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1  An arithmetic progression has first term —12 and common difference 6. The sum of the first n terms
exceeds 3000. Calculate the least possible value of . [4]
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2 Find the set of values of a for which the curve y = —— and the straight line y = ax + 3a meet at two
X

distinct points. (4]
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2 6
3 (i) Find the term independent of x in the expansion of (; — 3x) . [2]

(if) Find the value of a for which there is no term independent of x in the expansion of

(1+ax2)(%—3x)6. (3]



5

3
4  The function f is such that f(x) = (2x — 1)2 — 6x for % < x < k, where k is a constant. Find the largest
value of k for which f is a decreasing function. [5]
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0+4
5 (i) Show that the equation -

————— +5sin6—5 = 0 may be expressed as 5 cos>6 —cos 0 —4 = 0.
sin6 + 1

[3]



7

0+4
(ii) Hence solve the equation % +5sin@ -5 =0 for 0° < 6 < 360°. [4]
sin
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The functions f and g are defined by

2
f(x) = = forx < -1,
x f—

g(x) =x% + 1 forx > 0.

(i) Find an expression for £ ! (x). [3]



(ii) Solve the equation gf(x) = 5. (4]
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A 5 B
[
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D P 0 C

The diagram shows a rectangle ABCD in which AB = 5 units and BC = 3 units. Point P lies on DC
and AP is an arc of a circle with centre B. Point Q lies on DC and AQ is an arc of a circle with centre
D.

(i) Show that angle ABP = 0.6435 radians, correct to 4 decimal places. [1]
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P <

y=3-2x

y=4-3x
» X

o

The diagram shows parts of the graphs of y = 3 — 2x and y = 4 — 34/x intersecting at points A and B.

(i) Find by calculation the x-coordinates of A and B. [3]
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(ii) Find, showing all necessary working, the area of the shaded region. [5]
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9 Relative to an origin O, the position vectors of the points A, B and C are given by

8 -10 2
— — —
OA:(—6), OB:( 3) and OC=(—3).

5 -13 -1

B

. . . ﬁ H —% .
A fourth point, D, is such that the magnitudes |AB BC | and |CD| are the first, second and third

terms respectively of a geometric progression.

—_— = —_—>
(i) Find the magnitudes |AB|, |[BC| and |CD|. (5]

>
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(ii) Given that D is a point lying on the line through B and C, find the two possible position vectors
of the point D. [4]
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10 A curve has equation y = f(x) and it is given that f'(x) = ax? + bx, where a and b are positive constants.

(i) Find, in terms of a and b, the non-zero value of x for which the curve has a stationary point and
determine, showing all necessary working, the nature of the stationary point. [3]
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(ii) Itis now given that the curve has a stationary point at (—2, —3) and that the gradient of the curve
atx =11is 9. Find f(x). [6]
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11

N

y=(-1)
B(S,2)

O  A(1,0)

1
The diagram shows the curve y = (x — 1)2 and points A (1, 0) and B (5, 2) lying on the curve.
(i) Find the equation of the line AB, giving your answer in the form y = mx + c. [2]

(ii) Find, showing all necessary working, the equation of the tangent to the curve which is parallel to
AB. [5]
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(iii) Find the perpendicular distance between the line AB and the tangent parallel to AB. Give your
answer correct to 2 decimal places. [3]



