

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

READ THESE I	NSTRII	CTIONS F	IPST							
Additional Mate	rials:	List of F	ormulae	(MF9)						
Candidates ans	wer on t	he Questi	on Pape	r.						
MATHEMATICS Paper 1		athematics	1 (P1)					1	hour 4	9/13 iutes
CENTRE NUMBER						CANDIDAT NUMBER	re [
CANDIDATE NAME										

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

exceeds 3000. Ca	lculate the least p	possible value o	of <i>n</i> .		
•••••				•••••	
				•••••	
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	••••••
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	
•••••	•••••	•••••	••••••	••••••	••••••
••••					
•••••					
•••••					
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••
•••••	•••••	•••••	•••••	•••••	•••••
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	••••••
••••••	••••••	•••••	•••••••	•••••	•••••

distinct points.			$=-\frac{2}{x}$ and the s		
••••••		••••••		•••••••••••	
•••••	•••••				
•••••		••••••••••			

Find the term independent of x in the expansion of $\left(\frac{2}{x} - 3x\right)$	
Find the value of a for which there is no term independent o	f x in the expansion of
Find the value of a for which there is no term independent or $(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$	f x in the expansion of
	f x in the expansion of
	f x in the expansion of
$(1+ax^2)\left(\frac{2}{x}-3x\right)^6.$	

Vä	the function f is such that $f(x) = (2x - 1)^{\frac{3}{2}} - 6x$ for $\frac{1}{2} < x < k$, where k is a constant. alue of k for which f is a decreasing function.	
•••		
•••		
•••		•••••
•••		•••••
•••		
		•••••
•••		••••••
•••		•••••
•••		••••••
•••		•••••
•••		•••••
•••		
•••		
•••		•••••
•••		
•••		
		• • • • • • • • • • • • • • • • • • • •

5	(i)	Show that the equation	$\frac{\cos\theta + 4}{\sin\theta + 1} + 5\sin\theta$	-5 = 0 may be expressed as $5c$	$\cos^2\theta - \cos\theta - 4 = 0.$ [3]

rience solve the equation	on $\frac{\cos \theta + 4}{\sin \theta + 1} + 5\sin \theta - 5 = 0$ for $0^{\circ} \le \theta \le 360^{\circ}$.	
•••••		•••••
		•••••
••••••		•••••
•••••		•••••
••••••		•••••
•••••		•••••
		•••••
•••••		•••••

The functions f and g are defined by

$$f(x) = \frac{2}{x^2 - 1} \text{ for } x < -1,$$

$$g(x) = x^2 + 1 \text{ for } x > 0.$$

Find an expression for $f^{-1}(x)$.	[3]

•	 				
•	 •••••	••••••	•••••	•••••	•••••
•					
	 •••••		•••••		
•	 •••••				•••••
•	 •••••			• • • • • • • • • • • • • • • • • • • •	•••••
•	 				
•	 				•••••
•	•		•	•	•••••

The diagram shows a rectangle ABCD in which AB = 5 units and BC = 3 units. Point P lies on DC and AP is an arc of a circle with centre B. Point Q lies on DC and AQ is an arc of a circle with centre D.

(i)	Show that angle $ABP = 0.6435$ radians, correct to 4 decimal places.	[1]
(ii)	Calculate the areas of the sectors BAP and DAQ .	[3]

(iii)	Calculate the area of the shaded region.	[3]

The diagram shows parts of the graphs of y = 3 - 2x and $y = 4 - 3\sqrt{x}$ intersecting at points A and B.

(i)	Find by calculation the x -coordinates of A and B .	[3]

	Find, showing all necessary working, the area of the shaded region.
•	
•	
•	
•	
•	
•	
•	
•	
•	

9 Relative to an origin O, the position vectors of the points A, B and C are given by

$$\overrightarrow{OA} = \begin{pmatrix} 8 \\ -6 \\ 5 \end{pmatrix}, \quad \overrightarrow{OB} = \begin{pmatrix} -10 \\ 3 \\ -13 \end{pmatrix} \quad \text{and} \quad \overrightarrow{OC} = \begin{pmatrix} 2 \\ -3 \\ -1 \end{pmatrix}.$$

A fourth point, D, is such that the magnitudes $|\overrightarrow{AB}|$, $|\overrightarrow{BC}|$ and $|\overrightarrow{CD}|$ are the first, second and third terms respectively of a geometric progression.

(i)	Find the magnitudes $ \overrightarrow{AB} $, $ \overrightarrow{BC} $ and $ \overrightarrow{CD} $.	[5]

of the point D .		
•		
•		
•		
•		
•		
• •		
•		
• •		
•		
• •		
•		
•		
•		
•		
•		
•		

		16					
10	A cu	arve has equation $y = f(x)$ and it is given that $f'(x) = ax^2 + bx$, where a and b are positive constants.					
	(i)	Find, in terms of a and b , the non-zero value of x for which the curve has a stationary point and determine, showing all necessary working, the nature of the stationary point. [3]					

_	at $x = 1$ is 9. Find $f(x)$.
•	
•	
•	
•	
•	
•	

The diagram shows the curve $y = (x - 1)^{\frac{1}{2}}$ and points A(1, 0) and B(5, 2) lying on the curve.

(i)	Find the equation of the line AB, giving your answer in the form $y = mx + c$. [2]
(ii)	Find, showing all necessary working, the equation of the tangent to the curve which is parallel to <i>AB</i> . [5]

		• • • • • • • • • • • • • • • • • • • •	•••••		
	the perpendicular ver correct to 2 dec		n the line AB and	the tangent parallel to	AB. Give you [3
•••••					
•••••					
•••••					
•••••					
•••••					
•••••					