on	an	Android	device,	then	Java
is	 a	 popular	 programming	 language	 that	 can	 be	 used.	 The	 programs	 for	 these
devices	 can	 get	 pretty	 complex	 and	 one	 really	 needs	 to	 be	 an	 advanced	 Java
programmer	 to	 be	 able	 to	 develop	 these	 applications.	 For	 interest,	 here	 is	 a
simple	snippet	of	a	Java	program	for	Android.	This	code	is	used	to	add	list	items
to	a	menu	which	is	displayed	on	the	mobile	device.
import	android.os.Bundle;
import	android.app.Activity;
import	android.view.Menu;
import	android.widget.ArrayAdapter;
import	android.widget.ListView;
public	class	SimpleListViewActivity	extends	Activity	{

@Override
protected	void	onCreate(Bundle	savedInstanceState)	{

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_simple_list_view);
String[]	myStringArray	=	{	"Option1",	"	Option2",	"	Option3"	};
ArrayAdapter<String>	adapter	=	new	ArrayAdapter<String>(this,
R.layout.simple_list_view_item,	myStringArray);



ListView	listView	=	(ListView)	findViewById(R.id.lvDemo);
listView.setAdapter(adapter);

}
@Override
public	boolean	onCreateOptionsMenu(Menu	menu)	{
getMenuInflater().inflate(R.menu.activity_simple_list_view,	menu);

return	true;
}

}

35.2	iOS

This	 is	 the	 underlying	 operating	 system	 for	 all	Apple	 devices.	 If	 you	want	 to
develop	 mobile	 applications	 for	 this	 operating	 system,	 then	 a	 popular
programming	 language	would	 be	 Swift.	Again,	 you	 need	 to	 be	well	 versed	 in
Swift	 to	develop	mobile	applications.	But	don’t	 let	 this	put	you	off	mobile	app
development.	All	you	need	is	enough	practice	in	the	appropriate	language.

We	don’t	cover	Swift	programming	at	the	moment,	but	we	do	have	a	complete
series	on	Java	Programming	to	help	you	get	started.

https://www.amazon.com/dp/1978104472


https://www.amazon.com/dp/1983683698
https://www.amazon.com/dp/1985574306


36.	Design	Practices

In	this	final	chapter	we	will	have	a	look	at	the	design	stage	of	the	development
process	and	some	best	practices	to	keep	in	mind.	When	creating	applications,	we
normally	go	 through	a	development	 lifecycle.	The	different	 stages	of	 a	 typical
development	lifecycle	for	an	application	are	shown	below.

First,	we	need	to	gather	the	requirements	for	our	application	to	understand	what
the	 application	 is	 meant	 to	 do.	 This	 can	 come	 from	 the	 client,	 the	 project
manager,	 end	 users	 or	 developers.	 Once	 the	 requirement	 gathering	 phase	 is
completed,	 we	move	 onto	 the	 design	 stage	 where	 we	 need	 to	 ensure	 that	 the
application	 is	 designed	 according	 to	 the	 requirements.	This	 is	 one	 of	 the	most
important	 stages	 of	 the	 lifecycle,	 since	 it	 lays	 the	 foundation	 for	 our	 coding.
After	this	phase,	we	have	the	coding,	testing	and	deployment	of	the	application.

Due	to	the	importance	of	the	design	stage,	there	are	a	few	core	design	principles
to	take	note	of,	which	we	will	look	at	next.

Split	the	application	into	multiple	layers

Try	to	introduce	multiple	layers	in	the	design	of	your	application.	This	can	lead
to	 better	 and	 easier	 maintenance	 by	 isolating	 code	 into	 various	 layers	 and
segments.	 Each	 section	 can	 also	 be	 tested	 separately,	 which	 makes	 the
development	process	so	much	easier.

Manage	components	as	individual	services



This	is	always	a	good	design	practice.	By	having	each	component	as	a	service,	it
becomes	easier	to	share	the	same	service	across	multiple	applications	and	hence
makes	 for	 better	 reusability.	 So	 for	 example,	 if	 your	 application	 has	 three
modules	 such	 as	 Customers,	 Orders	 and	 Purchases,	 you	 can	 design	 them	 as
independent	services.

Decouple	the	application	components

It	is	important	to	ensure	that	application	components	in	your	architecture	are	not
tightly	coupled.	This	is	also	in	line	with	the	previous	design	practice.	If	you	have
dependencies	between	multiple	components	of	your	application,	then	changes	to
your	application	can	become	difficult.	 If	you	make	changes	 to	one	component,
you	 might	 have	 unforeseen	 issues	 in	 another	 dependent	 component	 of	 your
application.

Ensure	the	application	can	be	tested	at	a	later	point	in	time

It	 is	 possible	 for	 applications	 to	 become	 so	 complex	 that	 testing	 becomes
problematic.	 Luckily	 some	 programming	 languages	 are	 built	 with	 testing	 in
mind,	 such	 as	Angular	 JS.	The	Angular	 JS	 framework	has	 testing	 frameworks
such	as	Karma	and	Jasmine	to	complement	the	development	framework.	Below
is	an	example	of	a	unit	testing	code	created	in	the	Jasmine	framework.	This	code
is	just	used	to	ensure	that	a	set	of	options	that	 is	presented	to	the	user	is	set	as
OptionA,	OptionB	and	OptionC.
describe('Sample	Test',	function()	{



describe('Sample	Test',	function()	{
it('Testing	options',	function()	{
var	users	=	['OptionA',	'OptionB',	'OptionC'];
var	sorted	=	sortOptions(options);
expect(sorted).toEqual(['OptionA',	'OptionB',	'OptionC']);

});
});

Make	sure	the	application	is	portable

If	 you	 plan	 to	 deploy	 your	 application	 in	 multiple	 environments,	 then	 your
application	should	be	able	to	adapt	to	the	various	operating	systems	and	devices.
Java	 is	a	popular	 language	 that	 is	portable	 in	nature	and	can	work	on	multiple
operating	system	platforms.

Ensure	there	is	support	for	the	programming	language

This	 becomes	 important	when	 deciding	which	 programming	 language	 is	most
suitable	at	the	design	stage.	So	in	addition	to	looking	at	which	language	fits	all
requirements,	 it’s	 also	 important	 to	 ensure	 that	 it	 has	 enough	 support	 from
multiple	communities.	This	ensures	 that	 there	are	 regular	updates	 to	bug	 fixes,
but	also	support	for	if	you	get	stuck	in	any	way.



Conclusion

This	brings	us	 to	 the	end	of	 this	guide.	 I	hope	 that	you	enjoyed	 learning	more
about	 the	 world	 of	 programming,	 and	 how	 powerful	 and	 versatile	 it	 can	 be.
Programming	has	become	one	of	 the	most	valuable	skills	you	can	 learn	 today.
Not	only	in	your	professional	life,	but	in	your	personal	life	as	well.	I	can’t	count
how	many	times	I’ve	written	a	small	script	to	help	me	with	my	daily	tasks.	It	is
something	you	can	use	for	the	rest	of	your	life.

“What’s	 next”	 you	 might	 ask?	 By	 now	 you	 probably	 have	 an	 idea	 of	 which
programming	 language	 you	 have	 a	 preference	 for.	 If	 not,	 have	 a	 re-look	 at
Chapter	 4	which	 summarizes	 the	main	 aspects	 of	 the	most	 popular	 languages.
You	 really	 can’t	 go	 wrong	 with	 any	 of	 these	 languages.	 But	 if	 you	 are	 still
undecided,	 I	 suggest	 just	 trying	 one	 out.	 If	 you	 don’t	 like	 it,	 you	 can	 simply
move	on	to	the	next	one.

The	 most	 important	 part	 of	 learning	 any	 programming	 language,	 is	 practice.
Practical	 examples	 are	 proven	 to	 be	 the	 best	 way	 to	 learn	 a	 programming
language,	 which	 is	 why	 I	 try	 to	 cram	 as	many	 examples	 as	 possible	 into	my
guides.	If	you	want	to	learn	any	of	the	popular	languages	in	a	step-by-step	way
that	is	tailored	specifically	for	beginners,	be	sure	to	check	out	any	of	the	series
below.
Good	luck	and	happy	programming!

https://www.amazon.com/dp/1987518977


https://www.amazon.com/dp/1542961548
https://www.amazon.com/dp/1978104472
https://www.amazon.com/dp/1975745086


https://www.amazon.com/dp/1974581217


About	the	Author

Nathan	Clark	is	an	expert	programmer	with	nearly	20	years	of	experience	in	the
software	industry.

With	 a	 master’s	 degree	 from	 MIT,	 he	 has	 worked	 for	 some	 of	 the	 leading
software	 companies	 in	 the	United	 States	 and	 built	 up	 extensive	 knowledge	 of
software	design	and	development.

Nathan	and	his	wife,	Sarah,	 started	 their	own	development	 firm	 in	2009	 to	be
able	 to	 take	on	more	challenging	and	creative	projects.	Today	they	assist	high-
caliber	clients	from	all	over	the	world.
Nathan	 enjoys	 sharing	 his	 programming	 knowledge	 through	 his	 book	 series,
developing	 innovative	 software	 solutions	 for	 their	 clients	 and	watching	 classic
sci-fi	movies	in	his	free	time.


	Introduction
	1. What Is a Programming Language?
	2. Why Do We Need a Programming Language?
	3. The History of Programming Languages
	4. Popular Programming Languages
	5. Understanding the Structure of a Program
	6. What Are the Different Types of Programs?
	7. How Is a Program Built?
	8. How Is a Program Executed?
	9. What Are Program Statements?
	10. What Are Data Types?
	11. What Are Variables?
	12. What Are Operators?
	13. Working with Numbers
	14. The Importance of Strings
	15. Making Decisions in Programs
	16. Iterative Programming
	17. Logical Grouping of Code
	18. What Are Functions?
	19. Taking Input
	20. Sending Output
	21. What Is Functional Programming?
	22. What Is Object Oriented Programming?
	23. What Are Client Server Applications?
	24. What Is Web Programming?
	25. Managing Data in a Program
	26. Storing Data in Files
	27. Storing Data in Databases
	28. Data Exchange Formats
	29. Error Handling
	30. Logging in Programs
	31. Logical Grouping of Programs
	32. Deploying Programs
	33. Programming for the Internet
	34. Serverless Programming
	35. Programming for Mobile Devices
	36. Design Practices
	Conclusion
	About the Author

